
Revamping Hardware Persistency Models

View-Based and Axiomatic Persistency Models for Intel-x86 and Armv8

Kyeongmin Cho

kyeongmin.cho@kaist.ac.kr
KAIST

Daejeon, Korea

Sung-Hwan Lee

sunghwan.lee@sf.snu.ac.kr
Seoul National University

Seoul, Korea

Azalea Raad

azalea@imperial.ac.uk
Imperial College London

London, United Kingdom

Jeehoon Kang

jeehoon.kang@kaist.ac.kr
KAIST

Daejeon, Korea

Abstract

Non-volatile memory (NVM) is a cutting-edge storage tech-

nology that promises the performance of DRAM with the

durability of SSD. Recent work has proposed several persis-

tency models for mainstream architectures such as Intel-x86

and Armv8, describing the order in which writes are propa-

gated to NVM. However, these models have several limita-

tions; most notably, they either lack operational models or

do not support persistent synchronization patterns.

We close this gap by revamping the existing persistency

models. First, inspired by the recent work on promising se-

mantics, we propose a unified operational style for describing

persistency using views, and develop view-based operational

persistency models for Intel-x86 and Armv8, thus presenting

the first operational model for Armv8 persistency. Next, we

propose a unified axiomatic style for describing hardware

persistency, allowing us to recast and repair the existing

axiomatic models of Intel-x86 and Armv8 persistency. We

prove that our axiomatic models are equivalent to the au-

thoritative semantics reviewed by Intel and Arm engineers.

We further prove that each axiomatic hardware persistency

model is equivalent to its operational counterpart. Finally,

we develop a persistent model checking algorithm and tool,

and use it to verify several representative examples.

CCSConcepts: •Theory of computation→Concurrency;

Semantics and reasoning; Verification by model checking.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20–25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454027

Keywords: persistent memory, non-volatile random-access

memory, NVRAM, persistency semantics, x86, Armv8

ACM Reference Format:

Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang.

2021. Revamping Hardware Persistency Models: View-Based and

Axiomatic Persistency Models for Intel-x86 and Armv8. In Pro-

ceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’21), June

20–25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3453483.3454027

1 Introduction

Non-volatile memory (NVM) is an emerging class of storage

technology that simultaneously provides (1) byte address-

ability, low latency, and high throughput as DRAM does;

and (2) durability (data persistency across system crashes)

and high capacity as SSD does. It is widely believed that

NVM (a.k.a. persistent memory) will eventually supplant

volatile memory [42], allowing efficient access to persistent

data. This belief is backed by industrial support. Specifically,

the two major architectures, Intel-x86 and Armv8 which to-

gether account for almost 100% of the desktop and mobile

market, have extended their official specifications to support

persistent programming [4, 20]. Intel has further released

open-source NVM libraries such as PMDK [19], and manu-

factured its own line of NVM, Optane DC persistent memory

[21], with an extended academic study evaluating its per-

formance [24]. NVM is therefore expected to innovate high

performance transactional systems [7, 18, 31, 35, 38, 53] and

large-scale memory systems [37, 40, 50].

However, building correct transactional systems over per-

sistent memory is difficult in part due to relaxed persistency:

writes to NVM locations may not be persisted to memory in

the program order due to micro-architectural optimizations

such as out-of-order execution, store buffering, or caching

protocols. For instance, consider the programs below:

(𝑎) data := 42
(𝑏) commit := 1

(CommitWeak)

(𝑎) data := 42
(𝑏) flush data
(𝑐) commit := 1

(Commit1)

https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3453483.3454027

PLDI ’21, June 20–25, 2021, Virtual, Canada Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang

Hereafter we assume all program variables in our examples

are locations in NVM
1
initialized to 0; variable reads and

writes are architecture-level load and store instructions, e.g.,

mov on Intel-x86 and ldr, str in Armv8; and that flush
represents a persistency fence, e.g., clflush on Intel-x86

and dc.cvap; dsb.sy on Armv8.
2

In both examples we aim to establish the invariant 𝐼
△
=

commit=1 ⇒ data=42 even in case of an unexpected crash.

In the case of CommitWeak without a persistency fence,

we fail to establish 𝐼 over mainstream architectures such as

Intel-x86 and Armv8: the two stores may persist to NVM

out of order, thereby allowing commit=1, data=0 upon crash

recovery. By contrast, in the case of Commit1 the persistency

fence at 𝑏 ensures that the two stores persist in the intended

(program) order, thereby establishing the invariant 𝐼 . Micro-

architecturally, flush data blocks until the previous store
on data at 𝑎 is persisted to NVM, thus ensuring that the

store at 𝑐 always persists after that of 𝑎. As such, persistency

fences are expensive and should be used sparingly.

Relaxed persistency is further complicated inmulti-threaded

settings. Consider the following program with two threads:

(𝑎) data := 42 (𝑏) if (data != 0) {
(𝑐) flush data
(𝑑) commit := 1 }

(Commit2)

This example differs from Commit1 in that data and commit
are written to by different threads. Once again, if the fence at

𝑐 were removed, the desired invariant 𝐼 would no longer hold:

although the store on data at 𝑎 may be propagated (made

visible) to the the right thread through cache coherence

protocols, it may not be persisted to NVM prior to the crash.

As before, the fence at 𝑐 ensures that the store at 𝑎 (which

was propagated to the right thread before 𝑐) persists to NVM

before the store at 𝑑 , thus establishing 𝐼 .

Note that during normal (non-crashing) executions, under

both Intel-x86 and Armv8 no thread can observe the undesir-

able behavior commit=1, data=0 even without the fence at 𝑐 ,

underlining the difference between the consistency order (the

order in which stores are propagated across threads) and the

persistency order (the order in which stores are persisted to

NVM). In general, relaxed concurrency models constrain the

consistency order, while relaxed persistencymodels addition-

ally constrain the persistency order, further compounding

the complexity of relaxed concurrency.

In order to facilitate correct persistent programming with

efficient use of persistency fences, existing work includes

several persistencymodels [8, 17, 28, 30, 42, 46–48]. However,

as we discuss below, these models have several shortcomings.

1
As in [47], we assume all locations are durable locations in NVM.

2
Armv8 recently introduced the dc.cvadp instruction that, unlike dc.cvap,
guarantees persistence even in case of battery/hardware failures [4]. We

focus on dc.cvap in this paper, but most discussions also apply to dc.cvadp.

Problem To our knowledge, no existing persistency model

(except for PTSOsyn [28], discussed shortly below) satisfies

all of the following properties simultaneously:

(A) Describingmainstreamarchitectures or languages:

For a persistency model to be widely used and applied, it

should describe the persistency behavior of mainstream

hardware/software platforms such as readily available

architectures, e.g., Intel-x86 [20] and Armv8 [4], and

ubiquitous languages, e.g., C/C++, over which several

persistent libraries are implemented [18, 19]. Moreover,

the model should be sufficiently relaxed that the behav-

iors observable on existing platforms are also allowed by

the model. Otherwise, invariants that hold according to

the model would be invalidated by executions on such

platforms, rendering the model unsound for reasoning.

(B) Supporting persistent synchronization patterns: A

persistency model should support common synchroniza-

tion patterns used in practical implementations of per-

sistent objects, e.g., transactions or file systems. For in-

stance, a model should prohibit undesirable behaviors,

e.g., commit=1, data=0 in Commit1 and Commit2 that

capture the essence of practical implementations of trans-

actional systems. In particular, the model should be suf-

ficiently strict that unobservable behaviors on existing

platforms are also forbidden by the model. Otherwise,

admitting unobservable behaviors in the model makes it

impossible to reason about such patterns. Moreover, a

model should serve as an objective correctness criteria

for new, more efficient designs of persistent objects, and

in doing so, guide such new designs.

(C) Operational: An operational persistency model is de-

sirable in that it enables stepping through an execution

for debugging purposes. Moreover, operational models

are more suitable for building high-level reasoning tech-

niques such as program logics. By contrast, axiomatic

models constrain the admitted behaviors through a set

of axioms over full executions, making them undesirable

for step-by-step reasoning (e.g., as in program logics).

The models of [8, 17, 30, 42, 46] do not satisfy (A). Specifi-

cally, [8, 17, 30, 42] present language-level persistency mod-

els put forward as academic proposals, and are not supported

by mainstream programming languages. Similarly, [46] pro-

poses a hardware persistency model, PTSO, by integrating

buffered epoch persistency [42] with the TSO architecture of

x86/SPARC [49]. However, PTSO is not supported by main-

stream architectures of Intel-x86 and Armv8.

The PArmv8 model [48, “PARMv8”] describes the per-

sistency semantics of the Armv8 architecture, but is not

operational (C). Moreover, as we discuss shortly in §2, the

PArmv8 model is too weak in that it violates multi-copy

atomicity. Similarly, the Px86 model [47] describes the per-

sistency semantics of the Intel-x86 architecture operationally

Revamping Hardware Persistency Models PLDI ’21, June 20–25, 2021, Virtual, Canada

Px86 [47] Px86axiom (§4) Px86view (§3.5)

fixed equivalent

(§5)

x86axiom [3] x86view (§3)

equivalent

(§5)

adding

persistency

adding

persistency

PArmv8 [48]

PArmv8axiom

(§6.3)

PArmv8view

(§6.2)

fixed equivalent

(§6.4)

Armv8axiom [44] Armv8view [44]

equivalent

[44]

adding

persistency

adding

persistency

Figure 1. Relationship among Intel-x86 and Armv8 models

and axiomatically.
3
However, as we discuss shortly, Px86 is

too relaxed and does not always support persistent synchro-

nization patterns in the presence of I/O (B).

Khyzha and Lahav [28] recently developed the PTSOsyn

model for Intel-x86 that fixes the Px86 problem regarding

I/O and satisfies (A)–(C). However, they do not discuss this

problem as they have a different motivation, i.e., presenting

a model that better matches the developers’ intuition [28,

§1]. We discuss PTSOsyn in more detail later in §8.

Our Solution, Contributions and Outline We propose a

unified operational style for describing relaxed persistency

using views, and develop view-based persistency models of

Intel-x86/Armv8 that satisfy all three (A)–(C) properties. In

doing so, we develop the first operational model for Armv8

persistency. Our operational models highlight 2 flaws in

the existing (axiomatic) persistency models of Intel-x86 and

Armv8. To remedy this, we develop a unified axiomatic style

for persistency, adapt the the existing Intel-x86/Armv8 per-

sistency models to our unified style, and repair their flaws.

The remainder of this paper is organized as follows:

• We discuss the shortcomings of the existing persistency

models of Intel-x86/Armv8 and present an intuitive ac-

count of our solution as view-based models (§2).

• We develop x86view, a new view-based model for Intel-

x86 concurrency (§3).

• We develop Px86view (§3.5) and PArmv8view (§6.2), respec-

tively extending the x86view and Armv8view [44] models

to account for persistency.

• We present Px86axiom (§4) and PArmv8axiom (§6.3), our

axiomatic models of Intel-x86 and Armv8 persistency

3
In [47] the authors introduce two persistencymodels for Intel-x86: Px86man

which formalizes the ambiguous and under-specified behavior described in

the Intel reference manual [20], and Px86sim which simplifies and strength-

ens Px86man to capture the architectural intent envisaged by Intel engineers.

In this paper we focus on the Px86sim model and simply refer to it as Px86.

that simplify and repair the state-of-the-art models of

the respective architectures [47, 48]. We prove that our

axiomatic models are equivalent to the authoritative se-

mantics reviewed by Intel and Arm engineers, modulo

our proposed fixes (§4.4 and §6.3). Our proposed fix in

PArmv8axiom has been reviewed by Arm engineers.

• We prove that Px86view and PArmv8view are equivalent

to Px86axiom and PArmv8axiom, respectively. The equiva-

lence proof is mechanized in Coq (§5 and §6.4).

• We develop a stateless model checker for persistency and

use it to verify several representative examples under

PArmv8view (§7). We conclude with related and future

work (§8).

We present an overview of the concurrency and persis-

tency models we present in this paper in Fig. 1, summarizing

their relationship with existing models in the literature.

2 Overview

We discuss the shortcomings of Px86 and PArmv8 as regards

to (B) (§2.1 and 2.2). We then present an intuitive account of

our key idea to provide a persistency model that satisfies all

three desired properties in (A)–(C) simultaneously (§2.3).

2.1 The Px86 Model and Synchronous Flushes

The Px86 model [47] is too weak in that its instruction for

propagating stores to NVM behaves asynchronously: exe-

cuting clflush under Px86 does not block execution, and

merely guarantees that the pending stores on the given lo-

cation will be persisted to NVM at some future point. For

instance, if the generic flush data instruction in Commit1

is replaced with its Intel-x86 analogue, clflush data, then
once clflush data is executed, there is no guarantee under

Px86 that the earlier stores on data (including that at 𝑎) are

persisted to NVM; rather (1) these stores will be persisted to

NVM at some future point; and (2) they will be persisted to

NVM before all future stores (including that at 𝑐). In other

words, the persistency ordering guarantees of clflush in

(2) allows us to establish the desired invariant 𝐼 , even though

the effect of clflush data may not immediately take place.

The asynchronous behavior of clflush is observable in
the presence of external operations as they narrow down

possible crash points through additional observations. For

instance, consider the variant of Commit1 below where we

replace the store to commit with an analogous I/O operation

that writes “commit” to file on disk:

(𝑎) data := 42 (𝑑) if (flag != 0) {
(𝑏) flush data (𝑒) log(file,“commit”)}
(𝑐) flag := 1

(CommitE)

Let us write𝐶 to denote that file contains “commit”. Under
Px86 it is possible to observe the post-crash state 𝑆 : data=0∧
𝐶 ; i.e., when the I/O operation is executed, the asynchronous

effect of clflush may not have taken place yet.

PLDI ’21, June 20–25, 2021, Virtual, Canada Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang

Figure 2. A view-based execution of Commit1

As such, to support persistency synchronization patterns

such as CommitE in the presence of external operations un-

der Px86, we must strengthen Px86 by modeling the behavior

of clflush synchronously. Let us write SPx86 for a strength-
ening of Px86 in which clflush instructions are executed
synchronously, i.e., they block until all pending stores on

the location are persisted to NVM. In the absence of external

operations such as I/O or network messages, the asynchro-

nous behavior of clflush cannot be observed, i.e., SPx86 is

indistinguishable from Px86. By contrast, in the presence of

external operations, only SPx86 satisfies an invariant anal-

ogous to that of Commit1: 𝐶 ⇒ data=42; i.e., once the I/O
operation is executed, the synchronous effect of clflush
must have taken place and 𝑆 cannot be observed.

2.2 The PArmv8 Model and Multi-Copy Atomicity

The PArmv8 model [48] is too weak in that it violates the

principles ofmulti-copy atomicity (MCA) which ensures that

a write by one thread is made visible to all other threads

simultaneously. Although Armv8 was originally non-MCA,

it was recently simplified to observe MCA [43]. However,

the persistency extension of Armv8 in PArmv8 violates MCA

by allowing the following behavior regarding persistency:

(𝑎) y := 1 (𝑓) x := 1
(𝑏) dsb.sy (𝑔) dsb.sy
(𝑐) flushopt x (ℎ) flushopt y
(𝑑) dsb.sy (𝑖) dsb.sy
(𝑒) z := 1 (𝑗) w := 1

(FlushMCA)

Executing flushopt x persists all pending stores on the

same cache line as x asynchronously.4 Moreover, if flushopt
x is followed by a data synchronization barrier, dsb.sy, its ef-
fects take place synchronously; i.e., executing dsb.sy awaits

the completion of all earlier flushopt by the same thread.

We argue that MCA should preclude the post-crash state

𝑆 : z = w = 1 ∧ x = y = 0. First, to observe z = w = 1 after

a crash, the two threads should have fully executed to the

end. Second, to observe y = 0 after a crash, (𝑎) should not

have been made visible to (ℎ) prior to the crash, and thus

(ℎ) must be ordered before (𝑎). Third, (𝑔) must be ordered

before (ℎ) and (𝑎) before (𝑏) because (𝑔) and (𝑏) are fences.
Transitively, (𝑔) must be ordered before (ℎ), (𝑎), and then

4
For the sake of uniformity with our respective Intel-x86 models, we write

flushopt x in lieu of the Armv8 instruction dc cvap x.

(𝑏). As such, (𝑓) should be visible to (𝑐), thus ensuring x = 1

after the crash and precluding the behavior in 𝑆 .5

To ensure MCA for persistency, we must thus strengthen

PArmv8 by enforcing an order between a flush (e.g., 𝑐) and a

write on the same location that is not persisted by the flush

(e.g., 𝑓). Let us write SPArmv8 for such a strengthening of

PArmv8. Under SPArmv8, if x = 0 after a crash, then (𝑐)
is ordered before (𝑓); (𝑎) is ordered before (ℎ); y = 1 is

persisted to the NVM; and thus 𝑆 cannot be observed.

Upon discussing FlushMCA with engineers at Arm, they

confirmed that this non-MCA behavior is indeed prohibited

and our proposal in §6.3 is the correct interpretation of Arm

architecture reference manual [4].

2.3 Our Solution: View-Based Operational Models

We present view-based operational models for the relaxed

persistency behavior of Intel-x86/Armv8 architectures that

satisfy all three properties in (A)–(C). We build our model

over the view-basedmodel of Armv8/RISC-V relaxed-memory

concurrency [44]. Intuitively, view-based models [27, 34, 44]

combine two key ideas: (1) recording the entire store history

in the memory and allowing threads to read old values; and

(2) imposing ordering constraints with per-thread views rep-

resenting the set of stores propagated to each thread and

thus constraining the outcomes of future loads and stores by

a thread. Here, we further introduce the notion of persistency

views for each location 𝑙 , denoting the set of stores on 𝑙 that

have persisted to NVM and thus will survive a crash.

We next illustrate these ideas through a view-based execu-

tion of Commit1 in Fig. 2, comprising a single thread tid. At

each execution stage, the store history is recorded in memory

as an indexed (timestamped, e.g., @1) list of stores; the view

of tid records (the timestamp of) the latest store propagated

to tid (the tid-labelled arrow); and the persistency view of

each location 𝑙 records (the timestamp of) the latest store on

𝑙 that has persisted to NVM (the NVM[𝑙]-labelled arrows).

The initial memory is𝑀 = [], denoting the empty history

(no stores have executed), depicted as init at timestamp 0

(@0); the tid view is 𝜈 = @0 (no stores have propagated to

tid); and the persistency view of each location 𝑙 is 𝜈NVM [𝑙] =
@0 (no stores on 𝑙 have persisted to NVM). Subsequently:

5
The reader may have noted that this behavior is forbidden even if the

dsb.sy at (𝑏) and (𝑔) are replaced with the weaker dmb.sy. We opt for

dsb.sy to simplify the example by using only one kind of fence.

Revamping Hardware Persistency Models PLDI ’21, June 20–25, 2021, Virtual, Canada

(𝑎) Executing data := 42 appends its store to memory (𝑀 =

[⟨data := 42⟩@1]), and advances the tid view (𝜈 = @1):

the store is executed by and thus propagated to tid.

(𝑏) Executing flush data joins the persistency view of data
with the tid view (𝜈NVM [data] = @1), ensuring that the

latest data store propagated to tid is persisted to NVM.

(𝑐) Analogously, executing commit := 1 yields 𝜈 = @2 and

𝑀 = [⟨data := 42⟩@1, ⟨commit := 1⟩@2].

The post-crash outcomes (NVM contents) are then deter-

mined by the persistency views. Concretely, after a crash

each NVM location 𝑙 may contain a value written by a store

whose timestamp is at least 𝜈NVM [𝑙]. For instance, if a crash
occurs after executing flush data, then in the post-crash

state 𝜈NVM [data] = @1 and thus data = 42@1; i.e., data :=
42 must have persisted to NVM, establishing invariant 𝐼 .

We next describe an execution ofCommit2, where tid1 and

tid2 denote the left and right threads, respectively. Initially,

the memory is𝑀 = []; the persistency view is 𝜈NVM = 𝜆𝑙 .@0;

and the tid𝑖 view is 𝜈𝑖 = @0 (for 𝑖 ∈ {1, 2}). Then:

(𝑎) Executing data := 42 yields𝑀=[⟨data := 42⟩@1], 𝜈1=@1.

(𝑏) Thread tid2 may then load data = 42 as its view times-

tamp (𝜈2 = @0) is less than @1 of data := 42. After load-
ing data = 42, the tid2 view is joined with @1: 𝜈2 = @1.

(𝑐) Executing flush data yields 𝜈NVM [data] = @1.

(𝑑) Executing commit := 1 results in𝑀 = [⟨data := 42⟩@1,

⟨commit := 1⟩@2] and 𝜈2 = @2.

As with Commit1, the invariant 𝐼 holds in case of a crash.

Our models indeed satisfy all desired properties. (A) Our

models capture the persistency behavior of the mainstream

Armv8 and Intel-x86 architectures. Specifically, we prove that

our models are equivalent (modulo fixes) to the axiomatic

models of [47, 48] reviewed by Intel/Arm engineers. Our

equivalence proof is mechanized in Coq [1] and is publicly

available [10]. (B) Our models support persistent synchro-

nization patterns such as those of Commit1 and Commit2.

(C) Our models are operational as with the existing family of

view-based models [27, 44]. Furthermore, to support reason-

ing about programs over our models, we develop a stateless

model checking algorithm and tool for persistency verifi-

cation, and use it to verify several representative examples

under PArmv8view.
6
Our model checking tool and verified

examples are open-source and publicly available [10].

6
As a proof of concept, we focus on model checking only Armv8 persistency.

This is sufficient to showcase the feasibility of model checking for hardware

persistency since Armv8 is more complex than Intel-x86with a bigger search

space. We believe it is straightforward to adapt our approach to Intel-x86

persistency, especially given our unified semantic style for persistency.

𝑝 ::= 𝑠1 | | . . . | | 𝑠𝑛
𝑠 ∈ St ::= skip | 𝑠1; 𝑠2 | if (e) 𝑠1 𝑠2 | while (e) 𝑠 | 𝑟 := 𝑒

| r := load [e] | store [e1] e2 | r := rmw 𝑟𝑜𝑝 [e]
| fence𝑓 | flush 𝑒 | flushopt 𝑒

rop ∈ Rmw ::= fetch-op op e | cas e1 e2
f ∈ F ::= sfence | mfence

𝑒 ∈ Expr ::= 𝑣 | r | (𝑒1 op 𝑒2) op ∈ O ::= + | − | . . .
𝑣 ∈ Val = Z r ∈ Reg = N 𝑙 ∈ Loc = Val

Figure 3. Intel-x86 concurrency and persistency language

3 Px86view: A View-Based Model for

Intel-x86 Persistency

We develop Px86view, a view-based model for Intel-x86 per-

sistency. We present a simple language for Intel-x86 concur-

rency and persistency (§3.1) used throughout this section.

We develop x86view, a new Intel-x86 concurrency model we

use as a baseline (without persistency) and its two key ideas:

store histories (§3.2) and views (§3.3); we describe how we

support read-modify-writes (§3.4). We then extend x86view

with persistency and develop Px86view (§3.5).

3.1 Language for Intel-x86 Persistency

To keep our presentation concrete, we use the language in

Fig. 3 for Intel-x86 concurrency and persistency. A program

𝑝 consists of concurrent statements run by distinct threads.

A statement 𝑠 is given by the standard ‘while’ language

over register machines with concurrent memory instruc-

tions. The instruction 𝑟 := load [𝑒] reads from the (NVM)

location denoted by expression 𝑒 and returns it in register 𝑟 .

The store [𝑒1] 𝑒2 reads the value denoted by 𝑒2 and stores it
at the location denoted by 𝑒1. Analogously, 𝑟 := rmw 𝑟𝑜𝑝 [𝑒]
evaluates the expressions 𝑟𝑜𝑝 , performs an RMW (‘read-

modify-write’) operation (e.g., ‘compare-and-swap’) on the

location denoted by 𝑒 , and returns its old value in 𝑟 . Finally,

fence𝑓 issues a memory ‘fence’ such as sfence or mfence;
and flush 𝑒 and flushopt 𝑒 persist to NVM the pending

stores on the cache line containing the location given by 𝑒 .

3.2 The x86view Model

We present x86view, our view-based operational model for

Intel-x86 concurrency, in Fig. 4. Our design of x86view is

inspired by Armv8view, a view-based concurrency model of

Armv8 [44]. As Intel-x86 concurrency is simpler than that of

Armv8, we develop x86view by removing certain Armv8view

features. Here, we highlight the interesting aspects of Intel-

x86 and refer the reader to [9, Appendix A] for the full details.

States We represent a machine as a pair ⟨ ®𝑇,𝑀⟩, comprising

a thread map ®𝑇 and a memory𝑀 . A thread map associates

each thread with a statement and a thread state. A thread

PLDI ’21, June 20–25, 2021, Virtual, Canada Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang

⟨ ®𝑇,𝑀⟩ ∈ Machine

△
= (TId → Thread) ×Memory

tid ∈ TId

△
= N 𝑇 ∈ Thread

△
= St × TState

𝑀 ∈ Memory

△
= list Msg 𝑤 ∈ Msg

△
= ⟨loc :Loc; val :Val; tid :TId⟩

⟨𝑙 := 𝑣⟩
tid

△
= ⟨loc=𝑙 ; val=𝑣 ; tid= tid⟩ 𝑡 ∈ T △

= N 𝜈 ∈ V △
= T

ts ∈ TState

△
=

〈
regs : Reg → Val ;

coh : Loc → V ; vrNew : V ;

〉
(init)

𝑝 = 𝑠1 | | . . . | | 𝑠𝑛
init(𝑝, ⟨𝜆tid . ⟨𝑠

tid
, ⟨regs = 𝜆_. 0; coh = 𝜆_. @0; vrNew = @0⟩⟩, []⟩)

(machine)

®𝑇 [tid], 𝑀 →
tid

𝑇 ′, 𝑀 ′

⟨ ®𝑇,𝑀⟩ → ⟨®𝑇 [tid ↦→ 𝑇 ′], 𝑀 ′⟩

(not-overwritten)

∀𝑡 ∈ (𝑣2, 𝑣1] . 𝑀 [𝑡] .loc ≠ 𝑙

𝑣1 ⊑𝑀,𝑙 𝑣2

(store)

𝑙 = ⟦𝑒1⟧𝑡𝑠.regs 𝑣 = ⟦𝑒2⟧𝑡𝑠.regs 𝑡𝑠 .coh[𝑙] ⊑ 𝑡 ⊔𝑙 𝑡𝑠 .coh[𝑙] ⊑ 𝑡

𝑡 = |𝑀 | + 1 𝑀 ′ = 𝑀 ++ [⟨𝑙 := 𝑣⟩
tid
@𝑡] 𝑡𝑠 ′ = 𝑡𝑠 [coh[𝑙] ↦→ 𝑡]

(store [𝑒1] 𝑒2, 𝑡𝑠), 𝑀 →
tid

(skip, 𝑡𝑠 ′), 𝑀 ′

(load)

𝑙 = ⟦𝑒⟧𝑡𝑠.regs 𝑀 [𝑡] = ⟨𝑙 := 𝑣⟩ 𝑡𝑠 .coh[𝑙] ⊑ 𝑡 𝑡𝑠 .vrNew ⊑𝑀,𝑙 𝑡

𝑡𝑠 ′ = 𝑡𝑠 [regs[r] ↦→ 𝑣, coh[𝑙] ↦→ 𝑡, vrNew ↦→⊔ 𝑡 ≠ 𝑡𝑠 .coh[𝑙] ? 𝑡]
(r := load [𝑒], 𝑡𝑠), 𝑀 →

tid
(skip, 𝑡𝑠 ′), 𝑀

(mfence)

𝑡𝑠 ′ = 𝑡𝑠 [vrNew ↦→⊔ ⊔𝑙 𝑡𝑠 .coh[𝑙]]
(mfence, 𝑡𝑠), 𝑀 →

tid
(skip, 𝑡𝑠 ′), 𝑀

Figure 4. States and transitions of x86view (excerpt)

state ts ∈ TState consists of a register map, regs, assigning
values to registers, and per-thread ‘views’ (described in §3.3).

A memory is a list of messages; a message is a triple ⟨𝑙 := 𝑣⟩tid
comprising a memory location (𝑙), a value stored (𝑣), and

the id (tid) of the thread storing it. We write ⟨𝑙 := 𝑣⟩tid@𝑡 to

denote that ⟨𝑙 := 𝑣⟩tid is issued at timestamp (index) 𝑡 , starting

from index@1. For simplicity, we assume amemory contains

the initial message ⟨𝑙 := 0⟩@0 for each 𝑙 .

Transitions of x86view In the initial state for a program 𝑝

(init), thread statements are those in 𝑝; the register maps

are 𝜆_.0; the views are @0; and the memory is empty ([]).
The transitions for control flow and assignment are stan-

dard (omitted). The (machine) transition of x86view models

thread interleaving as in sequential consistency (SC) [32].

Nevertheless, x86view allows relaxed (weaker than SC) be-

haviors since it records the entire history of stores in its

memory as a list of messages, and allows threads to read

stale values. Ignoring the colored premises (described later),

when executing a store (store), a thread determines the lo-

cation 𝑙 and the value 𝑣 , and appends a new message ⟨𝑙 := 𝑣⟩
to the memory. Analogously, when executing r := load [𝑒]

Table 1. Informal description of concurrency views

View Past Future

coh[𝑙] Upper bound of past reads

and writes on 𝑙

Lower bound of

future reads and

writes on 𝑙

vrNew
Upper bound of past updates;

upper bound of external

reads (from other threads)

Lower bound of

future reads

(load), a thread determines the location 𝑙 , chooses a mes-

sage ⟨𝑙 := 𝑣⟩@𝑡 from the memory, and assigns 𝑣 to r in the

register map. Crucially, the chosen message need not be

the latest one, thus allowing a stale value to be read. How-

ever, the chosen message should not have been overwritten

(not-overwritten) from the thread’s point of view. We

describe the remaining transitions shortly.

Store Buffering Recording stores as messages allows store

buffering, a representative relaxed behavior of Intel-x86:

(𝑎) x := 1 (𝑐) y := 1

(𝑏) r1 := y //= 0 (𝑑) r2 := x //= 0
(SB)

While the relaxed outcome r1 = r2 = 0 is prohibited under

SC, it is allowed under Intel-x86 and may arise in x86view

by: (𝑎) writing ⟨x := 1⟩tid1@1; (𝑏) reading ⟨y := 0⟩@0; (𝑐) writ-

ing ⟨y := 1⟩tid2@2; and most importantly, (𝑑) reading the old

value ⟨x := 0⟩@0 that is overwritten by (𝑎).

3.3 Concurrency Views

The model described thus far is too weak in that it allows

behaviors prohibited under Intel-x86. We next describe how

we strengthen the model to forbid such behaviors through

views, as summarized in Table 1.

Coherence Intel-x86 orders loads and stores on the same

location in a single thread as illustrated below:

(𝑎) x := 20 //= @2 (𝑑) r2 := y //= @4

(𝑏) x := 10 //≠ @1 (𝑒) y := 30 //≠ @3 · · ·
(𝑐) r1 := x //≠ @1 (𝑓) r3 := y //≠ @3

(Coh)

The first thread issues ⟨x := 20⟩@2, and then writes to x
again and reads from it. Coherence orders (𝑎) before (𝑏)
and (𝑐) since they access the same location, thus forbidding

them from accessing earlier timestamps, e.g., @1. Similarly,

the second thread reads the message ⟨y := 40⟩@4, and then

writes to y and reads from it again. Coherence orders (𝑑)
before (𝑒) and (𝑓) as they access the same location, thus

forbidding them from accessing earlier timestamps, e.g.,@3.
7

7
Indeed, coherence between an access and a write is already enforced

through (store) : stores always append messages to the end of memory.

Nevertheless, we explicitly order them with views to achieve (𝑖) unifor-
mity with other coherence orders and (𝑖𝑖) correspondence with Armv8view,

where stores may add messages in places other than the end of memory.

Revamping Hardware Persistency Models PLDI ’21, June 20–25, 2021, Virtual, Canada

To enforce coherence, we introduce coherence views that

record past thread behaviors and simultaneously constrain

future thread behaviors. Specifically, for each location 𝑙 , a

thread state 𝑡𝑠 records a coherence view in 𝑡𝑠 .coh[𝑙] as a
timestamps (initialised to@0) representing an index in mem-

ory. The 𝑡𝑠 .coh[𝑙] represents the maximum (latest) times-

tamp observed for 𝑙 by the thread; moreover, it forbids the

thread from accessing messages of 𝑙 with earlier timestamps

than 𝑡𝑠 .coh[𝑙]. Put formally, in (load) and (store) we ad-

ditionally require 𝑡𝑠 .coh[𝑙] ⊑ 𝑡 in the premise and update

𝑡𝑠 ′.coh[𝑙] ↦→ 𝑡 in the conclusion.

These changes indeed forbid the undesirable behavior in

Coh: (𝑎) updates 𝑡𝑠 .coh[x] to @2, forbidding (𝑏) and (𝑐)
from accessing @1. Similarly, (𝑑) updates 𝑡𝑠 .coh[y] to @4,

forbidding (𝑒) and (𝑓) from accessing @3.

Message Passing In addition to coherence, Intel-x86 orders

certain accesses on different locations via ‘message passing’:

(𝑎) data := 42 (𝑐) r1 := flag //= 1

(𝑏) flag := 1 (𝑑) r2 := data //≠ 0
(MP)

If the right thread reads 1 is from flag, then it should read

42 from data as (𝑎) is ordered before (𝑑) as follows:

• (𝑎) before (𝑏): A load or store is ordered before later

stores. To enforce this, in (store) we additionally re-

quire

⊔
𝑙 𝑡𝑠 .coh[𝑙] ⊑ 𝑡 in the premise.

8

• (𝑏) before (𝑐): A store is ordered before loads that read

from it (“message passing”). This is already enforced as

the store message read by the load is issued before it.

• (𝑐) before (𝑑): A load is ordered before a later load. To

enforce this, we introduce the new-read view. Specifically,

a thread state 𝑡𝑠 includes a ‘new-read’ view, 𝑡𝑠 .vrNew,
recording the maximum (latest) view previously read by

the thread. Moreover, it forbids the thread’s future loads

(on any location) from reading messages that are over-

written by 𝑡𝑠 .vrNew. Put formally, in (load) we require

𝑡𝑠 .vrNew ⊑𝑀,𝑙 𝑡 (i.e., 𝑡 is not overwritten by 𝑡𝑠 .vrNew in𝑀

as far as 𝑙 is concerned; see (not-overwritten) for

details) in the premise and 𝑡𝑠 ′.vrNew ↦→⊔ 𝑡 (shorthand

for 𝑡𝑠 ′.vrNew = 𝑡𝑠 .vrNew ⊔ 𝑡) in the conclusion.

These changes ensure ‘message passing’ in MP: (𝑎) the

left thread issues ⟨data := 42⟩@1, updating 𝑡𝑠1.coh[data]
to @1; and (𝑏) issues ⟨flag := 1⟩@2, updating 𝑡𝑠1 .coh[flag]
to @2; (𝑐) the right thread reads ⟨flag := 1⟩@2, updating

𝑡𝑠2 .coh[flag] and 𝑡𝑠2 .vrNew to @2; (𝑑) it then cannot read

⟨data := 0⟩@0 as 𝑡𝑠2.vrNew = @2 @𝑀,data @0.

Store Bufferingwith Fences As shown in SB, Intel-x86may

reorder a store and a later load on different locations. If

8
The astute reader may have noticed that this condition is stronger than

the coherence requirement 𝑡𝑠.coh[𝑙] ⊑ 𝑡 and thus makes it redundant.

Nevertheless, we explicit include the two conditions to emphasize the two

requirements, namely coherence and ordering.

(rmw-fail)

𝑙 = ⟦𝑒⟧𝑡𝑠.regs 𝑀 [𝑡] = ⟨𝑙 := 𝑣⟩ ⟦𝑟𝑜𝑝⟧𝑡𝑠.regs (𝑣,⊥)
𝑡𝑠 .coh[𝑙] ⊑ 𝑡 𝑡𝑠 .vrNew ⊑𝑀,𝑙 𝑡

𝑡𝑠 ′ = 𝑡𝑠 [regs[r] ↦→ 𝑣, coh[𝑙] ↦→ 𝑡, vrNew ↦→⊔ 𝑡 ≠ 𝑡𝑠 .coh[𝑙] ? 𝑡]
(r := rmw 𝑟𝑜𝑝 [𝑒], 𝑡𝑠), 𝑀 →

tid
(skip, 𝑡𝑠 ′), 𝑀

(rmw)

𝑙 = ⟦𝑒⟧𝑡𝑠.regs 𝑀 [𝑡1] = ⟨𝑙 := 𝑣1⟩ ⟦𝑟𝑜𝑝⟧𝑡𝑠.regs (𝑣1, 𝑣2)
𝑡2 = |𝑀 | + 1 𝑀 ′ = 𝑀 ++ [⟨𝑙 := 𝑣2⟩tid@𝑡2] 𝑡2 − 1 ⊑𝑀,𝑙 𝑡1
𝑡𝑠 .coh[𝑙] ⊑ 𝑡1, 𝑡2 𝑡𝑠 .vrNew ⊑𝑀,𝑙 𝑡1 ⊔𝑙 𝑡𝑠 .coh[𝑙] ⊑ 𝑡2

𝑡𝑠 ′ = 𝑡𝑠 [regs[r] ↦→ 𝑣1, coh[𝑙] ↦→ 𝑡2, vrNew ↦→⊔ ⊔𝑙 𝑡𝑠 .coh[𝑙] ⊔ 𝑡2]
(r := rmw 𝑟𝑜𝑝 [𝑒], 𝑡𝑠), 𝑀 →

tid
(skip, 𝑡𝑠 ′), 𝑀 ′

Figure 5. RMW transitions of x86view

necessary, one can prevent this by inserting fences:

(𝑎) x := 1 (𝑑) y := 1

(𝑏) mfence (𝑒) mfence
(𝑐) r1 := y //= 0 (𝑓) r2 := x //≠ 0

(SBFence)

To model this, in the conclusion of (mfence) we join

𝑡𝑠 .vrNew with

⊔
𝑙 𝑡𝑠 .coh[𝑙], thus forbidding store buffering.

Without loss of generality, assume 𝑀=[⟨x := 1⟩@1, ⟨y := 1⟩
@2]. The right thread then (𝑑) issues ⟨y := 1⟩@2, updating

𝑡𝑠2 .coh[y] to @2; (𝑒) executes mfence, updating 𝑡𝑠2.vrNew to

@2; and (𝑓) cannot read ⟨x := 0⟩@0 as 𝑡𝑠2.vrNew=@2 @𝑀,x @0.

Forwarding By strengthening x86view we have precluded

forbidden Intel-x86 behaviors. However, x86view is now too

strong and must be weakened to allow store forwarding:

(𝑎) x := 1 (𝑑) y := 1

(𝑏) r1 := x //= 1 (𝑒) r3 := y //= 1

(𝑐) r2 := y //= 0 (𝑓) r4 := x //= 0

(SBFwd)

While (𝑏) and (𝑐) are ordered, (𝑎) and (𝑐) are not because (𝑏)
is forwarded from (𝑎) in the same thread, thus allowing the

reordering of (𝑎) after (𝑏) and (𝑐). To model this, in (load)

the new-read view is joined with the read message’s times-

tamp only if it is written by a different thread. This is denoted

by the conditional notation 𝑡𝑠 ′.vrNew ↦→⊔ 𝑡 ≠ 𝑡𝑠 .coh[𝑙] ? 𝑡 ,
stating that if 𝑡 ≠ 𝑡𝑠 .coh[𝑙], then 𝑡𝑠 ′.vrNew ↦→⊔ 𝑡 ; otherwise,

𝑡𝑠 ′.vrNew is left unchanged. These changes then admit the

behavior in SBFwd. Without loss of generality, assume𝑀 =

[⟨x := 1⟩@1, ⟨y := 1⟩@2]. The right thread (𝑑) writes ⟨y := 1⟩
@2, updating 𝑡𝑠2.coh[y] to @2; (𝑒) reads ⟨y := 1⟩@2, with-

out updating 𝑡𝑠2 .vrNew thanks to forwarding; and (𝑓) reads

⟨x := 0⟩@0 as 𝑡𝑠2 .vrNew = @0 ⊑𝑀,x @0.

3.4 Supporting Read-Modify-Writes (RMW)

The RMW transitions (Fig. 5) are obtained by combining

the transitions of loads, stores and mfences. A failed RMW

(rmw-fail) degenerates to a load;
9
; if an RMW fails, then

9
The semantics of failed RMWs in Intel-x86 is not fully agreed upon in

the literature. Our model assumes a failed RMW to degenerate to a load;

an alternative model may additionally assume that failed RMWs execute a

PLDI ’21, June 20–25, 2021, Virtual, Canada Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang

ts ∈ TState

△
=
〈
...; vpReady : V ; vpAsync, vpCommit : Loc → V ;

〉
(flush)

𝑙 = ⟦𝑒⟧𝑡𝑠.regs 𝜈 = ⊔𝑙 ′𝑡𝑠 .coh[𝑙 ′]
𝑡𝑠 ′ = 𝑡𝑠 [vpAsync ↦→⊔ 𝜆𝑙 ′. 𝑐𝑙 (𝑙, 𝑙 ′) ? 𝜈, vpCommit ↦→⊔ 𝜆𝑙 ′. 𝑐𝑙 (𝑙, 𝑙 ′) ? 𝜈]

(flush 𝑒, 𝑡𝑠), 𝑀 →
tid

(skip, 𝑡𝑠 ′), 𝑀

(flushopt)

𝑙 = ⟦𝑒⟧𝑡𝑠.regs 𝜈 = ⊔𝑙 ′ 𝑐𝑙 (𝑙, 𝑙 ′) ? 𝑡𝑠 .coh[𝑙 ′]
𝑡𝑠 ′ = 𝑡𝑠 [vpAsync ↦→⊔ 𝜆𝑙 ′. 𝑐𝑙 (𝑙, 𝑙 ′) ? (𝜈 ⊔ 𝑡𝑠 .vpReady)]

(flushopt 𝑒, 𝑡𝑠), 𝑀 →
tid

(skip, 𝑡𝑠 ′), 𝑀

(sfence)

𝑡𝑠 ′ = 𝑡𝑠 [vpReady ↦→⊔ ⊔𝑙 𝑡𝑠 .coh[𝑙], vpCommit ↦→⊔ 𝑡𝑠 .vpAsync]
(sfence, 𝑡𝑠), 𝑀 →

tid
(skip, 𝑡𝑠 ′), 𝑀

(load)

· · · 𝑡𝑠 ′ = 𝑡𝑠 [· · · , vpReady ↦→⊔ 𝑡 ≠ 𝑡𝑠 .coh[𝑙] ? 𝑡]
(𝑟 := load [𝑒], 𝑡𝑠), 𝑀 →

tid
(skip, 𝑡𝑠 ′), 𝑀

(crash)

∀𝑙 . ∃𝑡 . 𝑀 [𝑡] = ⟨𝑙 := 𝑆𝑀 [𝑙]⟩ ∧ ∀(_, 𝑡𝑠) ∈ ®𝑇 . 𝑡𝑠 .vpCommit [𝑙] ⊑𝑀,𝑙 𝑡

⟨ ®𝑇,𝑀⟩ →crash 𝑆𝑀

Figure 6. States and transitions of Px86view where the

highlighted rule denotes the extension of load transition

from Fig. 4 as shown; the premises of mfence, rmw and

rmw-fail are analogously extended and omitted here.

⟦𝑟𝑜𝑝⟧𝑡𝑠.regs (𝑣1,⊥) holds (e.g., ⟦cas 4 5⟧𝑟𝑚𝑎𝑝 (3,⊥) but not
⟦cas 4 5⟧𝑟𝑚𝑎𝑝 (4,⊥)10). A successful RMW (rmw) atomically

reads from and writes to a location; if an RMW succeeds,

then ⟦𝑟𝑜𝑝⟧𝑡𝑠.regs (𝑣1, 𝑣2) holds (e.g., ⟦cas 3 5⟧𝑟𝑚𝑎𝑝 (3, 5) or
⟦fetch-add 1⟧𝑟𝑚𝑎𝑝 (4, 5)). Moreover, atomicity requires that

there be no intervening messages on the same location be-

tween those read and written by the RMW; i.e., 𝑡2 − 1 ⊑𝑀,𝑙 𝑡1.

Lastly, as with mfences, we join 𝑡𝑠 .vrNew with

⊔
𝑙 𝑡𝑠 .coh

′[𝑙].
As we show in §5, our x86view model is equivalent to the

authoritative axiomatic model reviewed by Intel engineers.

3.5 Persistency Views

We next develop Px86view by extending x86view with persis-

tency. As discussed in §2.3, the key idea is persistency views,

determining persisted messages as summarized in Table 2.

Synchronous Flush As shown in Fig. 6, in order to model

the behaviour of flush instructions synchronously, we ex-
tend a thread state 𝑡𝑠 with a persistency view, 𝑡𝑠 .vpCommit.

For each location 𝑙 , the 𝑡𝑠 .vpCommit [𝑙] denotes the maximum

view (timestamp) of the messages on 𝑙 that have persisted

memory fence. Nevertheless, we can straightforwardly adapt our model to

support this by extending (rmw-fail) with the effects of (mfence).

10
Here we assume compare-and-swaps are strong: they do not fail spuri-

ously. In our Coq formalization, we also support weak compare-and-swaps.

Table 2. Informal description of persistency views

View Past Future

vpReady
Upper bound of past

external reads

(from other threads)

Lower bound of

messages to be

asynchronously

flushed by future

flushopt

vpAsync [𝑙]
Upper bound of past

flush/flushopt on

the same cache line as 𝑙

Lower bound of

messages on 𝑙 to be

persisted by future

fences/updates

vpCommit [𝑙]

Upper bound of past

(1) flush 𝑙 ′; and
(2) flushopt 𝑙 ′ followed

by fences/updates,

where 𝑙 ′ is on the same

cache line as 𝑙

Lower bound of

persisted messages

on 𝑙 to survive a crash

to NVM. Executing a flush (flush) determines the loca-

tion 𝑙 , and for each location 𝑙 ′ on the same cache line as 𝑙 ,

joins 𝑡𝑠 .vpCommit [𝑙 ′] with the maximum coherence view 𝜈 ,

thus persisting those messages of 𝑙 ′ propagated to the thread
(i.e., all earlier writes on 𝑙 ′). (The asynchronous persistency
view, 𝑡𝑠 .vpAsync [𝑙 ′], will be described shortly.) After a crash

(crash), the contents of NVM, 𝑆𝑀 (‘sequential memory’),

satisfy the following condition for each location 𝑙 : 𝑆𝑀 [𝑙]
holds the value of some message on 𝑙 whose timestamp 𝑡 is

not overwritten by any thread’s persistency view on 𝑙 .

This indeed establishes the invariant 𝐼
△
= commit=1 ⇒

data=42 for Commit2. After executing the left thread,𝑀 =

[⟨data := 42⟩@1]. The right thread (𝑏) reads ⟨data := 42⟩@1,

updating 𝑡𝑠2.coh[data] and 𝑡𝑠2.vrNew to @1; (𝑐) persists the

message 𝑡𝑠2.coh[data] = @1, updating 𝑡𝑠2 .vpCommit [data]
to @1; and (𝑑) writes ⟨commit := 1⟩@2. After a crash, if

⟨commit := 1⟩@2 has persisted, then (𝑑) must have been

executed; therefore 𝑡𝑠2.vpCommit [data] = @1 and data = 42.

Asynchronous Flush flushopt is aweaker variant of flush
that may be reordered after certain instructions, and thus its

execution may be delayed until a later fence/RMW. This may

improve performance when persisting multiple locations:

(𝑎) data1 := 42 (𝑐) if (data2 != 0) {
(𝑏) data2 := 7 (𝑑) flushopt data1

(𝑒) flushopt data2
(𝑓) sfence
(𝑔) commit := 1 }

(CommitOpt)

Similarly to Commit2, the invariant 𝐼 ′
△
= commit=1 ⇒

data1=42 ∧ data2=7 always holds. The sfence (𝑓) awaits
the completion of both (𝑑) and (𝑒), reducing I/O latency.

Revamping Hardware Persistency Models PLDI ’21, June 20–25, 2021, Virtual, Canada

To model flushopt instructions, we extend a thread state
𝑡𝑠 with (1) 𝑡𝑠 .vpReady, denoting the view to be persisted asyn-

chronously at a subsequent flushopt; and (2) 𝑡𝑠 .vpAsync [𝑙],
denoting the maximum view of messages on 𝑙 that have been

persisted asynchronously.

The additional transitions of Px86view are given in Fig. 6.

Executing flushopt 𝑙 (flushopt) or flush 𝑙 (flush) joins,
for each location 𝑙 ′ on the same cache line as 𝑙 , 𝑡𝑠 .vpAsync [𝑙 ′]
with 𝑡𝑠 .vpReady and the maximum coherence view, 𝜈 , of the

cache line. Executing a fence in (mfence) and (sfence), or

a successful RMW in (rmw), joins 𝑡𝑠 .vpCommit with 𝑡𝑠 .vpAsync
and 𝑡𝑠 .vpReady with

⊔
𝑙 𝑡𝑠 .coh[𝑙]. Executing a load or a failed

RMW in (load) and (rmw-fail) joins 𝑡𝑠 .vpReady with the

read message’s timestamp unless forwarded.

This allows us to establish 𝐼 ′ forCommitOpt. Without loss

of generality, let 𝑀 = [⟨data1 := 42⟩@1, ⟨data2 := 7⟩@2].
The right thread then (𝑐) reads ⟨data2 := 7⟩@2, updating

𝑡𝑠2 .coh[data2], 𝑡𝑠2.vrNew and 𝑡𝑠2.vpReady to @2; (𝑑, 𝑒) asyn-
chronously persists 𝑡𝑠2.vpReady = @2 to data1 and data2, up-
dating 𝑡𝑠2.vpAsync [data1], 𝑡𝑠2 .vpAsync [data2] to@2; (𝑓) awaits
the completion of (𝑑) and (𝑒), updating 𝑡𝑠2 .vpCommit [data1]
and 𝑡𝑠2.vpCommit [data2] to @2; (𝑔) writes ⟨commit := 1⟩@3.

After a crash, if ⟨commit := 1⟩@3 is persisted, then (𝑔) must

have been executed; 𝑡𝑠2 .vpCommit = [data1 ↦→ @2, data2 ↦→
@2]; and thus data1 = 42 and data2 = 7.

The resulting model, Px86view, is proven equivalent to the

authoritative axiomatic model reviewed by Intel engineers

[47] (modulo the fix discussed in §2.1 – see §5).

4 Fixing and Simplifying the Px86 Model

We present Px86axiom, a new axiomatic model for Intel-x86

persistency that simplifies Px86 [47] and fixes its flaws dis-

cussed in §2.1. We present a short background on axiomatic

models (§4.1); describe the baseline axiomatic model for Intel-

x86 concurrency (§4.2); extend it to persistency and present

Px86axiom (§4.3); and compare Px86axiom with Px86, proving

their equivalence modulo our fixes in Px86axiom (§4.4).

4.1 Background on Axiomatic Models

Executions and Events In the literature of axiomatic (a.k.a.

declarative) memory models, the traces of shared memory

accesses of a program are represented as a set of executions,

where each execution 𝐺 is a graph comprising: (i) a set of

events (graph nodes); and (ii) a number of relations on events

(graph edges).We typically use𝑎,𝑏 and 𝑒 to range over events.

Each event captures the execution of a primitive command

(e.g., a load) and is a triple of the form 𝑒=(𝑛, tid, 𝑙), where
𝑛 ∈N is the (unique) event identifier; tid∈TId identifies the
executing thread; and 𝑙 ∈Lab is the event label. Event labels
are defined by the underlying memory model; for Intel-x86 a

label 𝑙 may be (1) (R, 𝑥, 𝑣) for reading (loading) value 𝑣 from

location 𝑥 ; (2) (W, 𝑥, 𝑣) for writing (storing) value 𝑣 to location
𝑥 ; (3) (U, 𝑥, 𝑣, 𝑣 ′) for a successful update (RMW) modifying 𝑥

to 𝑣 ′when its valuematches 𝑣 ; (4) MF for executing an mfence.
The functions loc, rval and wval respectively project the

location, the read value and the written value of a label,

where applicable. For instance, loc(𝑙)=𝑥 and wval(𝑙)=𝑣 for
𝑙=(W, 𝑥, 𝑣). The functions thrd and lab respectively project

the thread identifier and the label of an event.

Notation Given a relation r on a set 𝐴, we write r? and r+

for the reflexive and transitive closures of r, respectively. We

write r−1 for the inverse of r; [𝐴] for the identity relation on

𝐴, i.e., {(𝑎, 𝑎) | 𝑎 ∈ 𝐴}; and 𝐴𝑥 for {𝑎 ∈ 𝐴 | loc(𝑎)=𝑥}. We

write ri for the internal subset of r (on events of the same

thread), i.e., ri
△
= {(𝑎, 𝑏) ∈ r | thrd(𝑎)=thrd(𝑏)}; and re

for the external subset of r (on events of different threads).

Finally, we write r1; r2 for the relational composition of r1
and r2, i.e., {(𝑎, 𝑏) | ∃𝑐. (𝑎, 𝑐) ∈ r1 ∧ (𝑐, 𝑏) ∈ r2}.

Definition 4.1 (Executions). An execution, 𝐺 , is a tuple of

the form (𝐸, po, rf, co), where:

• 𝐸 is a set of events, including a set of initialisation events,

𝐼 ⊆ 𝐸, comprising a single write event with label (W, 𝑥, 0)
for each 𝑥 ∈ Loc. The set of read events in 𝐸 is: 𝑅

△
={

𝑒 ∈ 𝐸 ∃𝑥, 𝑣 . lab(𝑒)=(R, 𝑥, 𝑣)
}
; the sets of writes (𝑊),

RMW (𝑈) and memory fence (𝑀𝐹) events are analogous.

• po ⊆ 𝐸 × 𝐸 denotes the ‘program-order’ relation, defined

as a disjoint union of strict total orders, each ordering

the events of one thread, together with 𝐼 × (𝐸 \ 𝐼) that
orders initialisation events before all others.

• rf ⊆ (𝑊 ∪ 𝑈)×(𝑅 ∪ 𝑈) denotes the ‘reads-from’ relation

on events of the same location with matching values;

i.e., (𝑎, 𝑏) ∈ rf ⇒ loc(𝑎)=loc(𝑏) ∧ wval(𝑎)=rval(𝑏).
Moreover, rf is total and functional on its range, i.e.,

every read/update is related to exactly one write/update.

A read/update may be rf-related to an initialisation write.

• co ⊆ 𝐸×𝐸 is the ‘coherence-order’, defined as the disjoint

union of relations {co𝑥 }𝑥 ∈Loc, such that each co𝑥 is a

strict total order on𝑊𝑥∪𝑈𝑥 and 𝐼𝑥×((𝑊𝑥∪𝑈𝑥)\𝐼) ⊆ co𝑥 .

In the context of an execution graph (𝐸, po, rf, co), we
define the ‘from-reads’ relation as fr

△
= rf

−1
; co. Note that in

this initial stage, executions are unrestricted: there are few

constraints on rf and co. Such restrictions are determined

by the set of model-specific consistent executions. We next

define execution consistency for several models.

4.2 The x86axiom Model [3]

As the baseline axiomatic model for Intel-x86, we use that

of Alglave et al. [3], presented in Fig. 7, which we refer to

as x86axiom.
11

We choose x86axiom as the baseline as it is

stylistically similar with Armv8axiom [44], thus allowing a

more uniform treatment of Intel-x86 and Armv8 persistency.

11
For clarity, we rename the relations and axioms in [3] to highlight its

similarity with the axiomatic model for Armv8 concurrency [44].

PLDI ’21, June 20–25, 2021, Virtual, Canada Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang

obs = co ∪ rfe ∪ fre

dob = ([𝑊 ∪𝑈 ∪ 𝑅]; po; [𝑊 ∪𝑈 ∪ 𝑅]) \ (𝑊 × 𝑅)
bob = [𝑊 ∪𝑈 ∪ 𝑅]; po; [𝑀𝐹]; po; [𝑊 ∪𝑈 ∪ 𝑅]
ob = obs ∪ dob ∪ bob

(rf; po?) irreflexive (co-rw)

(fr; po) irreflexive (co-wr)

ob acyclic (external)

Figure 7. The x86axiom model [3]

(axioms of x86axiom (Fig. 7))

fob = [𝑊 ∪𝑈 ∪ 𝑅]; po; [𝐹𝐿]
∪ ([𝑈 ∪ 𝑅] ∪ ([𝑊]; po; [𝑀𝐹 ∪ 𝑆𝐹])); po; [𝐹𝑂]

∪ [𝑊]; (po; [𝐹𝐿])?; (po ∩ CL); [𝐹𝑂]
ob = obs ∪ dob ∪ bob ∪ fob ∪ pf ∪ fp (redefined)

pf ⊆ (obs ∪ dob ∪ bob ∪ fob ∪ fp)+ (pf-min)

𝑃 = 𝑑𝑜𝑚(pf; ([𝐹𝐿] ∪ ([𝐹𝑂]; po; [𝑀𝐹 ∪ 𝑆𝐹 ∪𝑈])))

∀𝑙 . ∃𝑤. 𝑆𝑀 (𝑙) = wval(𝑤) ∧ (𝑃 × {𝑤}) ∩ Loc ⊆ co
?

(persist)

Figure 8. The Px86axiom model

The co-rw (‘coherence-read-write’) axiom requires that

loads not read from later stores; co-wr (‘coherence-write-

read’) ensures that loads do not read values overwritten by

earlier stores; and external, ensures that externally visible

events can be linearized with respect to the ‘ordered-before’

relation (ob). The existence of such a globally-agreed order

of events makes x86axiom multi-copy-atomic.

The ob relation enforces the order (𝑎, 𝑏) if: (1) 𝑎 is a store

overwritten by 𝑏 (co); (2) 𝑎 is a store read by 𝑏 in a different

thread (rfe); (3) 𝑎 reads a value overwritten by 𝑏 in a different

thread (fre); (4) 𝑎, 𝑏 are accesses by the same thread and

(𝑎, 𝑏) ∉𝑊 × 𝑅 (dob); or (5) 𝑎, 𝑏 are accesses by the same

thread and are separated by a fence (bob).

Coherence between two writes (resp. two reads) is derived

from the axioms. Specifically, co∪ ([𝑊 ∪𝑈]; po; [𝑊 ∪𝑈]) ⊆
ob and acyclicity of ob ensure irreflexivity of co; po. Similarly,

(fre; rfe)∪(fri; rfi)∪([𝑈∪𝑅]; po; [𝑈∪𝑅]) ⊆ ob and acyclicity

of ob ensure irreflexivity of fr; rf; po.

4.3 The Px86axiom Model

We extend x86axiom with persistency semantics and develop

the Px86axiom model as presented in Fig. 8. We first define:

• 𝐹𝐿 and 𝐹𝑂 : the set of synchronous flush (flush) and
asynchronous flush (flushopt) events, respectively;

• 𝑆𝐹 : the set of sfence events;
• pf ⊆ (𝑊 ∪𝑈) × (𝐹𝐿 ∪ 𝐹𝑂): the ‘persists-from’ relation,

relating each flush to the co-latest store for each location

persisted by the flush. This is analogous to the rf relation;

however, while rf relates a load to a single store, pf may

relate a flush to multiple stores (one for each location)

on the same cache line.

• fp

△
= pf

−1
; co: the ‘from-persists’ relation (analogous to

fr), relating a flush to co-later stores (cf. fr

△
= rf

−1
; co).

The ob relation is extendedwith fob (‘flush-ordered-before’

), ordering earlier events and a later flush as per the Intel

manual [20]. Furthermore, pf and fp are included in ob for the

same reason rf and fr are; i.e., because Intel-x86 is multi-copy

atomic. 𝑃 denotes the set of writes that must be persisted, i.e.,

those writes that are persisted by a synchronous (𝐹𝐿) or an

asynchronous flush (𝐹𝑂) followed by a fence (𝑀𝐹∪𝑆𝐹∪𝑈).
12

The persist axiom states that in case of a crash, the persisted

value (in NVM) of each location 𝑙 in 𝑆𝑀 [𝑙] should not be

coherence-before the writes in 𝑃 . For simplicity, the pf-min

axiom ensures that 𝑃 is minimal, i.e., a flush persists only

those writes that are strictly ordered before it. However, this

minimality axiom is optional (Lemma 4.2).

Lemma 4.2. A behavior is allowed under Px86axiom with ax-

iom pf-min iff it is allowed under Px86axiom without pf-min.

Proof. The proof is given in [9, Appendix C].

4.4 Comparing Px86axiom to Px86 in [47]

Fix Our Px86axiom model indeed fixes the Px86 shortcomings

described in §2.1. In particular, as discussed in §2.1, we first

strengthen Px86 to SPx86 by additionally requiring that flush

instructions behave synchronously – see [9, Figs. 18 and 19]

for the definitions of Px86 and SPx86.
13
In Theorem 4.3 below

we then prove that Px86axiom and SPx86 are equivalent.

Theorem 4.3. A behavior is allowed under SPx86 iff it is

allowed under Px86axiom.

Proof. The proof is given in [9, Appendix D].

The Px86 and SPx86 models are based on the axiomatic

Intel-x86 model known as TSO [41, 49], henceforth referred

to as x86man (given in [9, Fig. 18]). As such, in order to prove

Theorem 4.3we first show that x86man and x86axiom are equiv-

alent. In particular, existing equivalence results between

x86man and x86axiom cover loads and stores only and not

RMWs and fences [2]. We extend this result for the first time

to cover RMWs and fences in Theorem 4.4 below.

Theorem 4.4. A behavior is allowed under x86man iff it is

allowed under x86axiom.

Proof. The proof is given in [9, Appendix D.2].

12
One may expect an asynchronous flush to complete also when the thread

terminates. But this is defined neither in the Intel manual [20] nor in its

libraries [19]. We thus assume an asynchronous flush not to be completed

when a thread terminates. However, we can easily change this by appending

TERM to𝑀𝐹 ∪ 𝑆𝐹 ∪𝑈 , where TERM denotes thread termination. Analo-

gously, we can adapt Px86view in §3 to account for terminated threads.

13
For clarity, we adapted Px86 from [47] to match our style.

Revamping Hardware Persistency Models PLDI ’21, June 20–25, 2021, Virtual, Canada

Simplification Our Px86axiom model is simpler than Px86

in [47] in the following aspects:

• While tso (‘total store order’), nvo (‘non-volatile order’),

and 𝑃 (‘persisted stores’) components of Px86 are existen-

tially quantified, thus increasing non-determinism, the

analogous ob and 𝑃 in Px86axiom are constructed.

• While the conditions for intra-thread, inter-thread, and

CPU-NVM communications are intertwined in Px86,

they are separated and constrained by distinct axioms

in Px86axiom: intra-thread ones by co-rw and co-wr,

inter-thread ones by external and CPU-NVM ones by

persist. To achieve this, Px86axiom orders fewer flush

events than the Intel reference manual [20] does; e.g.,

unlike the manual, Px86axiom does not order 𝐹𝐿 before 𝑅.

• Px86axiom may optionally require the minimality of pf,

which is beneficial for e.g., reducing the search space

significantly for stateless model checking. By contrast,

Px86 does not require a similar minimality in tso.

As we show in §5, the constructive and succinct nature of

Px86axiom and its stylistic similarity to the axiomatic Armv8

model [44] make it easier to prove its equivalence to Px86view.

5 Equivalence of Px86view and Px86axiom

To evaluate the fidelity of Px86view, we show that it is equiv-

alent to Px86axiom. To do this, we first prove the equivalence

of x86view and x86axiom by adapting the equivalence proof

of the view-based and axiomatic models for Armv8 concur-

rency [44], and then generalize it to Intel-x86 persistency.

All theorems in this section are mechanized in Coq [10].

Equivalence of x86view and x86axiom In order to reuse the

existing equivalence proof of the view-based and axiomatic

models for Armv8 concurrency [44] maximally, we appeal

to a new model, x86prom, the promising view-based model

for Intel-x86 concurrency, as the bridge between x86view and

x86axiom. Compared to x86view, x86prom additionally allows

‘promises’, modeling speculative writes (see §6.2). Specifi-

cally, we employ the following proof strategy:

(1) We prove that x86view and x86prom are equivalent and

that promises do not enable additional behaviors as their

effect is cancelled out by concurrency views (Lemma 5.1).

(2) We prove that x86prom and x86axiom are equivalent by

adapting the analogous equivalence proof for Armv8

concurrency [44] as x86prom and x86axiom respectively

have the same style as the (view-based) Armv8view and

(axiomatic) Armv8axiom models of Armv8 concurrency.

Combining the two steps we then establish the desired equiv-

alence in Theorem 5.2.

Lemma 5.1. A behavior is allowed under x86prom iff it is al-

lowed under x86view.

. . . (the language for Intel-x86 in Fig. 3)

𝑠 ∈ St ::= · · · statement

| r := load
xcl,rk [e] load

| rsucc := store
xcl,wk [e1] e2 store

| isb | dmb.𝑓 | dsb.𝑓 fence

| flushopt 𝑒 flush

f ∈ F ::= ld | st | sy order

xcl ∈ B ::= false | true exclusivity

rk ∈ RK ::= pln | wacq | acq read kind

wk ∈ WK ::= pln | wrel | rel write kind

Figure 9. The Armv8 concurrency/persistency language

Theorem 5.2. A behavior is allowed under x86view iff it is

allowed under x86axiom.

Equivalence of Px86view and Px86axiom We next extend

Theorem 5.2 to Intel-x86 persistency (Theorem 5.3). To do

this, we relate each view of an x86view execution to a set of

events in the corresponding x86axiom execution; similarly for

the persistency views in Px86view. For example, the vpCommit
view of a thread state is related to the set 𝑃 of persisted writes

in the corresponding Px86axiom execution. This then allows

us to prove the equivalence of Px86view and Px86axiom.

Theorem 5.3. A behavior is allowed under Px86axiom iff it is

allowed under Px86view.

6 View-Based and Axiomatic Models for

Armv8 Persistency

In §3–5 we presented view-based and axiomatic models for

Intel-x86 persistency and proved their equivalence. We next

do the same for Armv8. As Intel-x86 and Armv8 persistency

are highly similar, we focus on their differences (§6.1; see

[9, Appendix B] for the full details). We then present the

view-based Armv8 persistency model (§6.2), fix and simplify

the axiomatic model for Armv8 persistency due to Raad

et al. [48] as discussed in §2.2 (§6.3), and finally prove the

equivalence of our view-based and axiomatic models (§6.4).

6.1 Armv8 versus Intel-x86 Persistency

We present the Armv8 language in Fig. 9, which is similar to

that for Intel-x86 (Fig. 3), modulo the following:

Ordering: Armv8 ordering constraints areweaker andmore

elaborate than those of Intel-x86. Specifically, Armv8

loads and stores are annotated with access ordering con-

straints (rk or wk in Fig. 9). Moreover, Armv8 fences are

more diverse: isb orders loads and later dependent ac-

cesses; dmb.𝑓 orders accesses according to the ordering

constraint 𝑓 (see Fig. 9); and dsb.sy additionally awaits

the completion of pending flush instructions.

Exclusivity: Unlike Intel-x86, Armv8 supports exclusive

load-link and store-conditional instructions [25] that (if

PLDI ’21, June 20–25, 2021, Virtual, Canada Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang

successful) prohibit intervening stores between the load

and store. Exclusive instructions are more primitive than

RMWs: RMWs can be implemented via exclusive instruc-

tions but not vice versa.
14
As such, loads and stores are

annotated with exclusivity tags (xcl in Fig. 9).

Flush: All Armv8 flushes are asynchronous (flushopt).

As we describe shortly, these differences are largely or-

thogonal to modeling persistency, except for the relaxed

ordering of writes. Specifically, Armv8 allows (unlike Intel-

x86) speculative execution of writes, interacting with NVM

in an interesting way. To see this, we review the relaxed ‘load

buffering’ behavior of Armv8 due to speculative writes:

(𝑎) r1 := y //= 1 (𝑐) r2 := x //= 1

(𝑏) x := 1 (𝑑) y := 1

(LB)

As Armv8 does not order a read and a subsequent write, (𝑎)
and (𝑏) may be reordered; similarly for (𝑐) and (𝑑). As such,
Armv8 allows an execution where (𝑏), (𝑑), (𝑎), and (𝑐) are
executed in order, thus allowing the r1 = r2 = 1 behavior.

6.2 PArmv8view: View-Based Armv8 Persistency

As with Px86view, the view-based Armv8 persistency model,

PArmv8view, follows the same interleaving model over the

history of stores. However, PArmv8view differs from Px86view

in that (1) its views are more elaborate; and (2) it introduces

promises to model speculative writes.

Views To model the ordering constraints and exclusivity of

Armv8, the PArmv8view thread state in [9, Fig. 15] has addi-

tional view components compared to x86view in Fig. 4. These

additional components are those of Armv8view [44]; i.e., the

PArmv8view thread state is that of Armv8view extended with

persistency views (vpReady, vpAsync and vpCommit in §3.5).

Promises The additional views, however, are not sufficient

to model LB: without further instrumentation, the model

remains interleaving, where either (𝑎) or (𝑐) is executed
first, reading the initial value 0.

To model speculative writes, Armv8view [44] introduces

the notion of a promise: a message that may be speculatively

added to the memory (or promised) without executing a store,

provided that the promised message is later substantiated (or

fulfilled) by executing a corresponding store. Put formally, a

thread state 𝑡𝑠 contains the set 𝑡𝑠 .prom of the message ids

that are promised by the thread but not yet fulfilled.

Using promises, we can model the LB behavior as follows,

where tid1 and tid2 denote the left and right threads, respec-

tively: (𝑏-prom) tid1 promises ⟨x := 1⟩tid1@1with 𝑡𝑠1 .prom =

{@1}; (𝑐) tid2 reads ⟨x := 1⟩tid1@1, updating 𝑡𝑠2.coh[x] and

14
While Armv8.1 also supports RMWs, they are currently missing in

Armv8view and Armv8axiom [44]. Accordingly, we do not extend them to

support RMWs as this is orthogonal to our objectives here.

𝑡𝑠2 .vrOld (‘old-read view’
15
) to @1; (𝑑) tid2 writes ⟨y := 1⟩tid2

@2, updating 𝑡𝑠2.coh[y] and 𝑡𝑠2 .vwOld (‘old-write view’) to
@2; (𝑎) tid1 reads ⟨y := 1⟩tid2@2, updating 𝑡𝑠1.coh[y] and
𝑡𝑠1 .vrOld to@2; and (𝑏-fulfill) tid1 fulfills ⟨x := 1⟩tid1@1, yield-

ing 𝑡𝑠1.prom=∅ and 𝑡𝑠1.vwOld=@1. Effectively, the write (𝑏)
is speculatively executed before the read (𝑎) is executed.
To ensure that all speculations are substantiated, we re-

quire that a thread state’s prom set be empty at the end of

an execution; otherwise, the execution is deemed invalid.

Promises andPersistency The promises in PArmv8view sim-

ilarly model speculative writes. Indeed, promises are largely

orthogonal to persistency, except in the case of a crash.

Specifically, in case of a crash in the presence of unfulfilled

promises, we must determine the NVM contents.

On the one hand, one may argue that unfulfilled promises

should persist (remain in NVM) as they have been made

visible to other threads. To see this, consider Commit2 and

suppose that the left thread promises ⟨data := 42⟩@1 which

is yet unfulfilled, the right thread reads ⟨data := 42⟩@1 and

writes ⟨commit := 1⟩@2, and then a crash occurs. If upon re-

covery ⟨commit := 1⟩@2 has persisted, then ⟨data := 42⟩@1

(which is an unfulfilled promise) should have also persisted.

On the other hand, onemay argue that unfulfilled promises

should not persist as they are not substantiated by a store. For

example, suppose that the left thread inCommit2 promises to

write ⟨data := 23⟩@1without fulfilling it, and then it crashes.

The promised write then should not persist as it is unsub-

stantiated; i.e., otherwise 23 appears out-of-thin-air.

To resolve this dilemma, we allow an execution to crash

only if it has no unfulfilled promises. This then admits only

the desired behaviors in Commit2: the execution cannot

crash if either ⟨data := 42⟩@1 or ⟨data := 23⟩@1 is promised

and not yet fulfilled. At first glance, this may seem restrictive

as micro-architecturally an execution may crash even in the

presence of uncommitted speculative writes. However, when

this is the case, executing the remaining instructions to com-

mit speculative writes does not constrain the NVM contents.

Moreover, we formally justify our design by proving that

PArmv8view and PArmv8axiom are equivalent (see §6.4).

6.3 PArmv8axiom: Fixing and Simplifying PArmv8

We use the model of Pulte et al. [44] as the baseline axiomatic

model for Armv8 concurrency, presented as Armv8axiom in

[44, Appendix D].
16
The Armv8axiom model is equivalent to

the authoritative axiomatic model in [43] which is reviewed

by Arm engineers. Note that Armv8axiom has the same style

as x86axiom in Fig. 7, except that: (1) all coherence constraints

are captured by a single axiom (internal) since (co-ww)

15
While reads update vrNew in x86view, they update vrOld in Armv8view. We

refer the reader to [9, Appendix B] for more details.

16
We refactor the relations in [44] to replace dmb with dmb∪ dsb. The latter

is a straightforward extension as dsb is strictly stronger than dmb [4].

Revamping Hardware Persistency Models PLDI ’21, June 20–25, 2021, Virtual, Canada

(axioms of Armv8axiom [44] [9, Fig. 20])

fob = [𝑊 ∪ 𝑅]; po; [dmb.sy ∪ dsb.sy]; po; [𝐹𝑂]
∪ [𝑊 ∪ 𝑅]; (po ∩ CL); [𝐹𝑂]

ob = obs ∪ dob ∪ aob ∪ bob ∪ fob ∪ pf ∪ fp (redefined)

pf ⊆ (obs ∪ dob ∪ aob ∪ bob ∪ fob ∪ fp)+ (pf-min)

𝑃 = 𝑑𝑜𝑚(pf; [𝐹𝑂]; po; [dsb.sy])

∀𝑙 . ∃𝑤. 𝑆𝑀 (𝑙) = wval(𝑤) ∧ (𝑃 × {𝑤}) ∩ Loc ⊆ co
?

(persist)

Figure 10. The PArmv8axiom model

and (co-rr) no longer follow from the other axioms;
17
(2) the

ob component of Armv8axiom is more elaborate, modeling the

weak ordering constraints of Armv8; and (3) Armv8axiom has

an additional axiom (atomic) that ensures the exclusivity of

load-link/store-conditional instructions.

We next define an axiomatic model for Armv8 persistency,

PArmv8axiom in Fig. 10, by extending Armv8axiom with per-

sistency in the same style as Px86axiom. The key differences

from Px86axiom are that: (1) flush instructions impose dif-

ferent ordering constraints; (2) PArmv8axiom has no strong

flush instructions; and (3) optimized flush instructions are

guaranteed to commit only upon executing dsb.sy fences.
The pf-min axiom is optional as in Px86axiom (Lemma 4.2).

Fix Our PArmv8axiom model fixes the PArmv8 problem dis-

cussed in §2.2. Put formally, we prove the equivalence of

PArmv8axiom and SPArmv8 which denotes strengthening

PArmv8 by extending ob with pf and fp.

Theorem 6.1. A behavior is allowed under SPArmv8 iff it is

allowed under PArmv8axiom.

Proof. The proof is given in [9, Appendix E].

6.4 Equivalence of PArmv8view and PArmv8axiom

Finally, we prove that PArmv8axiom and PArmv8view are equiv-

alent by generalizing the analogous concurrency result in

[44, Theorem 6.1] (showing that Armv8axiom and Armv8view

are equivalent) and extending it with persistency.

Theorem 6.2. A behavior is allowed under PArmv8axiom iff

it is allowed under PArmv8view.

Proof. The proof is mechanized in [10].

7 Model Checking Persistency Patterns

We develop a stateless model checker for PArmv8view by

generalizing and extending the Armv8view model checking

framework in [44] to support persistency and account for

crashes (§7.1). We use our model checker to verify represen-

tative persistent synchronization examples, including the

AtomicPersists example [45] that emulates a persistent

17
We could replace internal with irreflexivity of po; (co ∪ rf ∪ fr ∪ fr; rf)

for uniformity with x86axiom. We forwent this to use Armv8axiom [44] as is.

transaction [9, Appendix F]. Our model checking tool and

verified examples are open source and publicly available [10].

7.1 Model Checking Tool

Model Checking Tool for Armv8view We first briefly re-

view the baseline model checking tool for Armv8view [44],

which is a part of RMEM [5]. The tool consists of two parts:

the executable model for sequential semantics of Armv8 ISA

written in Sail [5]; and the executable memory model for con-

currency written in Lem [39]. The former is adopted from

[43], and the latter is split into two modes: the “promise-

mode” which approximately enumerates the reachable final

memories; and the “non-promise-mode” that checks if each

potentially reachable final memory is actually reachable by

thread executions to the end without promises. The two-

mode execution is sound for the Armv8view model: a reach-

able state in Armv8view is also reachable by first promising

to write all messages and then fulfilling the promises by

executing the threads [44, Theorem 7.1].

Extension for PArmv8view We extend the model checking

tool for Armv8view as follows: (1) we add persistency instruc-

tions to the executable model for sequential semantics in

Sail; (2) we add persistency views to the executable memory

model for Armv8view in Lem; (3) we enumerate not only final

but also intermediate reachable memories in the promise–

mode; and (4) we allow each thread’s execution to stop amidst

the non-promise-mode; and (5) we enumerate all post-crash

states from the reachable states of intermediate memories

and persistency views.

The performance of the resulting model checking algo-

rithm for PArmv8view is similar to that for Armv8view because

(1), (2), (4), (5) introduce only a constant-factor overhead;

and the number of intermediate memories in (3) is usually
dominated by that of final memories.

8 Related and Future Work

Related Work on Hardware Persistency Models Existing

literature includes several works on formalising and testing

hardware persistency models [11, 26, 28, 36, 42, 47, 48]. As

discussed in detail in §2–6, the works of [47, 48] are closest

to ours. Pelley et al. [42] propose several persistency models

including epoch persistency; however, these models have not

been adopted by mainstream architectures as of yet. Condit

et al. [11], Joshi et al. [26] describe epoch persistency un-

der x86-TSO [49]. Liu et al. [36] develop the PMTest testing

framework for finding persistency bugs in software running

over hardware models. Izraelevitz et al. [23] give a formal se-

mantics of epoch persistency under release consistency [16].

As discussed in §1, the PTSO model of Raad and Vafeiadis

[46] formalises epoch persistency under x86man (TSO) as

a proposal for Intel-x86. However, PTSO is rather different

from the existing Intel-x86 persistency model in Intel [20] in

that it does not support the fine-grained Intel primitives for

PLDI ’21, June 20–25, 2021, Virtual, Canada Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang

selectively persisting cache lines (flush and flushopt), and
instead proposes coarse-grained instructions (for persisting

all locations at once) that do not exist in Intel-x86.

Khyzha and Lahav [28] recently developed the PTSOsyn

model for Intel-x86 that satisfies the three properties of (A)–

(C) discussed in §1. In particular, PTSOsyn supports persistent

synchronization patterns even in the presence of I/O (B) as it

also models flush instructions synchronously like Px86view

(§3.5). However, this problem of asynchronous modeling of

flush regarding I/O is not discussed in the paper.

Intel recently introduced Optane Persistent Memory 200

Series [22] that feature Enhanced Asynchronous DRAM

Refresh (eADR), which treats processor caches as persis-

tent (rather than volatile) by automatically flushing cache

data to NVM in case of a crash. When eADR is available, a

store is guaranteed to persist when made visible to other

threads (e.g., after executing an mfence/sfence, but not
clflush/clflushopt). Nevertheless, we believe that our

contributions still stand for the following reasons. First, to

ensure backwards compatibility, programs must support per-

sistency in the absence of eADR. That is, a correct NVM

program must defensively check whether eADR is enabled,

and if not insert appropriate clflush or clflushopt instruc-
tions per our models. Second, eADR may increase runtime

cost. For example, to flush cache data to NVM when a crash

occurs, eADR must drain more power with higher voltage

level or larger capacity, the impact of which on power con-

sumption has not been thoroughly analyzed as of yet. The

increased power consumption may affect embedded systems

worse, and to our knowledge, Arm currently has no plans

for supporting an eADR-like feature in Armv8.

Related Work on Software Persistency Models The litera-

ture on software persistency is more limited [8, 17, 30]. Kolli

et al. [30] propose acquire-release persistency, an analogue

to release-acquire consistency in C/C++. Gogte et al. [17]

propose synchronisation-free regions (regions delimited by

synchronisation operations or system calls). Although both

approaches enjoy good performance, their semantic mod-

els are rather fine-grained, paving the way towards more

coarse-grained transactional models [6, 19, 31, 48, 51, 52].

Related Work on Verification There are several works on

implementing and verifying algorithms that operate onNVM.

Friedman et al. [15] developed persistent queue implementa-

tions using Intel-x86 persist instructions (e.g., flush). Simi-

larly, Zuriel et al. [54] developed persistent set implementa-

tions using Intel-x86 persist instructions. Derrick et al. [14]

provided a formal correctness proof of the implementation

in [54]. All three of [14, 15, 54] assume that the underlying

concurrency model is sequential consistency [33], rather

than x86man (TSO). Recently, Raad et al. [45] developed a

persistent program logic for verifying programs under the

Px86 model. Finally, Kokologiannakis et al. [29] recently for-

malised the consistency and persistency semantics of the

Linux ext4 filesystem, and developed a model-checking algo-

rithm and tool for verifying the consistency and persistency

behaviors of ext4 applications such as text editors

Future Work We plan to build on this work in several ways.

First, we will empirically validate the proposed models w.r.t.

NVM hardware using custom SoC (ASIC or FPGA) that cap-

tures the traffic between CPU and NVM, as proposed also

in [47]. Second, wewill explore language-level persistency by

researching persistency extensions of high-level languages

such as C/C++. This will liberate programmers from under-

standing hardware-specific persistency guarantees andmake

persistent programming more accessible. Third, we will first

specify existing persistent libraries such as PMDK [19] and

then use our model checker (§7) to verify their implementa-

tions against our specifications. Lastly, in the spirit of persis-

tency semantics defining the order in which writes are prop-

agated to NVM in DIMM slots, we will study the semantics

in the presence of accelerators (e.g., CXL [13] and CCIX [12]),

defining the order in which writes are propagated to accel-

erators in PCIe slots or other peripheral interconnects.

Acknowledgments

This work was supported by Institute for Information &

communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government (MSIT) (No.2019-0-

00118, Research and Development on Memory-Centric OS

Technologies of Unified Data Model for Next-Generation

Shared/Hybrid Memory).

References

[1] 2020. The Coq Proof Assistant. https://coq.inria.fr/
[2] Jade Alglave. 2012. A Formal Hierarchy of Weak Memory Models.

Form. Methods Syst. Des. 41, 2 (2012).

[3] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herd-

ing Cats: Modelling, Simulation, Testing, and Data Mining for Weak

Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014).

[4] Arm. 2020. Arm architecture reference manual Armv8, for Armv8-

A architecture profile (DDI 0487F.b). https://static.docs.arm.com/
ddi0487/fb/DDI0487F_b_armv8_arm.pdf

[5] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-

sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Kr-

ishnaswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-a,

RISC-v, and CHERI-MIPS. Proc. ACM Program. Lang. 3, POPL (2019).

https://doi.org/10.1145/3290384
[6] Hillel Avni, Eliezer Levy, and Avi Mendelson. 2015. Hardware Trans-

actions in Nonvolatile Memory. In Proceedings of the 29th Interna-

tional Symposium on Distributed Computing - Volume 9363 (Tokyo,

Japan) (DISC 2015). Springer-Verlag, Berlin, Heidelberg, 617–630. https:
//doi.org/10.1007/978-3-662-48653-5_41

[7] H. Alan Beadle, Wentao Cai, Haosen Wen, and Michael L. Scott. 2020.

Nonblocking Persistent Software Transactional Memory. In Proceed-

ings of the 25th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming (San Diego, California) (PPoPP ’20). As-

sociation for Computing Machinery, New York, NY, USA, 429–430.

https://doi.org/10.1145/3332466.3374506

https://coq.inria.fr/
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-662-48653-5_41
https://doi.org/10.1007/978-3-662-48653-5_41
https://doi.org/10.1145/3332466.3374506

Revamping Hardware Persistency Models PLDI ’21, June 20–25, 2021, Virtual, Canada

[8] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.

Atlas: Leveraging Locks for Non-volatile Memory Consistency. SIG-

PLAN Not. 49, 10 (Oct. 2014), 433–452. https://doi.org/10.1145/2714064.
2660224

[9] Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang.

2021. Appendix for Revamping Hardware Persistency Models: View-

Based and Axiomatic Persistency Models for Intel-x86 and Armv8.

https://cp.kaist.ac.kr/pmem
[10] Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang.

2021. Artifact for Revamping Hardware Persistency Models: View-

Based and Axiomatic Persistency Models for Intel-x86 and Armv8.

https://doi.org/10.1145/3410292
[11] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,

Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O

Through Byte-addressable, Persistent Memory. In Proceedings of the

ACM SIGOPS 22Nd Symposium on Operating Systems Principles (Big

Sky, Montana, USA) (SOSP ’09). ACM, New York, NY, USA, 133–146.

https://doi.org/10.1145/1629575.1629589
[12] CCIX Consortium. [n.d.]. Cache Coherent Interconnect for Accelera-

tors. https://www.ccixconsortium.com/
[13] CXL Consortium. [n.d.]. Compute Express Link. https://www.

computeexpresslink.org/
[14] John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn, and

HeikeWehrheim. 2019. Verifying Correctness of Persistent Concurrent

Data Structures. In Formal Methods – The Next 30 Years, Maurice H. ter

Beek, Annabelle McIver, and José N. Oliveira (Eds.). Springer Interna-

tional Publishing, Cham, 179–195.

[15] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-

trank. 2018. A Persistent Lock-Free Queue for Non-Volatile Memory.

In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (Vienna, Austria) (PPoPP ’18).

Association for Computing Machinery, New York, NY, USA, 28–40.

https://doi.org/10.1145/3178487.3178490
[16] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,

Anoop Gupta, and John Hennessy. 1990. Memory Consistency and

Event Ordering in Scalable Shared-memoryMultiprocessors. SIGARCH

Comput. Archit. News 18, 2SI (May 1990), 15–26. https://doi.org/10.
1145/325096.325102

[17] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish

Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018. Per-

sistency for Synchronization-free Regions. In Proceedings of the 39th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New York,

NY, USA, 46–61. https://doi.org/10.1145/3192366.3192367
[18] Taeho Hwang, Jaemin Jung, and Youjip Won. 2015. HEAPO: Heap-

Based Persistent Object Store. ACM Trans. Storage 11, 1, Article 3 (Dec.

2015), 21 pages. https://doi.org/10.1145/2629619
[19] Intel. 2015. Persistent Memory Programming. https://pmem.io/
[20] Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual (Combined Volumes). https://software.intel.com/sites/default/
files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf Order Num-

ber: 325462-069US.

[21] Intel. 2019. Intel® Optane™ Persistent Memory. https:
//www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html

[22] Intel. 2020. Intel® Optane™ Persistent Memory 200 Series Prod-

uct Specifications. https://ark.intel.com/content/www/us/en/
ark/products/series/203877/intel-optane-persistent-memory-200-
series.html

[23] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016.

Linearizability of persistent memory objects under a full-system-crash

failure model. In International Symposium on Distributed Computing.

Springer, 313–327.

[24] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.

Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance

Measurements of the Intel Optane DC Persistent Memory Module.

arXiv:1903.05714 [cs.DC]

[25] Erik Jensen, G. W. Hagensen, and J. Broughton. 1987. A new approach

to exclusive data access in shared memory multiprocessors.

[26] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015.

Efficient Persist Barriers for Multicores. In Proceedings of the 48th Inter-

national Symposium on Microarchitecture (Waikiki, Hawaii) (MICRO-

48). ACM, New York, NY, USA, 660–671. https://doi.org/10.1145/
2830772.2830805

[27] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A promising semantics for relaxed-memory concurrency.

In POPL 2017.

[28] Artem Khyzha and Ori Lahav. 2021. Taming X86-TSO Persistency. Proc.

ACM Program. Lang. 5, POPL (2021). https://doi.org/10.1145/3434328
[29] Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor

Vafeiadis. 2021. PerSeVerE: Persistency Semantics for Verification

under Ext4. Proc. ACM Program. Lang. 5, POPL, Article 43 (Jan. 2021),

29 pages. https://doi.org/10.1145/3434324
[30] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, StephanDiestelhorst, PeterM.

Chen, Satish Narayanasamy, and Thomas F. Wenisch. 2017. Language-

level Persistency. In Proceedings of the 44th Annual International Sympo-

sium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM,

New York, NY, USA, 481–493. https://doi.org/10.1145/3079856.3080229
[31] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.

Wenisch. 2016. High-Performance Transactions for Persistent Mem-

ories. In Proceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for Computing

Machinery, New York, NY, USA, 399–411. https://doi.org/10.1145/
2872362.2872381

[32] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a

Distributed System. Commun. ACM 21, 7 (July 1978).

[33] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs. IEEE Trans. Computers 28,

9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439
[34] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty,

Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promising 2.0:

Global Optimizations in Relaxed Memory Concurrency (PLDI 2020).

https://doi.org/10.1145/3385412.3386010
[35] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei

Wu, Weimin Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable

Transactions with Decoupling for Persistent Memory. In Proceedings

of the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems (Xi’an, China)

(ASPLOS ’17). Association for Computing Machinery, New York, NY,

USA, 329–343. https://doi.org/10.1145/3037697.3037714
[36] Sihang Liu, YizhouWei, Jishen Zhao, Aasheesh Kolli, and Samira Khan.

2019. PMTest: A Fast and Flexible Testing Framework for Persistent

Memory Programs. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’19).

[37] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an

RDMA-enabled Distributed Persistent Memory File System. In 2017

USENIX Annual Technical Conference (USENIX ATC 17). USENIXAssoci-

ation, Santa Clara, CA, 773–785. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/lu

[38] Youyou Lu, Jiwu Shu, and Long Sun. 2016. Blurred Persistence: Efficient

Transactions in Persistent Memory. ACM Trans. Storage 12, 1, Article

3 (Jan. 2016), 29 pages. https://doi.org/10.1145/2851504
[39] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and

Peter Sewell. 2014. Lem: Reusable Engineering of Real-World Seman-

tics (ICFP ’14). https://doi.org/10.1145/2628136.2628143

https://doi.org/10.1145/2714064.2660224
https://doi.org/10.1145/2714064.2660224
https://cp.kaist.ac.kr/pmem
https://doi.org/10.1145/3410292
https://doi.org/10.1145/1629575.1629589
https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/325096.325102
https://doi.org/10.1145/325096.325102
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/2629619
https://pmem.io/
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://ark.intel.com/content/www/us/en/ark/products/series/203877/intel-optane-persistent-memory-200-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/203877/intel-optane-persistent-memory-200-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/203877/intel-optane-persistent-memory-200-series.html
https://arxiv.org/abs/1903.05714
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3037697.3037714
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://doi.org/10.1145/2851504
https://doi.org/10.1145/2628136.2628143

PLDI ’21, June 20–25, 2021, Virtual, Canada Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang

[40] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner,

Thomas Willhalm, and Grégoire Gomes. 2017. Memory Management

Techniques for Large-Scale Persistent-Main-Memory Systems. Proc.

VLDB Endow. 10, 11 (Aug. 2017), 1166–1177. https://doi.org/10.14778/
3137628.3137629

[41] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better X86

Memory Model: X86-TSO. In TPHOL.

[42] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory

Persistency. In Proceeding of the 41st Annual International Symposium

on Computer Architecuture (Minneapolis, Minnesota, USA) (ISCA ’14).

IEEE Press, 265–276.

[43] Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar,

and Peter Sewell. 2017. Simplifying ARM Concurrency: Multicopy-

Atomic Axiomatic and Operational Models for ARMv8. 2, POPL (Dec.

2017).

[44] Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan

Lee, and Chung-Kil Hur. 2019. Promising-ARM/RISC-V: A Simpler

and Faster Operational Concurrency Model. In PLDI 2019.

[45] Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2020. Persistent Owicki-

Gries Reasoning. Proc. ACM Program. Lang. 3, OOPSLA (2020).

[46] Azalea Raad and Viktor Vafeiadis. 2018. Persistence Semantics for

Weak Memory: Integrating Epoch Persistency with the TSO Memory

Model. Proc. ACM Program. Lang. 2, OOPSLA, Article 137 (Oct. 2018),

27 pages. https://doi.org/10.1145/3276507
[47] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020.

Persistency Semantics of the Intel-X86 Architecture. Proc. ACM Pro-

gram. Lang. 4, POPL (2020).

[48] Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak Per-

sistency Semantics from the Ground up: Formalising the Persistency

Semantics of ARMv8 and Transactional Models. Proc. ACM Program.

Lang. 3, OOPSLA (2019).

[49] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,

and Magnus O. Myreen. 2010. X86-TSO: A Rigorous and Usable Pro-

grammer’s Model for X86 Multiprocessors. Commun. ACM 53, 7

(2010).

[50] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed

Shared Persistent Memory. In Proceedings of the 2017 Symposium on

Cloud Computing (Santa Clara, California) (SoCC ’17). Association for

Computing Machinery, New York, NY, USA, 323–337. https://doi.org/
10.1145/3127479.3128610

[51] Hongping Shu, Hongyu Chen, Hao Liu, Youyou Lu, Qingda Hu, and

Jiwu Shu. 2018. Empirical Study of Transactional Management for

PersistentMemory. 61–66. https://doi.org/10.1109/NVMSA.2018.00015
[52] Arash Tavakkol, Aasheesh Kolli, StankoNovakovic, Kaveh Razavi, Juan

Gómez-Luna, Hasan Hassan, Claude Barthels, Yaohua Wang, Moham-

mad Sadrosadati, Saugata Ghose, Ankit Singla, Pratap Subrahmanyam,

and Onur Mutlu. 2018. Enabling Efficient RDMA-based Synchronous

Mirroring of Persistent Memory Transactions. CoRR abs/1810.09360

(2018). arXiv:1810.09360 http://arxiv.org/abs/1810.09360
[53] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.

Mnemosyne: Lightweight Persistent Memory. In Proceedings of the

Sixteenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (Newport Beach, California,

USA) (ASPLOS XVI). Association for Computing Machinery, New York,

NY, USA, 91–104. https://doi.org/10.1145/1950365.1950379
[54] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez

Petrank. 2019. Efficient Lock-Free Durable Sets. Proc. ACM Program.

Lang. 3, OOPSLA, Article 128 (Oct. 2019), 26 pages. https://doi.org/10.
1145/3360554

https://doi.org/10.14778/3137628.3137629
https://doi.org/10.14778/3137628.3137629
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3127479.3128610
https://doi.org/10.1145/3127479.3128610
https://doi.org/10.1109/NVMSA.2018.00015
https://arxiv.org/abs/1810.09360
http://arxiv.org/abs/1810.09360
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554

	Abstract
	1 Introduction
	2 Overview
	2.1 The Px86 Model and Synchronous Flushes
	2.2 The PArmv8 Model and Multi-Copy Atomicity
	2.3 Our Solution: View-Based Operational Models

	3 Px86view: A View-Based Model for Intel-x86 Persistency
	3.1 Language for Intel-x86 Persistency
	3.2 The x86view Model
	3.3 Concurrency Views
	3.4 Supporting Read-Modify-Writes (RMW)
	3.5 Persistency Views

	4 Fixing and Simplifying the Px86 Model
	4.1 Background on Axiomatic Models
	4.2 The x86axiom Model herding-cats
	4.3 The Px86axiom Model
	4.4 Comparing Px86axiom to Px86 in px86

	5 Equivalence of Px86view and Px86axiom
	6 View-Based and Axiomatic Models for Armv8 Persistency
	6.1 Armv8 versus Intel-x86 Persistency
	6.2 PArmv8view: View-Based Armv8 Persistency
	6.3 PArmv8axiom: Fixing and Simplifying PArmv8
	6.4 Equivalence of PArmv8view and PArmv8axiom

	7 Model Checking Persistency Patterns
	7.1 Model Checking Tool

	8 Related and Future Work
	Acknowledgments
	References

