
DOM:
Specification & Client Reasoning

Azalea Raad José Fragoso Santos Philippa Gardner
Imperial College London

APLAS’16
23 November 2016

1

Document Object Model (DOM)

• Cross-platform, language-independent, XML update library
• Standardised by W3C (and later WHATWG)
‣ Written in English (informal, ambiguous)
‣ Described in an OO fashion, in an axiomatic style
‣ Followed by browser vendors

2

Which DOM?

• DOM Level 1 (Core)
‣ Complete model of an XML document
‣ Operations for manipulating the document via interfaces

3

Which DOM?

• DOM Levels 2-4
‣ DOM Core (minimally changed from Level 1)
‣ Additional features:
‣ Event model, XML namespaces, … (Level 2)
‣ Keyboard event handling, serialisation, … (Level 3)
‣ HTMLCollections, Elements, … (Level 4)

• DOM Level 1 (Core)
‣ Complete model of an XML document
‣ Operations for manipulating the document via interfaces

3

Which DOM?

• DOM Level 1 (Core)
‣ Complete model of an XML document
‣ Operations for manipulating the document via interfaces:

- The Node interface
- 12 specialised node interfaces
- 2 interfaces for node collections
- DOM Exceptions

• DOM Level 1 (Core)
‣ Complete model of an XML document
‣ Operations for manipulating the document via interfaces

3

DOM Specification Wish List

4

DOM Specification Wish List

• faithful; axiomatic (not operational); abstract (implementation independent)

4

DOM Specification Wish List

• faithful; axiomatic (not operational); abstract (implementation independent)
• local (minimal operation footprint)

4

DOM Specification Wish List

• faithful; axiomatic (not operational); abstract (implementation independent)
• local (minimal operation footprint)
• compositional (client program spec from DOM spec)

4

DOM Specification Wish List

• faithful; axiomatic (not operational); abstract (implementation independent)
• local (minimal operation footprint)
• compositional (client program spec from DOM spec)
• Easily integrated with existing program logics

4

DOM Specification Wish List

• faithful; axiomatic (not operational); abstract (implementation independent)
• local (minimal operation footprint)
• compositional (client program spec from DOM spec)
• Easily integrated with existing program logics

‣ “Not another program logic!” -- almost everyone in the community

4

DOM Specification Wish List

• faithful; axiomatic (not operational); abstract (implementation independent)
• local (minimal operation footprint)
• compositional (client program spec from DOM spec)
• Easily integrated with existing program logics

‣ “Not another program logic!” -- almost everyone in the community
‣ Reason about client programs in different languages (C, JS, Java, …)

4

Existing Specification (Smith et al. 2008)
• Formally Specified a DOM Core fragment in context logic (CL)
• Justified CL over first order logic (scalability)
• Later extended to full DOM Core (2011)

5

Existing Specification (Smith et al. 2008)
• Formally Specified a DOM Core fragment in context logic (CL)• Formally Specified a DOM Core fragment in context logic (CL)
‣ The Node interface
‣ 4 (of 12) specialised node interfaces
‣ 1 (of 2) Interface for node collections
‣ DOM Exceptions modelled as faults

• Justified CL over first order logic (scalability)
• Later extended to full DOM Core (2011)

5

Existing Specification (Smith et al. 2008)
• Formally Specified a DOM Core fragment in context logic (CL)• Formally Specified a DOM Core fragment in context logic (CL)

 ✗ (almost) faithful
‣ restrictive w.r.t. the spec of node collections

 ✔ axiomatic
 ✔ abstract
 ✗ local (acknowledged by the authors)

‣ substantial overapproximation of e.g. appendChild footprint
 ✗ compositional (not known by authors - claimed otherwise)

‣ a simple (4 loc) client program requires 6 specifications!
 ✗ Easily integrated with existing program logics

‣ CL model not compatible with separation logic (SL)
‣ cannot be integrated into SL-based program logics

• Justified CL over first order logic (scalability)
• Later extended to full DOM Core (2011)

5

Contributions
• Formally Specified the same DOM Core fragment

 ✔ faithful
‣ accurately specify the behaviour of node collections

 ✔ axiomatic
 ✔ abstract
 ✔ local

‣ minimally capture the footprint of e.g. appendChild
 ✔ compositional

‣ same simple client program requires only 1 specification
 ✔ Easily integrated with (SL-based) program logics

‣ compatible model with SL

6

Contributions
• Formally Specified the same DOM Core fragment

 ✔ faithful
‣ accurately specify the behaviour of node collections

 ✔ axiomatic
 ✔ abstract
 ✔ local

‣ minimally capture the footprint of e.g. appendChild
 ✔ compositional

‣ same simple client program requires only 1 specification
 ✔ Easily integrated with (SL-based) program logics

‣ compatible model with SL
• General methodology for extending SL-based logics with DOM spec

‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12)
‣ Verified multiple ad blocker scripts in JavaScript

6

Contributions
• Formally Specified the same DOM Core fragment

 ✔ faithful
‣ accurately specify the behaviour of node collections

 ✔ axiomatic
 ✔ abstract
 ✔ local

‣ minimally capture the footprint of e.g. appendChild
 ✔ compositional

‣ same simple client program requires only 1 specification
 ✔ Easily integrated with (SL-based) program logics

‣ compatible model with SL
• General methodology for extending SL-based logics with DOM spec

‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12)
‣ Verified multiple ad blocker scripts in JavaScript

• Justified DOM spec w.r.t. an implementation
‣ Upcoming thesis (Don’t wait for the movie, order your copy now!)

6

DOM Tree Structure

7

• Each node uniquely identified (an integer identifier)

DOM Tree Structure

7

• Each node uniquely identified (an integer identifier)
‣ The Document

children: at most one Element

DOM Tree Structure

7

• Each node uniquely identified (an integer identifier)
‣ The Document

children: at most one Element
‣ Elements

children: Text and Element nodes

DOM Tree Structure

7

• Each node uniquely identified (an integer identifier)
‣ The Document

children: at most one Element
‣ Elements

children: Text and Element nodes
‣ Texts

children: none, value: arbitrary string
‣ Attributes

children: Text nodes, value: concatenated values of children

DOM Tree Structure

7

n.getAttribute(s)

n.getAttribute(s):
When n identifies an element node, the value of the attribute named
s is returned, if it exists; otherwise “ ” is returned.

e.g. when n=3 and s=“src” —> the result is “goo.gl/K4S0d0”

8

n.getAttribute(s)

n.getAttribute(s):
When n identifies an element node, the value of the attribute named
s is returned, if it exists; otherwise “ ” is returned.

e.g. when n=3 and s=“src” —> the result is “goo.gl/K4S0d0”
footprint: element node n and its attribute named s

8

n.getAttribute(s)

n.getAttribute(s):
When n identifies an element node, the value of the attribute named
s is returned, if it exists; otherwise “ ” is returned.

e.g. when n=3 and s=“src” —> the result is “goo.gl/K4S0d0”
footprint: element node n and its attribute named s
 e.g. when n=3 and s=“src” —> footprint in dashed box

8

Structural Separation Logic (SSL)

9

Structural Separation Logic (SSL)

• Program states modelled as abstract heaps

9

Structural Separation Logic (SSL)

• Program states modelled as abstract heaps
• Abstract heaps map addresses to abstract data

Heap range: abstract data
(abstract DOM tree)

Heap domain: addresses
(DOM root address D)

9

Structural Separation Logic (SSL)

n.getAttribute(s)
footprint: element node n and its attribute named s
e.g. when n=3 and s=“src” —> footprint in dashed box

10

Structural Separation Logic (SSL)

n.getAttribute(s)
footprint: element node n and its attribute named s
e.g. when n=3 and s=“src” —> footprint in dashed box

abstract allocation
split data, promote it to a fresh abstract address x, leave behind context hole x

10

Structural Separation Logic (SSL)

n.getAttribute(s)
footprint: element node n and its attribute named s
e.g. when n=3 and s=“src” —> footprint in dashed box

abstract allocation
split data, promote it to a fresh abstract address x, leave behind context hole x

10

Structural Separation Logic (SSL)

n.getAttribute(s)
footprint: element node n and its attribute named s
e.g. when n=3 and s=“src” —> footprint in dashed box

abstract allocation
split data, promote it to a fresh abstract address x, leave behind context hole x

10

Structural Separation Logic (SSL)

n.getAttribute(s)
footprint: element node n and its attribute named s
e.g. when n=3 and s=“src” —> footprint in dashed box

abstract allocation
split data, promote it to a fresh abstract address x, leave behind context hole x

10

DOM Assertions in SSL

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

logical variable describing abstract address x

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

element node assertion

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

empty child forest assertion

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

attribute set assertion

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

logical variable describing context hole y

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

attribute node assertion

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

text node assertion

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

11

DOM Assertions in SSL

DOM SSL Model
(abstract heaps)

DOM SSL Assertions

11

DOM Specification in SSL

DOM SSL Model
(abstract heaps)

12

DOM SSL Specification

DOM Specification in SSL

DOM SSL Model
(abstract heaps)

12

DOM SSL Specification DOM assertion
(operation footprint)

DOM Specification in SSL

store(…): black-box predicate; language-agnostic

DOM SSL Model
(abstract heaps)

12

DOM SSL Specification variable store assertion

DOM Specification in SSL

store(…): black-box predicate; language-agnostic

DOM SSL Model
(abstract heaps)

13

DOM SSL Specification

DOM Specification in SSL

store(…): black-box predicate; language-agnostic

DOM SSL Model
(abstract heaps)

13

DOM SSL Specification

interaction point between the language and DOM

DOM Specification in SSL

store(…): black-box predicate; language-agnostic

DOM SSL Model
(abstract heaps)

13

DOM SSL Specification

interaction point between the language and DOM

DOM Specification Wish List

✔ faithful; axiomatic; abstract
✔ local

? compositional (client program spec from DOM spec)

? Easily integrated with existing program logics

14

DOM Specification Wish List

14

✔ faithful; axiomatic; abstract
✔ local (minimal operation footprint)

? compositional (client program spec from DOM spec)

? Easily integrated with existing program logics

✔ faithful; axiomatic; abstract
✔ local

? compositional (client program spec from DOM spec)

? Easily integrated with existing program logics

CL Non-Compositionality

r1 = n.getAttribute(“src”);
r2 = m.getAttribute(“src”);
r3 = o.getAttribute(“src”);
 r = r1 + r2 + r3;

C :

15

CL Non-Compositionality

r1 = n.getAttribute(“src”);
r2 = m.getAttribute(“src”);
r3 = o.getAttribute(“src”);
 r = r1 + r2 + r3;

C :

Previous work: At least 6 CL specifications needed!

15

CL Non-Compositionality

r1 = n.getAttribute(“src”);
r2 = m.getAttribute(“src”);
r3 = o.getAttribute(“src”);
 r = r1 + r2 + r3;

C :

Previous work: At least 6 CL specifications needed!
This work: Only 1 SSL specification

15

DOM Specification Wish List

✔ faithful; axiomatic; abstract
✔ local
✔ compositional (client program spec from DOM spec)

? Easily integrated with existing program logics

16

DOM Specification Wish List

16

✔ faithful; axiomatic; abstract
✔ local
✔ compositional (client program spec from DOM spec)

? Easily integrated with existing program logics

✔ faithful; axiomatic; abstract
✔ local
✔ compositional (client program spec from DOM spec)

? Easily integrated with existing program logics

DOM (SSL) Specification Integration
• General methodology for extending SL-based logics with DOM spec

‣ Given a language PL and its SL-based program logic PLLogic*:
extend PL to PLDOM (add DOM operations)
extend the logic to PLDOMLogic:

17

(P, C, Q) ∈ DOMAxiom
{P} C {Q}

DOM (SSL) Specification Integration
• General methodology for extending SL-based logics with DOM spec

‣ Given a language PL and its SL-based program logic PLLogic*:
extend PL to PLDOM (add DOM operations)
extend the logic to PLDOMLogic:

* PLLogic must meet certain conditions (e.g. store predicate)

17

(P, C, Q) ∈ DOMAxiom
{P} C {Q}

DOM (SSL) Specification Integration
• General methodology for extending SL-based logics with DOM spec

‣ Given a language PL and its SL-based program logic PLLogic*:
extend PL to PLDOM (add DOM operations)
extend the logic to PLDOMLogic:

* PLLogic must meet certain conditions (e.g. store predicate)

17

‣ Can extend PLLogic with any SSL-specified library
‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12)
‣ Verified multiple ad blocker scripts in JavaScript

(P, C, Q) ∈ DOMAxiom
{P} C {Q}

Future/Ongoing Work

18

Future/Ongoing Work

18

• Extend to full Core — straightforward as with Smith et al.

Future/Ongoing Work

18

• Extend to full Core — straightforward as with Smith et al.
• Extend to levels 2-4 — more involved:

‣ requires higher-order reasoning (DOM Events)

Future/Ongoing Work

18

• Extend to full Core — straightforward as with Smith et al.
• Extend to levels 2-4 — more involved:

‣ requires higher-order reasoning (DOM Events)

• DOM reasoning tool
‣ ongoing work: DOM+JavaScript semi-automatic verification tool

Conclusions
• A DOM specification that is:

• faithful; axiomatic; abstract
• local
• compositional
• Easily integrated with existing (SL-based) program logics

• General methodology for extending SL-based logics with DOM spec
‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12)
‣ SSL as an add-on
‣ Verified multiple ad blocker scripts in JavaScript

19

Conclusions
• A DOM specification that is:

• faithful; axiomatic; abstract
• local
• compositional
• Easily integrated with existing (SL-based) program logics

• General methodology for extending SL-based logics with DOM spec
‣ Integrated DOM spec with JSLogic (JavaScript Program Logic - POPL’12)
‣ SSL as an add-on
‣ Verified multiple ad blocker scripts in JavaScript

Thank you for listening!

19

