
Model Checking for Weakly Consistent Libraries

Michalis Kokologiannakis
MPI-SWS
Germany

michalis@mpi-sws.org

Azalea Raad
MPI-SWS
Germany

azalea@mpi-sws.org

Viktor Vafeiadis
MPI-SWS
Germany

viktor@mpi-sws.org

Abstract

We present GenMC, a model checking algorithm for concur-
rent programs that is parametric in the choice of memory
model and can be used for verifying clients of concurrent
libraries. Subject to a few basic conditions about the mem-
ory model, our algorithm is sound, complete and optimal,
in that it explores each consistent execution of the program
according to the model exactly once, and does not explore in-
consistent executions or embark on futile exploration paths.
We implement GenMC as a tool for verifying C programs.
Despite the generality of the algorithm, its performance is
comparable to the state-of-art specialized model checkers for
specific memory models, and in certain cases exponentially
faster thanks to its coarse partitioning of executions.

CCS Concepts · Theory of computation → Verifica-

tion bymodel checking; · Software and its engineering

→ Software testing and debugging.

Keywords Model checking, weak memory models

ACM Reference Format:

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.

Model Checking for Weakly Consistent Libraries. In Proceedings

of the 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’19), June 22ś26, 2019, Phoenix,

AZ, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.

1145/3314221.3314609

1 Introduction

Suppose that we have a concurrent program, e.g.,

x := 1

y := 1

a := y

b := x

assert(a ≤ b)

(mp)

with x andy initialized with 0, and wewant to check whether
its assertions are always satisfied. An effective way of doing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314609

so is using stateless model checking (SMC) [18, 19, 34], which
enumerates all executions of the program and checks each
execution individually. SMC has two major challenges.
The first challenge is associated with the memory model

under which the program is executed, as it determines the
program outcomes. For example, in the mp program above,
the assertion (a ≤ b) holds under SC [28] and TSO [36], but
not under PSO [40], or RC11 with ‘relaxed’ accesses [27],
because the latter two models allow for writes to distinct
locations to be reordered.
The second challenge is that any non-trivial concurrent

program has a large number of executions that need to be
explored (typically, exponential in the size of the program). To
tackle this, partial order reduction techniques [1, 12, 16, 20, 42]
try to partition the executions into equivalence classes and
explore exactly one execution per equivalence class.

However, while there exist efficient techniques that target
specificmemory models [1ś4, 12, 15, 16, 20ś22, 26, 35, 39, 42],
a generic technique that combats both these challenges is yet
to be developed.

The goal of this paper is to develop such a model checking
algorithm that is parametric in the choice of the memory
model. Our algorithm,GenMC (Generic Model Checker), can
be used not only for traditional memory models supporting
reads, writes, and read-modify-write (RMW) instructions,
but also for models incorporating high-level libraries, such
as mutual exclusion locks, as primitive operations.
Our contributions can be summarized as follows:

• Through a series of examples, we present an intuitive
account of our algorithm for verifying concurrent pro-
grams, using execution graphs and axiomatic seman-
tics for any memory model (ğ2), so long as it satisfies
four basic assumptions: porf-acyclicity, extensibility,
prefix-closedness and well-blocking (ğ3).
• Our approach distinguishes executions based solely
on the program-order and reads-from relations (ğ2.5),
which can lead to exponentially fewer explorations
compared to approaches thatmaintain a total coherence
order between conflicting writes (ğ6.3).
• We demonstrate how our technique can verify pro-
grams under memory models that incorporate high-
level libraries, such as mutual exclusion locks (ğ2.7).
• We describe our algorithm in detail (ğ4), and prove that
it is (a) sound: produces no false positives; (b) complete:
explores all possible program behaviours; and (c) opti-
mal: explores each behaviour exactly once.

96

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

1 W(x, 0)

W(x, 1) R(x) W(x, 2)

W(y, 1)

rf

2 W(x, 0)

W(x, 1) R(x) W(x, 2)rf

3 W(x, 0)

W(x, 1) R(x) W(x, 2)rf

Figure 1. Execution graphs of w+rw+w.

• We implement GenMC into a tool for verifying C pro-
grams (ğ5), and demonstrate that it has comparable or
better performance than the state-of-the-art special-
ized tools for specific memory models (ğ6).

2 Overview

In the literature of axiomatic memory models [6, 27], the
traces of shared memory accesses generated by a program
are represented as a set of execution graphs, where each graph
G comprises: (i) a set of events (graph nodes); and (ii) a few
relations on events (graph edges). The two kinds of edges
present in all memory models are the program order (po) and
the reads-from relation (rf), which relates each read event r
in G to a write eventw in G, from which r obtains its value.
The semantics of a program P is then given by the set of
executions that satisfy a certain consistency predicate.

For example, sequential consistency (SC) [28] requires the
existence of a total order on all events extending the program
order such that each read reads from the most recent prior
write to same location in that total order. Equivalently, SC can
be defined in terms of a modification order, mo, also known
as the coherence order. An execution is SC-consistent if there
exists mo such that for every location x , mo totally orders all
writes to x and po∪rf∪mo∪(rf−1; mo) is acyclic, where rf−1

denotes the inverse of rf, and ‘;’ denotes relational composi-

tion: (r ,w) ∈ rf−1; mo⇔ ∃w ′. (w ′, r) ∈ rf ∧ (w ′,w) ∈ mo.
Other models are weaker and deem more executions con-

sistent. TSO [36] allows loads to execute before po-earlier
stores, while PSO [40] further allows stores of a thread to ex-
ecute out of order. RC11 [27] supports various access modes
ranging from SC to ones even weaker than what PSO offers.
Let us now consider a simple example program:1

x := 1
a := x ;

if a = 0 then y := 1
x := 2 (w+rw+w)

Under SC, as depicted by the executions in Fig. 1, the read
in thread 2 may read either 0 (from the initialization write),
1 (from the write in thread 1), or 2 (from thread 3).

Our goal is to enumerate such executions systematically. A
simple approach taken, e.g., byHerd [6] and cppmem [8], is to
enumerate all possible executions and filter them according
to the consistency predicate of the memory model.

1In all our examples, we use x , y, z as global (shared) variables and a, b , c

as local variables. All variables are implicitly initialized to 0.

To do this, we require that the underlying memory model
satisfy the following (see ğ3):

MM1: porf is irreflexive, where porf △

= (po ∪ rf)+

This requirement is satisfied by several models (e.g., SC,
TSO, PSO, and RC11), and ensures that loop-free programs
have finitely many executions. Without this requirement,
we can easily run into problems as the following program
illustrates:

x := y y := x (lb+dep)

Under the (arguably useless) memory model that deems
every execution graph consistent, the program can return
x = y = v , for any value v , by having both threads read v
and write v in a circular fashion as shown below:

R(y)

W(x,v)

R(x)

W(y,v)

rf

In the weak memory literature, such executions are consid-
ered problematic because they generate values łout of thin
air” (OOTA) [10, 31, 41] and inhibit compositional reasoning.

Remark 1. While restricting OOTA behaviours, MM1 also
precludes models allowing the outcome a = b = 1 for the
following łload buffering” litmus test:

a := y;

x := 1

b := x ;

y := 1
(lb)

A few models allow this outcome and yet avoid OOTA execu-
tions. The Power [6] and ARM [37] models record (syntactic)
dependencies in executions and forbid dependency cycles,
while the Promising [23] and WeakestMO [11] models are
not even defined in terms of execution graphs. Handling
these models is beyond the scope of this paper.

2.1 Checking Consistency at Every Step

Even without OOTA executions, generating all executions
and then checking consistency does not scale [24].
A much better approach, followed by most tools (e.g.,

[1, 2, 4, 24, 35]), is to construct executions incrementally by
adding events one at a time and checking for consistency at
each step, thereby avoiding the exploration of inconsistent
graphs. For this approach to work, the underlying memory
model must satisfy the following condition:

Every non-empty consistent graph has a po-maximal
event that, if removed, yields a consistent graph.

This condition ensures that each execution can be generated
by adding its events in some total extension of the porf order,
and checking for consistency after each step. For instance,
execution 2 in Fig. 1 can be generated by adding its events
in the following order: W(x, 0), W(x, 1), R(x), and W(x, 2).

2.2 Fixing the Graph Construction Order

To generate all executions of a program following the con-
dition of ğ 2.1 one must in principle consider all possible

97

Model Checking for Weakly Consistent Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

extensions of porf. This, however, very often leads to dupli-
cate explorations.

Therefore, ideally, one would generate all executions with-
out considering all possible extensions of porf, regardless
of the memory model. In fact, we can do this for all well-
known memory models. In particular, models such as SC,
TSO, PSO, and RC11 all satisfy an even stronger guarantee,
namely prefix-closedness:

MM2: There exists a partial orderR that includes reads-from
and (preserved) program order such that, if a graph is
consistent, so is every R-prefix of it.

This ensures that to generate a particular execution, it is
sufficient to consider any total extension of porf.
As we demonstrate below, we can leverage this fact and

fix an order in which we add execution events one at a time,
thus generating all executions of a program systematically.

2.3 GenMC: A First Example

Let us run our model checking algorithm, GenMC, to gen-
erate the executions of w+rw+w by adding its events in a
fixed order given by thread identifiers: first the events of (the
left-most) thread 1, then the events of thread 2, and so forth.

We start with an initial graph G0 containing only the ini-
tialization write W(x, 0) (see below). First, we add the W(x, 1)
write of the first thread to G0, simultaneously adding the
appropriate po edge between the events:

W(x, 0)

{

W(x, 0)

W(x, 1)

Continuing in thread order, we next add the R(x) read of
thread 2, which may read from either of the writes in the
graph, yielding two distinct graphs (one for each case):

W(x, 0)

W(x, 1)
{

W(x, 0)

W(x, 1) R(x)
rf

W(x, 0)

W(x, 1) R(x)
rf

However, recording both graphs is inefficient: in the gen-
eral case, we need to record one graph for each of the reads-
from options of each read. Note that the two graphs are
identical up to the read, which is the point of divergence. As
such, each time we add a read that can read from more than
one place, we proceed with one of the options, e.g., W(x, 0),
and record the alternative(s), i.e., W(x, 1), into a work listW
for later exploration.W maps each read to a list of writes it
can also read from; in this case, the current graph along with
W is given below. We refer to revisit options such as W(x, 1)
as forward revisits since they are already in the graph when
the read (R(x)) is added to the graph.

W(x, 0)

W(x, 1)
{

W(x, 0)

W(x, 1) R(x)

rf

W(x, 1)

W [a:=x]

Since the value read is 0, we next add the W(y, 1) write
of thread 2. Finally, we add W(x, 2) of thread 3 which yields
the graph below. Note that, as it is consistent for the read

to read 2 from this newly added write, we also record this
new reads-from as a revisit option inW . We refer to revisit
options such as W(x, 2) as backward revisits since they are
added to the graph after the corresponding read (R(x)).

W(x, 0)

W(x, 1) R(x)

rf
{

W(x, 0)

W(x, 1) R(x) W(x, 2)

W(y, 1)

rf
W(x, 1)

W(x, 2)

W [a:=x]

This first execution is now completed (denoted by the

highlighted background): it corresponds to execution 1 of

Fig. 1. To generate the remaining executions, we revisit the
graph by picking an alternative reads-from option fromW .
Suppose that we next pick W(x, 2) fromW . To continue,

we restrict the graph to contain only the events added to the
graph prior to (and including) the read (i.e., W(x, 0), W(x, 1)
and R(x)), as well as the events that led up to (in porf order)
the revisiting write W(x, 2). This yields the complete graph
below, corresponding to execution 2 in Fig. 1. The W(x, 2)
option is marked as to denote that it has been considered.

W(x, 0)

W(x, 1) R(x) W(x, 2)
rf

W(x, 1)

W(x, 2)

W [a:=x]

(Ex2)

When considering the alternative reads-from option W(x, 2),
we restrict the graph to contain only the events added prior

to the read. Restricting the graph is important because events
added after the read may depend on its value. For instance, it
is crucial to remove W(y, 1) as it is only present when 0 is read
from x . Similarly, we must retain the events added before
(in porf order) the alternative reads-from option W(x, 2). For
instance, if x := 2 in w+rw+w is wrapped in the conditional
if y = 1 then, the presence of the W(x, 2) event in the graph
depends on the value read for y, i.e., the events before W(x, 2)
in porf order.
To generate the last execution, we revisit the graph once

again by picking the remaining option W(x, 1) inW . We then
restrict the graph as before, yielding the graph below:

W(x, 0)

W(x, 1) R(x)rf W(x, 2)

W [a:=x]
(Pre3)

To continue, we add the W(x, 2)write arriving at the graph
below, corresponding to execution 3 in Fig. 1. Note that we
do not re-add this write as an entry inW , as this option has
already been explored (-marked).

W(x, 0)

W(x, 1) R(x) W(x, 2)rf W(x, 2)

W [a:=x]
(Ex3)

98

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

Finally, as the graph is complete, and all options inW are
explored, the algorithm terminates.

AvoidingDuplication When revisiting a read event, write
events may be removed from the graph and later re-added. As
such, additional care is required to avoid duplicate backward
revisits. For instance, continuing from (Ex2), by picking the
next option inW (W(x, 1)), we removed W(x, 2) arriving at
(Pre3). We later re-added W(x, 2) and obtained (Ex3). In doing
so, we did not re-add W(x, 2) as a (backward) revisit option to
W as this option had already been explored before. Rather, by
having previously marked W(x, 2) as explored (-marked),
we ascertained that W(x, 2) is indeed a duplicate revisit. To
this end, as we describe in ğ4, backward options are not
removed fromW ; instead they are marked as explored (e.g.,
in (Pre3) and (Ex3)). By contrast, forward revisits do not lead
to duplication. This is because when revisiting a read (e.g.,
R(x)), only events added after the read are removed from
the graph. As such, since a forward option (e.g., W(x, 1)) is
added to the graph before the read, it is not removed from
the graph, and therefore not re-added, avoiding duplication.
For efficiency, we thus remove forward options fromW once
explored (e.g., W(x, 1) is removed in (Pre3) and (Ex3)).

2.4 GenMC: Extensible Memory Models

Note that as described in ğ2.3, GenMC generates all execu-
tions, even though it does not add events in porf order. This
is because in cases where a read is added before the write
it reads from, e.g., reading from W(x, 2) in 2 , the rf edge is
recorded as an option inW once the write is added.
This then leads to the question, could events added after

a read affect the consistency of the execution in a way that
the write is never added and hence the alternative rf option
is never considered? Perhaps surprisingly, the answer is
yes. For example, consider the following program under a
(contrived) memory model that dictates łif a read of y reads
0, then there cannot be a read of x that also reads 0”:

a := x b := y x := 42 (r+r+w)

In this case, adding the events in thread order results in
a graph where both x and y read 0, which is then dropped
as inconsistent, and thus we cannot generate the execution
where the first thread reads 42. This brings us to our third
requirement on memory models, extensibility:

MM3: Given a consistent execution G, a po-maximal event
can always be added to G to yield a consistent execu-
tion (with an appropriate rf edge when applicable).

This requirement holds for all well-known memory mod-
els, and excludes łnonsensical” memory models such as that
above. In particular, under that model, the consistent execu-
tion of r+r+w comprising the initialization events and R(x)

of the first thread reading 0 cannot be extended by adding
R(y) for any choice of rf.

1a W(x, 0)

W(x, 1) R(x) W(x, 2)

W(y, 1)

rf

1b W(x, 0)

W(x, 1) R(x) W(x, 2)

W(y, 1)

rf

2a W(x, 0)

W(x, 1) R(x) W(x, 2)
rf

2b W(x, 0)

W(x, 1) R(x) W(x, 2)
rf

3a W(x, 0)

W(x, 1) R(x) W(x, 2)
rf

3b W(x, 0)

W(x, 1) R(x) W(x, 2)rf

Figure 2. mo-executions of w+rw+w under SC.

2.5 GenMC: Modification Order and Writes-Before

Recall that using GenMC, we generated all three executions
of w+rw+w under SC in Fig. 1. These executions, however,
do not exactly correspond to the notion of executions in the
formal definition of SC: as discussed above, SC executions
additionally record the modification order mo, which totally
orders all writes to a given memory location. We refer to
such execution (which record mo) as mo-executions.
As such, the three executions in Fig. 1 correspond to the

six mo-executions depicted in Fig. 2. In this program, each
execution corresponds to two mo-executions representing
the two ways W(x, 1) and W(x, 2) could be ordered by mo.
One can of course adapt GenMC to enumerate all mo-

executions, as e.g., in [24]; but doing so is wasteful because
while the choice of mo can affect the consistency of an exe-
cution, it is not directly observable by the program. As long
as checking for consistency is reasonably efficient, enumer-
ating only (plain) executions is better because it searches
through a space that is up to exponentially smaller.2

Now, how can we check consistency of an execution be-
sides naively enumerating all mo possibilities? The idea is
to compute the łwrites-before” (wb) relation, which records
the set of mo-edges whose direction is forced because of the
rf-edges. Let us consider the following executions under SC:

L W(x, 0)

W(x, 2) W(x, 1)

R(x)rf

wb

wb wb R W(x, 0)

W(x, 1) W(x, 2) W(x, 3)

wb
wb

wb

In execution L , the W(x, 1) must write-before W(x, 2): oth-
erwise, the read may only read 1, due to coherence. Of
course, the initialization write writes before the writes of
both threads, as it is po-before them. By contrast, in execu-
tion R , the writes of the three threads are not wb-ordered,
as there is no causal ordering amongst them.

2To see that, consider an extension of w+rw+w with n parallel writes and

one reader: that program has n + 1 executions and (n + 1)! mo-executions.

99

Model Checking for Weakly Consistent Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1 W(x, 0)

a: RMW(x, 1) b: RMW(x, 2)

rf

rf

2 W(x, 0)

a: RMW(x, 2) b: RMW(x, 1)

rf

rf

Figure 3. The executions of the fai/2 program.

Computing wb can be done in cubic time, and yields a com-
plete procedure for checking consistency for RC11 without
SC features. For SC, while checking consistency of an execu-
tion is NP-complete [17], a wb-based check can approximate
it extremely well3.

2.6 GenMC: Handling rf-Functionality Constraints

Memory models may prescribe rf-functionality constraints
requiring that certain writes be read by at most one read.
For instance, in case of the RMW (read-modify-write) in-
structions, e.g., CAS (compare-and-swap) or FAI (fetch-and-
increment), to ensure their atomicity, two RMW events may
not read from the same write. These constraints are, however,
not exclusive to RMWs. For instance, as we discuss in the up-
coming section, a lock library may require rf-functionality
to ensure mutual exclusion. Indeed, as shown in [38], many
well-known concurrent libraries require rf-functionality to
ensure correct synchronization.
Handling such constraints requires additional care. Con-

sider the program below and its executions depicted in Fig. 3:

a : FAI(x) b : FAI(x) (fai/2)

Execution 1 captures the case where thread 1 increments
x first, while 2 captures the case where thread 2 increments
x first. Let us run GenMC on this example. We proceed by
adding the RMW instruction of thread 1 (a) which reads
from the initialization write. When we next add the RMW
instruction of thread 2 (b), to ensure atomicity, there is only
one consistent option for b to read from, namely a. However,
this poses a problem: when b is added, it cannot add b to
W as a revisit option for a (since that would create a porf
cycle). As such, the algorithm fails to generate execution 2 .
To remedy this, we allow for temporary inconsistency in

the graph. More specifically, we push toW options that break
such consistency constraints.
When this inconsistent execution is eventually picked

fromW , during the course of its exploration, we may en-
counter events that can revisit one of the events responsible
for inconsistency, thus obtaining a consistent graph. The
inconsistent execution is then dropped.

In our example, we push toW an entry for b to read from
the initial write, and continue with the consistent option:

W(x, 0)

a: RMW(x, 1) b: RMW(x, 2)

rf

rf W(x, 0)

W [b]

3The definition of wb can be found in our technical appendix [25].

We next pick the alternative option for b fromW , restrict
the graph as before, and obtain the (inconsistent) execution
below where both RMWs read 0. Additionally, we check
whether the read being revisited (i.e., b) may itself generate
backward revisit options for existing reads in the graph. In
this case, a can read from b and thus b is added as a revisit op-
tion for a. This graph is then dropped as it is inconsistent (vi-
olates RMW atomicity), as denoted by the lined-background.

W(x, 0)

a: RMW(x, 1) b: RMW(x, 2)

rf
rf

b

W [a]
(fai-⊥)

Finally, we pick the remaining revisit option inW [a], re-
strict the graph as before and arrive at execution 2 .

2.7 GenMC: Model Checking for Libraries

We next explain how GenMC generalizes to models incorpo-
rating high-level (abstract) libraries. To do so, let us consider
a mutex library with lock and unlock instructions.
Although the mutex library does not have conventional

read and write operations, its primitives behave very much
like reads and writes. Intuitively, unlock can be viewed as a
write, while lock can be viewed as a read that may either read
from an initial value (i.e., acquiring the mutex immediately
after it is initialized), or read from an unlock instruction
(i.e., acquiring the mutex after it has been released by its
previous holder). As with RMWs, the mutex library requires
rf-functionality: no two lock events read from the same
place, capturing the exclusivity of the mutex while held.
An interesting feature of the mutex library is that the

calls to lock may block if the mutex is taken. Put formally,
when all writes (initialization and unlocks) in an execution
have already been read-from, due to rf-functionality, when
adding a read (lock) event e to the graph, there may not exist
a write from which e could read. When this is the case, the
read event e blocks in that its thread cannot make progress
and thus e has no porf successors. Note that in such libraries
rf is not necessarily total on reads. However, lock eventsmay
not block arbitrarily: a lock may block only when all writes
are read from; i.e., when the mutex is taken. This brings us
to our final requirement on memory models, well-blocking:

MM4: Given a consistent execution G: 1) blocking reads
in G have no porf successors; and 2) if G contains a
blocking read, then all writes in G are read from.

Consider the program below with its executions in Fig. 4:

a : lock(l);

a′ : unlock(l);

b : lock(l);

b ′ : unlock(l);
(lock/2)

Note that neither lock call may block as the program contains
sufficient writes: two unlocks and the implicit initialization.

Running our algorithm on this example, we add the events
in order (a,a′,b,b ′) and obtain execution 1 . As with fai/2,
when adding b to the graph, we also consider inconsistent

100

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

1 [init]

a : lock(l)

a′ : unlock(l)

b : lock(l)

b ′ : unlock(l)

rf

rf

2 [init]

a : lock(l)

a′ : unlock(l)

b : lock(l)

b ′ : unlock(l)

rf

rf

Figure 4. Executions of the lock/2 program.

reads-from options and add them to the work list, arriving
at the following configuration:

[init]

a : lock(l)

a′ : unlock(l)

b : lock(l)

b ′ : unlock(l)

rf

rf [init]

W [b]

We then pick the next option for b and restrict the graph
as before. As in the fai/2 example, we check whether b may
itself generate backward revisit options for the reads in the
graph. However, since b : lock(l) is only a read event (in con-
trast to b : RMW(x, 2) in fai/2 which is also a write), a cannot
read from b. Nonetheless, by reading from the initialization
event, b causes a to block. That is, blocking (⊥) is added as a
revisit option for a. This graph is subsequently dropped as
inconsistent (violating rf-functionality):

[init]

a : lock(l) b : lock(l)

rf rf

⊥

W [a]
(lock-⊥)

We next pick ⊥ as a revisit option for a. Since a is now
blocking, its thread cannot proceed and its subsequent events
are skipped. We thus next addb ′ to the graph. Asb ′ is a write,
it may revisit a and is added as an option inW [a]. However,
adding b ′ renders the graph inconsistent (a is blocking de-
spite the available b ′) and is thus dropped:

⊥ [init]

a : lock(l) b : lock(l)

b ′ : unlock(l)

rf rf

⊥

b ′

W [a]

Finally, we consider the last revisit option (b ′) for a. After
restricting the graph, we add event a′ and obtain 2 in Fig. 4.
Note that running GenMC on lock/2 was no different

from running it on fai/2 and required no special treatment:
we merely used the lock library consistency check rather
than that of RC11. Indeed, the main difference between the
two examples is the blocking behaviour of locks, which is
prescribed by the lock library specification. As such, GenMC

can be adapted to any memory model that meets the condi-
tions in MM1-MM4. We next formalize these conditions.

3 Formal Model

We describe a framework for axiomatic memory models
(MMs) and instantiate it to specify a mutex library. In the
technical appendix [25], we present the SC [28], TSO [36]
and RC11 [27] models as instances of this framework.

ExecutionGraphs The traces of a program are represented
as a set of execution graphs, where each graph G comprises:
(i) a set of events; and (ii) a number of relations on events.

An event is a tuple of the form ⟨i,n, l⟩, where i ∈ Tid⊎{0}
is a thread identifier (0 for initialization events) with Tid ⊆ N,
n ∈ N is the serial number inside a thread, and l ∈ Lab

is an event label. The serial number of an event denotes
its index (from 1) within its thread; e.g., the first event of
a thread has serial number 1. Serial number 0 is reserved
for initialization events. A label may be either: (i) the error
label error (denoting assertion violations); or (ii) the stuck
label stuck (e.g., due to a failed assume statement); or (iii) a
memory model-specific label, e.g., the write label W(x, 1) for
writing 1 to x under the SC model. The label function lab

returns the label of an event. We assume a set of locations
Loc; the loc function returns the location of a label.

Definition 3.1 (Executions). Given designated sets of read
(R) and write (W) events, an execution is a tuple G=⟨E, rf ⟩,
where E is a sequence of events, and rf : E ∩ R ⇀ E ∩ W is
the reads-from function.

The sets of read and write events are designated by the
memorymodel and are not necessarily low-level reads/writes.
For instance, in case of the mutex library, lock and unlock
events constitute read and write events, respectively.

Recall from ğ2.2 that to generate program executions using
our algorithm, it suffices to fix the construction order. This
is given by the order of events in the sequence E.

Given an execution G , we write G .E and G .rf for its com-
ponents, and writeG .R (resp.G .W) forG .E∩ R (resp.G .E∩ W).
We write G .Ei for {⟨i

′
,−,−⟩ ∈ G .E | i = i ′}; and write G .po

for the program order defined as follows:

G .po △

= G .E0 × (G .E \G .E0) ∪{
⟨⟨i1,n1, l1⟩,

⟨i2,n2, l2⟩⟩

⟨i1,n1, l1⟩, ⟨i2,n2, l2⟩ ∈ G .E \G .E0
∧ i1 = i2 ∧ n1 < n2

}

In general, G .rf may not be a total function: read events
that do not read from any event are used to model blocking
library events, such as a blocking lock event that is awaiting

the release of a mutex. We write G .B ≜ G .R \ dom(G .rf) for
the set of blocked events. Finally, althoughG .rf is a function,
we often implicitly coerce it to a relation on W × R.

Notation Given a relation r and a set A, we write r?, r+

and r∗ for the reflexive, transitive and reflexive-transitive
closure of r, respectively. We write dom(r) and rng(r) for
the domain and range of r, respectively. We write r−1 for
the inverse of r; r|A for r ∩ (A ×A); and [A] for the identity
relation on A: {(a,a) | a ∈ A}. Given relations r1 and r2, we

101

Model Checking for Weakly Consistent Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

write r1; r2 for {(a,b) | ∃c . (a, c) ∈ r1 ∧ (c,b) ∈ r2}, i.e., their
relational composition. Given an event set E, we write Ex for
{e ∈E | loc(e)=x}, andG |E for ⟨E

′
,G .rf|E′⟩with E

′ △
=G .E∩E.

We writeG .porf for (G .po∪G .rf)+, and writeG .rf[r 7→w]

for the graph obtained from mapping G .rf(r) tow . Finally,
we write ++ for sequence concatenation.

Extension We define graph extension in Def. 3.2, used by
the incremental construction in GenMC, which describes
adding an available event to an execution. Given an execu-
tion G, an event ⟨i,n,−⟩ is available when thread i contains
n − 1 events, none of which are blocking. As executions are
constructed incrementally by adding one available event at
a time, it follows that the events of each thread i are indexed
with adjacent integers 1 · · · |G .Ei |.

Definition 3.2 (Extension). An event e=⟨i,n, l⟩ is available
for an executionG if |G .Ei | = n − 1 andG .Ei ∩G .B = ∅. The
extension of G with an available event e , written Add(G, e),
denotes the execution ⟨E++[e],G .rf⟩.

Consistency and Memory Model Assumptions Given a
program P , the admissible behaviours of P are commonly de-
scribed as a set of consistent executions. Consistency of an ex-
ecution is memory model (MM)-specific; as such, MMs often
define a consistency predicate that prescribes the conditions
required for consistency. As our model checking technique
is MM-parametric, we assume the existence of such a con-
sistency predicate: given an executionG , we write consm(G)
to denote that G is consistent under memory model m.

Recall from ğ2 that we require underlying memory models
to satisfy certain properties as outlined by MM1-MM4. In
what follows, we formally define these conditions.

The first condition (MM1) is captured by Def. 3.3. This
well-formedness condition additionally requires that the MM
be agnostic to the order in which events are added to the
graph, as it constitutes auxiliary instrumentation used by
our algorithm. As such, execution consistency must be inde-
pendent of this order: if ⟨E, rf ⟩ is consistent then ⟨E ′, rf ⟩ is
also consistent, where E ′ ∈ perm(E) is a permutation of E.

Definition 3.3 (Well-formedness). An execution G is well-
formed if G .porf is irreflexive. A memory model m is well-
formed iff for allG , if consm(G) holds, thenG is well-formed,
and ∀E ∈perm(G .E).consm(⟨E,G .rf⟩).

The prefix-closedness condition (MM2) is captured by
Def. 3.4. A consistency model m is commonly considered
prefix-closed iff: given a consistent execution G and a porf-
closed set of events E ⊆ G .E (i.e., dom(G .porf; [E]) ⊆ E),
restricting the graph to those events in E yields a consistent
execution, i.e., consm(G |E). However, this definition is too
strong due to blocking reads.

To see this, consider the program l1 : lock(l) ∥ l2 : lock(l).
Under the mutex specification described in ğ2.7, one consis-
tent execution of this program is a graphG in which l1 reads

from mutex initialization, whilst l2 blocks. Let E = {l2, init};
if we now restrict G to E, the resulting graph is inconsistent
since l2 blocks despite the available initialization event.

We thus weaken prefix-closedness by requiring that there
exist a set of blocking events B ⊆ E such that the graph
restricted to E \ B is consistent: consm(G |E\B). For instance,
in the example above we can pick B = {l2}. Note that for
well-known memory models such as SC, TSO and RC11, the
strong and weak notions of prefix-closedness coincide, as
these models do not contain blocking events.

Definition 3.4 (Prefix-closedness). A memory model m is
prefix-closed iff for allG , E ⊆ G .E, if dom(porf; [E]) ⊆ E and
consm(G), then there exists B ⊆ G .B such that consm(G |E\B).

Memory model extensibility (MM3) is captured in Def. 3.5
and requires that a memory model be read-, write- and rw-

extensible. The first two requirements are intuitive and stip-
ulate that a consistent execution can always be extended
by a read or write event, respectively. The rw-extensibility
imposes certain conditions on events that are both read and
write events (e.g., RC11 RMW events). These requirements
are rather technical and are necessary for the correctness of
our algorithm (see the technical appendix [25]).

Definition 3.5 (Extensibility). A memory model m is read-
extensible iff for all G, r ∈ R and G ′=Add(G, r), if consm(G),
there existsw ∈ G .W ∪ {⊥} such that consm(G

′
.rf[r 7→ w]).

Amemorymodelm iswrite-extensible iff for allG ,w ∈ G .W,
if consm(G |G .E\{w }) and rng([w];G .porf)=∅, then consm(G).

A memory model m is rw-extensible iff for all G, r ,w,u, if
consm(G), u,u

′ ∈ G .R ∩G .W and rng([u];G .po)=∅, then:

• if ⟨u, r ⟩ ∈ G .rf and rng([r];G .po)=∅, then there exists
w ∈ G .E \ {u} such that cons(G .rf[r 7→ w]); and
• if ⟨w,u⟩, ⟨u,u ′⟩ ∈ G .rf and rng([u ′];G .porf) = ∅,
then cons(G |G .E\{u } .rf[u

′ 7→ w]).

A model is extensible iff it is read-, write- and rw-extensible.

Finally, the well-blocking condition (MM4) is captured by
Def. 3.6. It stipulates that consistent executions satisfy two
conditions with respect to blocking reads. First, blocking
reads must be maximal in G .porf: if an event blocks then
it cannot proceed. Second, reads may block only when all
writes are matched. That is, if there is a blocking read on
x (G .Rx ̸⊆ dom(G .rf)), then all writes on x have already
been read-from (G .Wx ⊆ rng(G .rf)). Note that when G .rf is
a total function, this stipulation is trivially satisfied. As such,
this is not a strong requirement: in all well-known memory
models as well as the concurrent libraries specified in [38],
G .rf is specified to be total.

Definition 3.6 (Well-blocking). Amemory modelm is well-
blocked iff for allG , if consm(G) holds, thenG is well-blocked.

An executionG is well-blocked iff 1) [G .B];G .porf=∅; and
2) ∀x ∈ Loc. G .Rx ⊆ dom(G .rf) ∨G .Wx ⊆ rng(G .rf).

102

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

From Programs to Executions Given a concurrent pro-
gram, we use the same technique as [24] to pre-process it
to a program of the form P =∥i ∈Tid Pi , where each Pi is a
sequential loop-free deterministic program. The set of exe-
cutions associated with P is then defined by induction over
the structure of sequential programs Pi . We omit this formal
construction here as it is standard in the literature e.g., [41].

Mutex Library We formulate the notion of mutex library
executions and their consistency predicate in Def. 3.7 below.
For each mutex at location l ∈ Loc, the mutex events on l

comprise lock and unlock events, where the set of unlock
events contains a single initialization event. Given a mutex
execution G=⟨E, rf ⟩, we define the mutex consistency predi-

cate such that it holds on G if: 1) G is well-formed (Def. 3.3);
2) G is well-blocked (Def. 3.6); 3) E comprises mutex events;
4) rf is injective; and 5) rf maps lock events on to unlocks.

Intuitively, rf describes the order of mutex acquisition.
For each lock event b with ⟨a,b⟩ ∈ rf , if a is an unlock event,
then a denotes the event releasing the mutex immediately
before it is acquired by b; when a is the initialization event,
then b corresponds to the very first lock call on the mutex.
As such, rf must be an injection.

Note that not all locks may be matched in rf . Unmatched
locks are blocked, waiting for the mutex release. However,
well-formedness ensures that an execution contains blocking
locks only when all unlocks are matched (see (2) in Def. 3.6).

Definition 3.7. The mutex event set on l is MXl
△

= Ll ⊎Ul

with Ll
△

= {e | lab(e)=lock(l)},Ul
△

= {e | lab(e)=unlock(l)}.
Execution G is mutex-consistent, written consmx(G), iff:

1)G is well-formed; 2)G is well-blocked; 3)G .E=
⋃

l ∈Loc MXl ;
4) G .rf is injective; and 5) G .rf= ∪l ∈Loc rf l for some given
rf l ⊆ Ul × Ll .

It is straightforward to show that consmx(.) is well-formed,
prefix-closed, extensible and well-blocked.

4 GenMC: The Generic Model Checker

In this section, we present a version of our model check-
ing algorithm, GenMC, that does not record mo. It can be
instantiated for any memory model by replacing the con-
sistency checks in the code with MM-specific consistency
predicates. We refer the reader to our technical appendix [25]
for a version of GenMC that also tracks mo.

Configurations Given a program P , recall from ğ2 that
GenMC maintains a configuration comprising an execution
G of P , and a work listW which stores revisit options both
explored or otherwise. As described in ğ2.3, the options inW
are categorized as forward or backward revisits; forward op-
tions are removed fromW once explored, whilst backwards
options are never removed and simply marked as explored.

Formally, we define a configuration as a tuple ⟨G,T ,U , S⟩,
where G is an execution of P ; T denotes a set of revisitable

Algorithm 1Main exploration algorithm

1: procedure Verify(P)
2: ⟨G,T ,U , S⟩ ← ⟨G0,∅,∅,∅⟩

3: VisitOne(P,G,T ,U , S)

4: while ⟨r ,G ′⟩ ← RemoveMax(S) do

5: ⟨E1, r , E2⟩ ← split(G .E, r)

6: T ← T \ E2
7: U ← U \ {U [r ′] | r ′ ∈ E2}

8: if G ′.rf[r] , ⊥ then

9: CalcRevisits(G ′,T ,U , S, r)

10: VisitOne(P,G ′,T ,U , S)

reads;U is a map from reads to backward revisits (both ex-
plored or otherwise); and S is a map from reads to both
forward and backward revisits yet to be explored As such,
when a new revisit candidate is encountered, if it is a for-
ward option, it is added only to S , whereas if it is a backward
option then it is added to both S andU . That is, S serves as a
work set (theW map in ğ2 limited to entries not -marked).
Analogously, when a revisit is explored, it is only removed
from S and not U , and thus U retains all backward revisits.
For efficiency, the revisitable set T tracks those reads whose
incoming rf edges may be changed, i.e., revisit candidates.

Each entry in S[r] (andU [r]) is a graphG ′ representing the
effect of revisiting r by a writew . As we discuss later in ğ5,
our implementation records only a portion ofG ′ necessary
for constructing it fromG when r is revisited byw . However,
for better readability, in our presentation here we record in
G ′ the entire graph resulting fromw revisiting r .

The nextP Function Recall that we construct graphs by
adding events in a fixed order (ğ2). We define a function,
nextP , such that given a program P and an executionG of P ,
nextP (G) returns an available event (Def. 3.2) of any thread
i in G such that i is not stuck (e.g., due to a failed assume

statement) and has not finished execution. When no such
thread exists (i.e., all threads are stuck or finished), nextP
returns false. We implement nextP to choose the left-most
such thread, i.e., one with the smallest thread identifier.

4.1 The Main Verify Procedure

Given a program P , we begin exploring the executions of
P by calling Verify(P). This routine creates an initial con-
figuration comprising the G0 graph (containing only the
initialization writes), an empty revisit set T=∅, and empty
mapsU=S=∅ (Line 2). It then generates the executions of P
one at a time. This is done by calling VisitOne(P,G,T ,U , S)
on Line 3, which fully explores one execution extending G,
and pushes alternative reads-from options encountered to
the work set S . Once VisitOne(P,G,T ,U , S) returns the full
execution generated, remaining executions are generated by
exploring the options in the work list S Lines 4-10.

103

Model Checking for Weakly Consistent Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Algorithm 2 Explore one program execution

1: procedure VisitOne(P,G,T ,U , S)
2: while cons(G) ∧ a ← nextP (G) do

3: if a ∈ error then exit(łerroneous program”)

4: G ← Add(G,a)

5: if a ∈ R then

6: W ← G .E ∩ Wloc(a) ∪ {⊥}

7: choose somew0 ∈W

8: G .rf[r] ← w0

9: T ← T ∪ {r }

10: S[a] ← {G .rf[a 7→ w] | w ∈W \ {w0}}

11: CalcRevisits(G,T ,U , S,a)

To do this, an option G ′ is picked from S[r] (Line 4) such
that r is the maximal entry in S : r is added to the current
graph G after all other reads in the domain of S . When S[r]

holds multiple options, an arbitrary entry is chosen. Picking
the maximal entry in S makes it easier to update the current
configuration and enables a key optimization (see ğ5).
We split G at r (Line 5) such that E1 contains events in

G added before r and E2 contains those added after r . By
construction, E2 comprises events that either are not in G ′

or belong to the porf prefix of the event a that revisited r
to generate G ′. These latter events are responsible for the
addition of a to the graph, and consequently the reason why
r is revisited. As such, revisiting any of these latter events
would łundo” the revisit of r . For this reason, we remove the
events in E2 from the set T of revisitable reads (Line 6).

Analogously, Line 7 removes the E2 entries from U . Note
that no such entries exist in S : all events in E2 have been
added to the graph after r , while we picked r to be the maxi-
mal entry in S ; i.e., S[r ′] contains no entries for r ′ in E2.

Recall from ğ2 that when revisiting a (non-blocked) read,
we checkwhether the read being revisitedmay itself generate
backward revisit options for existing reads in the graph.
For instance, in the fai/2 and lock/2 examples, revisiting b
generated additional revisit options for aÐsee (fai-⊥) and
(lock-⊥). This is done by calling CalcRevisits on Line 9.
Finally, on Line 10 we explore the updated configuration.

4.2 The VisitOne Procedure

The VisitOne procedure is the workhorse of the exploration
algorithm. In each iteration of this loop, while the current
graph (G) is consistent, it is extended with its next event
a (given by nextP (G), see page 8). When nextP (G) returns
false, VisitOne terminates. If the next event a is an assertion
violation, then an error is reported (Line 3), and the algorithm
terminates. Otherwise, we add a to the graph (Line 4). As
before, we check whether the newly added event a generates
backward revisit options for the existing reads in the graph
by calling CalcRevisits on Line 11.

Algorithm 3 Calculate which reads should be revisited

1: procedure CalcRevisits(G,T ,U , S,a)
2: pa ← dom(G .porf?; [a])

3: for r ∈ T ∩ Rloc(a) \ pa do

4: ⟨E1, r , E2⟩ ← split(G .E, r)

5: G ′← G |E1++[r]++(E2 ∩pa)
6: G ′.rf[r] ← if a ∈ W then a else ⊥

7: if G ′ < U [r] then

8: S[r] ← S[r] ∪ {G ′}

9: U [r] ← U [r] ∪ {G ′}

If the new event a is a write, no additional work is required.
However, if a is a read, we must calculate its incoming rf

edge. We first calculate the set of writesW that a could read
from, i.e., its forward revisit options (Line 6), choose a write
w0 for the current exploration (Line 7), set a to read fromw0

inG (Line 8), add the new read to the revisit set (Line 9), and
push the remaining revisit options to S (Line 10).

4.3 The CalcRevisits Procedure

As described in ğ4.1-ğ4.2, the CalcRevisits routine calcu-
lates the set of backward revisits that a can generate and
pushes them toU and S unless they have already been con-
sidered, i.e., are inU (Lines 7-9).

To calculate the set of revisit graphs, we iterate through all
revisitable reads on the same location as a (Line 3), excluding
those reads whose revisit would violate porf-irreflexivity;
i.e., those in the porf prefix of a calculated in pa (Line 2).
Recall that when a revisits r , in the resulting graph we retain
r , the events added to the graph before r (E1), as well as the
events in the porf prefix of a that are added after r . To this
end, we compute the sets E1 and E2 (Line 4), respectively
comprising the events added before and after r , and set G ′

to contain E1, r , and the events in both E2 and pa (Line 5).
If a is a write event, we finally set r to read from a in G ′

(Line 6). If, however, a is a read, it cannot revisit existing
reads in the graph itself but it may cause them to block (cf.
lock-⊥), which is why we instead set the incoming rf edge
of r to the blocking option ⊥.

4.4 GenMC: Soundness, Completeness & Optimality

The GenMC algorithm (Algorithm 1) is sound, complete and
optimal. Given a program P and a memory model m, sound-
ness ensures that if GenMC generates G for P under m,
then consm(G) holds; completeness ensures that if G is an
execution of P under m and consm(G) holds, then GenMC

generates G for P ; and optimality ensures that the P execu-
tions generated by GenMC under m are pair-wise distinct.
This is captured in the theorem below. The soundness

proof is straightforward: GenMC checks consistency after
each step, dropping inconsistent executions (Line 2 of Visi-
tOne); as such, it only outputs consistent executions. The
completeness and optimality proofs are non-trivial and are

104

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

given in full in the technical appendix [25]; we proceed with
an intuitive argument.
To show that GenMC is complete, we show that it gen-

erates all executions of a given program P . As discussed
in ğ2, MM1 and MM2 ensure that every execution of P
can be generated incrementally, by adding one event at a
time. We then demonstrate that each execution G of P gen-
erated incrementally can also be generated by GenMC if
we reshuffle the order in which its events are added. That
is, for each execution G generated by adding events in the
order S=e1, e2, ... , en , there exists a permutation S ′ of S , such
that GenMC adds events in the S ′ order and generatesG . To
show that such a reshuffling exists, we often need to remove
events from G and re-add them later (capturing the revisit
step). This can always be done thanks to the extensibility
property (MM3) ensuring that GenMC never gets stuck.
To show that GenMC is optimal, we observe that dupli-

cation can arise only when revisiting a read. As discussed
in ğ2 (see łAvoiding Duplication” on page 4), forward revis-
its never cause duplication since they are never removed
form the graph, while backward revisits may lead to duplica-
tion and thus the already-considered backward revisits are
recorded in the map U . The optimality of GenMC is thus
guaranteed by the properties of forward/backward revisits,
the mapU and the check on Line 7 of Algorithm 3.

Theorem4.1 (Correctness). TheGenMC algorithm is sound,
complete and optimal.

5 Implementation

Wehave implementedGenMC as an open-source verification
tool for C programs over the LLVM interpreter lli. GenMC

is available at http://github.com/mpi-sws/genmc.
We have implemented three variants of GenMC:

LIB: a generic variant that performs model checking on
libraries, based on specifications provided by the user;

WB: an instantiation for the full RC11 memory model [27],
using a consistency check based on wb; and

MO: an alternate RC11 instantiation that records the mo or-
der during exploration. That is, whenever a write is
added to a graph, we consider all its possible place-
ments in mo, and create subexplorations for each case.

Naturally, the generic variant is slower than the RC11 ones
because the latter have more optimized consistency checks;
it is, however, still optimal.
Further, we have implemented some optimizations over

the algorithm described in ğ4, which we will describe below.
The first key optimization has to do with the representa-

tion of the graphs to be revisited in S . In ğ4, each entry in
S[r] (andU [r]) is a full graph G ′ generated by a forward or
backward revisit of the read r . For better space efficiency,
rather than recording the entire graph G ′, we store only the
portion of G ′ of events after r , because that suffices for re-
constructing the entire G ′ when the revisit takes place. The

reason is that GenMC revisits executions from S by always
choosing the maximal read in S when removing an entry
from S (Line 4 of Algorithm 1). The effect of the revisit order
is that the current graph projected to the events before r (i.e.,
E1 in Algorithm 1) is exactly the same as the recorded graph
G ′ ∈ S[r] projected to the same events. As a result, it suffices
to record in each graph in S only the revisited read and the
events after it.

Similarly, we store the graphs inU in a compressed form.
Since we do not ever need to restore the graphs from U , we
do not need to store all the events after r ; it suffices to record
only their incoming rf edges becauses those determine the
values read and hence the event labels.

Finally, in the WB and MO variants of GenMC, we use
optimized consistency checks when adding a new event to
the graph. We exploit the fact that the graph prior to adding
the event was consistent, so it suffices to check only that the
new event does not lead to any consistency violation.

6 Evaluation

Verification Tools In the following, we compare the per-
formance of GenMC to three other stateless model check-
ers: Nidhugg [2], RCMC [24], and Tracer [4]. Initially, we
also considered other toolsÐnamely, CBMC [5, 14], CDS-
Checker [35], and Herd [6]Ðbut exclude them from head-
to-head comparisons because they are typically significantly
slower than Nidhugg and RCMC and do not scale well (see,
e.g., the evaluation in [24]): Herd because it was meant
for experimenting only with small łlitmus test” programs,
CBMC because of the SAT solver, CDSChecker because of
its suboptimal partial order reduction technique.

Nidhugg [2] is a state-of-the-art stateless model checker
supporting SC, TSO, and PSO.4 It enumerates mo-executions
(a.k.a. Mazurkiewicz traces [32]) and can operate both under
an optimal mode (optimal-DPOR) and a non-optimal mode
(source-DPOR). In our benchmarks, we use the source-DPOR
version because it is typically faster than the optimal ver-
sion. Under SC, Nidhugg can also operate under a coarser
equivalence partitioning (denoted SCo ś Nidhugg with ob-
servers) [7]. This equivalence can be exponentially coarser
than mo-executions, but remains exponentially finer than
plain executions. We used version 0.3 of Nidhugg, and ran
it with the --c11 switch, which makes the SC version of
Nidhugg noticeably faster.

RCMC [24] targets RC11 andWRC11, a weaker RC11 vari-
ant that does not record mo and does not enforce coherence.
RCMC-RC11 also enumerates mo-executions of a program,
though not optimally in the presence of RMW or SC accesses.
Tracer [4] targets RA (the release-acquire fragment of

RC11), and enumerates plain executions. It is, however, built
over the CDSChecker infrastructure, which makes it quite

4Nidhugg also provides some very limited support for POWER, which we

do not evaluate because it cannot encode most of our benchmarks.

105

http://github.com/mpi-sws/genmc

Model Checking for Weakly Consistent Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Table 1. Lamport’s fast mutex algorithm [29]

Nidhugg RCMC GenMC

SC SCo RC11 WRC11 MO WB LIB

lamport(2) 0.13 0.10 0.04 ∞ 0.03 0.03 0.09

lamport(3) 7.53 4.49 5.40 ∞ 6.87 1.36 0.09

lamport(4) ś ś ś ∞ ś ś 0.09

difficult to apply it fairly to our benchmarks (e.g., it does not
support assume statements, and requires manual instrumen-
tation for programs with loops). For this reason, we apply it
only to our synthetic benchmarks.

Benchmarks We took as benchmarks all the programs
from the benchmark suites of Nidhugg and RCMC, together
with some additional larger programs (e.g., seqlock, chase-
lev) from open-source code. In total, we have assembled 127
benchmark programs, some of which are parametric in the
number of operations/threads. For suitable values for their
parameters, we have generated 202 test cases in total.

First (ğ6.1), we focus on the generic GenMC variant, and
demonstrate how it is used to model check libraries. We con-
duct a case study for a lock library, and show that abstracting
over its implementation has substantial runtime benefits.
Next (ğ6.2), we evaluate the overall performance of the

RC11 variant of GenMC in both synthetic and real-world
benchmarks. Our benchmarks highlight the importance of
our optimality result, and show that GenMC verifies code
currently deployed in production within seconds.
Finally (ğ6.3), we perform an extensive comparison be-

tween theWB andMO variants of GenMC. We show that the
WB variant can explore exponentially fewer executions than
MO, and the overhead due to its more expensive consistency
checks is usually negligible.

Experimental Setup We conducted all experiments on
a Dell PowerEdge M620 blade system, running a custom
Debian-based distribution, with two Intel Xeon E5-2667 v2
CPU (8 cores @ 3.3 GHz), and 256GB of RAM. We used
LLVM 3.8.1 for RCMC and Nidhugg. Unless explicitly noted
otherwise, all reported times are in seconds.

6.1 Model Checking a Lock Library

As a simple demonstration of the benefits of parametricity
and compositional verification, we consider a C implemen-
tation of Lamport’s fast mutual-exclusion algorithm [29]
(see Table 1). We could have considered any correct lock
implementation (e.g., the ones used in ğ6.2), but we chose
Lamport’s algorithm because it has write-write races, which
are rare in non-synthetic programs and highlight the dif-
ferences between the various tools. Nidhugg under TSO
and PSO are excluded from this table for brevity, as they are
slower than Nidhugg-SC.

Table 2. Some synthetic benchmarks

Nidhugg Tracer RCMC GenMC

SC SCo RA RC11 WRC11 MO WB

cinc(4) 2.98 3.11 1.13 0.69 0.67 0.43 0.45

cinc(5) 436.40 466.65 165.54 134.87 132.11 69.23 69.98

Nw1r(5) 1.25 0.17 0.01 0.11 0.05 0.08 0.03

Nw1r(8) 991.80 0.74 0.01 79.68 0.04 24.35 0.03

The first observation is that RCMC does not terminate un-
derWRC11. This is because this test case has writes that are
never ordered underWRC11, whichmakes the threads’ reads
łoscillate” between the values of these writes ad infinitum.
This behaviour is ruled out by RC11 and stronger memory
models. Additionally, both RCMC and GenMC outperform
Nidhugg-SC (even though they explore more executions),
with RCMC-RC11 being faster than GenMC-MO (see ğ6.2).

However, by feeding the axiomatic definition of the lock
library to GenMC, and abstracting the inner working of the
locks, GenMC is much faster than the other tools (shown
in column LIB). For N = 4, for example, all other tools take
more than 3 days to complete, whereas the generic variant
of GenMC terminates almost instantly.

6.2 Overall Performance

Table 2 reports two synthetic benchmarks, which demon-
strate the importance of optimality (Table 2).

In the cinc program, all threads perform a series of RMW
operations. Since RCMC is not optimal in the presence of
RMWs, it can explore many more executions than neces-
sary, which leads to some runtime overhead. For 4 threads
RCMC explores 45% more executions than GenMC, while
for 5 threads, it explores almost twice as many executions as
GenMC, and this is reflected in the running time. All other
tools explore the same number of executions, but Nidhugg
is significantly slower than the other tools.

The Nw1r program has N + 1 concurrent writers and one
concurrent reader of a shared variable, and thus has (N + 2)!
mo-executions versus only (N+2) plain executions. It is there-
fore not surprising that tools enumerating mo-executions
(Nidhugg-SC, RCMC-RC11, and GenMC-MO) do not scale
well. Nidhugg-SCo explores 193 executions for N=5 and
2305 for N=8, and so also does not scale particularly well.
In contrast, Tracer, RCMC-WRC11, and GenMC-WB finish
almost instantly. Recall, however, that RCMC-WRC11 fails
to terminate on other benchmarks (ğ6.1).

Next, we move to two sets of benchmarks extracted from
real programs. Since Nidhugg-SCo does not reduce the num-
ber of executions and is in fact slower than Nidhugg-SC on
these benchmarks, we exclude it from further comparisons.
Table 3 compares the tools on the implementations of

concurrent data structures from [13, 35]. We do not show
the number of executions explored because all tools explore

106

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

Table 3. Data structure benchmarks from [13, 35]

Nidhugg RCMC GenMC

SC TSO PSO RC11 WRC11 MO WB

barrier(2) 0.12 0.14 0.16 0.04 0.04 0.04 0.03

barrier(3) 1.29 1.94 2.93 0.23 0.19 0.14 0.14

ms-queue(2) 0.36 0.63 0.76 0.10 0.11 0.07 0.07

ms-queue(3) 11.62 25.64 33.12 2.93 2.98 1.58 1.67

chase-lev(2) 3.06 7.46 29.95 0.79 0.80 0.32 0.32

chase-lev(3) 255.82 670.06 1.35h 79.79 81.44 19.82 19.40

linuxrwlocks(2) 0.28 0.33 0.42 0.06 0.07 0.05 0.06

linuxrwlocks(3) 26.93 50.40 64.23 5.09 5.03 3.13 4.66

mpmc-queue(2) 0.15 0.11 0.11 0.05 0.05 0.04 0.04

mpmc-queue(3) 135.46 265.13 339.30 69.55 70.13 50.77 54.45

barrier(N): A barrier implemented as a global flag with N threads that

spinning and continuing only when all threads have reached the barrier.

ms-queue(N): The Michael-Scott queue with N threads, each enqueuing

and (possibly) dequeuing an item.

chase-lev(N): An implementation of the Chase-Lev deque with one thread

pushing and popping, and N threads stealing from the deque.

linuxrwlocks(N): A reader-writer lock ported from the Linux kernel. N

threads read and/or write a shared variable while holding the lock.

mpmc-queue(N): A multiple-producer, multiple-consumer queue with N

threads that enqueue and (possibly) dequeue.

the same number of distinct executions5, excluding possi-
ble redundant executions explored by Nidhugg (under 5%).
These benchmarks have the same number of distinct execu-
tions regardless of the memory model (i.e., they are robust),
which is expected since they only use non-SC accesses for
performance reasons. The only exception is chase-lev, for
which Nidhugg explores more executions under PSO due
to the absence of a store-store fence, which renders the pre-
cise modeling of acquire-release operations utilized by this
benchmark difficult.
On these benchmarks, RCMC and GenMC outperform

Nidhugg, even though they operate under a weaker memory
model. By contrast, Nidhugg gets slower as the memory
model gets weaker, which is expected due to the way it
models TSO and PSO, and agrees with the observations in [2,
24]. GenMC performs similarly in terms of time under WB
and MO, and explores the same number of executions. For
linuxrwlocks, however, the WB verification requires much
more time than MO. This is due to the calculation of wb
as part of RC11’s consistency check, which is particularly
slow when there are long chains of RMW events. (In general,
calculating wb can take up to O(n3) time in the size of the
execution graph, and achieves its worst-case complexity,
when there are many writes to the same location.)

Table 4 summarizes the performance of the tools in lock
implementations extracted verbatim from the Linux ker-
nel (v4.13.6, v4.19.1). Headers, kernel primitives definitions,
macros, and Kconfig options have been provided for all

5Nidhugg counts the number of executions that contain a failed assume ()

statement, while RCMC does not; we take this discrepancy into account.

Table 4. Benchmarks extracted from the Linux-kernel

Nidhugg RCMC GenMC

SC TSO PSO RC11 WRC11 MO WB

mcs_spinlock(2) 0.12 0.09 0.10 0.05 0.05 0.05 0.05

mcs_spinlock(3) 2.98 6.84 12.54 0.84 0.67 0.89 0.78

mcs_spinlock(4) 0.68h 1.51h 3.32h 0.16h 0.15h 0.42h 0.26h

qspinlock(2) 0.17 0.11 0.11 0.04 0.04 0.04 0.04

qspinlock(3) 10.93 18.20 23.43 2.13 2.08 1.10 1.12

seqlock(2) 0.10 0.09 0.10 0.04 0.04 0.04 0.04

seqlock(3) 1.64 3.07 11.00 0.49 0.51 0.37 0.37

mcs_spinlock(N): An implementation of an MCS lock [33].

qspinlock(N): Queued spinlocks (1.2 KLOC) are the basic spinlock imple-

mentation currently used in the Linux kernel, rendering the code in

this test case heavily deployed in production. The implementation is

non-trivial, as it is based on anMCS lock, but tweaked in order to further

reduce cache contention and the spinlock size (it fits in only 32 bits).

seqlock(N): Sequenced locks [9] (1.0 KLOC)

benchmarks as necessary. The test cases involve N threads
accessing shared variables while holding the respective locks.

For all benchmarks, except mcs_spinlock, all tools explore
the same number of executions, modulo a few redundant
explorations for Nidhugg, and the seqlock test case, where
Nidhugg-PSO again explores more executions due to the
absence of a store-store fence. As shown, RCMC and GenMC

outperform Nidhugg by a large factor.
The mcs_spinlock benchmark is rather interesting for sev-

eral reasons. First, it allows some relaxed behaviours to take
place, and soNidhugg-PSO,GenMC-MO, and RCMC-MO ex-
plore more executions than Nidhugg-SC and Nidhugg-TSO
(approximately 15% more). Nonetheless, GenMC and RCMC

outperform Nidhugg by a large factor. Second, GenMC-WB
and RCMC-WRC11 explore fewer executions than GenMC-
MO and RCMC-RC11, and shows the benefit of not record-
ing mo in terms of verification time. Last, GenMC is slower
than RCMC on this particular benchmark. This is because
GenMC’s revisit procedure removes more events from the
graph during backward revisits than RCMC. The extra events
must then be re-added resulting in runtime overhead. Of
course, this also depends on the nature of the benchmark,
and the backward revisits that take place.

6.3 Modification Order vs Writes-Before

We next compare GenMC-WB and GenMC-MO more thor-
oughly. Admittedly, calculating wb for consistency is much
more expensive (O(n3)) than using the total order readily
given by mo. As we show, however, (a) it can lead to exploring
exponentially fewer executions than recording mo; and (b) the
overhead imposed by the wb calculation is usually negligible.

To see (a), consider Fig. 5 (left), depicting the number of ex-
ecutions explored by GenMC-WB and GenMC-MO on some
synthetic benchmarks. As shown, for 7 threads, GenMC-MO
can visit up to 106 more executions than GenMC-WB, which
is also reflected in the running time.

107

Model Checking for Weakly Consistent Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

4 5 6 7

101

102

103

104

105

106

107

108

MO

WB

of threads

#
o
f
ex
ec
u
ti
o
n
s

CoA
casw
inc

Nw1r

10−1 100 101 102 103

10−1

100

101

102

MO time (s)
W
B
ti
m
e
(s
)

Figure 5. Comparison between GenMC-WB and MO

To see (b), consider Fig. 5 (right). This scatter diagram
contains all 202 benchmarks that we used (including those of
ğ6.2). With the only noticeable exception being linuxrwlocks
(see ğ6.2), we can see that GenMC-WB is never much slower
than GenMC-MO. On the other hand, there are many test
cases where GenMC-WB is much faster than GenMC-MO.
The speedup is due to the presence of unordered concur-

rent writes in the program. Kokologiannakis et al. [24] argue
that concurrent writes seldom appear in correct real-world
programs, and our benchmarks confirm that claim.
However, there are two observations worth mentioning.

First, there are real-world benchmarks (e.g., lamport and
mcs_spinlock) where there is a difference (although not ex-
ponential) in the number of explored executions between
GenMC-WB and GenMC-MO, and this difference is reflected
in the running time. Second, while correct programs should
not have concurrent unordered writes, this may happen in
incorrect programs, and observing the difference between the
wb and mo executions can be beneficial to spot such errors.

7 Conclusions and Related Work

Wehave presentedGenMC as an effectivemodel checking ap-
proach that is parametric in the choice of memory model and
supports high-level concurrent libraries. Our approach relies
on four basic assumptions about the underlying memory
model: porf-acyclicity, extensibility, prefix-closedness, and
well-blocking. In the future, we plan to investigate whether
we can relax these assumptions to enable verification under
hardware memory models such as Power [6] and ARM [37]
(that do not satisfy porf-acyclicity) and library specifications
such as queues [38] (that are not prefix-closed).
Amongst the verification tools handling weak memory

models (MMs), the only properly MM-parametric tool is
Herd [6], a memory model simulator that allows users to
experiment with different consistency predicates on small
łlitmus test” programs. Unlike GenMC, Herd does not re-
quire models to satisfy conditions MM1-MM4, and so ac-
cepts a wider range of models than GenMC. Nevertheless,
it follows the simple approach of enumerating all possible
executions and filtering them according to the user-supplied
consistency predicate, and thus is not scalable when applied

to larger programs. It would be worth extending Herd to
use the GenMC approach whenever the user-supplied model
can be shown to satisfy conditions MM1-MM4.
As discussed in ğ2, several tools based on stateless model

checking [18, 19, 34] combined with (dynamic) partial or-
der reduction (DPOR) techniques [1, 16] have targeted spe-
cific memory models [2ś4, 15, 24, 35, 42]. Unfortunately, all
of them use somewhat different ideas, making it difficult
to get a model checking algorithm that is MM-parametric.
Amongst these tools, the only ones enumerating plain ex-
ecutions (as opposed to mo-executions) are: Tracer [4] for
the release-acquire fragment of (R)C11; DC-DPOR [12] for
SC; and RCMC [24] for theWRC11 model.
GenMC follows the general design of RCMC, but uses a

revisit procedure akin to that of Tracer, i.e., when in an
execution graphG a writew revisits a read r , it removes from
G all events that were added to G after r and are not porf-
beforew as opposed to removing only the events porf-after
r . As a result, the completeness proof of GenMC (unlike
that of RCMC) does not require łprefix-determinacy” [24,
Lemma 3.9], which does not hold for the entire RC11 model:
the weaker łprefix-closedness” suffices. So, while RCMC

is optimal only in the absence of RMW and SC accesses,
GenMC achieves optimality for the full RC11 model.

Other tools, such as CBMC [14], encode all executions of
a program together with the memory model in a SAT/SMT
formula and query a dedicated solver for its satisfiability [5].
This approach should in principle be able to handle models
such as RC11; however, it is currently limited to SC, TSO, and
PSO. The main drawback of this approach is its SAT/SMT
component, which can be slow and highly unpredictable.
As a result, CBMC tends to be significantly slower than
Nidhugg on relevant benchmarks [26, 30].
Another approach is maximal causality reduction (MCR)

[20, 21], which introduces an even coarser equivalence parti-
tioning than porf, based on values and not the places reads
read-from. This approach fundamentally assumes łmulti-
copy atomicity” (i.e., that writes propagate simultaneously
to all other processors), and thus cannot work for RC11 [27].
It does, however, work well for SC, TSO, and PSO.

Finally, unfolding-based techniques [22, 39] have obtained
similar optimality results with some DPOR algorithms for
SC. It remains to be seen whether they can be generalized or
achieve optimality under a coarser equivalence partitioning.

Acknowledgments

Wewould like to thankMichael Emmi, Konstantinos Sagonas
and the PLDI reviewers for their feedback. The second author
was supported in part by a European Research Council (ERC)
Consolidator Grant for the project łRustBelt”, under the
EuropeanUnionHorizon 2020 Framework Programme (grant
agreement number 683289).

108

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis

References
[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos

Sagonas. 2014. Optimal dynamic partial order reduction. In POPL 2014.

ACM, New York, NY, USA, 373ś384. https://doi.org/10.1145/2535838.

2535845

[2] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt

Jonsson, Carl Leonardsson, and Konstantinos Sagonas. 2015. State-

less Model Checking for TSO and PSO. In TACAS 2015 (LNCS),

Vol. 9035. Springer, Berlin, Heidelberg, 353ś367. https://doi.org/10.

1007/978-3-662-46681-0_28

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl

Leonardsson. 2016. Stateless Model Checking for POWER. In CAV

2016 (LNCS), Vol. 9780. Springer, Berlin, Heidelberg, 134ś156. https:

//doi.org/10.1007/978-3-319-41540-6_8

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and

Tuan Phong Ngo. 2018. Optimal Stateless Model Checking Under

the Release-acquire Semantics. Proc. ACM Program. Lang. 2, OOPSLA,

Article 135 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276505

[5] Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial

Orders for Efficient Bounded Model Checking of Concurrent Software.

In CAV 2013 (LNCS), Vol. 8044. Springer, Berlin, Heidelberg, 141ś157.

https://doi.org/10.1007/978-3-642-39799-8_9

[6] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herd-

ing Cats: Modelling, Simulation, Testing, and Data Mining for Weak

Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014),

74 pages. https://doi.org/10.1145/2627752

[7] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sag-

onas. 2018. Optimal Dynamic Partial Order Reduction with Ob-

servers. In TACAS (2) (LNCS), Vol. 10806. Springer, 229ś248. https:

//doi.org/10.1007/978-3-319-89963-3_14

[8] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ Concurrency. In POPL 2011. ACM, New

York, NY, USA, 55ś66. https://doi.org/10.1145/1926385.1926394

[9] Hans-Juergen Boehm. 2012. Can seqlocks get along with programming

language memory models?. In MSPC 2012. ACM, 12ś20. https://doi.

org/10.1145/2247684.2247688

[10] Hans-Juergen Boehm and Brian Demsky. 2014. Outlawing Ghosts:

Avoiding Out-of-thin-air Results. In MSPC 2014. ACM, New York, NY,

USA, Article 7, 6 pages. https://doi.org/10.1145/2618128.2618134

[11] Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air

reads with event structures. Proc. ACM Program. Lang. 3, POPL, Article

70 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290383

[12] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nis-

hant Sinha, and Kapil Vaidya. 2017. Data-centric Dynamic Partial

Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec.

2017), 30 pages. https://doi.org/10.1145/3158119

[13] David Chase and Yossi Lev. 2005. Dynamic circular work-stealing

deque. In SPAA 2005. ACM, 21ś28. https://doi.org/10.1145/1073970.

1073974

[14] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool

for Checking ANSI-C Programs. In TACAS 2004 (LNCS), Vol. 2988.

Springer, Berlin, Heidelberg, 168ś176. https://doi.org/10.1007/

978-3-540-24730-2_15

[15] Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed State-

less Model Checking for SC and TSO. In OOPSLA 2015. ACM, New

York, NY, USA, 20ś36. https://doi.org/10.1145/2814270.2814297

[16] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order

reduction for model checking software. In POPL 2005. ACM, New York,

NY, USA, 110ś121. https://doi.org/10.1145/1040305.1040315

[17] Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memo-

ries. SIAM J. Comput. 26, 4 (Aug. 1997), 1208ś1244. https://doi.org/10.

1137/S0097539794279614

[18] Patrice Godefroid. 1997. Model Checking for Programming Languages

using VeriSoft. In POPL 1997. ACM, New York, NY, USA, 174ś186.

https://doi.org/10.1145/263699.263717

[19] Patrice Godefroid. 2005. Software Model Checking: The VeriSoft

Approach. Formal Methods in System Design 26, 2 (March 2005), 77ś101.

https://doi.org/10.1007/s10703-005-1489-x

[20] Jeff Huang. 2015. Stateless model checking concurrent programs with

maximal causality reduction. In PLDI 2015. ACM, New York, NY, USA,

165ś174. https://doi.org/10.1145/2737924.2737975

[21] Shiyou Huang and Jeff Huang. 2016. Maximal Causality Reduction for

TSO and PSO. In OOPSLA 2016. ACM, New York, NY, USA, 447ś461.

https://doi.org/10.1145/2983990.2984025

[22] Kari Kähkönen, Olli Saarikivi, and Keijo Heljanko. 2015. Unfold-

ing Based Automated Testing of Multithreaded Programs. Autom.

Softw. Eng. 22, 4 (Dec. 2015), 475ś515. https://doi.org/10.1007/

s10515-014-0150-6

[23] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A promising semantics for relaxed-memory concurrency.

In POPL 2017. ACM, New York, NY, USA, 175ś189. https://doi.org/10.

1145/3009837.3009850

[24] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-

tor Vafeiadis. 2017. Effective Stateless Model Checking for C/C++

Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec.

2017), 32 pages. https://doi.org/10.1145/3158105

[25] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.

Technical Appendix. https://plv.mpi-sws.org/genmc

[26] Michalis Kokologiannakis and Konstantinos Sagonas. 2017. Stateless

Model Checking of the Linux Kernel’s Hierarchical Read-copy-update

(Tree RCU). In SPIN 2017. ACM, New York, NY, USA, 172ś181. https:

//doi.org/10.1145/3092282.3092287

[27] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing Sequential Consistency in C/C++11. In PLDI

2017. ACM, New York, NY, USA, 618ś632. https://doi.org/10.1145/

3062341.3062352

[28] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs. IEEE Trans. Computers 28,

9 (Sept. 1979), 690ś691. https://doi.org/10.1109/TC.1979.1675439

[29] Leslie Lamport. 1987. A Fast Mutual Exclusion Algorithm. ACM Trans.

Comput. Syst. 5, 1 (Jan. 1987), 1ś11. https://doi.org/10.1145/7351.7352

[30] L. Liang, P. E. McKenney, D. Kroening, and T. Melham. 2018. Verifica-

tion of tree-based hierarchical read-copy update in the Linux kernel.

In DATE 2018. 61ś66. https://doi.org/10.23919/DATE.2018.8341980

[31] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java

memory model. In POPL 2005. ACM, 378ś391. https://doi.org/10.1145/

1040305.1040336

[32] Antoni Mazurkiewicz. 1987. Trace Theory. In Petri nets: Appli-

cations and relationships to other models of concurrency (LNCS),

Vol. 255. Springer, Berlin, Heidelberg, 279ś324. https://doi.org/10.

1007/3-540-17906-2_30

[33] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for

Scalable Synchronization on Shared-memory Multiprocessors. ACM

Trans. Comput. Syst. 9, 1 (Feb. 1991), 21ś65. https://doi.org/10.1145/

103727.103729

[34] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pi-

ramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding

and Reproducing Heisenbugs in Concurrent Programs. In OSDI 2008.

USENIX Association, 267ś280.

[35] Brian Norris and Brian Demsky. 2013. CDSChecker: Checking con-

current data structures written with C/C++ atomics. In OOPSLA 2013.

ACM, 131ś150. https://doi.org/10.1145/2509136.2509514

[36] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86

Memory Model: x86-TSO. In TPHOLs 2009. Springer, 391ś407. https:

//doi.org/10.1007/978-3-642-03359-9_27

[37] Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar,

and Peter Sewell. 2018. Simplifying ARM concurrency: Multicopy-

atomic axiomatic and operational models for ARMv8. Proc. ACM

109

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2247684.2247688
https://doi.org/10.1145/2247684.2247688
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3158119
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/2814270.2814297
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1145/2983990.2984025
https://doi.org/10.1007/s10515-014-0150-6
https://doi.org/10.1007/s10515-014-0150-6
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3158105
https://plv.mpi-sws.org/genmc
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/7351.7352
https://doi.org/10.23919/DATE.2018.8341980
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27

Model Checking for Weakly Consistent Libraries PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Program. Lang. 2, POPL (2018), 19:1ś19:29. https://doi.org/10.1145/

3158107

[38] Azalea Raad,MarkoDoko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis.

2019. On library correctness under weak memory consistency: Spec-

ifying and verifying concurrent libraries under declarative consis-

tency models. Proc. ACM Program. Lang. 3, POPL (2019), 68:1ś68:31.

https://doi.org/10.1145/3290381

[39] César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening.

2015. Unfolding-based Partial Order Reduction. In CONCUR 2015

(LIPIcs), Vol. 42. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

456ś469. https://doi.org/10.4230/LIPIcs.CONCUR.2015.456

[40] SPARC International Inc. 1994. The SPARC architecture manual (version

9). Prentice-Hall.

[41] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed Separation

Logic: A program logic for C11 concurrency. In OOPSLA 2013. ACM,

New York, NY, USA, 867ś884. https://doi.org/10.1145/2509136.2509532

[42] Naling Zhang, Markus Kusano, and ChaoWang. 2015. Dynamic partial

order reduction for relaxed memory models. In PLDI 2015. ACM, New

York, NY, USA, 250ś259. https://doi.org/10.1145/2737924.2737956

110

https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3290381
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/2737924.2737956

	Abstract
	1 Introduction
	2 Overview
	2.1 Checking Consistency at Every Step
	2.2 Fixing the Graph Construction Order
	2.3 GenMC: A First Example
	2.4 GenMC: Extensible Memory Models
	2.5 GenMC: Modification Order and Writes-Before
	2.6 GenMC: Handling colorRF rf-Functionality Constraints
	2.7 GenMC: Model Checking for Libraries

	3 Formal Model
	4 GenMC: The Generic Model Checker
	4.1 The Main Verify Procedure
	4.2 The VisitOne Procedure
	4.3 The CalcRevisits Procedure
	4.4 GenMC: Soundness, Completeness & Optimality

	5 Implementation
	6 Evaluation
	6.1 Model Checking a Lock Library
	6.2 Overall Performance
	6.3 Modification Order vs Writes-Before

	7 Conclusions and Related Work
	Acknowledgments
	References

