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Document Object Model (DOM)

• Cross-platform, language-independent, XML update library 
• Standardised by W3C (and later WHATWG) 
‣ Written in English (informal, ambiguous) 
‣ Described in an OO fashion, in an axiomatic style 
‣ Followed by browser vendors
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Which DOM?

• DOM Level 1 (Core) 
‣ Complete model of an XML document 
‣ Operations for manipulating the document via interfaces
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Which DOM?

• DOM Levels 2-4 
‣ DOM Core (minimally changed from Level 1) 
‣ Additional features: 
‣ Event model, XML namespaces, … (Level 2) 
‣ Keyboard event handling, serialisation, … (Level 3) 
‣ HTMLCollections, Elements, … (Level 4)

• DOM Level 1 (Core) 
‣ Complete model of an XML document 
‣ Operations for manipulating the document via interfaces
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Which DOM?

• DOM Level 1 (Core) 
‣ Complete model of an XML document 
‣ Operations for manipulating the document via interfaces: 

- The Node interface 
- 12 specialised node interfaces 
- 2 interfaces for node collections 
- DOM Exceptions

• DOM Level 1 (Core) 
‣ Complete model of an XML document 
‣ Operations for manipulating the document via interfaces
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DOM Specification Wish List
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DOM Specification Wish List

• faithful; axiomatic (not operational); abstract (implementation independent)
• local (minimal operation footprint)
• compositional (client program spec from DOM spec)
• Easily integrated with existing program logics

‣  “Not another program logic!”  -- almost everyone in the community  
‣  Reason about client programs in different languages (C, JS, Java, …)
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Existing Specification (Smith et al. 2008)
• Formally Specified a DOM Core fragment in context logic (CL)
• Justified CL over first order logic (scalability) 
• Later extended to full DOM Core (2011)
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Existing Specification (Smith et al. 2008)
• Formally Specified a DOM Core fragment in context logic (CL)• Formally Specified a DOM Core fragment in context logic (CL) 
‣ The Node interface 
‣ 4 (of 12) specialised node interfaces 
‣ 1 (of 2) Interface for node collections  
‣ DOM Exceptions modelled as faults 

• Justified CL over first order logic (scalability) 
• Later extended to full DOM Core (2011)
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Existing Specification (Smith et al. 2008)
• Formally Specified a DOM Core fragment in context logic (CL)• Formally Specified a DOM Core fragment in context logic (CL) 

 ✗ (almost) faithful
‣ restrictive w.r.t. the spec of node collections

 ✔ axiomatic
 ✔ abstract
 ✗ local (acknowledged by the authors)

‣ substantial overapproximation of e.g. appendChild footprint 
 ✗ compositional  (not known by authors - claimed otherwise) 

‣ a simple (4 loc) client program requires 6 specifications! 
 ✗ Easily integrated with existing program logics 

‣ CL model not compatible with separation logic (SL) 
‣ cannot be integrated into SL-based program logics 

• Justified CL over first order logic (scalability) 
• Later extended to full DOM Core (2011)
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Contributions
• Formally Specified the same DOM Core fragment 

 ✔ faithful
‣ accurately specify the behaviour of node collections

 ✔ axiomatic
 ✔ abstract
 ✔ local

‣ minimally capture the footprint of e.g. appendChild
 ✔ compositional 

‣ same simple client program requires only 1 specification 
 ✔ Easily integrated with (SL-based) program logics 

‣ compatible model with SL
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• General methodology for extending SL-based logics with DOM spec 

‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12) 
‣ Verified multiple ad blocker scripts in JavaScript
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Contributions
• Formally Specified the same DOM Core fragment 

 ✔ faithful
‣ accurately specify the behaviour of node collections

 ✔ axiomatic
 ✔ abstract
 ✔ local

‣ minimally capture the footprint of e.g. appendChild
 ✔ compositional 

‣ same simple client program requires only 1 specification 
 ✔ Easily integrated with (SL-based) program logics 

‣ compatible model with SL
• General methodology for extending SL-based logics with DOM spec 

‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12) 
‣ Verified multiple ad blocker scripts in JavaScript

• Justified DOM spec w.r.t. an implementation 
‣ Upcoming thesis (Don’t wait for the movie, order your copy now!)
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DOM Tree Structure

7



• Each node uniquely identified (an integer identifier)

DOM Tree Structure
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• Each node uniquely identified (an integer identifier)
‣ The Document 

children: at most one Element
‣ Elements

children: Text and Element nodes
‣ Texts

children: none, value: arbitrary string
‣ Attributes

children: Text nodes, value: concatenated values of children

DOM Tree Structure
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n.getAttribute(s)

n.getAttribute(s): 
When n identifies an element node, the value of the attribute named 
s is returned, if it exists; otherwise “ ” is returned. 

e.g. when n=3  and s=“src” —> the result is “goo.gl/K4S0d0”  
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n.getAttribute(s)

n.getAttribute(s): 
When n identifies an element node, the value of the attribute named 
s is returned, if it exists; otherwise “ ” is returned. 

e.g. when n=3  and s=“src” —> the result is “goo.gl/K4S0d0”  
footprint: element node n and its attribute named s 
 e.g. when n=3  and s=“src” —> footprint in dashed box
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Structural Separation Logic (SSL)
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Structural Separation Logic (SSL)

• Program states modelled as abstract heaps
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Structural Separation Logic (SSL)

• Program states modelled as abstract heaps
• Abstract heaps map addresses to abstract data

Heap range: abstract data 
(abstract DOM tree)

Heap domain: addresses 
(DOM root address D) 
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Structural Separation Logic (SSL)

n.getAttribute(s) 
footprint: element node n and its attribute named s 
e.g. when n=3  and s=“src” —> footprint in dashed box
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Structural Separation Logic (SSL)
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abstract allocation
split data, promote it to a fresh abstract address x, leave behind context hole x
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Structural Separation Logic (SSL)

n.getAttribute(s) 
footprint: element node n and its attribute named s 
e.g. when n=3  and s=“src” —> footprint in dashed box

abstract allocation
split data, promote it to a fresh abstract address x, leave behind context hole x
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DOM Assertions in SSL

11



DOM Assertions in SSL

DOM SSL Model 
(abstract heaps)
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DOM Assertions in SSL

DOM SSL Model 
(abstract heaps)

DOM SSL Assertions

logical variable describing abstract address x
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DOM Assertions in SSL

DOM SSL Model 
(abstract heaps)

DOM SSL Assertions

element node assertion
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DOM Assertions in SSL

DOM SSL Model 
(abstract heaps)

DOM SSL Assertions

empty child forest assertion
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DOM Assertions in SSL

DOM SSL Model 
(abstract heaps)

DOM SSL Assertions

attribute set assertion
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DOM Assertions in SSL

DOM SSL Model 
(abstract heaps)

DOM SSL Assertions

attribute node assertion
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DOM Assertions in SSL

DOM SSL Model 
(abstract heaps)

DOM SSL Assertions

text node assertion
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DOM Specification in SSL

DOM SSL Model 
(abstract heaps)
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DOM Specification in SSL

DOM SSL Model 
(abstract heaps)
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DOM SSL Specification DOM assertion 
(operation footprint)



DOM Specification in SSL

store(…): black-box predicate; language-agnostic

DOM SSL Model 
(abstract heaps)
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CL Non-Compositionality

r1 = n.getAttribute(“src”); 
r2 = m.getAttribute(“src”); 
r3 = o.getAttribute(“src”); 
 r = r1 + r2 + r3;

C  :
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CL Non-Compositionality
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r2 = m.getAttribute(“src”); 
r3 = o.getAttribute(“src”); 
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C  :

Previous work: At least 6 CL specifications needed!
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CL Non-Compositionality

r1 = n.getAttribute(“src”); 
r2 = m.getAttribute(“src”); 
r3 = o.getAttribute(“src”); 
 r = r1 + r2 + r3;

C  :

Previous work: At least 6 CL specifications needed!
This work: Only 1 SSL specification
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DOM Specification Wish List

✔ faithful; axiomatic; abstract 
✔ local 
✔ compositional (client program spec from DOM spec) 

?  Easily integrated with existing program logics
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DOM (SSL) Specification Integration
• General methodology for extending SL-based logics with DOM spec 

‣ Given a language PL and its SL-based program logic PLLogic*: 
extend PL to PLDOM (add DOM operations) 
extend the logic to PLDOMLogic:
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DOM (SSL) Specification Integration
• General methodology for extending SL-based logics with DOM spec 

‣ Given a language PL and its SL-based program logic PLLogic*: 
extend PL to PLDOM (add DOM operations) 
extend the logic to PLDOMLogic:

* PLLogic must meet certain conditions (e.g. store predicate) 

17

‣ Can extend PLLogic with any SSL-specified library 
‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12) 
‣ Verified multiple ad blocker scripts in JavaScript

(P, C, Q) ∈ DOMAxiom
{P} C {Q}



Future/Ongoing Work
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Future/Ongoing Work
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• Extend to full Core — straightforward as with Smith et al.
• Extend to levels 2-4 — more involved: 

‣ requires higher-order reasoning (DOM Events)

• DOM reasoning tool 
‣ ongoing work: DOM+JavaScript semi-automatic verification tool



Conclusions
• A DOM specification that is: 

• faithful; axiomatic; abstract 
• local 
• compositional 
• Easily integrated with existing (SL-based) program logics

• General methodology for extending SL-based logics with DOM spec 
‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12) 
‣ SSL as an add-on 
‣ Verified multiple ad blocker scripts in JavaScript
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Conclusions
• A DOM specification that is: 

• faithful; axiomatic; abstract 
• local 
• compositional 
• Easily integrated with existing (SL-based) program logics

• General methodology for extending SL-based logics with DOM spec 
‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12) 
‣ SSL as an add-on 
‣ Verified multiple ad blocker scripts in JavaScript

Thank you for listening!
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