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How Do We Verify Concurrent Programs?

Stateless Model Checking (SMC): enumerates all executions

- without explicitly storing the visited states

Challenges:

• State space explosion
• Weak memory
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Challenge #1: State Space Explosion

[x = y = 0]

x := 1 x := 2 y := 42

Executions:

SMC : 6
SMC+PORmo : 2
SMC+PORporf: 1
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Challenge #2: Weak Memory Models

All current techniques are memory-model specific
⇒ with the exception of herd

What memory model properties are sufficient for efficient SMC?
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Our contribution

• We present sufficient properties for efficient SMC
• GenMC: an SMC procedure

• parametric in the choice of the memory model
• sound, complete, optimal, and efficient
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Generic Model Checking



GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model.

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf
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Systematically Enumerate All Graphs

[x = y = 0]

a := y
x := a

b := x
y := b

R(y)

W(x, 42)

R(x)

W(y, 42)
po

rf

Can the reads of this program read 42?

The number of executions may be infinite!
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GenMC: Generic Model Checking
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,
where

• po ∪ rf is acyclic
• prefix-closedness
• extensibility
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Checking Consistency At Each Step

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)

po
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

2 [init]

W(x, 1) R(x)rf W(x, 2)
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Fixing The Construction Order

[x = 0]

x := 1 a := x x := 2

1 [init]

W(x, 1) R(x) W(x, 2)
rf

2 [init]

W(x, 1) R(x) W(x, 2)rf

3 [init]

W(x, 1) R(x) W(x, 2)rf

[init]

W(x, 1) R(x)rf rfrf
W(x, 2)W(x, 2)
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GenMC: Generic Model Checking

Goal: Enumerate all consistent execution graphs of P for any memory model,
where

• po ∪ rf is acyclic
• Consistency is prefix-closed

• The memory model is extensible

These are fulfilled by SC, TSO, PSO, RC11
but not by POWER and ARM
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Handling Locks
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lock(l)
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An Interesting Example

Nidhugg RCMC GenMC

SC SCo RC11mo RC11mo RC11porf

LIB

lamport(2) .13 .10 .04 .03 .03

.09

lamport(3) 7.53 4.49 5.40 6.87 1.36

.09

lamport(4)     

.09

 = tool did not finish within 2 days

All times are in seconds
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Equivalence Partitionings
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Equivalence Partitionings (202 benchmarks)
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More in the paper

• Detailed description of the algorithm
• Formalization of memory model assumptions
• More benchmarks and evaluation
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Conclusions

Summary
• Sound, complete, and optimal SMC procedure for memory models that are:

• po ∪ rf-acyclic
• prefix-closed
• extensible

• GenMC can be exponentially faster than existing tools
• GenMC is available at github.com/MPI-SWS/genmc

Future work

• Can we relax the memory-model assumptions?

Thank You!

17

github.com/MPI-SWS/genmc


Conclusions

Summary
• Sound, complete, and optimal SMC procedure for memory models that are:

• po ∪ rf-acyclic
• prefix-closed
• extensible

• GenMC can be exponentially faster than existing tools
• GenMC is available at github.com/MPI-SWS/genmc

Future work

• Can we relax the memory-model assumptions?

Thank You!
17

github.com/MPI-SWS/genmc


Backup Slides



Why Extensibility Is Necessary

[x = y = 0]

a := x b := y x := 42

1 [init]

R(x)
rf
R(y)
rf

W(x, 42)

Under a memory model that dictates the following:
“If a read of y reads 0, then there cannot be a read of x that also reads 0”

1 [init]

R(x)
rf

R(y)
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Handling Locks
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Linux-Kernel Benchmarks
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mcs_spinlock(2) .12 .09 .10 .05 .05 .05 .05
mcs_spinlock(3) 2.98 6.84 12.54 .84 .67 .89 .78
mcs_spinlock(4) 0.68h 1.51h 3.32h 0.16h 0.15h 0.42h 0.26h

qspinlock(2) .17 .11 .11 .04 .04 .04 .04
qspinlock(3) 10.93 18.20 23.43 2.13 2.08 1.10 1.12

seqlock(2) .10 .09 .10 .04 .04 .04 .04
seqlock(3) 1.64 3.07 11.00 .49 .51 .37 .37
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