
Persistency Semantics
of the

Intel-x86 Architecture

Azalea Raad1,2 John Wickerson2 Gil Neiger3 Viktor Vafeiadis1

1 Max Planck Institute for Software Systems (MPI-SWS)

2 Imperial College London

3 Intel Corporation

azalea@mpi-sws.org @azalearaadSoundAndComplete.org

Computer Storage

HDD

RAM✓ fast
✗ volatile

✗ slow
✓ persistent

!2

What is Non-Volatile Memory (NVM)?

RAMNVM

NVM: Hybrid Storage + Memory
Best of both worlds:
✓ persistent (like HDD)
✓ fast, random access (like RAM)

!3

!4

!5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

A: Program Verification

!5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

A: Program Verification

!5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

What about Concurrency?

C1 || C2 || ... || Cn
// ???

// x = y = ... = 0

// ???
// recovery routine

time

Difficulty

Sequential

!
WMC

☹

(1990s)

!6

(1940s)
SC

"

(1979)

Formal Semantic Models

Weak Memory Consistency (WMC)

!7

 No total execution order (to) ⇒

 weak behaviour absent under SC, caused by:

• instruction reordering by compiler
• write propagation across cache hierarchy

Weak Memory Consistency (WMC)

!7

 No total execution order (to) ⇒

 weak behaviour absent under SC, caused by:

• instruction reordering by compiler
• write propagation across cache hierarchy

Consistency Model

the order in which

writes are made visible

to other threads

e.g. x86 (TSO), ARMv8, C11, Java

time

Difficulty

Sequential

!

!8

$

WNVMC

This Talk

(2017)(1940s)
SC

"

(1979)
WMC

☹

(1990s)

Formal Semantic Models

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!9

!! Execution continues ahead of persistence
 — asynchronous persists

!! Writes may persist out of order
 — relaxed persists

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!9

!! Execution continues ahead of persistence
 — asynchronous persists

!! Writes may persist out of order
 — relaxed persists

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

NVM Semantics
Consistency + Persistency Model

% This Talk %

!10

Px86

(Persistent x86):

NVM Semantics

of the

x86 Architecture

Warmup:
Sequential Px86

!11

x86: (Sequential) Persistent Hardware Model

Persistence Buffer

CPU

(Persistent) Memory

x:=1 : adds x:=1 to p-buffer

!12

x86: (Sequential) Persistent Hardware Model

Persistence Buffer

CPU

(Persistent) Memory

x:=1 : adds x:=1 to p-buffer

unbuffer* : p-buffer to memory

* at non-deterministic times

Unbuffered at non-deterministic points in time!

!12

x86: (Sequential) Persistent Hardware Model

Persistence Buffer

CPU

(Persistent) Memory

x:=1 : adds x:=1 to p-buffer

unbuffer* : p-buffer to memory

* at non-deterministic times

Unbuffered at non-deterministic points in time!
Buffering & unbuffering orders may disagree!

!12

x86: (Sequential) Persistent Hardware Model

Persistence Buffer

CPU

(Persistent) Memory

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

unbuffer* : p-buffer to memory

* at non-deterministic times

Unbuffered at non-deterministic points in time!
Buffering & unbuffering orders may disagree!

!12

x86: (Sequential) Persistent Hardware Model

Persistence Buffer

CPU

(Persistent) Memory

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

p-buffer lost; memory retained

unbuffer* : p-buffer to memory

* at non-deterministic times

Unbuffered at non-deterministic points in time!
Buffering & unbuffering orders may disagree!

!12

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!13

!! out of order persists
☛ persist barriers?

Fixing Relaxed Persists: Attempt #1

x := 1;

// recovery routine

// x=0;y=0

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Persist Barriers: Desiderata

!14

y := 1;
☛

!! out of order persists
☛ persist barriers?

x := 1;

// recovery routine

// x=0;y=0

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Persist Barriers: Desiderata

!14

y := 1;
☛

!! out of order persists
☛ persist barriers?

x86
does not provide
persist barriers!

x86 memory barriers
(e.g. sfence, mfence)

do not enforce
persist ordering!

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!15

!! out of order persists
☛ explicit persists?

Fixing Relaxed Persists: Attempt #2

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!16

Explicit Persists: Desiderata

☛ explicit persists?

persist x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!! out of order persists

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!17

Explicit Persists: Reality on x86

☛ explicit persists?
!! out of order persists

clwb x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

clwb x/clflushopt x/clflush x:
 asynchronously persist cache line containing x

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!17

Explicit Persists: Reality on x86

☛ explicit persists?
!! out of order persists

clwb x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

clwb x/clflushopt x/clflush x:
 asynchronously persist cache line containing x

x86 explicit persists

are

asynchronous

and can themselves

persist out of order !

x := 1;

// recovery routine

// x=0;y=0

y := 1;

!18

clwb x;
sfence;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist Sequence

✤ Waits until earlier writes on x are persisted
✤ Disallows reordering

✓ synchronous persists
✓ no out of order persists

!19

x86 Persists: clwb, clflushopt, clflush

✤ clwb and clflushopt: same ordering constraints

Strength
(ordering constraints)

clwb

clflushopt

clflush

Performance

clflush

clflushopt

clwb

✤ clwb does not invalidate cache line

✤ clflush: strongest ordering constraints; invalidates cache line

✤ clflushopt invalidates cache line

Concurrent Px86

!20

!21

x86: (Volatile) Concurrent Hardware Model (TSO)

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

. . .
x:=1 : adds x:=1 to buffer

a:=x : if buffer contains x, reads latest entry
else reads from memory

buffer and memory lost

unbuffer* : buffer to memory

* at non-deterministic times

Px86: Persistent & Concurrent x86

!22

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

(Persistent) Memory

CPU

Persistence Buffer

Sequential, Persistent x86

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

Concurrent, Volatile x86

buffer/unbuffer order: consistency model

Persistent x86 (Px86)

!23

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model

buffer/unbuffer order: consistency model

Persistent x86 (Px86)

!23

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model

buffer/unbuffer order: consistency model NVM
Semantics

(Px86)

Persistent x86 (Px86)

!23

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

!24

Px86
Intel® Architecture Reference Manual

5038
pages!

“Executions of the clwb instruction are
ordered with respect to fence instructions …”

“ They are not ordered with respect to
 other executions of clwb, to executions
 of clflush and clflushopt …”

Ambiguities in text!

⇓

Two Px86 models

!24

Px86
Intel® Architecture Reference Manual

5038
pages!

“Executions of the clwb instruction are
ordered with respect to fence instructions …”

“ They are not ordered with respect to
 other executions of clwb, to executions
 of clflush and clflushopt …”

Ambiguities in text!

⇓

Two Px86 models

Px86man

• faithful to manual text
• weaker than architectural intent
• 2 models: operational & declarative

proved equivalent

Px86sim

• captures architectural intent
• stronger than manual text
• 2 models: operational & declarative

proved equivalent

Summary
✓ Formalised Intel-x86 NVM semantics:

✢ Px86man: equivalent operational & declarative models
✢ Px86sim: equivalent operational & declarative models

? Future Work:
✢ program logics
✢ model checking algorithms
✢ litmus testing

✢ Persistent transactional library implemented in Px86
✓ More in the paper

✢ Persistent queue library implemented in Px86

Summary

azalea@mpi-sws.org @azalearaadSoundAndComplete.org

✓ Formalised Intel-x86 NVM semantics:
✢ Px86man: equivalent operational & declarative models
✢ Px86sim: equivalent operational & declarative models

? Future Work:
✢ program logics
✢ model checking algorithms
✢ litmus testing

Thank You for Listening!

✢ Persistent transactional library implemented in Px86
✓ More in the paper

✢ Persistent queue library implemented in Px86

