Persistent Owicki-Gries Reasoning (POG)

Azalea Raad12 Ori Lahav3 Viktor Vafeiadis?

1 Max Planck Institute for Software Systems (MPI-SWS)
2 Imperial College London
3 Tel Aviv University

> azalea@imperial.ac.uk %SoundAndComplete.org gj @azalearaad

Computer Storage

TITHRE ’
[e
RAM Pl

Il) [HDD |

Computer Storage

4)
i

v fast = RAM =
X volatile |=— - |

L - [_HDD

Computer Storage

4)
i

v fast RAM

X volatile

X slow
:

s ¥ persistent
L - [_HDD

What is Non-Volatile Memory (NVM)??

) [A A)

B ’
— o

RAM — £ .
-

NG J

What is Non-Volatile Memory (NVM)??

[

.
11
NVM

i

N\

NVM: Hybrid Storage + Memory
Best of both worlds:

v persistent (like HDD)
v fast, random access (like RAM)

Formal Persistency (Low-Level) Semantics

Intel® Architecture Reference Manual

5038
pages!

The Px86 Model
[Raad et al., POPL’20]

x86: (Volatile) Concurrent Hardware Model (TSO)

x:=1 : adds x:=1 to buffer

[Thread?) [Thread?)
A
! P
(Buffer)
} !

[: (Volatile) Memory)

x86: (Volatile) Concurrent Hardware Model (TSO)

x:=1 : adds x:=1 to buffer

3

[: (Volatile) Memory)

unbuffer* : buffer to (in FIFO order)

[Thread?) [Thread?)
x lé x

* at non-deterministic times

x86: (Volatile) Concurrent Hardware Model (TSO)

x:=1 : adds x:=1 to buffer

[Thread?) [Thread?)
x le le x
o

l l a:=x : if buffer contains x, reads latest entry
' else reads from

unbuffer* : buffer to (in FIFO order)

[: (Volatile) Memory)

* at non-deterministic times 5

x86: (Volatile) Concurrent Hardware Model (TSO)

x:=1 : adds x:=1 to buffer

[Thread?) [Thread?)
x lé x

A
l unbuffer* : buffer to (in FIFO order)
o)
l l a:=x : if buffer contains x, reads latest entry
[(Volatile) Memory) else reads from
5 buffer and lost

* at non-deterministic times 5

Px806: (Persistent) Concurrent Hardware Model

1 : adds x:=1 to buffer

[Thread1 [Thread?2) “:
BN
(o

[Persistency Buff)

l

C (Persistent) Memory)

Px806: (Persistent) Concurrent Hardware Model

[Thread1) [Thread?2) x:=1 : adds x:=1 to buffer
Y 2 A

L7 L
| |

[Persistency Buffer)

l

C (Persistent) Memory)

unbuffer* : buffer to pbuffer (in FIFO order)

* at non-deterministic times

Px806: (Persistent) Concurrent Hardware Model

[Thread1) [Thread?2) x:=1 : adds x:=1 to buffer
A A

H 4 &
: l E l E : unbuffer* : buffer to pbuffer (in FIFO order)

unbuffer* : pbuffer to (in FIFO-per-loc order)

[Persistency Buffer)

l

C (Persistent) Memory)

* at non-deterministic times

Px806: (Persistent) Concurrent Hardware Model

[Thread1) [Thread?2) x:=1 : adds x:=1 to buffer
A A

T 1
; l : l : : unbuffer” : buffer to pbuffer (in FIFO order)

; unbuffer* : pbuffer to (in FIFO-per-loc order)

l l i a:=x . if buffer contains x, reads latest entry
[Persistency Buffer) else if pbuffer contains x, reads latest entry
: l else reads from
((Persistent) Memory)

* at non-deterministic times

Px806: (Persistent) Concurrent Hardware Model

[Thread1) [Thread?2) x:=1 : adds x:=1 to buffer
A A

T 1
; l : l : : unbuffer” : buffer to pbuffer (in FIFO order)

; unbuffer* : pbuffer to (in FIFO-per-loc order)

l l i a:=x . if buffer contains x, reads latest entry
[Persistency Buffer) else if pbuffer contains x, reads latest entry
| l | else reads from

(: (Persistent) Memory) 5

buffer and pbuffer lost

* at non-deterministic times

Px806: (Persistent) Concurrent Hardware Model

Problem

* low-level
* reasoning over program executions
- difficult to verify high-level invariants

Px806: (Persistent) Concurrent Hardware Model

Problem

 low-level
* reasoning over program executions
- difficult to verify high-level invariants

Solution

* high-level reasoning via program logics
* reasoning over program syntax
« simpler to verity high-level invariants

Towards a Persistent Program Logic

Towards a Persistent Program Logic

e State of the art: no program logic for persistency

Towards a Persistent Program Logic

e State of the art: no program logic for persistency

* Two possible avenues:

+ high-level (program logic) extension

= Take a program logic that is sound for x86 (1S0), e.g. OGRA
= [Extend it with persistency support for Px86

Towards a Persistent Program Logic

e State of the art: no program logic for persistency

* Two possible avenues:

+ high-level (program logic) extension

= Take a program logic that is sound for x86 (1S0), e.g. OGRA
= [Extend it with persistency support for Px86

+ low-level (semantic) extension

= Encode Px86 into x86 (TSO)
= Use a program logic that is sound for TSO (e.g. OGRA)

Towards a Persistent Program Logic

e State of the art: no program logic for persistency

* Two possible avenues:

+ high-level (program logic) extension

= Take a program logic that is sound for x86 (1S0), e.g. OGRA
= [Extend it with persistency support for Px86

+ low-level (semantic) extension

= Encode Px86 into x86 (TSO)
= Use a program logic that is sound for TSO (e.g. OGRA)

T

Our Approach

Contributions

Contributions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86 (TSO): removes pbuffer
= translation from Px86 to Ix86
= Several Challenges

Contributions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86 (TSO): removes pbuffer
= translation from Px86 to Ix86
= Several Challenges

+ POG: the first program logic for persistency

= Dbuilt over Ix86
= several examples of persistent reasoning

Contributions

+ [Ix86: Instrumented x86 semantics

= reduces Px86 to x86 (TSO): removes pbuffer -
= translation from Px86 to Ix86 h This talk
= Several Challenges

+ POG: the first program logic for persistency

= Dbuilt over Ix86
= several examples of persistent reasoning

Challenge #1: Weak Persistency
// x=y=(i;
1;

X
Y -

f

Challenge #1: Weak Persistency
g [x=y=)

X 3
Y -

f

)/ x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1
g J

1;
1;

Challenge #1: Weak Persistency

// x=y=0
X = 1;
y = 1;

f

// x=y=1 OR x=y=0 OR x=1;y=0 OR [x=0;y=1
g J

Writes may persist (be unbuffered from pbuffer)

Challenge

.

// x=y=1 OR

// x=y=0
X = 1;
y = 1;

f

x=y=0 OR

x=1;y=0 OR [x=0;y=1

1. Weak Persistency

J

Writes may persist (be unbuffered from pbuffer)

[Thread1)

N

Challenge #1: Weak Persistency

/] x=y=
X = 1
y = 1;

f

// x=y=1 OR x=y=0 OR x=1;y=0 OR [x=0;y=1
g J

Writes may persist (be unbuffered from pbuffer)

[Thread1)

i

=)

]

()

S)

Challenge #1: Weak Persistency

/) X=y=
X = 1;
v = 17

f

// x=y=1 OR x=y=0 OR x=1;y=0 OR [x=0;y=1
g J

Writes may persist (be unbuffered from pbuffer)

[Thread1)

Bk

E ;(x=1; y=1)

]

()

Challenge #1: Weak Persistency
g [x=y=)

X &

1;
1;

Y -

f

// x=y=1 OR x=y=0 OR x=1;y=0 OR [x=0;y=1
g J

Writes may persist (be unbuffered from pbuffer)

[Thread1)

L
)

Challenge #1: Weak Persistency
g [x=y=)

X &

1;
1;

Y -

f

// x=y=1 OR x=y=0 OR x=1;y=0 OR [x=0;y=1
g J

Writes may persist (be unbuffered from pbuffer)

[Thread1)

N

Challenge #1: Weak Persistency

/) X=y=
X = 1;
v = 17

f

// x=y=1 OR x=y=0 OR x=1;y=0 OR [x=0;y=1
g J

Writes may persist (be unbuffered from pbuffer)

[Thread1)

N

Challenge #1: Weak Persistency

// x=y=0
X = 1;
y = 1;

- 9
// x=y=1 OR x=y=0 OR x=1;y=0 OR [x=0;y=1
g J

Writes may persist (be unbuffered from pbuffer)

[Thread1)

N

Challenge #1: Weak Pers:stency

N\

//XyO
X = 1;
y = 1;

-

// x=y=1 OR x=y=0 OR x=1;y=0 OR [x=0;y=1

J

Writes may persist (be unbuffered from pbuffer)

[4 Threafl DS [lThreadz)
s

[(Persistent) Memory)

Challenge #1: Weak Persistency

How to model this when we

remove the pbuffer?

X806 and Weak Persistency

Record two versions per Location x:

FXV . Volatile version

Xp . persistent version
- J

X806 and Weak Persistency

Record two versions per Location x:

i . .)
(XV . Volatile version

Xp . persistent version
- J

~
Px86-to-Ix86 Translation:
xX:=1 MWy Xy =1

10

X806 and Weak Persistency

Record two versions per Location x:

i . .)
FXV . Volatile version

Xp . persistent version
- J

~ R
Px86-to-Ix86 Translation:
X:=1 My Xy =1
a:=X Wy a:=Xy

10

X806 and Weak Persistency

Record two versions per Location x:

FXV . Volatile version

Xp . persistent version
- J

\—

~
Px86-to-Ix86 Translation:

X:=1 My Xy =1

a:=X Wy a:=Xy

unbuffering (non-det. times) “W» X=Xy

W,

10

X806 and Weak Persistency

Xy =1
W
Vve=1
(x:=1 N> Xy:i=1 R
a:=x MW ai=Xy
unbuffering (non-det. times) W Xp + =Xy

- J

11

X806 and Weak Persistency

1; R S =1L £
W
iy Vve=1;
rx = MW>» X, =1 B
a:=X W a =Xy
unbuffering (non-det. times) W Xp + =Xy

- J

11

X806 and Weak Persistency

1; Xyve=1;
XV:]— Xp:o yv:ypzo
W
1 M Yv e =1 ’
(x:=1 N> X,:i=1 R
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy

- J

11

X806 and Weak Persistency

Xv=Xp=0 yv=yp=0
Xyo=1;

Xv=1 xp=0 y+=yp=0

N> //account for unbuffering

Xv=1 x€{0,1} v+=yp=0

Vve=1;

(x:=1 N> X,:i=1 R
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy

- J

11

X806 and Weak Persistency

Xv=Xp=0 yv=yp=0
Xyo=1;

Xv=1 xp=0 y+=yp=0

N> //account for unbuffering

Xv=1 x€{0,1} v+=yp=0

xv=1 x,€{0,1} vy.=1 yp=0
(x:=1 M xyi=1 |
a:=Xx MW ai=Xy
unbuffering (non-det. times) W Xp + =Xy

- J

11

X806 and Weak Persistency

Xv=Xp=0 yv=yp=0

1; Xv:=1;
Xv=1 xp=0 y+=yp=0
AN //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
1; Yvi=1;
xv=1 x,€{0,1} vy.=1 yp=0
//account for unbuffering
Xv=1 xp€{0,1} vv=1 yp,€{0,1}
(x:=1 N> Xy:i=1 R
a:=X MW ai=Xy
unbuffering (non-det. times) W Xp : =Xy
_),

11

X806 and Weak Persistency

Xv=Xp=0 yv=yp=0

= 1; Xv:=1;
Xv=1 xp=0 y+=yp=0
AN //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
= 1; Vve=1;

xv=1 x,€{0,1} vy.=1 yp=0
//account for unbuffering

x,~1 (2:€{0, 1)) vo=1 (vo€(0, 1))

1 \9

Xo=Yp=1 OR Xp=yp,=0 OR x,=1;vy,=0 OR x,=0; yp=1

(x:=1 N> Xv:=1ﬂ
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy

-),

Challenge

2. Asynchronous Persists

~

/) x=y=0 A

X = 1;
)¢ flush x;

y = 1;

f

12

Challenge

2. Asynchronous Persists

~

// x=y=1 OR
.

/) x=y=0 A

X = 1;
)¢ flush x;

y = 1;

f

x=y=0 OR x=1;y=0 -OR—x=0;vy=1

Explicit persists order writes in pbuffer

12

Challenge

2. Asynchronous Persists

~

-

/) x=y=1 OR

/) x=y=0 A

X = 1;
)¢ flush x;

y = 1;

f

x=y=0) OR

x=1;y=0 -OR—x%x=0;y=1

EXpP
EXpP

ICIt
ICIt

persists order writes in pbuffer

nersists behave

— flush x does evict writes on x from the pbuffer

12

Challenge #2: Asynchronous Persists

How to model this when we

remove the pbuffer?

12

X806 and Asynchronous Persists — Naive Attempt

Record two versions per Location x:

i . .)
FXV . Volatile version

Xp . persistent version
- J

~ R
Px86-to-Ix86 Translation:
X:=1 My Xy =1
a.:=X Wy a:=Xy

unbuffering (non-det. times) W» Xy =Xy

13

X806 and Asynchronous Persists — Naive Attempt

Record two versions per Location x:

i . .)
FXV . Volatile version

Xp . persistent version
- J

~ R
Px86-to-Ix86 Translation:
X:=1 My Xy =1
a.:=X Wy a:=Xy

unbuffering (non-det. times) W» Xy =Xy

flush x N> Xpl=Xy
— J

X806 and Asynchronous Persists — Naive Attempt

4)
X = 1; Xve=1;
flush x; w Xp 't =Xy;
Y — 1’ Yv :11
_ _J
(x:=1 N> Xy =1
a:=x MW ai=Xy
unbuffering (non-det. times) W Xp + =Xy
kflush X M> Xp =Xy

X806 and Asynchronous Persists — Naive Attempt

4)
XV:Xp:O yv:ypzo
X = 1; Xyi=1;
Y — 1’ Yv :11
g J
(x:=1 N> Xy =1
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy
kflush X M> Xp =Xy

X806 and Asynchronous Persists — Naive Attempt

a)

XV:Xp:O yv:ypzo
X = 1; Xv+=1; //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
Y — 1 4 Yv :1 ’
_ _J
(x:=1 M xyi=1 |
a:=Xx Wr a:i=Xy
unbuffering (non-det. times) MW> Xp =Xy
kflush X M> Xp =Xy

X806 and Asynchronous Persists — Naive Attempt

4)
Xv=Xp=0 yv=yp=0

X = 1; Xv+=1; //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
flush x; w» Xp 't =Xy;

Xy=Xp=1 Vv=Yp=0

Y — 1’ Yv :11
g J
(x:=1 MW> Xy =1)
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy
kflush X M> Xp =Xy

X806 and Asynchronous Persists — Naive Attempt

4)
Xv=Xp=0 yv=yp=0

X = 1; Xv+=1; //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
flush x; w» Xp 't =Xy;
Xy=Xp=1 Vv=Yp=0
y = 1; vve=1; //account for unbuffering

Xv=Xp=1 y+v=1 yp€{0,1}

i f

g J
(x:=1 MW> Xy =1)
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy
kflush X M> Xp =Xy

X806 and Asynchronous Persists — Naive Attempt

e D
Xv=Xp=0 yv=yp=0

X = 1; Xv+=1; //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
flush x; w» Xp 't =Xy;
Xy=Xp=1 Vv=Yp=0

y = 1; vve=1; //account for unbuffering

g J
(x:=1 MW> Xy =1)
a:=x Wr a:i=Xy
unbuffering (non-det. times) W Xp + =Xy
kflush X M> Xp =Xy

X806 and Asynchronous Persists — Naive Attempt

e D
XV:Xp:O yv:ypzo
X = 1; Xv+=1; //account for unbuffering
Xv=1 x€{0,1} v+=yp=0
szxpzl yvzypzo
y = 1; Vv :=1; //account for unbuffering
YV:]— (Ype{or 19
Xo=Vp=1 OR xp=1;yp=0 -OR—%p=vp=
_ _J
r><:= MW> Xy =1
a:=Xx MW> a:i=Xy
unbuffering (non-det. times) W Xp : =Xy
kflush X M> Xp =Xy

14

X806 and Asynchronous Persists — Naive Attempt

Problem

Models £1ush synchronously!

14

X806 and Asynchronous

Record three versions per Location x:

Persists

~

Xs
_

X+ . Volatile version

Xp . persistent version

. Synchronous version

(for modelling £1ush)

_J

15

IX86 and Asynchronous Persists

Record three versions per Location x:

rXV . volatile version

Xp . persistent version

X s . sSynchronous version
o (for modelling £1ush)

W,
- i
Px86-to-Ix86 Translation:
X:=1 My Xy =1
a.:=X MWy a:=Xxy

15

X806 and Asynchronous

Record three versions per Location x:

Persists

rXV . volatile version

Xp . persistent version

X s . sSynchronous version

g (for modelling £1ush)
r -
Px86-to-Ix86 Translation:
x:=1 MW> Xyi=1
a.=Xx My a:=Xy
_

15

IX86 and Asynchronous Persists

Record three versions per Location x:

X+ . Volatile version

Xp . persistent version

X s . sSynchronous version
o (for modelling £1ush)

»
- i
Px86-to-Ix86 Translation:
xX:=1 My Xyi=1
a:=X Wy a:=Xxy
flush x My Xo =Xy
unbuffering (non-det. times)
(buﬁer-’pbuﬁer) N> X=Xy

IX86 and Asynchronous Persists

Record three versions per Location x:

X+ . Volatile version

Xp . persistent version

X s . sSynchronous version
o (for modelling £1ush)

»
g i
Px86-to-Ix86 Translation:

xX:=1 My Xyi=1
a:=X Wy a:=Xxy
flush x My Xg =X
unbuffering (non-det. times)

(buﬁer-’pbuﬁer) N> X=Xy

(obuffer—) MW> Xp i =Xs

— _J

IX86 and Asynchronous Persists

X = 1;
flush x;
vy = 1;

Xy e=1;
M> Xs =Xy,
Vve=1;

I

(x:=1 N> x,i=1)
a:=Xx W) a: =Xy
flush x MWy» X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv
g (pbuffer—) Wr Xp =Xs)

16

IX86 and Asynchronous Persists

X = 1, Xy :11
flush x; w» Xs =Xy,
Y - 1’ Yv :11

b
I

(x:=1 N> x,i=1)
a:=Xx W) a: =Xy
flush x MWy» X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv
g (pbuffer—) Wr Xp =Xs)

IX86 and Asynchronous Persists

Xv:=1; //account for unbuffering

W) Xs:=Xy;

I

(x:=1 N> x,i=1)
a:=Xx W) a: =Xy
flush x MWy» X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv
. (pbuffer—) Wr Xp =Xs)

X806 and Asynchronous

Persists

X = 1; Xv+=1; //account for unbuffering
Xv=1 X&Xp€{0,1l} Vv=ys=Yp=0
flush x; w Xs =Xy,
Xv=Xs=1 %X,€{0,1} Vv=Vs=yp=0
Vo= 1 Vvi=1;
(x:=1 N> X, =1)
a:=X Wy a: =X
flush x MWy X=Xy
unbuffering (non-det times)
(buffer—pbuffer) Wy Xg =Xy
g (pbuffer—) MWr Xp ZXSJ

16

X806 and Asynchronous

Persists

X = 1; Xv+=1; //account for unbuffering
Xv=1 X&Xp€{0,1l} Vv=ys=Yp=0
flush x; w» Xs:=Xvy;
Xv=Xs=1 %X,€{0,1} Vv=Vs=yp=0
Y = 1/ Yve=41/,
Xv=Xs=1 xXp€{0,1} vv=1 vys=yp=0
(x:=1 N> xoi=1 |
a:=X Wy a: =X
flush x MWy X=Xy
unbuffering (non-det times)
(buffer—pbuffer) Wy Xs t=Xv
g (pbuffer—) A7 Xp ZXSJ

16

IX86 and Asynchronous Persists

X = 1;
flush x;
vy = 1;

Xv:=1; //account for unbuffering

W) Xs:=Xy;

Xv=Xs=1 xXp€{0,1} vv=1 vys=yp=0
//account for unbuffering
Xv=Xs=1 xXp€{0,1} y,=1 ys€{0,1} yp=1=x,=1

i

(x:=1 N> x,i=1)
a:=Xx W a: =Xy
flush x MWy» X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv
. (pbuffer—) Wr Xp ZXSJ

16

IX86 and Asynchronous Persists

X = 1;
flush x;
vy = 1;

Xv:=1; //account for unbuffering

W) Xs:=Xy;

Xv=Xs=1 xXp€{0,1} vv=1 vys=yp=0
//account for unbuffering
XVIXSI:I_(XPE{ 0,1} |yv=1 vs€{0, 1} yp=l=>xp=1)

b

Xp=Yp=1 OR xp=1;yp,=0 OR X=yp=0

(x:=1 N> x,i=1)
a:=Xx W) a: =Xy
flush x MWy X=Xy
unbuffering (non-det times)

(buffer—pbuffer) Wy Xs t=Xv

. (pbuffer—) Wr Xy ZXSJ

16

Challenge

3: Weak Asynchronous Persists

~

/) x=y=1 OR
-

/) x=y=0 A

X = 1;
)¢ flushopt x;

y = 1;

h

x=y=0) OR x=1;vy=0

Weak explicit persists behave

17

Challenge #3: Weak Asynchronous Persists

~

[x=y=

K¢

y =
)¢~ flushopt x;

h

/ x=y=1 OR |x=y=0) OR x=1;y=0

|l
= = O
o

°
’

-

~

Weak explicit persists behave
Weak explicit persists may be

17

Challenge #3: Weak Asynchronous Persists

a)
/) x=y=0
X = 1;
vy = 1;

)¢~ flushopt x;

h

// x=y=1 OR (x=y=0) OR x=1;y=0 OR [x=0;y=1

-

Weak explicit persists behave
Weak explicit persists may be

Challenge #3: Weak Asynchronous Persists

Problem

Encoding f1ushopt reordering and its
asynchronous behaviour in Ix86 is difficult!

17

Challenge #3: Weak Asynchronous Persists

Problem

Encoding f1ushopt reordering and its
asynchronous behaviour in Ix86 is difficult!

Solution

Rewrite programs with £f1ushopt to use
flush instead!

17

Eliminating flushopt Instructions

+ flushopt
= optimised variant of flush -- better performance

= typically used in a particular programming pattern (epoch persistency)

= transformation mechanism: rewrite programs with £flushopt
to equivalent ones with £1ush

18

Conclusions

Conclusions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86
= translation from Px86 to Ix86
= addresses challenge #1 and challenge #2

Conclusions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86
= translation from Px86 to Ix86
= addresses challenge #1 and challenge #2

% Transformation Mechanism
= (Convert programs with flushopt to equivalent ones with £1ush
= addresses challenge #3

Conclusions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86
= translation from Px86 to Ix86
= addresses challenge #1 and challenge #2

% Transformation Mechanism
= (Convert programs with flushopt to equivalent ones with £1ush
= addresses challenge #3

+ POG: the first program logic for persistency
= pullt over IX86
= several examples of persistent reasoning

Conclusions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86
= translation from Px86 to Ix86
= addresses challenge #1 and challenge #2

% Transformation Mechanism
= (Convert programs with flushopt to equivalent ones with £1ush
= addresses challenge #3

+ POG: the first program logic for persistency
= pullt over IX86
= several examples of persistent reasoning

-
Px86 prog.

(with £1ushopt)

N\

Conclusions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86
= translation from Px86 to Ix86
= addresses challenge #1 and challenge #2

% Transformation Mechanism
= (Convert programs with flushopt to equivalent ones with £1ush
= addresses challenge #3

+ POG: the first program logic for persistency
= pullt over IX86
= several examples of persistent reasoning

-
Px86 prog.) iEransformatioﬂ N Px86 prog.

(Wlth flushopt mechanlsm (WlthOUt flUShOpt)

Conclusions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86
= translation from Px86 to Ix86
= addresses challenge #1 and challenge #2

% Transformation Mechanism
= (Convert programs with flushopt to equivalent ones with £1ush
= addresses challenge #3

+ POG: the first program logic for persistency
= pullt over IX86
= several examples of persistent reasoning

-

Px86 prog. transformation Px86 prog. Px86-to-1x86

Conclusions

<+ Ix86: Instrumented x86 semantics

= reduces Px86 to x86
= translation from Px86 to Ix86
= addresses challenge #1 and challenge #2

% Transformation Mechanism
= (Convert programs with flushopt to equivalent ones with £1ush
= addresses challenge #3

+ POG: the first program logic for persistency
= puilt over Ix36
= several examples of persistent reasoning

~ R

Px86 prog. transformation Px86 prog. Px86-to-Ix86 verified
_

J

Conclusions

<+ Ix86: Instrumented x86 semantics

O/
%*

= reduces Px86 to x86
= translation from Px86 to Ix86
= addresses challenge #1 and challenge #2

Transformation Mechanism
= (Convert programs with flushopt to equivalent ones with £1ush
= addresses challenge #3

+ POG: the first program logic for persistency

= puilt over IX86
= several examples of persistent reasoning

-

(with £1lushopt

Px86 prog. Eransformati
)

on Px86 prog. Px86-to-Ix86 verified
mechanism] = (without £1ushopt) ™~ [translation]: Ix86 prog.::> Ix86 prog.

\

J

P> azalea@imperial.ac.uk

Thank You for Listening!

QySoundAndComplete.org

g @azalearaad

