Model Checking for Weakly Consistent Libraries

Michalis Kokologiannakis Azalea Raad Viktor Vafeiadis June 24, 2019

Max Planck Institute for Software Systems (MPI-SWS)

How Do We Verify Concurrent Programs?

1

Stateless Model Checking (SMC): enumerates all executions

- without explicitly storing the visited states

Challenges:

- State space explosion
- Weak memory

$$[x = y = 0]$$

x := 1 || x := 2 || y := 42

Executions:

$$[x = y = 0]$$

x := 1 || x := 2 || y := 42

Executions:

SMC : 6

$$[x = y = 0]$$

x := 1 || x := 2 || y := 42

Executions:

SMC : 6 SMC+POR^{mo} : 2

$$[x = y = 0]$$

x := 1 || x := 2 || y := 42

Executions:

SMC : 6 SMC+POR^{mo} : 2 SMC+POR^{porf}: 1

Challenge #2: Weak Memory Models

All current techniques are memory-model specific \Rightarrow with the exception of herd

All current techniques are memory-model specific \Rightarrow with the exception of herd

What memory model properties are sufficient for efficient SMC?

Our contribution

• We present sufficient properties for efficient SMC

- \cdot We present sufficient properties for efficient SMC
- GENMC: an SMC procedure
 - parametric in the choice of the memory model

- \cdot We present sufficient properties for efficient SMC
- GENMC: an SMC procedure
 - parametric in the choice of the memory model
 - \cdot sound, complete, optimal, and efficient

- \cdot We present sufficient properties for efficient SMC
- GENMC: an SMC procedure
 - parametric in the choice of the memory model (+ libraries!)
 - sound, complete, optimal, and efficient

Generic Model Checking

Goal: Enumerate all consistent execution graphs of *P* for *any* memory model.

Goal: Enumerate all consistent execution graphs of *P* for *any* memory model.

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

Goal: Enumerate all consistent execution graphs of *P* for *any* memory model.

$$\begin{array}{c|c} [x=0] \\ \hline x:=1 \parallel a:=x \parallel x:=2 \end{array} \begin{array}{c} 1 \\ w(x,1) \\ \hline w(x,1) \\ \hline w(x,2) \\ \hline w(x,2) \\ \hline w(x,2) \\ \hline w(x,1) \\ \hline w(x,2) \\ \hline w(x,2$$

Systematically Enumerate All Graphs

Systematically Enumerate All Graphs

$$[x = y = 0]$$

$$a := y || b := x$$

$$x := a || y := b$$

$$\begin{bmatrix} x = y = 0 \end{bmatrix}$$

$$a := y \\ x := a \end{bmatrix} \begin{array}{c} b := x \\ y := b \end{array}$$

Can the reads of this program read 42?

Systematically Enumerate All Graphs

$$\begin{array}{c|c} [x = y = 0] \\ a := y \\ x := a \end{array} \begin{array}{c} B(y) \\ b := x \\ y := b \end{array} \end{array} \begin{array}{c} R(y) \\ f \\ y \\ w(x, 42) \end{array} \begin{array}{c} R(x) \\ f \\ w(y, 42) \end{array}$$

Can the reads of this program read 42?

$$\begin{array}{c|c} [x = y = 0] \\ a := y \\ x := a \end{array} \begin{array}{c} B(y) \\ b := x \\ y := b \end{array} \end{array} \begin{array}{c} R(y) \\ f \\ y \\ w(x, 42) \end{array} \begin{array}{c} R(x) \\ w(y, 42) \end{array}$$

Can the reads of this program read 42?

The number of executions may be infinite!

Goal: Enumerate all consistent execution graphs of P for any memory model

Goal: Enumerate all consistent execution graphs of *P* for *any* memory model , where

 \cdot po \cup rf is acyclic

$$\begin{array}{c|c} [x=0] \\ \hline x:=1 \parallel a:=x \parallel x:=2 \end{array} \begin{array}{c} \textcircled{1} & \fbox{[init]} & \textcircled{2} & \fbox{[init]} & \textcircled{3} & \fbox{[init]} \\ \hline W(x,1) & \mathsf{R}(x) & \mathsf{W}(x,2) & \mathsf{W}(x,1) & \mathring{rf} & \mathsf{R}(x) & \mathsf{W}(x,2) \end{array} \end{array}$$

$$\begin{array}{c} [x = 0] \\ \hline x := 1 \parallel a := x \parallel x := 2 \end{array} \begin{array}{c} 1 & [init] \\ \hline w(x, 1) & R(x) & W(x, 2) \end{array} \begin{array}{c} 2 & [init] \\ \hline w(x, 2) & W(x, 1) & \frac{rf}{rf} R(x) & W(x, 2) \end{array} \begin{array}{c} 3 & [init] \\ \hline w(x, 1) & R(x) & W(x, 2) \end{array} \end{array}$$

2 [init]

$$\begin{array}{c} [x = 0] \\ x := 1 \parallel a := x \parallel x := 2 \end{array} \qquad \begin{array}{c} 1 \\ w(x, 1) \end{array} \xrightarrow{\text{po}} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 2 \\ w(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ w(x, 1) \end{array} \xrightarrow{\text{po}} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ w(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\ W(x, 1) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} 3 \\W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} 1 \\W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} 1 \\W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init}] \\W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init} \\W(x, 2) \end{array} \qquad \begin{array}{c} [\text{init} \\W(x, 2) \end{array} \qquad$$

$$\begin{array}{c} [x = 0] \\ x := 1 \parallel a := x \parallel x := 2 \end{array} \qquad \begin{array}{c} 1 \\ w(x, 1) \end{array} \xrightarrow{po} \begin{bmatrix} \text{init} \\ \vdots \\ w(x, 2) \end{array} \qquad \begin{array}{c} 2 \\ w(x, 2) \end{array} \xrightarrow{[\text{init}]} \\ w(x, 1) \xrightarrow{rf} R(x) \end{array} \qquad \begin{array}{c} 2 \\ w(x, 1) \xrightarrow{rf} R(x) \end{array} \qquad \begin{array}{c} 3 \\ w(x, 2) \end{array} \qquad \begin{array}{c} \text{init} \\ w(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ w(x, 2) \end{array} \qquad \begin{array}{c} \text{init} \\ w(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ w(x, 2) \end{array} \qquad \begin{array}{c} \text{init} \\ w(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ w(x, 2) \end{array} \qquad \begin{array}{c} \text{init} \\ w(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ w(x, 2) \end{array} \qquad \begin{array}{c} \text{init} \\ w(x, 2) \end{array} \qquad \begin{array}{c} 3 \\ w(x, 2) \end{array} \qquad \begin{array}{c} 1 \\ w(x, 2) \end{array} \qquad$$

Goal: Enumerate all consistent execution graphs of *P* for *any* memory model, where

 \cdot po \cup rf is acyclic

Goal: Enumerate all consistent execution graphs of *P* for *any* memory model, where

- $\cdot \ \mathsf{po} \cup \mathsf{rf} \text{ is acyclic}$
- + Each execution can be obtained from some linear extension of $\mathsf{po} \cup \mathsf{rf}$

Goal: Enumerate all consistent execution graphs of *P* for *any* memory model, where

- $\cdot \ \mathsf{po} \cup \mathsf{rf} \text{ is acyclic}$
- + Each execution can be obtained from some every linear extension of $\mathsf{po} \cup \mathsf{rf}$

- $\cdot \ \mathsf{po} \cup \mathsf{rf} \text{ is acyclic}$
- Consistency is prefix-closed

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

[init]

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

[init] W(x, 1)

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

 $[init] \\ W(x,1) \stackrel{\checkmark}{\stackrel{rf}{\rightarrow}} R(x)$

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

 $[init] \\ W(x,1) \stackrel{f}{\underline{r}_{f}} R(x) W(x,2)$

$$[x = 0]$$

x := 1 || a := x || x := 2

 $(2) \quad [init] \\ \downarrow \\ W(x,1) \stackrel{\text{rf}}{\longrightarrow} R(x) \quad W(x,2)$

 $[init] \\ \psi (x,1) \overset{\text{init}}{\overset{\text{rf}}{\text{rf}}} R(x) \quad W(x,2)$

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

 $(2) \quad [init] \\ \downarrow \\ W(x,1) \stackrel{\text{rf}}{\longrightarrow} R(x) \quad W(x,2)$

 $W(x,1) \stackrel{[init]}{\longrightarrow} R(x) \stackrel{\text{rf}}{\stackrel{\text{rf}}{=}} W(x,2)$

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

$$\begin{array}{c} \textcircled{2} [\text{init}] \\ \swarrow \\ W(x,1) \stackrel{\texttt{rf}}{=} \mathbb{R}(x) \\ W(x,2) \\ W(x,1) \\ W(x,2) \\ W(x,1) \\ \mathbb{R}(x) \stackrel{\texttt{rf}}{=} \mathbb{W}(x,2) \\ \end{array}$$

$$W(x,1) \stackrel{[init]}{\underset{\mathsf{R}(x)}{\overset{\mathsf{r}}{\mathsf{f}}}} W(x,2)$$

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

$$\begin{array}{c} \textcircled{2} [\text{init}] \\ \swarrow \\ W(x,1) \stackrel{\text{rf}}{=} \mathbb{R}(x) \\ \end{array} \begin{array}{c} \textcircled{3} \\ W(x,2) \\ W(x,1) \\ \end{array} \begin{array}{c} \overbrace{x} \stackrel{\text{f}}{=} W(x,2) \\ (x,1) \\ \end{array} \begin{array}{c} \overbrace{x} \stackrel{\text{f}}{=} W(x,2) \\ \end{array}$$

$$[init] \\ \downarrow \ rf \\ W(x,1) R(x)$$

$$[x = 0]$$

x := 1 || $a := x$ || $x := 2$

$$\begin{array}{c} \textcircled{2} [\text{init}] \\ \swarrow \\ W(x,1) \stackrel{\text{rf}}{=} \mathbb{R}(x) \\ W(x,2) \\ W(x,1) \\ W(x,2) \\ W(x,1) \\ W(x,2) \\$$

 $\begin{array}{c} [init] \\ & \swarrow \\ W(x,1) & \mathsf{R}(x) & \mathsf{W}(x,2) \end{array}$

$$\begin{bmatrix} x = 0 \end{bmatrix}$$

$$x := 1 \parallel a := x \parallel x := 2$$

$$\begin{array}{c} 1 \\ W(x, 1) \\ W(x, 1) \\ W(x, 1) \\ W(x, 1) \\ W(x, 2) \\ W(x, 2) \\ W(x, 1) \\ W(x, 2) \\ W(x, 1) \\ W(x, 2) \\ W$$

- $\cdot \ \mathsf{po} \cup \mathsf{rf} \text{ is acyclic}$
- Consistency is prefix-closed

- $\cdot \ \mathsf{po} \cup \mathsf{rf} \text{ is acyclic}$
- Consistency is prefix-closed
- The memory model is extensible

- $\cdot \ \mathsf{po} \cup \mathsf{rf} \text{ is acyclic}$
- Consistency is prefix-closed
- The memory model is extensible

These are fulfilled by SC, TSO, PSO, RC11

- $\cdot \ \mathsf{po} \cup \mathsf{rf} \text{ is acyclic}$
- Consistency is prefix-closed
- The memory model is extensible

These are fulfilled by SC, TSO, PSO, RC11 but not by POWER and ARM [init(l)] lock(l) || lock(l) unlock(l) || unlock(l)

Results

	Nid	HUGG	RCMC		GenMC	
	SC	SC ^o	RC11 ^{mo}	RC11 ^{mo}	RC11 ^{porf}	
lamport(2)	.13	.10	.04	.03	.03	
lamport(3)	7.53	4.49	5.40	6.87	1.36	
lamport(4)	0	0	0	0	0	

I = tool did not finish within 2 days

All times are in seconds

	Nid	HUGG	RCMC		GenMC	
	SC	SC ^o	RC11 ^{mo}	RC11 ^{mo}	RC11 ^{porf}	LIB
lamport(2)	.13	.10	.04	.03	.03	.09
lamport(3)	7.53	4.49	5.40	6.87	1.36	.09
lamport(4)	0	0	0	0	0	.09

I = tool did not finish within 2 days

All times are in seconds

Equivalence Partitionings

Equivalence Partitionings (202 benchmarks)

- Detailed description of the algorithm
- Formalization of memory model assumptions
- More benchmarks and evaluation

Conclusions

Summary

- Sound, complete, and optimal SMC procedure for memory models that are:
 - $\cdot \ po \cup rf\text{-}acyclic$
 - prefix-closed
 - \cdot extensible
- GENMC can be exponentially faster than existing tools
- GENMC is available at github.com/MPI-SWS/genmc

Conclusions

Summary

- Sound, complete, and optimal SMC procedure for memory models that are:
 - $\cdot \ po \cup rf\text{-}acyclic$
 - prefix-closed
 - \cdot extensible
- GENMC can be exponentially faster than existing tools
- GENMC is available at github.com/MPI-SWS/genmc

Future work

• Can we relax the memory-model assumptions?

Thank You!

Backup Slides

$$[x = y = 0]$$

 $a := x \parallel b := y \parallel x := 42$

$$[x = y = 0]$$

 $a := x \parallel b := y \parallel x := 42$

$$[x = y = 0]$$

$$a := x \parallel b := y \parallel x := 42$$
(1) [init]

$$R(x) = \frac{R(y)}{rf} = W(x, 42)$$

$$[x = y = 0]$$

$$a := x \parallel b := y \parallel x := 42$$
(1) [init]

$$R(x) = \frac{R(y)}{rf} W(x, 42)$$

Under a memory model that dictates the following: *"If a read of y reads 0, then there cannot be a read of x that also reads 0"*

[init]

1

$$[x = y = 0]$$

$$a := x \parallel b := y \parallel x := 42$$
(1) [init]

$$R(x) = \frac{R(y)}{rf} W(x, 42)$$

$$\frac{1}{R(x)} rf_{-}[init]$$

$$[x = y = 0]$$

$$a := x \parallel b := y \parallel x := 42$$
(1) [init]

$$R(x) = \frac{R(y)}{rf} W(x, 42)$$

$$\begin{array}{c}
1 \\ rf - [init] \\
R(x) \\
R(y)
\end{array}$$

$$[x = y = 0]$$

$$a := x \parallel b := y \parallel x := 42$$
(1) [init]

$$R(x) = \frac{R(y)}{rf} W(x, 42)$$

	[init(l)]
a : lock(l)	b : lock(l)
a' : unlock(l)	b' : unlock(l)

$$\begin{array}{c} [\text{init}] \\ \text{init}(l) & \texttt{rf} \checkmark \checkmark \\ \texttt{rf} \checkmark \checkmark & \rightsquigarrow & a : lock(l) \\ a : lock(l) & \downarrow \\ & a' : unlock(l) \end{array}$$

	[init(l)]
a : lock(l)	b : lock(l)
a' : unlock(l)	b' : unlock(l)

Linux-Kernel Benchmarks

	Nidhuge SCUSE	Nidhuge 150038	Nichugg PSOUSS	RCMC RC17	MCMC MCMC	GENNC NO	GENNG WB
mcs_spinlock(2)	.12	.09	.10	.05	.05	.05	.05
mcs_spinlock(3)	2.98	6.84	12.54	.84	.67	.89	.78
mcs_spinlock(4)	0.68h	1.51h	3.32h	0.16h	0.15h	0.42h	0.26h
qspinlock(2)	.17	.11	.11	.04	.04	.04	.04
qspinlock(3)	10.93	18.20	23.43	2.13	2.08	1.10	1.12
seqlock(2)	.10	.09	.10	.04	.04	.04	.04
seqlock(3)	1.64	3.07	11.00	.49	.51	.37	.37