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Abstract. Parallel snapshot isolation (PSI) is a standard transactional
consistency model used in databases and distributed systems. We argue
that PSI is also a useful formal model for software transactional memory
(STM) as it has certain advantages over other consistency models. How-
ever, the formal PSI definition is given declaratively by acyclicity axioms,
which most programmers find hard to understand and reason about.
To address this, we develop a simple lock-based reference implementation
for PSI built on top of the release-acquire memory model, a well-behaved
subset of the C/C++11 memory model. We prove that our implementation
is sound and complete against its higher-level declarative specification.
We further consider an extension of PSI allowing transactional and non-
transactional code to interact, and provide a sound and complete reference
implementation for the more general setting. Supporting this interaction is
necessary for adopting a transactional model in programming languages.

1 Introduction

Following the widespread use of transactions in databases, software transactional
memory (STM) [19,35] has been proposed as a programming language abstraction
that can radically simplify the task of writing correct and efficient concurrent
programs. It provides the illusion of blocks of code, called transactions, executing
atomically and in isolation from any other such concurrent blocks.

In theory, STM is great for programmers as it allows them to concentrate
on the high-level algorithmic steps of solving a problem and relieves them of
such concerns as the low-level details of enforcing mutual exclusion. In practice,
however, the situation is far from ideal as the semantics of transactions in the
context of non-transactional code is not at all settled. Recent years have seen
a plethora of different STM implementations [1,2,3,6,17,20], each providing a
slightly different—and often unspecified—semantics to the programmer.

Simple models in the literature are lock-based, such as global lock atomicity
(GLA) [28] (where a transaction must acquire a global lock prior to execution and
release it afterwards) and disjoint lock atomicity (DLA) [28] (where a transaction
must acquire all locks associated with the locations it accesses prior to execution
and release them afterwards), which provide serialisable transactions. That is,
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all transactions appear to have executed atomically one after another in some
total order. The problem with these models is largely their implementation cost,
as they impose too much synchronisation between transactions.

The database community has long recognised this performance problem and
has developed weaker transactional models that do not guarantee serialisability.
The most widely used such model is snapshot isolation (SI) [10], implemented
by major databases, both centralised (e.g. Oracle and MS SQL Server) and
distributed [16,30,33], as well as in STM [1,11,25,26]. In this article, we focus on
a closely related model, parallel snapshot isolation (PSI) [36], which is known to
provide better scalability and availability in large-scale geo-replicated systems.
SI and PSI allow conflicting transactions to execute concurrently and to commit
successfully, so long as they do not have a write-write conflict. This in effect
allows reads of SI/PSI transactions to read from an earlier memory snapshot than
the one affected by their writes, and permits outcomes such as the following:

Initially, x = y = 0

T1:

[
x := 1;
a := y; //reads 0

T2:

[
y := 1;
b := x; //reads 0

(SB+txs)

The above is also known as the write skew anomaly in the database literature [14].
Such outcomes are analogous to those allowed by weak memory models, such as
x86-TSO [29,34] and C11 [9], for non-transactional programs. In this article, we
consider—to the best of our knowledge for the first time—PSI as a possible model
for STM, especially in the context of a concurrent language such as C/C++ with
a weak memory model. In such contexts, programmers are already familiar with
weak behaviours such as that exhibited by SB+txs above.

A key reason why PSI is more suitable for a programming language than
SI (or other stronger models) is performance. This is analogous to why C/C++
adopted non-multi-copy-atomicity (allowing two different threads to observe a
write by a third thread at different times) as part of their concurrency model.
Consider the following “IRIW” (independent reads of independent writes) litmus
test:

Initially, x = y = 0

T1:[
x := 1;

T2:[
a := x; //reads 0
b := y; //reads 0

T3:[
c := y; //reads 0
d := x; //reads 0

T4:[
y := 1;

(IRIW+txs)

In the annotated behaviour, transactions T2 and T3 disagree on the relative
order of transactions T1 and T4. Under PSI, this behaviour (called the long fork
anomaly) is allowed, as T1 and T4 are not ordered—they commit in parallel—but
it is disallowed under SI. This intuitively means that SI must impose ordering
guarantees even on transactions that do not access a common location, and can
be rather costly in the context of a weakly consistent system.

A second reason why PSI is much more suitable than SI is that it has better
properties. A key intuitive property a programmer might expect of transactions
is monotonicity. Suppose, in the (SB+txs) program we split the two transactions
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into four smaller ones as follows:

Initially, x = y = 0
T1:

[
x := 1;

T3:
[
a := y; //reads 0

T2:
[
y := 1;

T4:
[
b := x; //reads 0

(SB+txs+chop)

One might expect that if the annotated behaviour is allowed in (SB+txs), it
should also be allowed in (SB+txs+chop). This indeed is the case for PSI, but
not for SI! In fact, in the extreme case where every transaction contains a single
access, SI provides serialisability. Nevertheless, PSI currently has two significant
drawbacks, preventing its widespread adoption. We aim to address these here.

The first PSI drawback is that its formal semantics can be rather daunting
for the uninitiated as it is defined declaratively in terms of acyclicity constraints.
What is missing is perhaps a simple lock-based reference implementation of
PSI, similar to the lock-based implementations of GLA and DLA, that the
programmers can readily understand and reason about. As an added benefit,
such an implementation can be viewed as an operational model, forming the
basis for developing program logics for reasoning about PSI programs.

Although Cerone et al. [15] proved their declarative PSI specification equiva-
lent to an implementation strategy of PSI in a distributed system with replicated
storage over causal consistency, their implementation is not suitable for reasoning
about shared-memory programs. In particular, it cannot help the programmers
determine how transactional and non-transactional accesses may interact.

As our first contribution, in §4 we address this PSI drawback by providing
a simple lock-based reference implementation that we prove equivalent to its
declarative specification. Typically, one proves that an implementation is sound
with respect to a declarative specification—i.e. every behaviour observable in the
implementation is accounted for in the declarative specification. Here, we also
want the other direction, known as completeness, namely that every behaviour
allowed by the specification is actually possible in the implementation. Having a
(simple) complete implementation is very useful for programmers, as it may be
easier to understand and experiment with than the declarative specification.

Our reference implementation is built in the release-acquire fragment of the
C/C++ memory model [8,9,21], using sequence locks [13,18,23,32] to achieve the
correct transactional semantics.

The second PSI drawback is that its study so far has not accounted for
the subtle effects of non-transactional accesses and how they interact with
transactional accesses. While this scenario does not arise in ‘closed world’ systems
such as databases, it is crucially important in languages such as C/C++ and
Java, where one cannot afford the implementation cost of making every access
transactional so that it is “strongly isolated” from other concurrent transactions.

Therefore, as our second contribution, in §5 we extend our basic reference im-
plementation to make it robust under uninstrumented non-transactional accesses,
and characterise declaratively the semantics we obtain. We call this extended
model RPSI (for “robust PSI”) and show that it gives reasonable semantics even
under scenarios where transactional and non-transactional accesses are mixed.
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Outline The remainder of this article is organised as follows. In §2 we present an
overview of our contributions and the necessary background information. In §3 we
provide the formal model of the C11 release/acquire fragment and describe how
we extend it to specify the behaviour of STM programs. In §4 we present our PSI
reference implementation (without non-transactional accesses), demonstrating its
soundness and completeness against the declarative PSI specification. In §5 we
formulate a declarative specification for RPSI as an extension of PSI accounting for
non-transactional accesses. We then present our RPSI reference implementation,
demonstrating its soundness and completeness against our proposed declarative
specification. We conclude and discuss future work in §6.

2 Background and Main Ideas

One of the main differences between the specification of database transactions
and those of STM is that STM specifications must additionally account for
the interactions between mixed-mode (both transactional and non-transactional)
accesses to the same locations. To characterise such interactions, Blundell et
al. [12,27] proposed the notions of weak and strong atomicity, often referred to
as weak and strong isolation. Weak isolation guarantees isolation only amongst
transactions: the intermediate state of a transaction cannot affect or be affected
by other transactions, but no such isolation is guaranteed with respect to non-
transactional code (e.g. the accesses of a transaction may be interleaved by those
of non-transactional code.). By contrast, strong isolation additionally guarantees
full isolation from non-transactional code. Informally, each non-transactional
access is considered as a transaction with a single access. In what follows, we
explore the design choices for implementing STMs under each isolation model
(§2.1), provide an intuitive account of the PSI model (§2.2), and describe the key
requirements for implementing PSI and how we meet them (§2.3).

2.1 Implementing Software Transactional Memory

Implementing STMs under either strong or weak isolation models comes with a
number of challenges. Implementing strongly isolated STMs requires a conflict
detection/avoidance mechanism between transactional and non-transactional
code. That is, unless non-transactional accesses are instrumented to adhere to
the same access policies, conflicts involving non-transactional code cannot be
detected. For instance, in order to guarantee strong isolation under the GLA
model [28] discussed earlier, non-transactional code must be modified to acquire
the global lock prior to each shared access and release it afterwards.

Implementing weakly-isolated STMs requires a careful handling of aborting
transactions as their intermediate state may be observed by non-transactional
code. Ideally, the STM implementation must ensure that the intermediate state
of aborting transactions is not leaked to non-transactional code. A transaction
may abort either because it failed to commit (e.g. due to a conflict), or because it
encountered an explicit abort instruction in the transactional code. In the former
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case, leaks to non-transactional code can be avoided by pessimistic concurrency
control (e.g. locks), pre-empting conflicts. In the latter case, leaks can be prevented
either by lazy version management (where transactional updates are stored locally
and propagated to memory only upon committing), or by disallowing explicit
abort instructions altogether – an approach taken by the (weakly isolated) relaxed
transactions of the C++ memory model [6].

As mentioned earlier, our aim in this work is to build an STM with PSI
guarantees in the RA fragment of C11. As such, instrumenting non-transactional
accesses is not feasible and thus our STM guarantees weak isolation. For sim-
plicity, throughout our development we make a few simplifying assumptions: i)
transactions are not nested; ii) the transactional code is without explicit abort
instructions (as with the weakly-isolated transactions of C++ [6]); and iii) the
locations accessed by a transaction can be statically determined. For the latter,
of course, a static over-approximation of the locations accessed suffices for the
soundness of our implementations.

2.2 Parallel Snapshot Isolation (PSI)

The initial model of PSI introduced in [36] is described informally in terms of
a multi-version concurrent algorithm as follows. A transaction T at a replica r
proceeds by taking an initial snapshot S of the shared objects in r. The execution
of T is then carried out locally: read operations query S and write operations
similarly update S. Once the execution of T is completed, it attempts to commit
its changes to r and it succeeds only if it is not write-conflicted. Transaction T is
write-conflicted if another committed transaction T′ has written to a location in r
also written to by T, since it recorded its snapshot S. If T fails the conflict check
it aborts and may restart the transaction; otherwise, it commits its changes to r,
at which point its changes become visible to all other transactions that take a
snapshot of replica r thereafter. These committed changes are later propagated
to other replicas asynchronously.

The main difference between SI and PSI is in the way the committed changes
at a replica r are propagated to other sites in the system. Under the SI model,
committed transactions are globally ordered and the changes at each replica
are propagated to others in this global order. This ensures that all concurrent
transactions are observed in the same order by all replicas. By contrast, PSI
does not enforce a global order on committed transactions: transactional effects
are propagated between replicas in causal order. This ensures that, if replica r1
commits a message m which is later read at replica r2, and r2 posts a response
m′, no replica can see m′ without having seen the original message m. However,
causal propagation allows two replicas to observe concurrent events as if occurring
in different orders: if r1 and r2 concurrently commit messages m and m′, then
replica r3 may initially see m but not m′, and r4 may see m′ but not m. This is
best illustrated by the (IRIW+txs) example in §1.
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2.3 Towards a Lock-Based Reference Implementation for PSI

While the description of PSI above is suitable for understanding PSI, it is not
very useful for integrating the PSI model in languages such as C, C++ or Java.
From a programmer’s perspective, in such languages the various threads directly
access the shared memory; they do not access their own replicas, which are
loosely related to the replicas of other threads. What we would therefore like
is an equivalent description of PSI in terms of unreplicated accesses to shared
memory and a synchronisation mechanism such as locks.

In effect, we want a definition similar in spirit to global lock atomicity
(GLA) [28], which is arguably the simplest TM model, and models commit-
ted transactions as acquiring a global mutual exclusion lock, then accessing
and updating the data in place, and finally releasing the global lock. Naturally,
however, the implementation of PSI cannot be that simple.

A first observation is that PSI cannot be simply implemented over sequentially
consistent (SC) shared memory.3 To see this, consider the IRIW+txs program
from the introduction. Although PSI allows the annotated behaviour, SC forbids
it for the corresponding program without transactions. The point is that under
SC, either the x := 1 or the y := 1 write first reaches memory. Suppose, without
loss of generality, that x := 1 is written to memory before y := 1. Then, the
possible atomic snapshots of memory are x = y = 0, x = 1∧y = 0, and x = y = 1.
In particular, the snapshot read by T3 is impossible.

To implement PSI we therefore resort to a weaker memory model. Among
weak memory models, the “multi-copy-atomic” ones, such as x86-TSO [29,34],
SPARC PSO [37,38] and ARMv8-Flat [31], also forbid the weak outcome of
(IRIW+txs) in the same way as SC, and so are unsuitable for our purpose. We
thus consider release-acquire consistency (RA) [8,9,21], a simple and well-behaved
non-multi-copy-atomic model. It is readily available as a subset of the C/C++11
memory model [9] with verified compilation schemes to all major architectures.

RA provides a crucial property that is relied upon in the earlier description
of PSI, namely causality. In terms of RA, this means that if thread A observes a
write w of thread B, then it also observes all the previous writes of thread B as
well as any other writes B observed before performing w.

A second observation is that using a single lock to enforce mutual exclusion
does not work as we need to allow transactions that access disjoint sets of
locations to complete in parallel. An obvious solution is to use multiple locks—
one per location—as in the disjoint lock atomicity (DLA) model [28]. The question
remaining is how to implement taking a snapshot at the beginning of a transaction.

A naive attempt is to use reader/writer locks, which allow multiple readers
(taking the snapshots) to run in parallel, as long as no writer has acquired the
lock. In more detail, the idea is to acquire reader locks for all locations read by a
transaction, read the locations and store their values locally, and then release
the reader locks. However, as we describe shortly, this approach does not work.

3 Sequential consistency (SC) [24] is the standard model for shared memory concurrency
and defines the behaviours of a multi-threaded program as those arising by executing
sequentially some interleaving of the accesses of its constituent threads.
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Consider the (IRIW+txs) example in §1. For T2 to get the annotated outcome,
it must release its reader lock for y before T4 acquires it. Likewise, since T3
observes y = 1, it must acquire its reader lock for y after T4 releases it. By this
point, however, it is transitively after the release of the y lock by T2, and so,
because of causality, it must have observed all the writes observed by T2 by that
point—namely, the x := 1 write. In essence, the problem is that reader-writer
locks over-synchronise. When two threads acquire the same reader lock, they
synchronise, whereas two read-only transactions should never synchronise in PSI.

To resolve this problem, we use sequence locks [13,18,23,32]. Under the se-
quence locking protocol, each location x is associated with a sequence (version)
number vx, initialised to zero. Each write to x increments vx before and after its
update, provided that vx is even upon the first increment. Each read from x checks
vx before and after reading x. If both values are the same and even, then there
cannot have been any concurrent increments, and the reader must have seen a con-
sistent value. That is, read(x), do{v:=vx; s:=x} while(is-odd(v) || vx!=v).
Under SC, sequence locks are equivalent to reader-writer locks; however, under
RA, they are weaker exactly because readers do not synchronise.

Handling Non-transactional Accesses Let us consider what happens if some
of the data accessed by a transaction is modified concurrently by an atomic
non-transactional write. Since non-transactional accesses do not acquire any locks,
the snapshots taken can include values written by non-transactional accesses.
The result of the snapshot then depends on the order in which the variables are
read. Consider for example the following litmus test:

x := 1;
y := 1;

T:

[
a := y; //reads 1
b := x; //reads 0

In our implementation, if the transaction’s snapshot reads y before x, then the
annotated weak behaviour is not possible, because the underlying model (RA)
disallows the weak “message passing” behaviour. If, however, x is read before
y by the snapshot, then the weak behaviour is possible. In essence, this means
that the PSI implementation described so far is of little use, when there are races
between transactional and non-transactional code.

Another problem is the lack of monotonicity. A programmer might expect that
wrapping some code in a transaction block will never yield additional behaviours
not possible in the program without transactions. Yet, in this example, removing
the T block and unwrapping its code gets rid of the annotated weak behaviour!

To get monotonicity, it seems that snapshots must read the variables in the
same order they are accessed by the transactions. How can this be achieved for
transactions that say read x, then y, and then x again? Or transactions that
depending on some complex condition, access first x and then y or vice versa? The
key to solving this conundrum is surprisingly simple: read each variable twice. In
more detail, one takes two snapshots of the locations read by the transaction, and
checks that both snapshots return the same values for each location. This ensures
that every location is read both before and after every other location in the
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transaction, and hence all the high-level happens-before orderings in executions
of the transactional program are also respected by its implementation.

There is however one caveat: since equality of values is used to determine
whether the two snapshots are the same, we will miss cases where different non-
transactional writes to a variable write the same value. In our formal development
(see §5), we thus assume that if multiple non-transactional writes write the same
value to the same location, they cannot race with the same transaction. This
assumption is necessary for the soundness of our implementation and cannot be
lifted without instrumenting non-transactional accesses.

3 The Release-Acquire Memory Model for STM

We present the notational conventions used in the remainder of this article and
proceed with the declarative model of the release-acquire (RA) fragment [21] of
the C11 memory model [9], in which we implement our STM. In §3.1 we describe
how we extend this formal model to specify the behaviour of STM programs.

Notation Given a relation r on a set A, we write r?, r+ and r∗ for the reflexive,
transitive and reflexive-transitive closure of r, respectively. We write r−1 for the
inverse of r; r|A for r ∩A2; [A] for the identity relation on A, i.e.

{
(a, a) a ∈ A

}
;

irreflexive(r) for ¬∃a. (a, a) ∈ r; and acyclic(r) for irreflexive(r+). Given two
relations r1 and r2, we write r1; r2 for their (left) relational composition,
i.e.
{

(a, b) ∃c. (a, c) ∈ r1 ∧ (c, b) ∈ r2
}

. Lastly, when r is a strict partial order, we

write r|imm for the immediate edges in r:
{

(a, b) ∈ r ¬∃c. (a, c) ∈ r ∧ (c, b) ∈ r
}

.

The RA model is given by the fragment of the C11 memory model, where all
read accesses are acquire (acq) reads, all writes are release (rel) writes, and all
atomic updates (i.e. RMWs) are acquire-release (acqrel) updates. The semantics
of a program under RA is defined as a set of consistent executions.

Definition 1 (Executions in RA). Assume a finite set of locations Loc; a
finite set of values Val; and a finite set of thread identifiers TId. Let x, y, z range
over locations, v over values and τ over thread identifiers. An RA execution graph
of an STM implementation, G , is a tuple of the form (E , po, rf,mo) with its nodes
given by E and its edges given by the po, rf and mo relations such that:

• E ⊂ N is a finite set of events, and is accompanied with the functions
tid(.) : E → TId and lab(.) : E → Label, returning the thread identifier
and the label of an event, respectively. We typically use a, b, and e to range
over events. The label of an event is a tuple of one of the following three
forms: i) R(x, v) for read events; ii) W(x, v) for write events; or iii) U(x, v, v′)
for update events. The lab(.) function induces the functions typ(.), loc(.),
valr(.) and valw(.) that respectively project the type (R, W or U), location,
and read/written values of an event, where applicable. The set of read events
is denoted by R ,

{
e ∈ E typ(e) ∈ {R, U}

}
; similarly, the set of write events

is denoted by W ,
{
e ∈ E typ(e) ∈ {W, U}

}
and the set of update events is

denoted by U , R∩W.
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We further assume that E always contains a set E 0 of initialisation events
consisting of a write event with label W(x, 0) for every x ∈ Loc.

• po ⊆ E × E denotes the ‘program-order’ relation, defined as a disjoint union
of strict total orders, each orders the events of one thread, together with
E 0 × (E \ E 0) that places the initialisation events before any other event.
• rf ⊆ W ×R denotes the ‘reads-from’ relation, defined as a relation between

write and read events of the same location and value; it is total and functional
on reads, i.e. every read event is related to exactly one write event;

• mo ⊆ W ×W denotes the ‘modification-order’ relation, defined as a disjoint
union of strict orders, each of which totally orders the write events to one
location.

We often use “G .” as a prefix to project the various components of G (e.g. G .E ).
Given a relation r ⊆ E × E , we write rloc for r ∩

{
(a, b) loc(a) = loc(b)

}
.

Analogously, given a set A ⊆ E , we write Ax for A∩
{
a loc(a) = x

}
. Lastly, given

the rf and mo relations, we define the ‘reads-before’ relation rb , rf−1; mo \ [E].

W(x, 0) W(y, 0)

W(x, 1) R(x, 1)

R(y, 0)

R(y, 1)

R(x, 0)

W(y, 1)

po

mo mo

rf rfrf

Fig. 1: An RA-consistent execution of a transaction-
free variant of (IRIW+txs) in §1, with program
outcome a = c = 1 and b = d = 0.

Executions of a given
program represent traces
of shared memory ac-
cesses generated by the
program. We only con-
sider “partitioned” pro-
grams of the form ‖τ∈TId
cτ , where ‖ denotes paral-
lel composition, and each
ci is a sequential program.
The set of executions as-
sociated with a given pro-
gram is then defined by induction over the structure of sequential programs.
We do not define this construction formally as it depends on the syntax of the
implementation programming language. Each execution of a program P has a
particular program outcome, prescribing the final values of local variables in each
thread (see example in Fig. 1).

In this initial stage, the execution outcomes are unrestricted in that there are
no constraints on the rf and mo relations. These restrictions and thus the permit-
ted outcomes of a program are determined by the set of consistent executions:

Definition 2 (RA-consistency). A program execution G is RA-consistent,
written RA-consistent(G), if acyclic(hbloc ∪mo ∪ rb) holds, where hb , (po ∪ rf)+

denotes the ‘RA-happens-before’ relation.

Among all executions of a given program P , only the RA-consistent ones define
the allowed outcomes of P .

3.1 Software Transactional Memory in RA: Specification

Our goal in this section is to develop a declarative framework that allows us to
specify the behaviour of mixed-mode STM programs under weak isolation guar-



10 Azalea Raad, Ori Lahav, and Viktor Vafeiadis

antees. Whilst the behaviour of transactional code is dictated by the particular
isolation model considered (e.g. PSI), the behaviour of non-transactional code
and its interaction with transactions is guided by the underlying memory model.
As we build our STM in the RA fragment of C11, we assume the behaviour of
non-transactional code to conform to the RA memory model. More concretely, we
build our specification of a program P such that i) in the absence of transactional
code, the behaviour of P is as defined by the RA model; ii) in the absence of
non-transactional code, the behaviour of P is as defined by the PSI model.

Definition 3 (Specification executions). Assume a finite set of transaction
identifiers TXId. An execution graph of an STM specification, Γ , is a tuple of
the form (E , po, rf,mo, T ) where:

• E , R∪W ∪ B ∪ E , denotes the set of events with R and W defined as the
sets of read and write events as described above; and the B and E respectively
denote the set of events marking the beginning and end of transactions. For
each event a ∈ B ∪E , the lab(.) function is extended to return B when a ∈ B,
and E when a ∈ E . The typ(.) function is accordingly extended to return a
type in

{
R, W, U, B, E

}
, whilst the remaining functions are extended to return

default (dummy) values for events in B ∪ E .
• po, rf and mo denote the ‘program-order’, ‘reads-from’ and ‘modification-

order’ relations as described above;
• T ⊆ E denotes the set of transactional events with B ∪ E ⊆ T . For transac-

tional events in T , event labels are extended to carry an additional compo-
nent, namely the associated transaction identifier. As such, a specification
graph is additionally accompanied with the function tx(.) : T → TXId,
returning the transaction identifier of transactional events. The derived
‘same-transaction’ relation, st ∈ T × T , is the equivalence relation given by
st ,

{
(a, b) ∈ T × T tx(a) = tx(b)

}
.

We write T /st for the set of equivalence classes of T induced by st; [a]st for the
equivalence class that contains a; and Tξ for the equivalence class of transaction

ξ ∈ TXId: Tξ ,
{
a tx(a)=ξ

}
. We write NT for non-transactional events:

NT , E \ T . We often use “Γ.” as a prefix to project the Γ components.

Specification consistency The consistency of specification graphs is model-
specific in that it is dictated by the guarantees provided by the underlying model.
In the upcoming sections, we present two consistency definitions of PSI in terms
of our specification graphs that lack cycles of certain shapes. In doing so, we often
write rT for lifting a relation r ⊆ E × E to transaction classes: rT , st; (r \ st); st.
Analogously, we write rI to restrict r to the internal events of a transaction: r∩ st.

Comparison to dependency graphs Adya et al. proposed dependency graphs
for declarative specification of transactional consistency models [5,7]. Dependency
graphs are similar to our specification graphs in that they are constructed from
a set of nodes and a set of edges (relations) capturing certain dependencies.
However, unlike our specification graphs, the nodes in dependency graphs denote
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entire transactions and not individual events. In particular, Adya et al. propose

three types of dependency edges: i) a read dependency edge, T1
WR→ T2, denotes

that transaction T2 reads a value written by T1; ii) a write dependency edge

T1
WW→ T2 denotes that T2 overwrites a value written by T1; and iii) an anti-

dependency edge T1
RW→ T2 denotes that T2 overwrites a value read by T1. Adya’s

formalism does not allow for non-transactional accesses and it thus suffices to
define the dependencies of an execution as edges between transactional classes.
In our specification graphs however, we account for both transactional and
non-transactional accesses and thus define our relational dependencies between
individual events of an execution. However, when we need to relate an entire
transaction to another with relation r, we use the transactional lift (rT) defined
above. In particular, Adya’s dependency edges correspond to ours as follows.
Informally, the WR corresponds to our rfT; the WW corresponds to our moT;
and the RW corresponds to our rbT. Adya’s dependency graphs have been used
to develop declarative specifications of the PSI consistency model [14]. In §4,
we revisit this model, redefine it as specification graphs in our setting, and
develop a reference lock-based implementation that is sound and complete with
respect to this abstract specification. The model in [14] does not account for
non-transactional accesses. To remedy this, later in §5, we develop a declarative
specification of PSI that allows for both transactional and non-transactional
accesses. We then develop a reference lock-based implementation that is sound
and complete with respect to our proposed model.

4 Parallel Snapshot Isolation (PSI)

We present a declarative specification of PSI (§4.1), and develop a lock-based
reference implementation of PSI in the RA fragment (§4.2). We then demonstrate
that our implementation is both sound (§4.3) and complete (§4.4) with respect
to the PSI specification. Note that the PSI model in this section accounts
for transactional code only; that is, throughout this section we assume that
Γ.E = Γ.T . We lift this assumption later in §5.

4.1 A Declarative Specification of PSI STMs in RA

In order to formally characterise the weak behaviour and anomalies admitted by
PSI, Cerone and Gotsman [14,15] formulated a declarative PSI specification. (In
fact, they provide two equivalent specifications: one using dependency graphs
proposed by Adya et al. [5,7]; and the other using abstract executions.) As is
standard, they characterise the set of executions admitted under PSI as graphs
that lack certain cycles. We present an equivalent declarative formulation of PSI,
adapted to use our notation as discussed in §3. It is straightforward to verify
that our definition coincides with the dependency graph specification in [15]. As
with [14,15], throughout this section, we take PSI execution graphs to be those
in which E = T ⊆ (R ∪W) \ U . That is, the PSI model handles transactional
code only, consisting solely of read and write events (excluding updates).
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PSI consistency A PSI execution graph Γ=(E , po, rf,mo, T ) is consistent,
written psi-consistent(Γ ), if the following hold:

• rfI ∪moI ∪ rbI ⊆ po (int)
• irreflexive((poT ∪ rfT ∪moT)+; rbT

?) (ext)

Informally, int ensures the consistency of each transaction internally, while
ext provides the synchronisation guarantees among transactions. In particular,
we note that the two conditions together ensure that if two read events in the same
transaction read from the same location x, and no write to x is po-between them,
then they must read from the same write (known as ‘internal read consistency’).

Next, we provide an alternative formulation of PSI-consistency that is closer
in form to RA-consistency. This formulation is the basis of our extension in §5
with non-transactional accesses.

Lemma 1. A PSI execution graph Γ = (E , po, rf,mo, T ) is consistent if and only
if acyclic(psi-hbloc ∪mo∪ rb) holds, where psi-hb denotes the ‘PSI-happens-before’
relation, defined as psi-hb , (po ∪ rf ∪ rfT ∪moT)+.

Proof. The full proof is provided in the technical appendix [4].

Note that this acyclicity condition is rather close to that of RA-consistency
definition presented in §3, with the sole difference being the definition of ‘happens-
before’ relation by replacing hb with psi-hb. The relation psi-hb is a strict extension
of hb with rfT ∪ moT, which captures additional synchronisation guarantees
resulting from transaction orderings, as described shortly. As in RA-consistency,
the po and rf are included in the ‘PSI-happens-before’ relation psi-hb. Additionally,
the rfT and moT also contribute to psi-hb.

Intuitively, the rfT corresponds to synchronisation due to causality between
transactions. A transaction T1 is causally-ordered before transaction T2, if T1
writes to x and T2 later (in ‘happens-before’ order) reads x. The inclusion of rfT
ensures that T2 cannot read from T1 without observing its entire effect. This in
turn ensures that transactions exhibit an atomic ‘all-or-nothing’ behaviour. In
particular, transactions cannot mix-and-match the values they read. For instance,
if T1 writes to both x and y, transaction T2 may not read the value of x from T1
but read the value of y from an earlier (in ‘happens-before’ order) transaction T0.

The moT corresponds to synchronisation due to conflicts between transactions.
Its inclusion enforces the write-conflict-freedom of PSI transactions. In other
words, if two transactions T1 and T2 both write to the same location x via events
w1 and w2 such that w1

mo→ w2, then T1 must commit before T2, and thus the
entire effect of T1 must be visible to T2.

4.2 A Lock-Based PSI Implementation in RA

We present an operational model of PSI that is both sound and complete
with respect to the declarative semantics in §4.1. To this end, in Fig. 2 we
develop a pessimistic (lock-based) reference implementation of PSI using se-
quence locks [13,18,23,32], referred to as version locks in our implementation. In
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0. for (x∈ WS) lock vx;

1. for (x∈ RS) {
2. a := vx;

3. if (is-odd(a) && x 6∈ WS) continue;

4. if (x 6∈ WS) v[x]:= a;

5. s[x]:= x; }
6. for (x∈ RS)

7. if (¬valid(x)) goto line 1;

8. JTK;
9. for (x∈ WS) unlock vx;

lock vx ,
retry: v[x]:= vx;

if (is-odd(v[x]))

goto retry;

if (!CAS(vx,v[x],v[x]+1))

goto retry;

unlock vx , vx:= v[x]+ 2

valid(x) , vx == v[x]

validRPSI(x) , vx == v[x] && x == s[x]

Ja:= xK , a:= s[x]

Jx:= aK , x:=a; s[x]:= a

JS1;S2K , JS1K;JS2K
Jwhile(e)SK , while(e) JSK

... and so on ...

Fig. 2: PSI implementation of transaction T given RS, WS; the RPSI implementation
(§5) is obtained by replacing valid on line 7 with validRPSI.

order to avoid taking a snapshot of the entire memory and thus decrease the
locking overhead, we assume that a transaction T is supplied with its read set,
RS, containing those locations that are read by T. Similarly, we assume T to be
supplied with its write set, WS, containing the locations updated by T.4

The implementation of T proceeds by exclusively acquiring the version locks
on all locations in its write set (line 0). It then obtains a snapshot of the
locations in its read set by inspecting their version locks, as described shortly,
and subsequently recording their values in a thread-local array s (lines 1-7).
Once a snapshot is recorded, the execution of T proceeds locally (via JTK on line
8) as follows. Each read operation consults the local snapshot in s; each write
operation updates the memory eagerly (in-place) and subsequently updates its
local snapshot to ensure correct lookup for future reads. Once the execution of
T is concluded, the version locks on the write set are released (line 9). Observe
that as the writer locks are acquired pessimistically, we do not need to check for
write-conflicts in the implementation.

To facilitate our locking implementation, we assume that each location x is
associated with a version lock at address x+1, written vx. The value held by a
version lock vx may be in one of two categories: i) an even number, denoting that
the lock is free; or ii) an odd number, denoting that the lock is exclusively held by
a writer. For a transaction to write to a location x in its write set WS, the x version
lock (vx) must be acquired exclusively by calling lock vx. Each call to lock vx

reads the value of vx and stores it in v[x], where v is a thread-local array. It then
checks if the value read is even (vx is free) and if so it atomically increments it by
1 (with a ‘compare-and-swap’ operation), thus changing the value of vx to an odd

4 A conservative estimate of RS and WS can be obtained by simple syntactic analysis.
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number and acquiring it exclusively; otherwise it repeats this process until the
version lock is successfully acquired. Conversely, each call to unlock vx updates
the value of vx to v[x]+2, restoring the value of vx to an even number and thus
releasing it. Note that deadlocks can be avoided by imposing an ordering on locks
and ensuring their in-order acquisition by all transactions. For simplicity however,
we have elided this step as we are not concerned with progress or performance
issues here and our main objective is a reference implementation of PSI in RA.

Analogously, for a transaction to read from the locations in its read set RS,
it must record a snapshot of their values (lines 1-7). To obtain a snapshot of
location x, the transaction must ensure that x is not currently being written to
by another transaction. It thus proceeds by reading the value of vx and recording
it in v[x]. If vx is free (the value read is even) or x is in its write set WS, the
value of x can be freely read and tentatively stored in s[x]. In the latter case,
the transaction has already acquired the exclusive lock on vx and is thus safe in
the knowledge that no other transaction is currently updating x. Once a tentative
snapshot of all locations is obtained (lines 1-5), the transaction must validate
it by ensuring that it reflects the values of the read set at a single point in
time (lines 6-7). To do this, it revisits the version locks, inspecting whether their
values have changed (by checking them against v) since it recorded its snapshot.
If so, then an intermediate update has intervened, potentially invalidating the
obtained snapshot; the transaction thus restarts the snapshot process. Otherwise,
the snapshot is successfully validated and returned in s.

4.3 Implementation Soundness

The PSI implementation in Fig. 2 is sound : for each RA-consistent implementation
graph G , a corresponding specification graph Γ can be constructed such that
psi-consistent(Γ ) holds. In what follows we state our soundness theorem and
briefly describe our construction of consistent specification graphs. We refer the
reader to the technical appendix [4] for the full soundness proof.

Theorem 1 (Soundness). For all RA-consistent implementation graphs G of
the implementation in Fig. 2, there exists a PSI-consistent specification graph Γ
of the corresponding transactional program that has the same program outcome.

Constructing Consistent Specification Graphs Observe that given an ex-
ecution of our implementation with t transactions, the trace of each transaction

i ∈ {1 · · · t} is of the form θi = Lsi
po→ FS i

po→ Si
po→ Tsi

po→ Usi, where Lsi, FS i,
Si, Tsi and Usi respectively denote the sequence of events acquiring the version
locks, attempting but failing to obtain a valid snapshot, recording a valid snapshot,
performing the transactional operations, and releasing the version locks. For each
transactional trace θi of our implementation, we thus construct a corresponding

trace of the specification as θ′i = Bi
po→ Ts ′i

po→ Ei, where Bi and Ei denote the
transaction begin and end events (lab(Bi)=B and lab(Ei)=E). When Tsi is of

the form t1
po→ · · · po→ tn, we construct Ts ′i as t′1

po→ · · · po→ t′n with each t′j defined
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either as t′j , R(x, v) when tj = R(s[x], v) (i.e. the corresponding implementation

event is a read event); or as t′j , W(x, v) when tj=W(x, v)
po→ W(s[x], v).

For each specification trace θ′i we construct the ‘reads-from’ relation as:

RFi ,


(w, t′j)

t′j ∈ Ts ′i ∧ ∃x, v. t′j=R(x, v) ∧ w=W(x, v)

∧(w ∈ Ts ′i ⇒ w
po→ t′j ∧

(∀e ∈ Ts ′i. w
po→ e

po→ t′j ⇒ (loc(e) 6=x ∨ e 6∈W)))

∧(w 6∈ Ts ′i ⇒ (∀e∈Ts ′i. (e
po→ t′j ⇒ (loc(e) 6= x ∨ e 6∈ W))

∧∃r′ ∈ Si. loc(r′)=x ∧ (w, r′) ∈ G .rf)


That is, we construct our graph such that each read event t′j from location x in

Ts ′i either i) is preceded by a write event w to x in Ts ′i without an intermediate
write in between them and thus ‘reads-from’ w (lines two and three); or ii) is not
preceded by a write event in Ts ′i and thus ‘reads-from’ the write event w from
which the initial snapshot read r′ in Si obtained the value of x (last two lines).

Given a consistent implementation graph G = (E , po, rf,mo), we construct a
consistent specification graph Γ = (E , po, rf,mo, T ) such that:

• Γ.E ,
⋃
i∈{1···t} θ

′
i.E – the events of Γ.E is the union of events in each

transaction trace θ′i of the specification constructed as above;
• Γ.po , G .po|Γ.E – the Γ.po is that of G .po limited to the events in Γ.E ;
• Γ.rf ,

⋃
i∈{1···t} RFi – the Γ.rf is the union of RFi relations defined above;

• Γ.mo , G .mo|Γ.E – the Γ.mo is that of G .mo limited to the events in Γ.E ;
• Γ.T , Γ.E , where for each e ∈ Γ.T , we define tx(e) = i when e ∈ θ′i.

4.4 Implementation Completeness

The PSI implementation in Fig. 2 is complete: for each consistent specification
graph Γ a corresponding implementation graph G can be constructed such that
RA-consistent(G) holds. We next state our completeness theorem and describe
our construction of consistent implementation graphs. We refer the reader to the
technical appendix [4] for the full completeness proof.

Theorem 2 (Completeness). For all PSI-consistent specification graphs Γ of
a transactional program, there exists an RA-consistent execution graph G of the
implementation in Fig. 2 that has the same program outcome.

Constructing Consistent Implementation Graphs In order to construct
an execution graph of the implementation G from the specification Γ , we follow
similar steps as those in the soundness construction, in reverse order. More
concretely, given each trace θ′i of the specification, we construct an analogous
trace of the implementation by inserting the appropriate events for acquiring and
inspecting the version locks, as well as obtaining a snapshot. For each transaction
class Ti ∈ T /st, we must first determine its read and write sets and subsequently
decide the order in which the version locks are acquired (for locations in the
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write set) and inspected (for locations in the read set). This then enables us
to construct the ‘reads-from’ and ‘modification-order’ relations for the events
associated with version locks.

Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T ),
and a transaction class Ti ∈ Γ.T /st, we write WSTi for the set of locations written
to by Ti. That is, WSTi ,

⋃
e∈Ti∩W loc(e). Similarly, we write RSTi for the set of

locations read from by Ti, prior to being written to by Ti. For each location x

read from by Ti, we additionally record the first read event in Ti that retrieved
the value of x. That is,

RSTi ,
{

(x, r) r ∈ Ti ∩Rx ∧ ¬∃e ∈ Ti ∩ E x. e
po→ r

}
Note that transaction Ti may contain several read events reading from x, prior
to subsequently updating it. However, the internal-read-consistency property
ensures that all such read events read from the same write event. As such, as
part of the read set of Ti we record the first such read event (in program-order).

Determining the ordering of lock events hinges on the following observation.
Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T ),

let for each location x the total order mo be given as: w1
mo|imm→ · · · mo|imm→ wnx

.
Observe that this order can be broken into adjacent segments where the events
of each segment belong to the same transaction. That is, given the transaction
classes Γ.T /st, the order above is of the following form where T1, · · · , Tm ∈ Γ.T /st
and for each such Ti we have x ∈ WSTi and w(i,1) · · ·w(i,ni) ∈ Ti:

w(1,1)
mo|imm→ · · · mo|imm→ w(1,n1)︸ ︷︷ ︸

T1

mo|imm→ · · · mo|imm→ w(m,1)
mo|imm→ · · · mo|imm→ w(m,nm)︸ ︷︷ ︸

Tm

Were this not the case and we had w1
mo→ w

mo→ w2 such that w1, w2 ∈ Ti and
w ∈ Tj 6= Ti, we would consequently have w1

moT→ w
moT→ w1, contradicting

the assumption that Γ is consistent. Given the above order, let us then define
Γ.MOx = [T1 · · · Tm]. We write Γ.MOx|i for the ith item of Γ .MOx. As we describe
shortly, we use Γ.MOx to determine the order of lock events.

Note that the execution trace for each transaction Ti ∈ Γ.T /st is of the form

θ′i = Bi
po→ Ts ′i

po→ Ei, where Bi is a transaction-begin (B) event, Ei is a transaction-

end (E) event, and Ts ′i = t ′1
po→ · · · po→ t ′n for some n, where each t ′j is either a read

or a write event. As such, we have Γ.E = Γ.T =
⋃
Ti∈Γ.T /st Ti = θ′i.E .

For each trace θ′i of the specification, we construct a corresponding trace of
our implementation θi as follows. Let RSTi = {(x1, r1) · · · (xp, rp)} and WSTi =

{y1 · · · yq}. We then construct θi = Lsi
po→ Si

po→ Tsi
po→ Usi, where

• Lsi = L
y1
i

po→ · · · po→ L
yq
i and Usi = U

y1
i

po→ · · · po→ U
yq
i denote the sequence

of events acquiring and releasing the version locks, respectively. Each L
yj
i

and U
yj
i are defined as follows, the first event L

y1
i has the same identifier as

that of Bi, the last event U
yq
i has the same identifier as that of Ei, and the
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identifiers of the remaining events are picked fresh:

L
yj
i =U(vyj , 2a, 2a+1) U

yj
i =W(vyj , 2a+2) where MOyj

∣∣∣
a

=Ti

We then define the mo relation for version locks such that if transaction Ti
writes to y immediately after Tj (i.e. Ti is MOy-ordered immediately after
Tj), then Ti acquires the vy version lock immediately after Tj has released it.
On the other hand, if Ti is the first transaction to write to y, then it acquires
vy immediately after the event initialising the value of vy, written initvy.
Moreover, each vy release event of Ti is mo-ordered immediately after the
corresponding vy acquisition event in Ti:

IMOi ,
⋃

y∈WSTi

(L
y
i , U

y
i ),

(w,L
y
i )

(Γ.MOx|0 =Ti ⇒ w=initvy)∧
(∃Tj , a > 0. Γ.MOy

∣∣
a

=Ti ∧ Γ.MOy

∣∣
a−1 =Tj

⇒ w=Uy
j )


This partial mo order on lock events of Ti also determines the rf relation for
its lock acquisition events: IRF1

i ,
⋃

y∈WSTi

{
(w,Ly

i ) (w,Ly
i ) ∈ IMOi

}
.

• Si = trx1
i

po→ · · · po→ tr
xp
i

po→ vrx1
i

po→ · · · po→ vr
xp
i denotes the sequence of events

obtaining a tentative snapshot (tr
xj
i ) and subsequently validating it (vr

xj
i ).

Each tr
xj
i sequence is defined as ir

xj
i

po→ r
xj
i

po→ s
xj
i (reading the version lock

vxj , reading xj and recoding it in s), with ir
xj
i , r

xj
i , s

xj
i and vr

xj
i events

defined as follows (with fresh identifiers). We then define the rf relation for
each of these read events in Si. For each (x, r) ∈ RSTi , when r (i.e. the read
event in the specification class Ti that reads the value of x) reads from an
event w in the specification graph ((w, r) ∈ Γ.rf), we add (w, rxi ) to the rf
relation of G (the first line of IRF2

i below). For version locks, if transaction
Ti also writes to xj , then ir

xj
i and vr

xj
i events (reading and validating the

value of version lock vxj), read from the lock event in Ti that acquired vxj ,
namely L

xj
i . On the other hand, if transaction Ti does not write to xj and it

reads the value of xj written by Tj , then ir
xj
i and vr

xj
i read the value written

to vxj by Tj when releasing it (U x
j ). Lastly, if Ti does not write to xj and it

reads the value of xj written by the initial write, initx, then ir
xj
i and vr

xj
i

read the value written to vxj by the initial write to vx, initvx.

IRF2
i ,

⋃
(x,r)∈RSTi


(w, rxi ),
(w′, irx

i ),
(w′, vrx

i )

(w, r) ∈ Γ.rf
∧ (x ∈ WSTi ⇒ w′=Lx

i )
∧ (x 6∈ WSTi ∧ ∃Tj . w ∈ Tj ⇒ w′=Ux

j )
∧ (x 6∈ WSTi ∧ w=initx ⇒ w′=initvx)


r
xj
i =R(xj , v) s

xj
i =W(s[xj], v) s.t. ∃w. (w, r

xj
i ) ∈ IRF2

i ∧ valw(w)=v

ir
xj
i =vr

xj
i =R(vxj , v) s.t. ∃w. (w, ir

xj
i ) ∈ IRF2

i ∧ valw(w)=v

• Tsi = t1
po→ · · · po→ tn (when Ts ′i = t ′1

po→ · · · po→ t ′n), with tj defined as follows:

tj = R(s[x], v) when t ′j = R(x, v)

tj = W(x, v)
po|imm→ W(s[x], v) when t ′j = W(x, v)
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When t ′j is a read event, the tj has the same identifier as that of t ′j . When t ′j
is a write event, the first event in tj has the same identifier as that of tj and
the identifier of the second event is picked fresh.

We are now in a position to construct our implementation graph. Given a
consistent execution graph Γ of the specification, we construct an execution
graph G = (E , po, rf,mo) of the implementation as follows.

• G .E =
⋃

Ti∈Γ.T /st
θi.E – note that G .E is an extension of Γ.E : Γ.E ⊆ G .E .

• G .po is defined as Γ.po extended by the po for the additional events of G ,
given by the θi traces defined above.

• G .rf =
⋃

Ti∈Γ.T /st
(IRF1

i ∪ IRF2
i )

• G .mo = Γ.mo ∪
( ⋃
Ti∈Γ.T /st

IMOi

)+

5 Robust Parallel Snapshot Isolation (RPSI)

In the previous section we adapted the PSI semantics in [14] to STM settings,
in the absence of non-transactional code. However, a reasonable STM should
account for mixed-mode code where shared data is accessed by both transactional
and non-transactional code. To remedy this, we explore the semantics of PSI
STMs in the presence of non-transactional code with weak isolation guarantees
(see §2.1). We refer to the weakly isolated behaviour of such PSI STMs as robust
parallel snapshot isolation (RPSI), due to its ability to provide PSI guarantees
between transactions even in the presence of non-transactional code.

In §5.1 we propose the first declarative specification of RPSI STM programs.
Later in §5.2 we develop a lock-based reference implementation of our RPSI
specification in the RA fragment. We then demonstrate that our implementation is
both sound (§5.3) and complete (§5.4) with respect to our proposed specification.

5.1 A Declarative Specification of RPSI STMs in RA

We formulate a declarative specification of RPSI semantics by adapting the PSI
semantics presented in §4.1 to account for non-transactional accesses. As with the
PSI specification in §4.1, throughout this section, we take RPSI execution graphs
to be those in which T ⊆ (R∪W) \ U . That is, RPSI transactions consist solely
of read and write events (excluding updates). As before, we characterise the set
of executions admitted by RPSI as graphs that lack cycles of certain shapes.
More concretely, as with the PSI specification, we consider an RPSI execution
graph to be consistent if acyclic(rpsi-hbloc ∪mo∪ rb) holds, where rpsi-hb denotes
the ‘RPSI-happens-before’ relation, extended from that of PSI psi-hb.

Definition 4 (RPSI consistency). An RPSI execution graph Γ = (E , po,
rf, mo, T ) is consistent, written rpsi-consistent(Γ ), if acyclic(rpsi-hbloc ∪mo ∪ rb)
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T1

W(x, 0) W(y, 0)

r1 : R(y, 0)

r2 : R(x, 1)

w1 : W(y, 1)

w2 : W(x, 1)

mo

rf

rb

rf

(a)

T1 T2

W(x, 0) W(y, 0)

w1 : W(x, 1)

w2 : W(y, 1)

r1 : R(x, 1)

w3 : W(x, 2)

r2 : R(x, 2)

r3 : R(y, 0)
rf

rf

rb

(b)

Fig. 3: RPSI-inconsistent executions due to nt-rf (a); and t-rf (b)

holds, where rpsi-hb denotes the ‘RPSI-happens-before’ relation, defined as the
smallest relation that satisfies the following conditions:

rpsi-hb; rpsi-hb ⊆ rpsi-hb (trans)

po ∪ rf ∪moT ⊆ rpsi-hb (psi-hb)

[E \ T ]; rf; st ⊆ rpsi-hb (nt-rf)

st; ([W]; st; (rpsi-hb \ st); st; [R])loc ; st ⊆ rpsi-hb (t-rf)

The trans and psi-hb ensure that rpsi-hb is transitive and that it includes
po, rf and moT as with its PSI counterpart. The nt-rf ensures that if a value
written by a non-transactional write w is observed (read from) by a read event r
in a transaction T, then its effect is observed by all events in T. That is, the w
happens-before all events in T and not just r. This allows us to rule out executions
such as the one depicted in Fig. 3a, which we argue must be disallowed by RPSI.

Consider the execution graph of Fig. 3a, where transaction T1 is denoted by
the dashed box labelled T1, comprising the read events r1 and r2. Note that as
r1 and r2 are transactional reads without prior writes by the transaction, they
constitute a snapshot of the memory at the time T1 started. That is, the values
read by r1 and r2 must reflect a valid snapshot of the memory at the time it
was taken. As such, since we have (w2, r2) ∈ rf, any event preceding w2 by the
‘happens-before’ relation must also be observed by (synchronise with) T1. In
particular, as w1 happens-before w2 ((w1, w2) ∈ po), the w1 write must also be
observed by T1. The nt-rf thus ensures that a non-transactional write read from
by a transaction (i.e. a snapshot read) synchronises with the entire transaction.

Recall from §4.1 that the PSI psi-hb relation includes rfT which has not yet
been included in rpsi-hb through the first three conditions described. As we
describe shortly, the t-rf is indeed a strengthening of rfT to account for the
presence of non-transactional events. In particular, note that rfT is included
in the left-hand side of t-rf: when rpsi-hb in ([W]; st; (rpsi-hb \ st); st; [R]) is
replaced with rf ⊆ rpsi-hb, the left-hand side yields rfT. As such, in the absence
of non-transactional events, the definitions of psi-hb and rpsi-hb coincide.

Recall that inclusion of rfT in psi-hb ensured transactional synchronisation
due to causal ordering: if T1 writes to x and T2 later (in psi-hb order) reads
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x, then T1 must synchronise with T2. This was achieved in PSI because either
i) T2 reads x directly from T1 in which case T1 synchronises with T2 via rfT;
or ii) T2 reads x from another later (mo-ordered) transactional write in T3, in
which case T1 synchronises with T3 via moT, T3 synchronises with T2 via rfT, and
thus T1 synchronises with T2 via moT; rfT. How are we then to extend rpsi-hb to
guarantee transactional synchronisation due to causal ordering in the presence of
non-transactional events?

To justify t-rf, we present an execution graph that does not guarantee
synchronisation between causally ordered transactions and is nonetheless deemed
RPSI-consistent without the t-rf condition on rpsi-hb. We thus argue that this
execution must be precluded by RPSI, justifying the need for t-rf. Consider
the execution in Fig. 3b. Observe that as transaction T1 writes to x via w1,

transaction T2 reads x via r2, and (w1, r2) ∈ rpsi-hb (w1
rf→ r1

po→ w3
rf→ r2), T1 is

causally ordered before T2 and hence T1 must synchronise with T2. As such, the r3
in T2 must observe w2 in T1: we must have (w2, r3) ∈ rpsi-hb, rendering the above
execution RPSI-inconsistent. To enforce the rpsi-hb relation between such causally
ordered transactions with intermediate non-transactional events, t-rf stipulates
that if a transaction T1 writes to a location (e.g. x via w1 above), another
transaction T2 reads from the same location (r2), and the two events are related
by ‘RPSI-happens-before’ ((w1, r2) ∈ rpsi-hb), then T1 must synchronise with T2.
That is, all events in T1 must ‘RPSI-happen-before’ those in T2. Effectively, this
allows us to transitively close the causal ordering between transactions, spanning
transactional and non-transactional events in between.

5.2 A Lock-Based RPSI Implementation in RA

We present a lock-based reference implementation of RPSI in the RA fragment
(Fig. 2) by using sequence locks [13,18,23,32]. Our implementation is both sound
and complete with respect to our declarative RPSI specification in §5.1.

The RPSI implementation in Fig. 2 is rather similar to its PSI counterpart.
The main difference between the two is in how they validate the tentative snapshot
recorded in s. As before, in order to ensure that no intermediate transactional
writes have intervened since s was recorded, for each location x in RS, the
validation phase revisits vx, inspecting whether its value has changed from that
recorded in v[x]. If this is the case, the snapshot is deemed invalid and the
process is restarted. However, checking against intermediate transactional writes
alone is not sufficient as it does not preclude the intervention of non-transactional
writes. This is because unlike transactional writes, non-transactional writes do not
update the version locks and as such their updates may go unnoticed. In order to
rule out the possibility of intermediate non-transactional writes, for each location
x the implementation checks the value of x against that recorded in s[x]. If the
values do not agree, an intermediate non-transactional write has been detected:
the snapshot fails validation and the process is restarted. Otherwise, the snapshot
is successfully validated and returned in s. Observe that checking the value of x
against s[x] does not entirely preclude the presence of non-transactional writes,
in cases where the same value is written (non-transactionally) to x twice.
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Initially, x = y = z = 0

T:a := x; //reads 0
b := y; //reads 0
c := z; //reads 1

y := 1;
z := 1;
x := 1;
z := 1;
y := 0;

W(x, 0) W(y, 0) W(z, 0)

rx : R(x, 0)

ry : R(y, 0)

rz : R(z, 1)

rx′ : R(x, 0)

ry′ : R(y, 0)

rz′ : R(z, 1)

W(y, 1)

W(z, 1)

W(x, 1)

W(z, 1)

W(y, 0)

rf

rf

rf

rf

rf

rf

Fig. 4: A mixed-mode program with its annotated behaviour disallowed by RPSI
(left); an RA-consistent execution graph of its RPSI implementation (right)

To understand this, consider the mixed-mode program on the left of Fig. 4
comprising a transaction in the left-hand thread and a non-transactional program
in the right-hand thread writing the same value (1) to z twice. Note that the
annotated behaviour is disallowed under RPSI: all execution graphs of the
program with the annotated behaviour yield RPSI-inconsistent execution graphs.
Intuitively, this is because the values read by the transaction (x : 0, y : 0, z : 1) do
not constitute a valid snapshot : at no point during the execution of this program,
are the values of x, y and z as annotated.

Nevertheless, it is possible to find an RA-consistent execution of the RPSI
implementation in Fig. 2 that reads the annotated values as its snapshot. Consider
the execution graph on the right-hand side of Fig. 4, depicting a particular
execution of the RPSI implementation (Fig. 2) of the program on the left. The
rx, ry and rz denote the events reading the initial snapshot of x, y and z and
recording them in s (line 5), respectively. Similarly, the rx′, ry′ and rz′ denote
the events validating the snapshots recorded in s (line 7). As T is the only
transaction in the program, the version numbers vx, vy and vz remain unchanged
throughout the execution and we have thus omitted the events reading (line 2)
and validating (line 7) their values from the execution graph. Note that this
execution graph is RA-consistent even though we cannot find a corresponding
RPSI-consistent execution with the same outcome. To ensure the soundness of
our implementation, we must thus rule out such scenarios.

To do this, we assume that if multiple non-transactional writes write the same
value to the same location, they cannot race with the same transaction. More
concretely, we assume that every RPSI-consistent execution graph of a given
program satisfies the following condition:

∀x. ∀r ∈ T ∩Rx. ∀w,w′ ∈ NT ∩Wx.
w 6= w′ ∧ valw(w) = valw(w

′) ∧ (r, w) 6∈ rpsi-hb ∧ (r, w′) 6∈ rpsi-hb
⇒ (w, r) ∈ rpsi-hb ∧ (w′, r) ∈ rpsi-hb

(∗)
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That is, given a transactional read r from location x, and any two distinct
non-transactional writes w, w′ of the same value to x, either i) at least one of
the writes RPSI-happen-after r; or ii) they both RPSI-happen-before r.

Observe that this does not hold of the program in Fig. 2. Note that this
stipulation does not prevent two transactions to write the same value to a location
x. As such, in the absence of non-transactional writes, our RPSI implementation
is equivalent to that of PSI in §4.2.

5.3 Implementation Soundness

The RPSI implementation in Fig. 2 is sound : for each consistent implementation
graph G , a corresponding specification graph Γ can be constructed such that
rpsi-consistent(Γ ) holds. In what follows we state our soundness theorem and
briefly describe our construction of consistent specification graphs. We refer the
reader to the technical appendix [4] for the full soundness proof.

Theorem 3 (Soundness). Let P be a program that possibly mixes transactional
and non-transactional code. If every RPSI-consistent execution graph of P satisfies
the condition in (∗), then for all RA-consistent implementation graphs G of the
implementation in Fig. 2, there exists an RPSI-consistent specification graph Γ
of the corresponding transactional program with the same program outcome.

Constructing Consistent Specification Graphs Constructing an RPSI-
consistent specification graph from the implementation graph is similar to the
corresponding PSI construction described in §4.3. More concretely, the events
associated with non-transactional events remain unchanged and are simply
added to the specification graph. On the other hand, the events associated with
transactional events are adapted in a similar way to those of PSI in §4.3. In
particular, observe that given an execution of the RPSI implementation with
t transactions, as with the PSI implementation, the trace of each transaction

i ∈ {1 · · · t} is of the form θi = Lsi
po→ FS i

po→ Si
po→ Tsi

po→ Usi, with Lsi,
FS i, Si, Tsi and Usi denoting analogous sequences of events to those of PSI.
The difference between an RPSI trace θi and a PSI one is in the FS i and Si
sequences, obtaining the snapshot. In particular, the validation phases of FS i and
Si in RPSI include an additional read for each location to rule out intermediate
non-transactional writes. As in the PSI construction, for each transactional trace
θi of our implementation, we construct a corresponding trace of the specification

as θ′i = Bi
po→ Ts ′i

po→ Ei, with Bi, Ei and Ts ′i as defined in §4.3.
Given a consistent RPSI implementation graph G = (E , po, rf,mo), let

G .NT , G .E \
⋃
i∈{1···t} θ.E denote the non-transactional events of G . We

construct a consistent RPSI specification graph Γ = (E , po, rf,mo, T ) such that:

• Γ.E , G .NT ∪
⋃
i∈{1···t} θ

′
i.E – the Γ.E events comprise the non-transactional

events in G and the events in each transactional trace θ′i of the specification;
• Γ.po , G .po|Γ.E – the Γ.po is that of G .po restricted to the events in Γ.E ;
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• Γ.rf ,
⋃
i∈{1···t} RFi ∪G .rf; [G .NT ] – the Γ.rf is the union of RFi relations

for transactional reads as defined in §4.3, together with the G .rf relation for
non-transactional reads;

• Γ.mo , G .mo|Γ.E – the Γ.mo is that of G .mo restricted to the events in Γ.E ;
• Γ.T ,

⋃
i∈{1···t} θ

′
i.E , where for each e ∈ θ′i.E , we define tx(e) = i.

We refer the reader to the technical appendix [4] for the full proof demonstrating
that the above construction of Γ yields a consistent specification graph.

5.4 Implementation Completeness

The RPSI implementation in Fig. 2 is complete: for each consistent specification
graph Γ a corresponding implementation graph G can be constructed such that
RA-consistent(G) holds. We next state our completeness theorem and describe
our construction of consistent implementation graphs. We refer the reader to the
technical appendix [4] for the full completeness proof.

Theorem 4 (Completeness). For all RPSI-consistent specification graphs Γ
of a program, there exists an RA-consistent execution graph G of the implemen-
tation in Fig. 2 that has the same program outcome.

Constructing Consistent Implementation Graphs In order to construct
an execution graph of the implementation G from the specification Γ , we follow
similar steps as those in the corresponding PSI construction in §4.4. More
concretely, the events associated with non-transactional events are unchanged
and simply added to the implementation graph. For transactional events, given
each trace θ′i of a transaction in the specification, as before we construct an
analogous trace of the implementation by inserting the appropriate events for
acquiring and inspecting the version locks, as well as obtaining a snapshot. For
each transaction class Ti ∈ T /st, we first determine its read and write sets
as before and subsequently decide the order in which the version locks are
acquired and inspected. This then enables us to construct the ‘reads-from’ and
‘modification-order’ relations for the events associated with version locks.

Given a consistent execution graph of the specification Γ = (E , po, rf,mo, T ),
and a transaction class Ti ∈ Γ.T /st, we define WSTi and RSTi as described in §4.4.
Determining the ordering of lock events hinges on a similar observation as that
in the PSI construction. Given a consistent execution graph of the specification
Γ = (E , po, rf,mo, T ), let for each location x the total order mo be given as:

w1
mo|imm→ · · · mo|imm→ wnx

. This order can be broken into adjacent segments where
the events of each segment are either non-transactional writes or belong to the
same transaction. That is, given the transaction classes Γ.T /st, the order above
is of the following form where T1, · · · , Tm ∈ Γ.T /st and for each such Ti we have
x ∈ WSTi and w(i,1) · · ·w(i,ni) ∈ Ti:

w(1,1)
mo|imm→ · · · mo|imm→ w(1,n1)︸ ︷︷ ︸

Γ.NT ∪T1

mo|imm→ · · · mo|imm→ w(m,1)
mo|imm→ · · · mo|imm→ w(m,nm)︸ ︷︷ ︸

Γ.NT ∪Tm
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Were this not the case and we had w1
mo→ w

mo→ w2 such that w1, w2 ∈ Ti and
w ∈ Tj 6= Ti, we would consequently have w1

moT→ w
moT→ w1, contradicting the

assumption that Γ is consistent. We thus define Γ.MOx = [T1 · · · Tm].
Note that each transactional execution trace of the specification is of the

form θ′i = Bi
po→ Ts ′i

po→ Ei, with Bi, Ei and Ts ′i as described in §4.4. For
each such θ′i, we construct a corresponding trace of our implementation as

θi = Lsi
po→ Si

po→ Tsi
po→ Usi, where Lsi, Tsi and Usi are as defined in §4.4,

and Si = trx1
i

po→ · · · po→ tr
xp
i

po→ vrx1
i

po→ · · · po→ vr
xp
i denotes the sequence of

events obtaining a tentative snapshot (tr
xj
i ) and subsequently validating it (vr

xj
i ).

Each tr
xj
i sequence is of the form ivr

xj
i

po→ ir
xj
i

po→ s
xj
i , with ivr

xj
i , ir

xj
i and s

xj
i

defined below (with fresh identifiers). Similarly, each vr
xj
i sequence is of the form

fr
xj
i

po→ fvr
xj
i , with fr

xj
i and fvr

xj
i defined as follows (with fresh identifiers). We

then define the rf relation for each of these read events in Si in a similar way.
For each (x, r) ∈ RSTi , when r (the event in the specification class Ti that

reads the value of x) reads from w in the specification graph ((w, r) ∈ Γ.rf), we
add (w, irx

i ) and (w, frx
i ) to the rf of G (the first line of IRF2

i below). For version
locks, as before if transaction Ti also writes to xj , then ivr

xj
i and fvr

xj
i events

(reading and validating vxj), read from the lock event in Ti that acquired vxj ,
namely L

xj
i . Similarly, if Ti does not write to xj and it reads the value of xj

written by the initial write, initx, then ivr
xj
i and fvr

xj
i read the value written to

vxj by the initial write to vx, initvx. Lastly, if transaction Ti does not write to xj
and it reads xj from a write other than initx, then ir

xj
i and vr

xj
i read from the

unlock event of a transaction Tj (i.e. Ux
j ), who has x in its write set and whose

write to x, wx, maximally ‘RPSI-happens-before’ r. That is, for all other such
writes that ‘RPSI-happen-before’ r, then wx ‘RPSI-happens-after’ them.

IRF2
i ,

⋃
(x,r)∈RSTi


(w, ir xi),
(w, fr xi),
(w′, ivr xi),
(w′, fvr xi)

(w, r) ∈ Γ.rf ∧ (x ∈ WSTi ⇒ w′=Lx
i)

∧ (x 6∈ WSTi ∧ w=initx ⇒ w′=initvx)
∧ (x 6∈ WSTi ∧ w 6=initx ⇒

∃wx, Tj . wx ∈ Tj ∩Wx ∧ wx
rpsi-hb→ r ∧ w′=U x

j

∧[∀w′
x, Tk. w

′
x∈Tk ∩Wx ∧ w′

x

rpsi-hb→ r ⇒ w′
x

rpsi-hb→ wx])


ir

xj
i =fr

xj
i =R(xj ,v) s

xj
i =W(s[xj],v) s.t. ∃w. (w, ir

xj
i ) ∈ IRF2

i ∧ valw(w)=v

ivr
xj
i =fvr

xj
i =R(vxj , v) s.t. ∃w. (w, ivr

xj
i ) ∈ IRF2

i ∧ valw(w)=v

We are now in a position to construct our implementation graph. Given a
consistent execution graph Γ of the specification, we construct an execution
graph of the implementation, G = (E , po, rf,mo), such that:

• G .E =
⋃

Ti∈Γ.T /st
θi.E ∪ Γ.NT ;

• G .po is defined as Γ.po extended by the po for the additional events of G ,
given by the θi traces defined above;

• G .rf =
⋃

Ti∈Γ.T /st
(IRF1

i ∪ IRF2
i ), with IRF1

i as in §4.4 and IRF2
i defined above;

• G .mo = Γ.mo ∪
( ⋃
Ti∈Γ.T /st

IMOi

)+
, with IMOi as defined in §4.4.
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6 Conclusions and Future Work

We studied PSI, for the first time to our knowledge, as a consistency model for
STMs as it has several advantages over other consistency models, thanks to its
performance and monotonic behaviour. We addressed two significant drawbacks
of PSI which prevent its widespread adoption. First, the absence of a simple lock-
based reference implementation to allow the programmers to readily understand
and reason about PSI programs. To address this, we developed a lock-based
reference implementation of PSI in the RA fragment of C11 (using sequence locks),
that is both sound and complete with respect to its declarative specification.
Second, the absence of a formal PSI model in the presence of mixed-mode
accesses. To this end, we formulated a declarative specification of RPSI (robust
PSI) accounting for both transactional and non-transactional accesses. Our RPSI
specification is an extension of PSI in that in the absence of non-transactional
accesses it coincides with PSI. To provide a more intuitive account of RPSI, we
developed a simple lock-based RPSI reference implementation by adjusting our
PSI implementation. We established the soundness and completeness of our RPSI
implementation against its declarative specification.

As directions of future work, we plan to build on top of the work presented
here in three ways. First, we plan to explore possible lock-based reference imple-
mentations for PSI and RPSI in the context of other weak memory models, such
as the full C11 memory models [9]. Second, we plan to study other weak transac-
tional consistency models, such as SI [10], ALA (asymmetric lock atomicity), ELA
(encounter-time lock atomicity) [28], and those of ANSI SQL, including RU (read-
uncommitted), RC (read-committed) and RR (repeatable reads), in the STM
context. We aim to investigate possible lock-based reference implementations
for these models that would allow the programmers to understand and reason
about STM programs with such weak guarantees. Third, taking advantage of the
operational models provided by our simple lock-based reference implementations
(those presented in this article as well as those in future work), we plan to develop
reasoning techniques that would allow us to verify properties of STM programs.
This can be achieved by either extending existing program logics for weak memory,
or developing new program logics for currently unsupported models. In particular,
we can reason about the PSI models presented here by developing custom proof
rules in the existing program logics for RA such as [22,39].
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