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What is Non-Volatile Memory (NVM)??
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NVM: Hybrid Storage + Memory
Best of both worlds:

v persistent (like HDD)
v fast, random access (like RAM)




Formal Persistency (Low-Level) Semantics

Intel® Architecture Reference Manual

5038
pages!

The Px86 Model
[Raad et al., POPL’20]
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x86: (Volatile) Concurrent Hardware Model (TSO)

x:=1 : adds x:=1 to buffer

[ Thread? ) [ Thread? )
x lé x

A
l unbuffer* : buffer to (in FIFO order)
o)
l l a:=x : if buffer contains x, reads latest entry
[ (Volatile) Memory ) else reads from
5 buffer and lost

* at non-deterministic times 5
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Px806: (Persistent) Concurrent Hardware Model

[ Thread1 ) [ Thread?2 ) x:=1 : adds x:=1 to buffer
Y 2 A
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[ Persistency Buffer )
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C (Persistent) Memory )

unbuffer* : buffer to pbuffer (in FIFO order)

* at non-deterministic times
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[ Thread1 ) [ Thread?2 ) x:=1 : adds x:=1 to buffer
A A

T 1
; l : l : : unbuffer” : buffer to pbuffer (in FIFO order)
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Px806: (Persistent) Concurrent Hardware Model

[ Thread1 ) [ Thread?2 ) x:=1 : adds x:=1 to buffer
A A

T 1
; l : l : : unbuffer” : buffer to pbuffer (in FIFO order)

; unbuffer* : pbuffer to (in FIFO-per-loc order)

l l i a:=x . if buffer contains x, reads latest entry
[ Persistency Buffer ) else if pbuffer contains x, reads latest entry
| l | else reads from

(: (Persistent) Memory ) 5

buffer and pbuffer lost

* at non-deterministic times
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Px806: (Persistent) Concurrent Hardware Model

Problem

 low-level
* reasoning over program executions
- difficult to verify high-level invariants

Solution

* high-level reasoning via program logics
* reasoning over program syntax
« simpler to verity high-level invariants



Towards a Persistent Program Logic



Towards a Persistent Program Logic

e State of the art: no program logic for persistency



Towards a Persistent Program Logic

e State of the art: no program logic for persistency

* Two possible avenues:

+ high-level (program logic) extension

= Take a program logic that is sound for x86 (1S0), e.g. OGRA
= [Extend it with persistency support for Px86



Towards a Persistent Program Logic

e State of the art: no program logic for persistency

* Two possible avenues:

+ high-level (program logic) extension

= Take a program logic that is sound for x86 (1S0), e.g. OGRA
= [Extend it with persistency support for Px86

+ low-level (semantic) extension

= Encode Px86 into x86 (TSO)
= Use a program logic that is sound for TSO (e.g. OGRA)



Towards a Persistent Program Logic

e State of the art: no program logic for persistency

* Two possible avenues:

+ high-level (program logic) extension

= Take a program logic that is sound for x86 (1S0), e.g. OGRA
= [Extend it with persistency support for Px86

+ low-level (semantic) extension

= Encode Px86 into x86 (TSO)
= Use a program logic that is sound for TSO (e.g. OGRA)
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Our Approach
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+ [Ix86: Instrumented x86 semantics

= reduces Px86 to x86 (TSO): removes pbuffer -
= translation from Px86 to Ix86 h This talk
= Several Challenges

+ POG: the first program logic for persistency

= Dbuilt over Ix86
= several examples of persistent reasoning
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Challenge #1: Weak Persistency

How to model this when we

remove the pbuffer?
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X806 and Weak Persistency

Record two versions per Location x:

FXV . Volatile version

Xp . persistent version
- J

\—

~
Px86-to-Ix86 Translation:

X:=1 My Xy =1

a:=X Wy a:=Xy

unbuffering (non-det. times) “W» X=Xy

W,
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X806 and Weak Persistency

Xy =1
W
Vve=1
(x:=1 N> Xy:i=1 R
a:=x MW ai=Xy
unbuffering (non-det. times) W Xp + =Xy

- J
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X806 and Weak Persistency

Xv=Xp=0  yv=yp=0

= 1; Xv:=1;
Xv=1 xp=0 y+=yp=0
AN //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
= 1; Vve=1;

xv=1 x,€{0,1} vy.=1 yp=0
//account for unbuffering

x,~1 (2:€{0, 1)) vo=1 (vo€(0, 1))

1 \9

Xo=Yp=1 OR Xp=yp,=0 OR x,=1;vy,=0 OR x,=0; yp=1

(x:=1 N> Xv:=1ﬂ
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy

- ),
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Challenge

2. Asynchronous Persists

~

-

/) x=y=1 OR

/) x=y=0 A

X = 1;
)¢ flush x;

y = 1;

f

x=y=0) OR

x=1;y=0 -OR—x%x=0;y=1

EXpP
EXpP

ICIt
ICIt

persists order writes in pbuffer

nersists behave

— flush x does evict writes on x from the pbuffer

12



Challenge #2: Asynchronous Persists

How to model this when we

remove the pbuffer?

12
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Record two versions per Location x:

i . . )
FXV . Volatile version

Xp . persistent version
- J

~ R
Px86-to-Ix86 Translation:
X:=1 My Xy =1
a.:=X Wy a:=Xy

unbuffering (non-det. times) W» Xy =Xy
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4 )
Xv=Xp=0  yv=yp=0

X = 1; Xv+=1; //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
flush x; w» Xp 't =Xy;
Xy=Xp=1 Vv=Yp=0
y = 1; vve=1; //account for unbuffering

Xv=Xp=1 y+v=1 yp€{0,1}

i f

g J
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a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy
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X806 and Asynchronous Persists — Naive Attempt

e D
Xv=Xp=0  yv=yp=0

X = 1; Xv+=1; //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
flush x; w» Xp 't =Xy;
Xy=Xp=1 Vv=Yp=0

y = 1; vve=1; //account for unbuffering

g J
(x:=1 MW> Xy =1 )
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy
kflush X M> Xp =Xy




X806 and Asynchronous Persists — Naive Attempt

e D
XV:Xp:O yv:ypzo
X = 1; Xv+=1; //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
szxpzl yvzypzo
y = 1; Vv :=1; //account for unbuffering
YV:]— (Ype{or 19
Xo=Vp=1 OR xp=1;yp=0 -OR—%p=vp=
\_ _J
r><:= MW> Xy =1
a:=Xx MW>  a:i=Xy
unbuffering (non-det. times) W Xp : =Xy
kflush X M> Xp =Xy
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X806 and Asynchronous Persists — Naive Attempt

Problem

Models £1ush synchronously!
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X806 and Asynchronous

Record three versions per Location x:

Persists

~

Xs
\_

X+ . Volatile version

Xp . persistent version

. Synchronous version

(for modelling £1ush)

_J
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IX86 and Asynchronous Persists

Record three versions per Location x:

rXV . volatile version

Xp . persistent version

X s . sSynchronous version
o (for modelling £1ush)

W,
- i
Px86-to-Ix86 Translation:
X:=1 My Xy =1
a.:=X MWy a:=Xxy
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X806 and Asynchronous

Record three versions per Location x:

Persists

rXV . volatile version

Xp . persistent version

X s . sSynchronous version

g (for modelling £1ush)
r -
Px86-to-Ix86 Translation:
x:=1 MW>  Xyi=1
a.=Xx My a:=Xy
\_
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IX86 and Asynchronous Persists

Record three versions per Location x:

X+ . Volatile version

Xp . persistent version

X s . sSynchronous version
o (for modelling £1ush)

»
- i
Px86-to-Ix86 Translation:
xX:=1 My Xyi=1
a:=X Wy a:=Xxy
flush x My Xo =Xy
unbuffering (non-det. times)
(buﬁer-’pbuﬁer) N> X=Xy




IX86 and Asynchronous Persists

Record three versions per Location x:

X+ . Volatile version

Xp . persistent version

X s . sSynchronous version
o (for modelling £1ush)

»
g i
Px86-to-Ix86 Translation:

xX:=1 My Xyi=1
a:=X Wy a:=Xxy
flush x My Xg =X
unbuffering (non-det. times)

(buﬁer-’pbuﬁer) N> X=Xy

(obuffer— ) MW> Xp i =Xs

— _J




IX86 and Asynchronous Persists

X = 1;
flush x;
vy = 1;

Xy e=1;
M> Xs =Xy,
Vve=1;

I

(x:=1 N> x,i=1 )
a:=Xx W) a: =Xy
flush x MWy» X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv
g (pbuffer— ) Wr  Xp =Xs )
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IX86 and Asynchronous Persists

X = 1, Xy :11
flush x; w» Xs =Xy,
Y - 1’ Yv :11

b
I

(x:=1 N> x,i=1 )
a:=Xx W) a: =Xy
flush x MWy» X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv
g (pbuffer— ) Wr  Xp =Xs )




IX86 and Asynchronous Persists

Xv:=1; //account for unbuffering

W) Xs:=Xy;

I

(x:=1 N> x,i=1 )
a:=Xx W) a: =Xy
flush x MWy» X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv
. (pbuffer— ) Wr  Xp =Xs )




X806 and Asynchronous

Persists

X = 1; Xv+=1; //account for unbuffering
Xv=1 X&Xp€{0,1l} Vv=ys=Yp=0
flush x; w Xs =Xy,
Xv=Xs=1 %X,€{0,1} Vv=Vs=yp=0
Vo= 1 Vvi=1;
(x:=1 N> X, =1 )
a:=X Wy a: =X
flush x MWy X=Xy
unbuffering (non-det times)
(buffer—pbuffer) Wy Xg =Xy
g (pbuffer— ) MWr  Xp ZXSJ
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X806 and Asynchronous

Persists

X = 1; Xv+=1; //account for unbuffering
Xv=1 X&Xp€{0,1l} Vv=ys=Yp=0
flush x; w» Xs:=Xvy;
Xv=Xs=1 %X,€{0,1} Vv=Vs=yp=0
Y = 1/ Yve=41/,
Xv=Xs=1 xXp€{0,1} vv=1 vys=yp=0
(x:=1 N> xoi=1 |
a:=X Wy a: =X
flush x MWy X=Xy
unbuffering (non-det times)
(buffer—pbuffer) Wy Xs t=Xv
g (pbuffer— ) A7 Xp ZXSJ
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IX86 and Asynchronous Persists

X = 1;
flush x;
vy = 1;

Xv:=1; //account for unbuffering

W) Xs:=Xy;

Xv=Xs=1 xXp€{0,1} vv=1 vys=yp=0
//account for unbuffering
Xv=Xs=1 xXp€{0,1} y,=1 ys€{0,1} yp=1=x,=1

i

(x:=1 N> x,i=1 )
a:=Xx W a: =Xy
flush x MWy» X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv
. (pbuffer— ) Wr  Xp ZXSJ
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IX86 and Asynchronous Persists

X = 1;
flush x;
vy = 1;

Xv:=1; //account for unbuffering

W) Xs:=Xy;

Xv=Xs=1 xXp€{0,1} vv=1 vys=yp=0
//account for unbuffering
XVIXSI:I_(XPE{ 0,1} |yv=1 vs€{0, 1} yp=l=>xp=1)

b

Xp=Yp=1 OR xp=1;yp,=0 OR X=yp=0

(x:=1 N> x,i=1 )
a:=Xx W) a: =Xy
flush x MWy X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv

. (pbuffer— ) Wr Xy ZXSJ
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3: Weak Asynchronous Persists

~

/) x=y=1 OR
-

/) x=y=0 A

X = 1;
)¢ flushopt x;

y = 1;

h

x=y=0) OR x=1;vy=0

Weak explicit persists behave

17



Challenge #3: Weak Asynchronous Persists

~

[ x=y=

K¢

y =
)¢~ flushopt x;

h

/ x=y=1 OR |x=y=0) OR x=1;y=0

|l
= = O
o

°
’

-

~

Weak explicit persists behave
Weak explicit persists may be
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Challenge #3: Weak Asynchronous Persists

a )
/) x=y=0
X = 1;
vy = 1;

)¢~ flushopt x;

h

// x=y=1 OR (x=y=0) OR x=1;y=0 OR [x=0;y=1

-

Weak explicit persists behave
Weak explicit persists may be



Challenge #3: Weak Asynchronous Persists

Problem

Encoding f1ushopt reordering and its
asynchronous behaviour in Ix86 is difficult!
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Challenge #3: Weak Asynchronous Persists

Problem

Encoding f1ushopt reordering and its
asynchronous behaviour in Ix86 is difficult!

Solution

Rewrite programs with £f1ushopt to use
flush instead!

17



Eliminating flushopt Instructions

+ flushopt
= optimised variant of flush -- better performance

= typically used in a particular programming pattern (epoch persistency)

= transformation mechanism: rewrite programs with £flushopt
to equivalent ones with £1ush

18
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