
Model Checking for Weakly Consistent Libraries

Michalis Kokologiannakis Azalea Raad Viktor Vafeiadis
June 24, 2019

Max Planck Institute for Soǒtware Systems (MPI-SWS)

How Do We Verify Concurrent Programs?

Stateless Model Checking (SMC): enumerates all executions

- without explicitly storing the visited states

Challenges:

• State space explosion
• Weak memory

1

How Do We Verify Concurrent Programs?

Stateless Model Checking (SMC): enumerates all executions

- without explicitly storing the visited states

Challenges:

• State space explosion
• Weak memory

1

Challenge #1: State Space Explosion

[x = y = 0]

x := 1 x := 2 y := 42

Executions:

SMC : 6
SMC+PORmo : 2
SMC+PORporf: 1

2

Challenge #1: State Space Explosion

[x = y = 0]

x := 1 x := 2 y := 42

Executions:

SMC : 6
SMC+PORmo : 2
SMC+PORporf: 1

2

Challenge #1: State Space Explosion

[x = y = 0]

x := 1 x := 2 y := 42

Executions:
SMC : 6

SMC+PORmo : 2
SMC+PORporf: 1

2

Challenge #1: State Space Explosion

[x = y = 0]

x := 1 x := 2 y := 42

Executions:
SMC : 6
SMC+PORmo : 2

SMC+PORporf: 1

2

Challenge #1: State Space Explosion

[x = y = 0]

x := 1 x := 2 y := 42

Executions:
SMC : 6
SMC+PORmo : 2
SMC+PORporf: 1

2

Challenge #2: Weak Memory Models

All current techniques are memory-model specific
⇒ with the exception of herd

What memory model properties are sufficient for efficient SMC?

3

Challenge #2: Weak Memory Models

All current techniques are memory-model specific
⇒ with the exception of herd

What memory model properties are sufficient for efficient SMC?

3

Challenge #2: Weak Memory Models

All current techniques are memory-model specific
⇒ with the exception of herd

What memory model properties are sufficient for efficient SMC?

3

Our contribution

• We present sufficient properties for efficient SMC
• GenMC: an SMC procedure

• parametric in the choice of the memory model
• sound, complete, optimal, and efficient

4

Our contribution

• We present sufficient properties for efficient SMC

• GenMC: an SMC procedure

• parametric in the choice of the memory model
• sound, complete, optimal, and efficient

4

Our contribution

• We present sufficient properties for efficient SMC
• GenMC: an SMC procedure

• parametric in the choice of the memory model

• sound, complete, optimal, and efficient

4

Our contribution

• We present sufficient properties for efficient SMC
• GenMC: an SMC procedure

• parametric in the choice of the memory model
• sound, complete, optimal, and efficient

4

Our contribution

• We present sufficient properties for efficient SMC
• GenMC: an SMC procedure

• parametric in the choice of the memory model (+ libraries!)
• sound, complete, optimal, and efficient

4

Generic Model Checking

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model.

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

5

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model.

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

5

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model.

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

5

Systematically Enumerate All Graphs

[x = y = 0]

a := y
x := a

b := x
y := b

R(y)

W(x, 42)

R(x)

W(y, 42)
po

rf

Can the reads of this program read 42?

The number of executions may be infinite!

6

Systematically Enumerate All Graphs

[x = y = 0]

a := y
x := a

b := x
y := b

R(y)

W(x, 42)

R(x)

W(y, 42)
po

rf

Can the reads of this program read 42?

The number of executions may be infinite!

6

Systematically Enumerate All Graphs

[x = y = 0]

a := y
x := a

b := x
y := b

R(y)

W(x, 42)

R(x)

W(y, 42)
po

rf

Can the reads of this program read 42?

The number of executions may be infinite!

6

Systematically Enumerate All Graphs

[x = y = 0]

a := y
x := a

b := x
y := b

R(y)

W(x, 42)

R(x)

W(y, 42)
po

rf

Can the reads of this program read 42?

The number of executions may be infinite!

6

Systematically Enumerate All Graphs

[x = y = 0]

a := y
x := a

b := x
y := b

R(y)

W(x, 42)

R(x)

W(y, 42)
po

rf

Can the reads of this program read 42?

The number of executions may be infinite!

6

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model

,
where

• po ∪ rf is acyclic
• prefix-closedness
• extensibility

7

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model ,
where

• po ∪ rf is acyclic

• prefix-closedness
• extensibility

7

Checking Consistency At Each Step

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

2 [init]

W(x, 1) R(x)rf W(x, 2)

8

Checking Consistency At Each Step

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

2 [init]

W(x, 1) R(x)rf W(x, 2)

8

Checking Consistency At Each Step

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

2 [init]

W(x, 1) R(x)rf W(x, 2)

8

Checking Consistency At Each Step

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

2 [init]

W(x, 1)

R(x)rf W(x, 2)

8

Checking Consistency At Each Step

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

2 [init]

W(x, 1) R(x)rf

W(x, 2)

8

Checking Consistency At Each Step

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

2 [init]

W(x, 1) R(x)rf W(x, 2)

8

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic

•
• Consistency is prefix-closed

9

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic
• Each execution can be obtained from some linear extension of po ∪ rf

• Consistency is prefix-closed

9

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic
• Each execution can be obtained from some every linear extension of po ∪ rf

• Consistency is prefix-closed

9

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic
• Consistency is prefix-closed

9

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)rf rfrf
W(x, 2)W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)rf rfrf
W(x, 2)W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)rf rfrf
W(x, 2)W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1)

R(x)rf rfrf
W(x, 2)W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)rf

rfrf
W(x, 2)W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)rf

rfrf

W(x, 2)

W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)rf

rfrf

W(x, 2)

W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)

rf

rf

rf

W(x, 2)

W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)

rf

rf

rf

W(x, 2)

W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)

rf rf

rf

W(x, 2)W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)

rf rf

rf

W(x, 2)

W(x, 2)

10

Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)

rf rf

rf

W(x, 2)

W(x, 2)

10

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic
• Consistency is prefix-closed

• The memory model is extensible

These are fulfilled by SC, TSO, PSO, RC11
but not by POWER and ARM

11

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic
• Consistency is prefix-closed
• The memory model is extensible

These are fulfilled by SC, TSO, PSO, RC11
but not by POWER and ARM

11

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic
• Consistency is prefix-closed
• The memory model is extensible

These are fulfilled by SC, TSO, PSO, RC11

but not by POWER and ARM

11

GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic
• Consistency is prefix-closed
• The memory model is extensible

These are fulfilled by SC, TSO, PSO, RC11
but not by POWER and ARM

11

Handling Locks

[init(l)]

lock(l)
unlock(l)

lock(l)
unlock(l)

1 [init]

lock(l)

unlock(l)

lock(l)

unlock(l)

rf

rf

2 [init]

lock(l)

unlock(l)

lock(l)

unlock(l)

rf

rf

12

Handling Locks

[init(l)]

lock(l)
unlock(l)

lock(l)
unlock(l)

1 [init]

lock(l)

unlock(l)

lock(l)

unlock(l)

rf

rf

2 [init]

lock(l)

unlock(l)

lock(l)

unlock(l)

rf

rf

12

Handling Locks

[init(l)]

lock(l)
unlock(l)

lock(l)
unlock(l)

1 [init]

lock(l)

unlock(l)

lock(l)

unlock(l)

rf

rf

2 [init]

lock(l)

unlock(l)

lock(l)

unlock(l)

rf

rf

12

Results

An Interesting Example

Nidhugg RCMC GenMC

SC SCo RC11mo RC11mo RC11porf

LIB

lamport(2) .13 .10 .04 .03 .03

.09

lamport(3) 7.53 4.49 5.40 6.87 1.36

.09

lamport(4)     

.09

 = tool did not finish within 2 days

All times are in seconds

13

An Interesting Example

Nidhugg RCMC GenMC

SC SCo RC11mo RC11mo RC11porf LIB

lamport(2) .13 .10 .04 .03 .03 .09
lamport(3) 7.53 4.49 5.40 6.87 1.36 .09
lamport(4)      .09

 = tool did not finish within 2 days

All times are in seconds

13

Equivalence Partitionings

4 5 6 7

101

102

103

104

105

106

107

108

mo

porf

of threads

#
of
ex
ec
ut
io
ns

CoA

4 5 6 7

101

102

103

104

105

106

107

108

mo

porf

of threads

#
of
ex
ec
ut
io
ns

casw

4 5 6 7

101

102

103

104

105

106

107

108

mo

porf

of threads

#
of
ex
ec
ut
io
ns

inc

4 5 6 7

101

102

103

104

105

106

107

108

mo

porf

of threads
#
of
ex
ec
ut
io
ns

Nw1r

14

Equivalence Partitionings (202 benchmarks)

10−1 100 101 102 103

10−1

100

101

102

103

mo time (s)

po
rf

tim
e
(s
)

15

More in the paper

• Detailed description of the algorithm
• Formalization of memory model assumptions
• More benchmarks and evaluation

16

Conclusions

Summary
• Sound, complete, and optimal SMC procedure for memory models that are:

• po ∪ rf-acyclic
• prefix-closed
• extensible

• GenMC can be exponentially faster than existing tools
• GenMC is available at github.com/MPI-SWS/genmc

Future work

• Can we relax the memory-model assumptions?

Thank You!

17

github.com/MPI-SWS/genmc

Conclusions

Summary
• Sound, complete, and optimal SMC procedure for memory models that are:

• po ∪ rf-acyclic
• prefix-closed
• extensible

• GenMC can be exponentially faster than existing tools
• GenMC is available at github.com/MPI-SWS/genmc

Future work

• Can we relax the memory-model assumptions?

Thank You!
17

github.com/MPI-SWS/genmc

Backup Slides

Why Extensibility Is Necessary

[x = y = 0]

a := x b := y x := 42

1 [init]

R(x)
rf
R(y)
rf

W(x, 42)

Under a memory model that dictates the following:
“If a read of y reads 0, then there cannot be a read of x that also reads 0”

1 [init]

R(x)
rf

R(y)
rf

Why Extensibility Is Necessary

[x = y = 0]

a := x b := y x := 42

1 [init]

R(x)
rf
R(y)
rf

W(x, 42)

Under a memory model that dictates the following:
“If a read of y reads 0, then there cannot be a read of x that also reads 0”

1 [init]

R(x)
rf

R(y)
rf

Why Extensibility Is Necessary

[x = y = 0]

a := x b := y x := 42

1 [init]

R(x)
rf
R(y)
rf

W(x, 42)

Under a memory model that dictates the following:
“If a read of y reads 0, then there cannot be a read of x that also reads 0”

1 [init]

R(x)
rf

R(y)
rf

Why Extensibility Is Necessary

[x = y = 0]

a := x b := y x := 42

1 [init]

R(x)
rf
R(y)
rf

W(x, 42)

Under a memory model that dictates the following:
“If a read of y reads 0, then there cannot be a read of x that also reads 0”

1 [init]

R(x)
rf

R(y)
rf

Why Extensibility Is Necessary

[x = y = 0]

a := x b := y x := 42

1 [init]

R(x)
rf
R(y)
rf

W(x, 42)

Under a memory model that dictates the following:
“If a read of y reads 0, then there cannot be a read of x that also reads 0”

1 [init]

R(x)
rf

R(y)
rf

Why Extensibility Is Necessary

[x = y = 0]

a := x b := y x := 42

1 [init]

R(x)
rf
R(y)
rf

W(x, 42)

Under a memory model that dictates the following:
“If a read of y reads 0, then there cannot be a read of x that also reads 0”

1 [init]

R(x)
rf

R(y)
rf

Why Extensibility Is Necessary

[x = y = 0]

a := x b := y x := 42

1 [init]

R(x)
rf
R(y)
rf

W(x, 42)

Under a memory model that dictates the following:
“If a read of y reads 0, then there cannot be a read of x that also reads 0”

1 [init]

R(x)
rf

R(y)
rf

Handling Locks

[init(l)]

a : lock(l)
a′ : unlock(l)

b : lock(l)
b′ : unlock(l)

init(l)

a : lock(l)
rf ⇝

[init]

a : lock(l)

a′ : unlock(l)

rf

Handling Locks

[init(l)]

a : lock(l)
a′ : unlock(l)

b : lock(l)
b′ : unlock(l)

init(l)

a : lock(l)
rf ⇝

[init]

a : lock(l)

a′ : unlock(l)

rf
[init]

a : lock(l)

a′ : unlock(l)

b : lock(l)

b′ : unlock(l)

rf

rf [init]

W[b]

Handling Locks

[init(l)]

a : lock(l)
a′ : unlock(l)

b : lock(l)
b′ : unlock(l)

init(l)

a : lock(l)
rf ⇝

[init]

a : lock(l)

a′ : unlock(l)

rf [init]

a : lock(l) b : lock(l)
rf rf

⊥
W[a]

Handling Locks

[init(l)]

a : lock(l)
a′ : unlock(l)

b : lock(l)
b′ : unlock(l)

init(l)

a : lock(l)
rf ⇝

[init]

a : lock(l)

a′ : unlock(l)

rf
⊥ [init]

a : lock(l) b : lock(l)

b′ : unlock(l)

rf rf
⊥
b′

W[a]

Handling Locks

[init(l)]

a : lock(l)
a′ : unlock(l)

b : lock(l)
b′ : unlock(l)

init(l)

a : lock(l)
rf ⇝

[init]

a : lock(l)

a′ : unlock(l)

rf
init(l)

a : lock(l) b : lock(l)

b′ : unlock(l)

rf

rf ⊥
b′

W[a]

Linux-Kernel Benchmarks

Ni
dh
ug
g

SC Ni
dh
ug
g

TS
O

Ni
dh
ug
g

PS
O RC
MC

RC
11 RC
MC

WR
C1
1

Ge
nM
C

MO Ge
nM
C

WB

mcs_spinlock(2) .12 .09 .10 .05 .05 .05 .05
mcs_spinlock(3) 2.98 6.84 12.54 .84 .67 .89 .78
mcs_spinlock(4) 0.68h 1.51h 3.32h 0.16h 0.15h 0.42h 0.26h

qspinlock(2) .17 .11 .11 .04 .04 .04 .04
qspinlock(3) 10.93 18.20 23.43 2.13 2.08 1.10 1.12

seqlock(2) .10 .09 .10 .04 .04 .04 .04
seqlock(3) 1.64 3.07 11.00 .49 .51 .37 .37

	Generic Model Checking
	Results
	Appendix

