
PerSeVerE: Persistency Semantics for Verification Under

Ext4

Michalis Kokologiannakis 1
Ilya Kaysin

2
Azalea Raad

3
Viktor Vafeiadis

1

January, 2021

1
MPI-SWS

2
National Research University, Higher School of Economics, Russia/JetBrains Research

3
Imperial College London

Writing a Text Editor

Save bu↵er as “foo.txt”

df = open (“foo.txt”, O WRONLY|O CREAT|O TRUNC);

write (df , buffer);

close (df);

printf(“File saved\n”);

Does replace-via-truncate successfully write foo.txt?

- Consistency: X
- Persistency: ???

1

What Does man Say?

“If auto da alloc is enabled, ext4 will detect the [. . .] replace-via-truncate

[. . .] and [. . .] the data blocks of the new file are forced to disk [on close]

[. . .].”

man 5 ext4

replace-via-truncate is used by e.g., nano for writing files and backups

Upon a crash, both the edited file and its backup might be empty!

2

Desiderata

Formal Semantics E↵ective Model Checking

Challenges:

• POSIX written in prose

• ext4 not fully POSIX-compliant

• ext4 and weak memory?

• State Space Explosion

3

Contributions

• PerSeVerE: framework for verification under ext4

- formal model integrated with C/C++ consistency semantics

- based on kernel’s code and stress testing

- e↵ective model checking algorithm

• Report bugs in commonly used text editors like emacs, vim and nano

4

ext4 Semantics

Filesystem operations

Opening a file:

- df = open (“foo.txt”, O APPEND)

Reading from a file:

- r = read (df , 3), r = pread (df , 3, 42)

Writing to a file:

- write (df , “foo”), pwrite (df , “bar”, 0)

Closing a file:

- close (df)

Directory operations:

- creat, link, unlink, rename

Synchronization operations:

- fsync, sync

File Descriptor

Table of Process A

flags file

.

.

.

File Descriptor

Table of Process B

flags file

.

.

.

Open File Table

lo
ck

fla
gs

o↵
se
t

. .
.

in
od

e

.

.

.

Inode Table

lo
ck

si
ze . .
.

.

.

.

5

Filesystem operations

Opening a file:

- df = open (“foo.txt”, O APPEND)

Reading from a file:

- r = read (df , 3), r = pread (df , 3, 42)

Writing to a file:

- write (df , “foo”), pwrite (df , “bar”, 0)

Closing a file:

- close (df)

Directory operations:

- creat, link, unlink, rename

Synchronization operations:

- fsync, sync

File Descriptor

Table of Process A

flags file

.

.

.

File Descriptor

Table of Process B

flags file

.

.

.

Open File Table

lo
ck

fla
gs

o↵
se
t

. .
.

in
od

e

.

.

.

Inode Table

lo
ck

si
ze . .
.

.

.

.

5

Filesystem operations

Opening a file:

- df = open (“foo.txt”, O APPEND)

Reading from a file:

- r = read (df , 3), r = pread (df , 3, 42)

Writing to a file:

- write (df , “foo”), pwrite (df , “bar”, 0)

Closing a file:

- close (df)

Directory operations:

- creat, link, unlink, rename

Synchronization operations:

- fsync, sync

File Descriptor

Table of Process A

flags file

.

.

.

File Descriptor

Table of Process B

flags file

.

.

.

Open File Table

lo
ck

fla
gs

o↵
se
t

. .
.

in
od

e

.

.

.

Inode Table

lo
ck

si
ze . .
.

.

.

.

5

Filesystem operations

Opening a file:

- df = open (“foo.txt”, O APPEND)

Reading from a file:

- r = read (df , 3), r = pread (df , 3, 42)

Writing to a file:

- write (df , “foo”), pwrite (df , “bar”, 0)

Closing a file:

- close (df)

Directory operations:

- creat, link, unlink, rename

Synchronization operations:

- fsync, sync

File Descriptor

Table of Process A

flags file

.

.

.

File Descriptor

Table of Process B

flags file

.

.

.

Open File Table

lo
ck

fla
gs

o↵
se
t

. .
.

in
od

e

.

.

.

Inode Table

lo
ck

si
ze . .
.

.

.

.

5

Filesystem operations

Opening a file:

- df = open (“foo.txt”, O APPEND)

Reading from a file:

- r = read (df , 3), r = pread (df , 3, 42)

Writing to a file:

- write (df , “foo”), pwrite (df , “bar”, 0)

Closing a file:

- close (df)

Directory operations:

- creat, link, unlink, rename

Synchronization operations:

- fsync, sync

File Descriptor

Table of Process A

flags file

.

.

.

File Descriptor

Table of Process B

flags file

.

.

.

Open File Table

lo
ck

fla
gs

o↵
se
t

. .
.

in
od

e

.

.

.

Inode Table

lo
ck

si
ze . .
.

.

.

.

5

I/O Stack

Block #2

Block #1

block
I/O

Page Cache

ext4

File Descriptor

Table of Process A

flags file

.

.

.

File Descriptor

Table of Process B

flags file

.

.

.

Open File Table

lo
ck

fla
gs

o↵
se
t

. .
.

in
od

e

.

.

.

Inode Table

lo
ck

si
ze . .
.

.

.

.

V
F
S

Block #2

Block #1

block
I/O

Page Cache

ext4

File Descriptor

Table of Process A

flags file

.

.

.

File Descriptor

Table of Process B

flags file

.

.

.

Open File Table

lo
ck

fla
gs

o↵
se
t

. .
.

in
od

e
.
.
.

Inode Table

lo
ck

si
ze . .
.

.

.

.

V
F
S

6

I/O Stack

Block #2

Block #1

block
I/O

Page Cache

ext4

syscall

V
F
S

6

I/O Stack

Block #2

Block #1

block
I/O

Page Cache

ext4

syscall

V
F
S

6

I/O Stack

Block #2

Block #1

block
I/O

Page Cache

ext4

syscall

V
F
S

6

I/O Stack

Block #2

Block #1

block
I/O

Page Cache

ext4

syscall

V
F
S

6

I/O Stack

Block #2

Block #1

block
I/O

Page Cache

ext4

syscall

V
F
S

6

I/O Stack

Block #2

Block #1

block
I/O

Page Cache

ext4

syscall

V
F
S

6

I/O Stack

Block #2

Block #1

block
I/O

Page Cache

ext4

syscall

V
F
S

6

Consistency Semantics

Writes vs Writes : c-atomic, c-ordered

Reads vs Overwrites : c-nonatomic, c-unordered

Reads vs Appends : page-c-atomic, page-c-ordered

Directory vs All : c-atomic, c-ordered

df “foo”

pwrite (df , “bar”, 0); pwrite (df , “qux”, 0);

r = pread (df , 3, 0);

Possible outcomes: “bar”, “qux”

7

Consistency Semantics

Writes vs Writes : c-atomic, c-ordered

Reads vs Overwrites :

c-nonatomic, c-unordered

Reads vs Appends : page-c-atomic, page-c-ordered

Directory vs All : c-atomic, c-ordered

df “foobar”, o↵set = 0

write (df , “bar”); r = read (df , 3);

Possible outcomes: “foo”, “bar”

7

Consistency Semantics

Writes vs Writes : c-atomic, c-ordered

Reads vs Overwrites :

c-nonatomic, c-unordered

Reads vs Appends : page-c-atomic, page-c-ordered

Directory vs All : c-atomic, c-ordered

df “foo”

write (df , “bar”); r = pread (df , 3, 0);

Possible outcomes: “foo”, “bar”, “far”, “fao”, etc

7

Consistency Semantics

Writes vs Writes : c-atomic, c-ordered

Reads vs Overwrites : c-nonatomic, c-unordered

Reads vs Appends : page-c-atomic, page-c-ordered

Directory vs All : c-atomic, c-ordered

df “foo”

write (df , “bar”); r = pread (df , 3, 0);

Possible outcomes: “foo”, “bar”, “far”, “fao”, etc

7

Consistency Semantics

Writes vs Writes : c-atomic, c-ordered

Reads vs Overwrites : c-nonatomic, c-unordered

Reads vs Appends :

page-c-atomic, page-c-ordered

Directory vs All : c-atomic, c-ordered

df “foo”, O APPEND, page size = 3

write (df , “barqux”); r = pread (df , 42, 0);

Possible outcomes: “foo”, “foobar”, “foobarqux”

7

Consistency Semantics

Writes vs Writes : c-atomic, c-ordered

Reads vs Overwrites : c-nonatomic, c-unordered

Reads vs Appends : page-c-atomic, page-c-ordered

Directory vs All : c-atomic, c-ordered

df “foo”, O APPEND, page size = 3

write (df , “barqux”); r = pread (df , 42, 0);

Possible outcomes: “foo”, “foobar”, “foobarqux”

7

Consistency Semantics

Writes vs Writes : c-atomic, c-ordered

Reads vs Overwrites : c-nonatomic, c-unordered

Reads vs Appends : page-c-atomic, page-c-ordered

Directory vs All :

c-atomic, c-ordered

“foo.txt” 7! “foo”

db = creat (“foo.tmp”);

write (db, “bar”); close (db);

rename (“foo.tmp”, “foo.txt”);

df = open (“foo.txt”, O RDONLY);

r = read (df , 3);

Possible outcomes: “foo”, “bar”

7

Consistency Semantics

Writes vs Writes : c-atomic, c-ordered

Reads vs Overwrites : c-nonatomic, c-unordered

Reads vs Appends : page-c-atomic, page-c-ordered

Directory vs All : c-atomic, c-ordered

“foo.txt” 7! “foo”

db = creat (“foo.tmp”);

write (db, “bar”); close (db);

rename (“foo.tmp”, “foo.txt”);

df = open (“foo.txt”, O RDONLY);

r = read (df , 3);

Possible outcomes: “foo”, “bar”

7

Persistency Semantics

Overwrites :

sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
, same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

df “foo”, sector size = 1, block size = 3

pwrite (df , “bar”, 0);

Possible outcomes: “foo”, “boo”, “bao”, “bar” (not “fao”, “far”)

8

Persistency Semantics

Overwrites :

sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
, same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

df “foo”, sector size = 1, block size = 1

pwrite (df , “bar”, 0);

Possible outcomes: “foo”, “boo”, “bao”, “bar” (also “fao”, “far”)

8

Persistency Semantics

Overwrites : sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
, same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

df “foo”, sector size = 1, block size = 1

pwrite (df , “bar”, 0);

Possible outcomes: “foo”, “boo”, “bao”, “bar” (also “fao”, “far”)

8

Persistency Semantics

Overwrites : sector p-atomic, p-unordered

Appends :

prefix-p-atomic
⇤
, same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

df “foo”, O APPEND, block size = 3

pwrite (df , “bar”, 0);

Possible outcomes: “foo”, “foobar”

8

Persistency Semantics

Overwrites : sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
,

same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

df “foo”, O APPEND, block size = 1

pwrite (df , “bar”, 0);

Possible outcomes: “foo”, “foob”, “fooba”, “foobar”

8

Persistency Semantics

Overwrites : sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
,

same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

df “foo”, O APPEND, block size = 2

pwrite (df , “bar”, 0);

Possible outcomes: “foo”, “foob”, “fooba”, “foobar” (also “foo0”)

b1 b2 ... bl

appended data

Before crash:

b1 b2 ... bl ‘0’

After crash:

8

Persistency Semantics

Overwrites : sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
,

same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

df “foo”, O APPEND, block size = 2

pwrite (df , “bar”, 0);

Possible outcomes: “foo”, “foob”, “fooba”, “foobar” (also “foo0”)

b1 b2 ... bl

appended data

Before crash:

b1 b2 ... bl ‘0’

After crash:

8

Persistency Semantics

Overwrites : sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
, same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

da ?, db ?

write (da, “foo”);

write (db, “bar”);

One possible outcome: da ?, db “bar”

8

Persistency Semantics

Overwrites : sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
, same-file-p-ordered

{f}sync

: p-nonatomic, p-ordered

da ?, db ?

write (da, “foo”);

fsync (da);

write (db, “bar”);

An impossible outcome: da ?, db “bar”

8

Persistency Semantics

Overwrites : sector p-atomic, p-unordered

Appends : prefix-p-atomic
⇤
, same-file-p-ordered

{f}sync : p-nonatomic, p-ordered

da ?, db ?

write (da, “foo”);

fsync (da);

write (db, “bar”);

An impossible outcome: da ?, db “bar”

8

Full model

• Axiomatic model in the style of RC11

• Assumes the consistency model contains

an hb relation

• Includes a pb relation denoting the order

in which disk accesses persist

(I \ D)⇥ (D \ I) ✓ pb (pb-init)

[DW]; (hb \ ssec); [DW] ✓ pb (pb-sector)

[DW]; (hb \ bseq); [DW] ✓ pb (pb-block)

[DWFloc]; (hb \ sf); [DWDsizeloc] ✓ pb (pb-meta)

[S [FS]; hb; [D] [[D]; hb; [S] [[DW]; (hb \ sf); [FS] ✓ pb (pb-sync)

[DWDnameloc [DW
trunc

]; hb; [D \ DWFloc] ✓ pb (pb-dirops)

(atom; pb) [(pb; atom) ✓ pb (pb-atom)

where

atom
4
= ([DW \ DWzero]; (ssec \ sid); [DW \ DWzero]) [([DW

rename
]; sid; [DW

rename
]) .

[S [FS]; hb; [D]

9

Full model

• Axiomatic model in the style of RC11

• Assumes the consistency model contains

an hb relation

• Includes a pb relation denoting the order

in which disk accesses persist

(I \ D)⇥ (D \ I) ✓ pb (pb-init)

[DW]; (hb \ ssec); [DW] ✓ pb (pb-sector)

[DW]; (hb \ bseq); [DW] ✓ pb (pb-block)

[DWFloc]; (hb \ sf); [DWDsizeloc] ✓ pb (pb-meta)

[S [FS]; hb; [D] [[D]; hb; [S] [[DW]; (hb \ sf); [FS] ✓ pb (pb-sync)

[DWDnameloc [DW
trunc

]; hb; [D \ DWFloc] ✓ pb (pb-dirops)

(atom; pb) [(pb; atom) ✓ pb (pb-atom)

where

atom
4
= ([DW \ DWzero]; (ssec \ sid); [DW \ DWzero]) [([DW

rename
]; sid; [DW

rename
]) .

[S [FS]; hb; [D]

9

Full model

• Axiomatic model in the style of RC11

• Assumes the consistency model contains

an hb relation

• Includes a pb relation denoting the order

in which disk accesses persist

(I \ D)⇥ (D \ I) ✓ pb (pb-init)

[DW]; (hb \ ssec); [DW] ✓ pb (pb-sector)

[DW]; (hb \ bseq); [DW] ✓ pb (pb-block)

[DWFloc]; (hb \ sf); [DWDsizeloc] ✓ pb (pb-meta)

[S [FS]; hb; [D] [[D]; hb; [S] [[DW]; (hb \ sf); [FS] ✓ pb (pb-sync)

[DWDnameloc [DW
trunc

]; hb; [D \ DWFloc] ✓ pb (pb-dirops)

(atom; pb) [(pb; atom) ✓ pb (pb-atom)

where

atom
4
= ([DW \ DWzero]; (ssec \ sid); [DW \ DWzero]) [([DW

rename
]; sid; [DW

rename
]) .

[S [FS]; hb; [D]

9

Results

Editor Bugs

Save bu↵er as “foo.txt”

df = open (“foo.txt”, O WRONLY|O CREAT|O TRUNC);

write (df , buffer); fsync (df);

close (df);

printf(“File saved\n”);

The bug depends on the manifestation of a race

We reported the bug to the developers of nano

 proposed a fix and verified it with PerSeVerE

 our fixes were subsequently merged

We reproduced the same buggy pattern in emacs and vim

10

Conclusions

Summary

• PerSeVerE: framework for verification under ext4

- formal model integrated with C/C++ consistency semantics

- based on kernel’s code and stress testing

- e↵ective model checking algorithm

• PerSeVerE is available at github.com/MPI-SWS/genmc

Future work

• Formalize other aspects of ext4

• Extend PerSeVerE for other filesystems

11

github.com/MPI-SWS/genmc

