Verifying Concurrent Graph Algorithms

Azalea Raad Aquinas Hobor Jules Villard Philippa Gardner

Imperial College London National University of Singapore

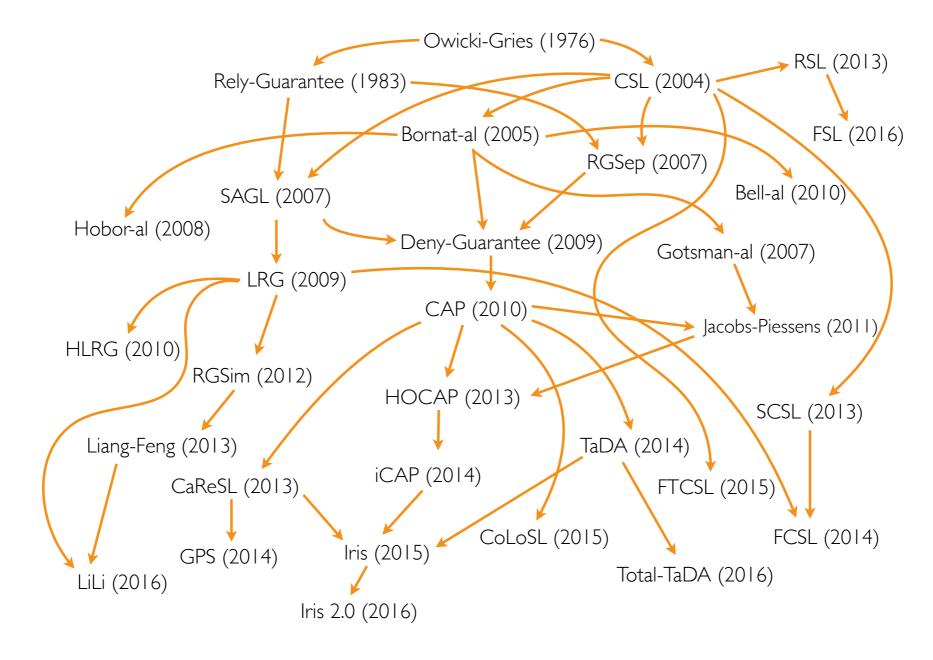
> APLAS'16 22 November 2016

Concurrent Program Logic Genealogy

Verifying **concurrent** algorithms is difficult...

Concurrent Program Logic Genealogy

Verifying **concurrent** algorithms is difficult...

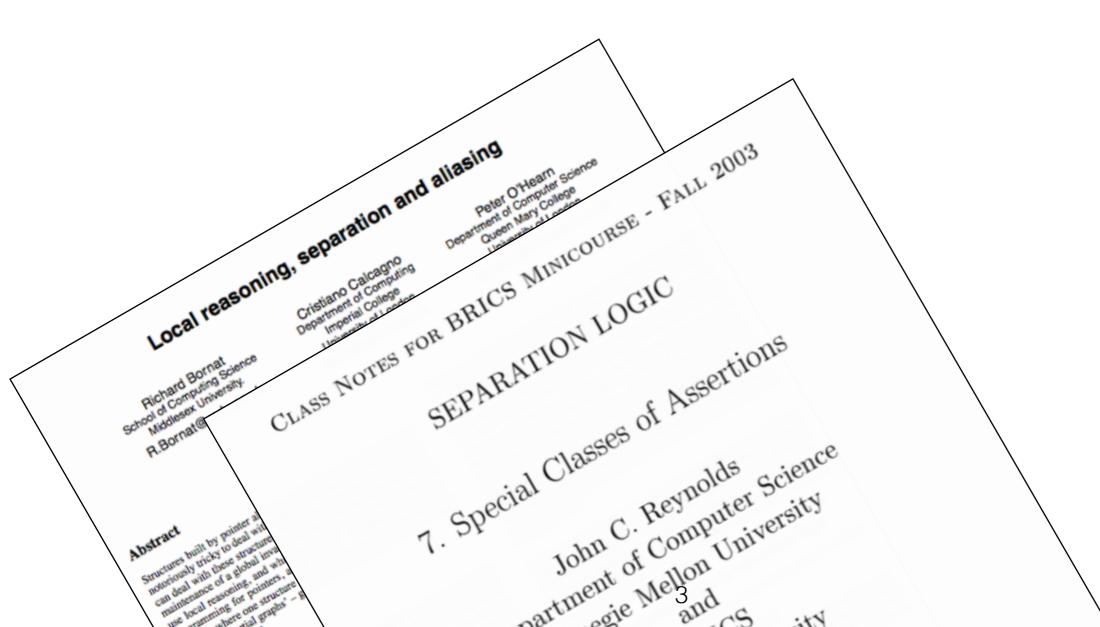


Graph credit: Ilya Sergey

- Subtle correctness argument
- Overlapping structure (unspecified sharing via pointer aliasing)
 - Non-compositional reasoning (preventing the use of the frame rule)

- Subtle correctness argument
- Overlapping structure (unspecified sharing via pointer aliasing)
 - Non-compositional reasoning (preventing the use of the frame rule)

- Subtle correctness argument
- Overlapping structure (unspecified sharing via pointer aliasing)
 - Non-compositional reasoning (preventing the use of the frame rule)



- Subtle correctness argument
- Overlapping structure (unspecified sharing via pointer aliasing)
 - Non-compositional reasoning (preventing the use of the frame rule)

- Subtle correctness argument
- Overlapping structure (unspecified sharing via pointer aliasing)
 - Non-compositional reasoning (preventing the use of the frame rule)

Concurrent Graph Algorithms

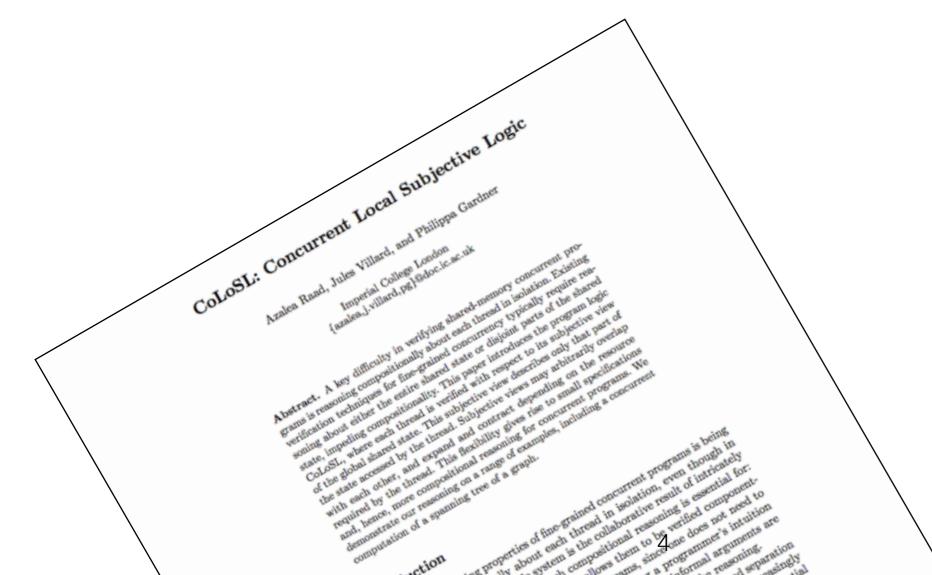
Verifying **concurrent graph** algorithms is even more difficult...

- Subtle correctness argument
- Overlapping structure (unspecified sharing via pointer aliasing)
 - Non-compositional reasoning (preventing the use of the frame rule)
- Reasoning about each thread in isolation

Concurrent Graph Algorithms

Verifying **concurrent graph** algorithms is even more difficult...

- Subtle correctness argument
- Overlapping structure (unspecified sharing via pointer aliasing)
 - Non-compositional reasoning (preventing the use of the frame rule)
- Reasoning about each thread in isolation



Concurrent Graph Algorithms

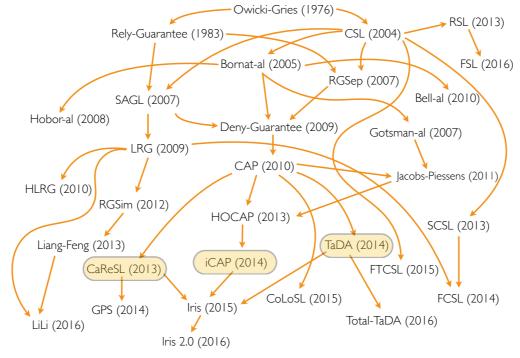
Verifying **concurrent graph** algorithms is even more difficult...

- Subtle correctness argument
- Overlapping structure (unspecified sharing via pointer aliasing)
 - Non-compositional reasoning (preventing the use of the frame rule)
- Reasoning about each thread in isolation

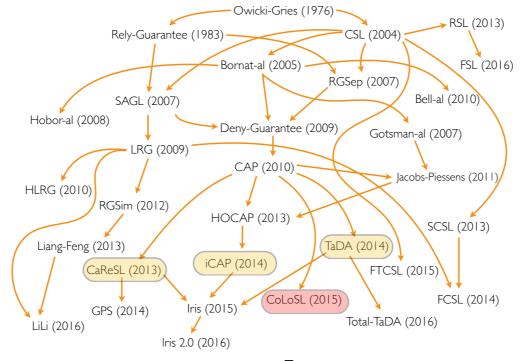
- Verified 4 concurrent fine-grained graph algorithms
 - Copying dags (directed acyclic graphs)
 - Speculative variant of Dijkstra's shortest path
 - Computing the spanning tree of a graph
 - Marking a graph

- Verified 4 concurrent fine-grained graph algorithms
 - Copying dags (directed acyclic graphs)
 - Speculative variant of Dijkstra's shortest path
 - Computing the spanning tree of a graph
 - Marking a graph
- Presented a common proof pattern for graph algorithms
 - Abstract mathematical graphs for Functional correctness
 - *Concrete Spatial (heap-represented)* graphs for memory safety
 - Combined reasoning for full proof

- Verified 4 concurrent fine-grained graph algorithms
 - Copying dags (directed acyclic graphs)
 - Speculative variant of Dijkstra's shortest path
 - Computing the spanning tree of a graph
 - Marking a graph
- Presented a common proof pattern for graph algorithms
 - Abstract mathematical graphs for Functional correctness
 - *Concrete Spatial (heap-represented)* graphs for memory safety
 - Combined reasoning for full proof
 - Inspired by existing logics where this pattern is "baked-in" to the model
 - "Baking-in" is unnecessary

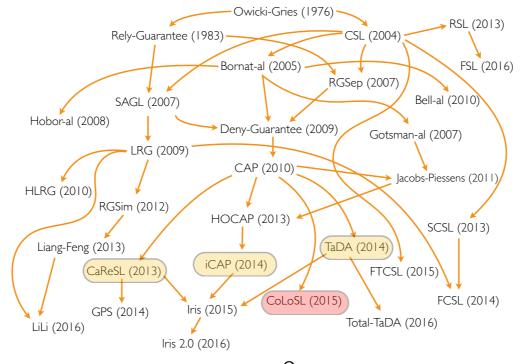


- Verified 4 concurrent fine-grained graph algorithms
 - Copying dags (directed acyclic graphs)
 - Speculative variant of Dijkstra's shortest path
 - Computing the spanning tree of a graph
 - Marking a graph
- Presented a common proof pattern for graph algorithms
 - Abstract mathematical graphs for Functional correctness
 - *Concrete Spatial (heap-represented)* graphs for memory safety
 - Combined reasoning for full proof
 - Inspired by existing logics where this pattern is "baked-in" to the model
 - "Baking-in" is unnecessary



This Talk

- Verified 4 concurrent fine-grained graph algorithms
 - Copying dags (directed acyclic graphs)
 - Speculative variant of Dijkstra's shortest path
 - Computing the spanning tree of a graph
 - Marking a graph
- Presented a common proof pattern for graph algorithms
 - Abstract mathematical graphs for Functional correctness
 - Concrete Spatial (heap-represented) graphs for memory safety
 - Combined reasoning for full proof
 - Inspired by existing logics where this pattern is "baked-in" to the model
 - "Baking-in" is unnecessary



Copying Binary DAGs

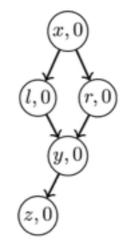
```
struct node {struct node *c, *l, *r}
                copy dag(struct node *x) {
                  struct node *1, *r, *ll, *rr, *x'; bool b;
                  if (!x) {return 0;}
                  x' = malloc(sizeof(struct node));
                 b = \langle CAS(x->c, 0, x') \rangle;
                  if (b) {
atomic blocks
                l = x - > l; r = x - > r;
                   ll = copy_dag(l) || rr = copy_dag(r)
                  <x' ->1 = 11>; <x' ->r = rr>;
                    return x';
                  } else {
                    free(x', sizeof(struct node)); return x->c;
                  }
                }
```

copy_dag(x) Specification

```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```

- Specification challenges
 - When copy_dag(x) returns, x is copied but its children may not be
 - If x is already copied, copy_dag(x) simply returns: the thread that copied x has made a promise to visit x's children and ensure they are copied

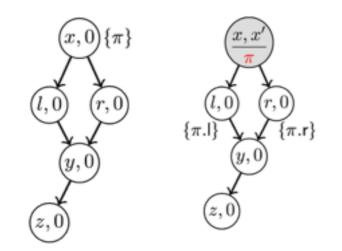
```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```



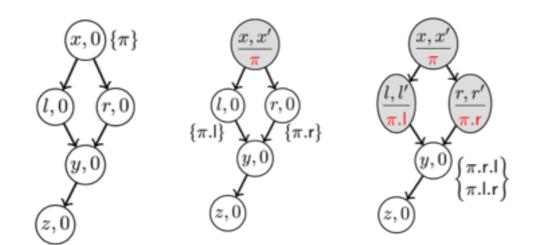
```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```



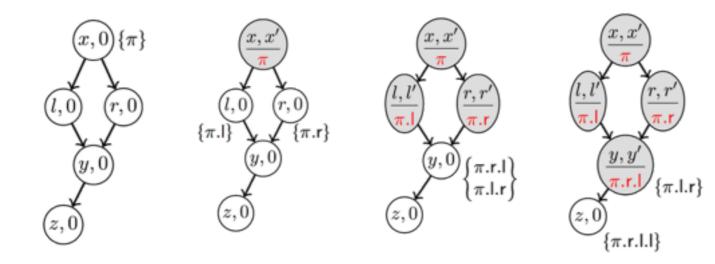
```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```



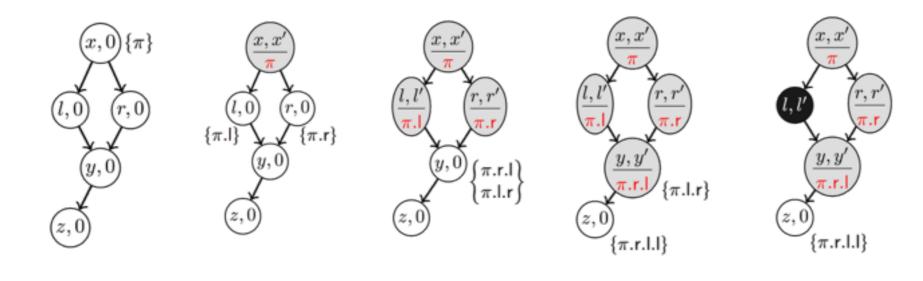
```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```



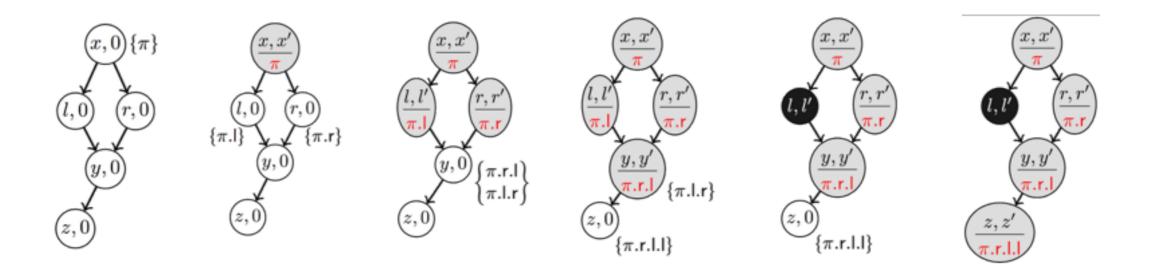
```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```



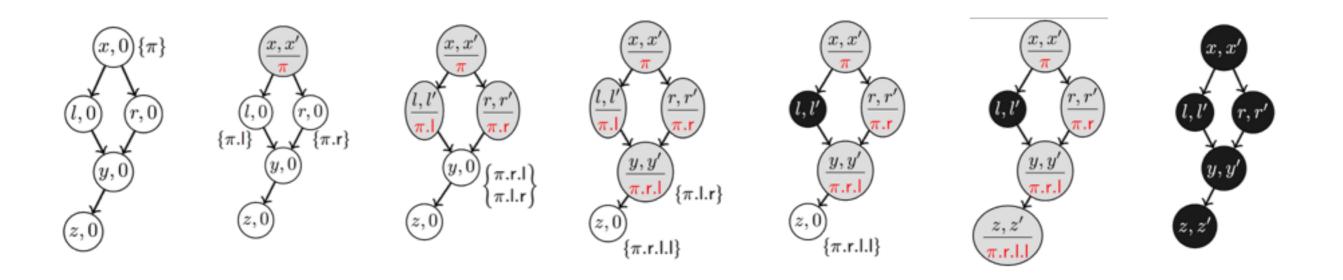
```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```



```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```



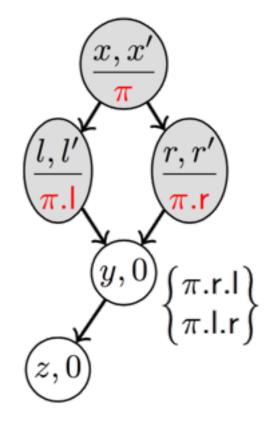
```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```



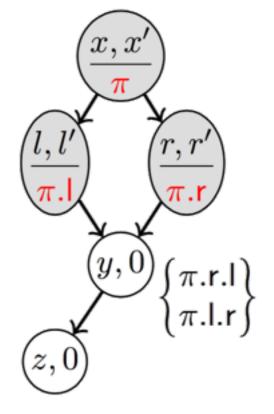
A token mechanism for

- Thread identification
- Thread progress tracking

- Thread identification
 - distinguish one token (thread) from another
 - identify two distinct sub-tokens given any token (at recursive call points)
 - model a parent-child relation (spawner-spawnee)
- Thread progress tracking
 - marking thread ids as tokens
 - promise sets as token sets



- Thread identification
 - distinguish one token (thread) from another
 - identify two distinct sub-tokens given any token (at recursive call points)
 - model a parent-child relation (spawner-spawnee)
- Thread progress tracking
 - marking thread ids as tokens
 - promise sets as token sets



- Thread identification
 - distinguish one token (thread) from another
 - identify two distinct sub-tokens given any token (at recursive call points)
 - model a parent-child relation (spawner-spawnee)
- Thread progress tracking
 - marking thread ids as tokens
 - promise sets as token sets

$$\pi ::= \bullet | \widehat{\circ \pi} | \widehat{\pi \circ}$$

$$\bullet.\mathsf{I} = \widehat{\circ \circ} \qquad (\widehat{\circ \pi}).\mathsf{I} = \widehat{\circ \pi}.\mathsf{I} \qquad (\widehat{\pi \circ}).\mathsf{I} = \widehat{\pi}.\mathsf{I} \circ$$

$$\bullet.\mathsf{r} = \widehat{\circ \bullet} \qquad (\widehat{\circ \pi}).\mathsf{r} = \widehat{\circ \pi}.\mathsf{r} \qquad (\widehat{\pi \circ}).\mathsf{r} = \widehat{\pi}.\mathsf{r} \circ$$



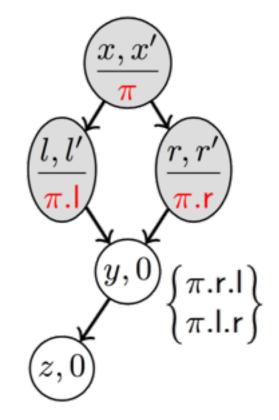
- Thread identification
 - distinguish one token (thread) from another
 - identify two distinct sub-tokens given any token (at recursive call points)
 - model a parent-child relation (spawner-spawnee)
- Thread progress tracking
 - marking thread ids as tokens
 - promise sets as token sets

$$\pi ::= \bullet | \widehat{\circ \pi} | \widehat{\pi \circ}$$

$$\bullet .\mathsf{I} = \widehat{\bullet \circ} \qquad (\widehat{\circ \pi}) .\mathsf{I} = \widehat{\circ \pi} .\mathsf{I} \qquad (\widehat{\pi \circ}) .\mathsf{I} = \widehat{\pi} .\mathsf{I} \circ$$

$$\bullet .\mathsf{r} = \widehat{\circ \bullet} \qquad (\widehat{\circ \pi}) .\mathsf{r} = \widehat{\circ \pi} .\mathsf{r} \qquad (\widehat{\pi \circ}) .\mathsf{r} = \widehat{\pi} .\mathsf{r} \circ$$

$$\sqsubset = \left\{ (\pi .\mathsf{I}, \pi), (\pi .\mathsf{r}, \pi) \right\}^+ \qquad \text{sub-thread relation}$$



The copy_dag token mechanism for

- Thread identification
 - distinguish one token (thread) from another
 - identify two distinct sub-tokens given any token (at recursive call points)
 - model a parent-child relation (spawner-spawnee)
- Thread progress tracking
 - marking thread ids as tokens
 - promise sets as token sets

top-most (maximal) token

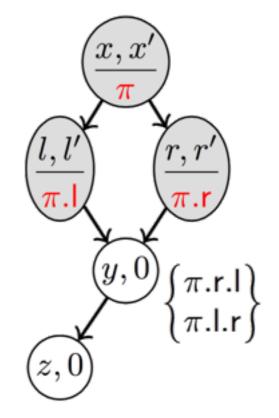
$$\pi ::= \bullet \mid \widehat{\circ \pi} \mid \widehat{\pi \circ}$$

•.I =
$$\widehat{\circ}_{\circ}$$
 $(\widehat{\circ}_{\pi})$.I = $\widehat{\circ}_{\pi}$.I $(\widehat{\pi}_{\circ})$.I
•.r = $\widehat{\circ}_{\circ}$ $(\widehat{\circ}_{\pi})$.r = $\widehat{\circ}_{\pi}$.r $(\widehat{\pi}_{\circ})$.r

$$(\pi \circ) \cdot \mathbf{I} = \pi \cdot \mathbf{I} \circ$$
$$(\widehat{\pi \circ}) \cdot \mathbf{r} = \widehat{\pi \cdot \mathbf{r} \circ}$$

$$\Box = \{ (\pi.\mathsf{I}, \pi), (\pi.\mathsf{r}, \pi) \}^{+}$$

sub-thread relation



The copy_dag token mechanism for

- Thread identification lacksquare
 - distinguish one token (thread) from another
 - identify two distinct sub-tokens given any token (at recursive call points)
 - model a parent-child relation (spawner-spawnee)
- Thread progress tracking
 - marking thread ids as tokens
 - promise sets as token sets

top-most (maximal) token

$$\pi ::= \bullet \mid \widehat{\circ \pi} \mid \widehat{\pi \circ}$$

•.I =
$$\widehat{\circ}_{\circ}$$
 $(\widehat{\circ}_{\pi})$.I = $\widehat{\circ}_{\pi}$.I
•.r = $\widehat{\circ}_{\circ}$ $(\widehat{\circ}_{\pi})$.r = $\widehat{\circ}_{\pi}$.r

•.r = • • (•
$$\pi$$
).r = • π .r (π
•.r = • • (• π).r = • π .r (π
 $(\pi$
 $= \{(\pi.l, \pi), (\pi.r, \pi)\}^+$ sul

●.l.r •.r.r $(\widehat{\pi \circ}).\mathsf{I} = \widehat{\pi . \mathsf{I} \circ}$ $(\widehat{\pi \circ}).\mathsf{r} = \widehat{\pi . \mathsf{r} \circ}$

y, 0

 π .r.l

2. Mathematical Objects

2. Mathematical Objects

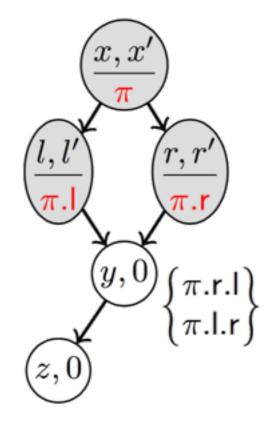
• An abstract representation of the underlying data structure

2. Mathematical Objects

- An abstract representation of the underlying data structure
 - e.g. a pair of mathematical dags (δ , δ_c)

- An abstract representation of the underlying data structure
 - + e.g. a pair of mathematical dags (δ , δ_c)
 - each dag is a triple:

$$\delta = (V, E, L)$$

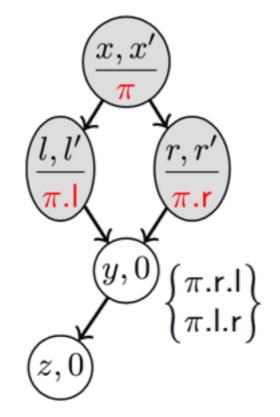


- An abstract representation of the underlying data structure
 - e.g. a pair of mathematical dags (δ , δ_c)
 - each dag is a triple:

Vertices

$$\delta = (V, E, L)$$

$$V = \{x, l, r, y, z\}$$

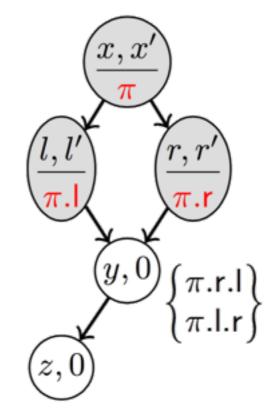


- An abstract representation of the underlying data structure
 - e.g. a pair of mathematical dags (δ , δ_c)
 - each dag is a triple:

$$\delta = (V, (E), L)$$

$$E(x) = l, r$$

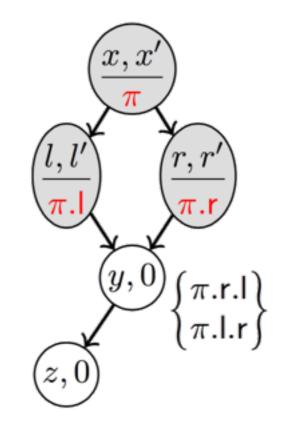
 $E(l) = 0, y$
 $E(r) = y, 0$
 $E(y) = z, 0$
 $E(z) = 0, 0$



- An abstract representation of the underlying data structure
 - e.g. a pair of mathematical dags (δ , δ_c)
 - each dag is a triple:

$$\delta = (V, E, Labels)$$

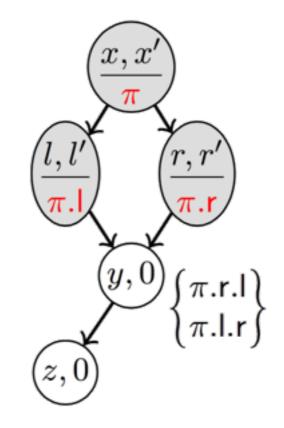
copy $L(x) = x^{2}, \pi, \{\}$ $L(l) = l^{2}, \pi.I, \{\}$ $L(r) = r^{2}, \pi.r, \{\}$ $L(y) = 0, 0, \{\pi.r.I, \pi.I.r\}$ $L(z) = 0, 0, \{\}$



- An abstract representation of the underlying data structure
 - e.g. a pair of mathematical dags (δ , δ_c)
 - each dag is a triple:

$$\delta = (V, E, Labels)$$

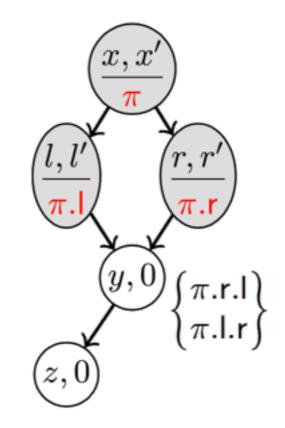
copy copying thread $L(x) = x^{2}, \pi, \{\}$ $L(l) = l^{2}, \pi, \{\}$ $L(r) = r^{2}, \pi, r, \{\}$ $L(y) = 0, 0, \{\pi, r, l, \pi, l, r\}$ $L(z) = 0, 0, \{\}$



- An abstract representation of the underlying data structure
 - e.g. a pair of mathematical dags (δ , δ_c)
 - each dag is a triple:

$$\delta = (V, E, Labels)$$

copy copying thread promise set $L(x) = (x') \pi, \{\}$ $L(t) = t', \pi, \{\}$ $L(t) = t', \pi, \{\}$



- An abstract representation of the underlying data structure
 - e.g. a pair of mathematical dags (δ , δ_c)
 - each dag is a triple:

$$\delta = (V, E, Labels)$$
copy copying thread promise set

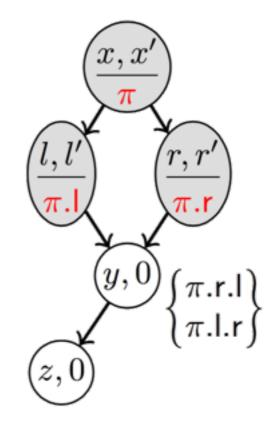
$$L(x) = (x) (\pi, \{\}) \text{ ghost components}$$

$$L(l) = l', \pi.I, \{\}$$

$$L(r) = r', \pi.r, \{\}$$

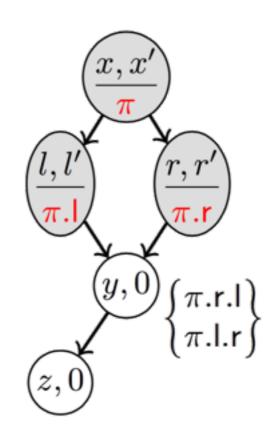
$$L(y) = 0, 0, \{\pi.r.I, \pi.I.r\}$$

$$L(z) = 0, 0, \{\}$$



- An abstract representation of the underlying data structure
 - e.g. a pair of mathematical dags (δ , δ_c)
 - each dag is a triple:

Labels $\delta = (V, E, (L))$ $copy(x) \quad thread(x)$ $L(x) = (x') \quad (\pi, \{\{\}\})$ promise(x) $L(l) = l', \pi I, \{\}$ $L(r) = r', \pi.r, \{\}$ $L(y) = 0, 0, \{\pi.r.l, \pi.l.r\}$ $L(z) = 0, 0, \{\}$



- An abstraction of thread actions (on mathematical objects)
 - atomic blocks as well as ghost actions
 - A^{π} denotes the actions of thread π

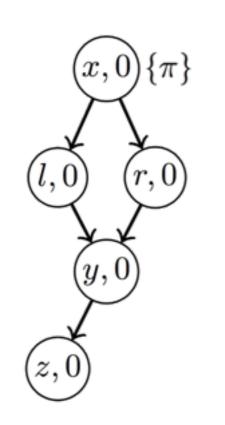
- An abstraction of thread actions (on mathematical objects)
 - atomic blocks as well as ghost actions
 - A^{π} denotes the actions of thread π

```
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
    struct node *l, *r, *ll, *rr, *x'; bool b;
    if (!x) {return 0;}
    x' = malloc(sizeof(struct node));
    b = <CAS(x->c, 0, x')>;
    if (b) {
        l = x->l; r = x->r;
        ll = copy_dag(l) || rr = copy_dag(r)
        <x'->l = ll>; <x'->r = rr>;
        return x';
    } else {
        free(x', sizeof(struct node)); return x->c;
    }
}
```

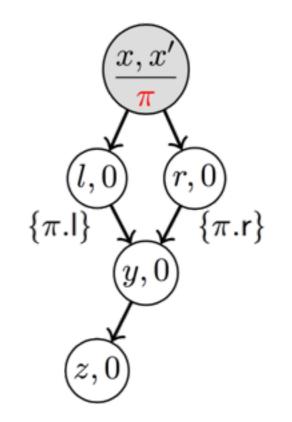
- An abstraction of thread actions (on mathematical objects)
 - atomic blocks as well as ghost actions
 - A^{π} denotes the actions of thread π

copy_dag(struct if b = = A CAS(x + c, 0, x') >;l = x->l; r = x->r; ll = copy_dag(l) || rr = copy_dag(r) <x'->1 = 11>; <x'->r = rr> } else {

- An abstraction of thread actions (on mathematical objects)
 - atomic blocks as well as ghost actions
 - A^{π} denotes the actions of thread π



copy dag(= < CAS(x > c, 0, x')>; copy dag(1) rr = copy_dag(r) 11>: <x'->r = rr>else



 $(\delta, \delta_{c}) = ((V, E, L), (V_{c}, E_{c}, L_{c}))$ $L(x) = 0, 0, \{\pi\}$ $L(l) = 0, 0, \{\}$ $L(r) = 0, 0, \{\}$

Inv(δ , δ_c) $\triangleq \delta$ and δ_c are both acyclic;

every node x' in the copy δ_c corresponds to a unique node x in the original δ ; every node x in the original δ has some copy value x'

Inv(δ , δ _c) ≜ acyc(δ) ∧ acyc(δ _c) ∧

every node x' in the copy δ_c corresponds to a unique node x in the original δ ; every node x in the original δ has some copy value x'

Inv(δ, δ_c) ≜ acyc(δ) ∧ acyc(δ_c) ∧ $\forall x' \in \delta_c$. ∃! $x \in \delta$. copy(x)= $x' \land$ every node x in the original δ has some copy value x'

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

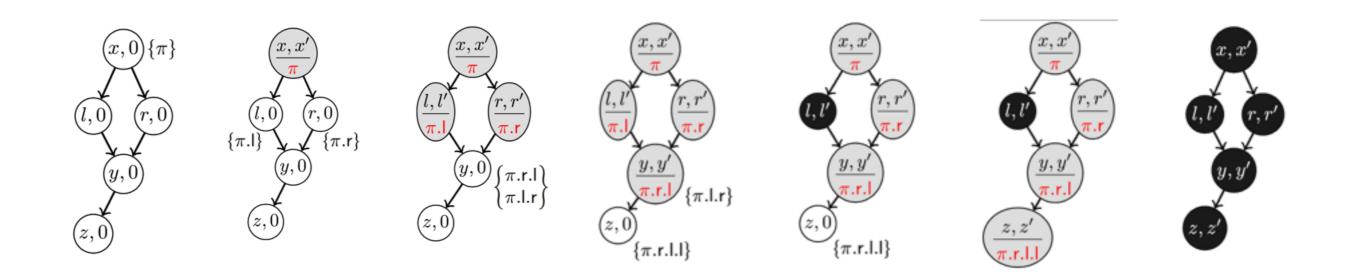
ic(x, x', δ, δ_c) \triangleq if x' is 0 (x is not copied yet), then x will eventually be copied:

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

ic(x, x', δ, δ_c) \triangleq if x' is 0 (x is not copied yet), then x will eventually be copied:

there exists some y in δ s.t.

- 1) the promise set of y is non-empty; 2) y can reach x along a path p;
- and 3) every node along the path p is not copied
- \Rightarrow when y is eventually copied, it'll visit x along p and copy it too



 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

ic(x, x', δ, δ_c) \triangleq if x' is 0 (x is not copied yet), then x will eventually be copied:

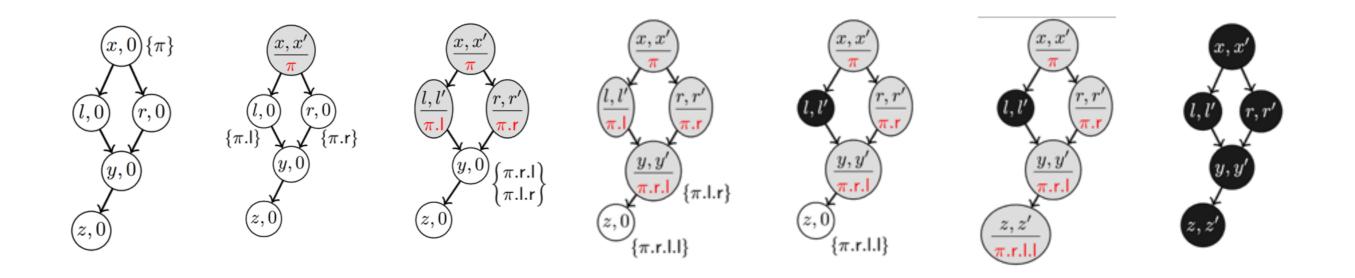
there exists some y in δ s.t.

1) the promise set of y is non-empty; 2) y can reach x along a path p; and 3) every node along the path p is not copied

otherwise, x' is a node in δ_c and

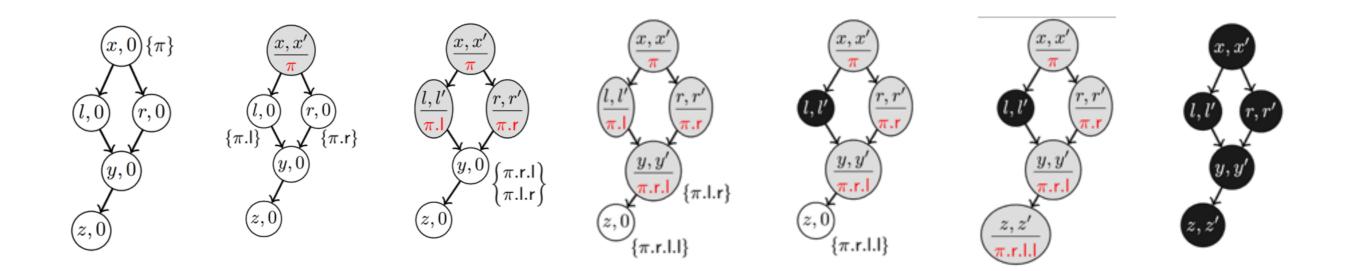
the children of x, (l,r), are also copied to some (l',r'):

ic(l, l', δ , δ_c) and ic(r, r', δ , δ_c)



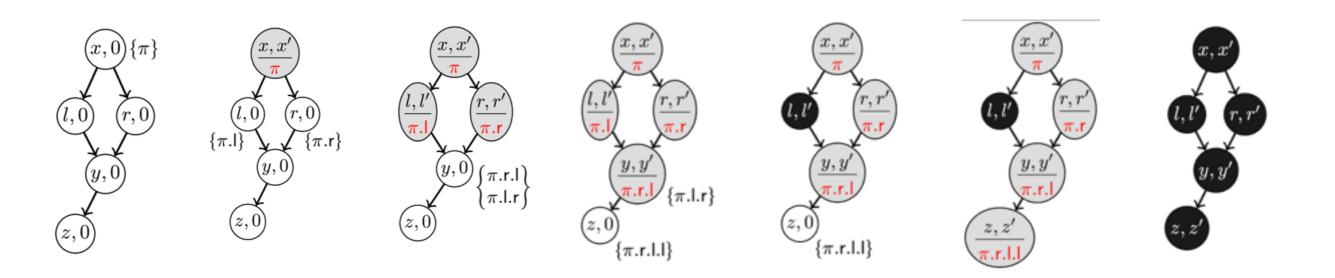
 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

$$\begin{split} \mathsf{ic}(x, x', \delta, \delta_{\mathsf{c}}) &\triangleq (x = 0 \land x' = 0) \lor \\ & \left(x \neq 0 \land \left[(x' = 0 \land \delta^{\mathsf{c}}(x) = x' \land \exists y. \, \delta^{\mathsf{p}}(y) \neq \emptyset \land y \stackrel{\delta}{\rightsquigarrow} _{0}^{*} x) \\ & \lor (x' \neq 0 \land x' \in \delta' \land \exists \pi, l, r, l', r'. \, \delta(x) = ((x', \pi, -), l, r) \land \delta'(x') = (-, l', r') \\ & \land (l' \neq 0 \Rightarrow \mathsf{ic}(l, l', \delta, \delta')) \land (r' \neq 0 \Rightarrow \mathsf{ic}(r, r', \delta, \delta'))) \\ & \lor (x' \neq 0 \land x' \in \delta' \land \exists l, r, l', r'. \, \delta(x) = ((x', 0, -), l, r) \land \delta'(x') = (-, l', r') \\ & \land \mathsf{ic}(l, l', \delta, \delta') \land \mathsf{ic}(r, r', \delta, \delta')) \right] \end{split}$$



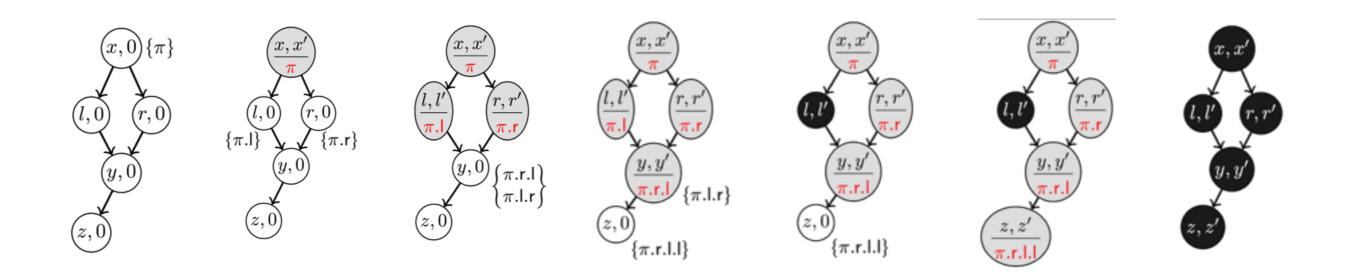
 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $P^{\pi}(x, \delta) \triangleq \pi$ has made a promise to visit x; π has made a promise to x only; and π has not spawned any threads yet: its subthreads are not in the graph (in promise sets or as copying thread)



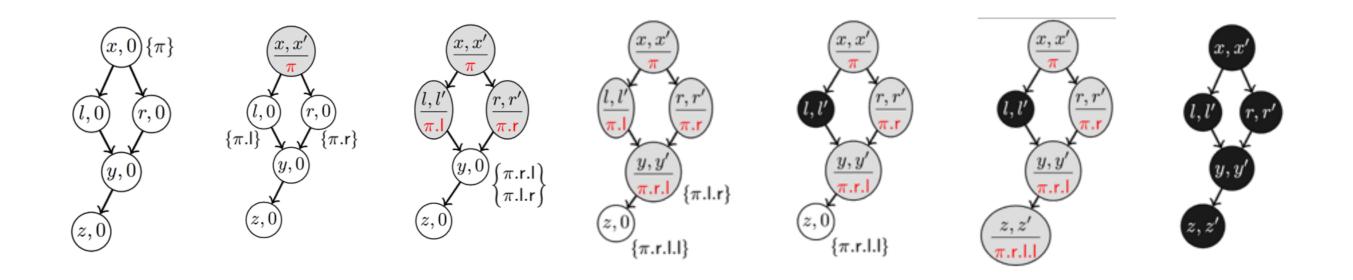
 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $P^{\pi}(x, \delta) \triangleq x \neq 0 \Rightarrow \pi \in \text{promise}(x) \land \pi$ has made a promise to x only; and π has not spawned any threads yet: its subthreads are not in the graph (in promise sets or as copying thread)



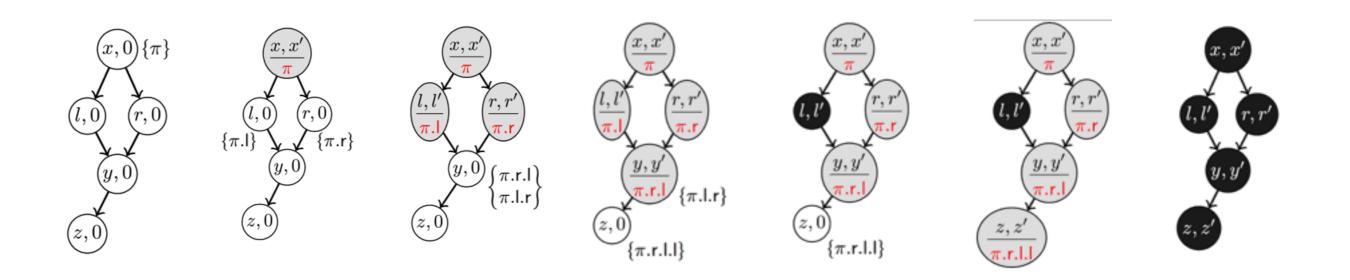
 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $P^{\pi}(x, \delta) \triangleq x \neq 0 \implies \pi \in \text{promise}(x) \land \forall z \in \delta. \ \pi \in \text{promise}(z) \implies x = z$ $\pi \text{ has not spawned any threads yet:}$ its subthreads are not in the graph (in promise sets or as copying thread)



 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

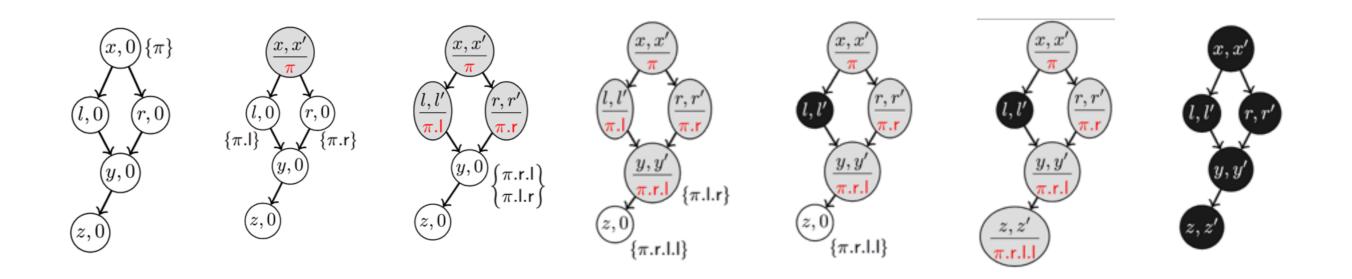
 $P^{\pi}(x, \delta) \triangleq x \neq 0 \implies \pi \in \text{promise}(x) \land \forall z \in \delta. \ \pi \in \text{promise}(z) \implies x = z$ $\forall z \in \delta. \ \forall \ \pi' \sqsubset \pi. \quad \pi' \notin \text{promise}(z) \land \pi' \neq \text{thread}(x)$



 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $P^{\pi}(x, \delta) \triangleq x \neq 0 \implies \pi \in \text{promise}(x) \land \forall z \in \delta. \ \pi \in \text{promise}(z) \implies x = z$ $\forall z \in \delta. \ \forall \ \pi' \sqsubset \pi. \quad \pi' \notin \text{promise}(z) \land \pi' \neq \text{thread}(x)$

 $Q^{\pi}(x, x', \delta, \delta_c) \triangleq x$ is copied to x' in δ_c ; and π and all its subthreads have finished executing (have joined): they are not in the graph (in promise sets or as copying thread)

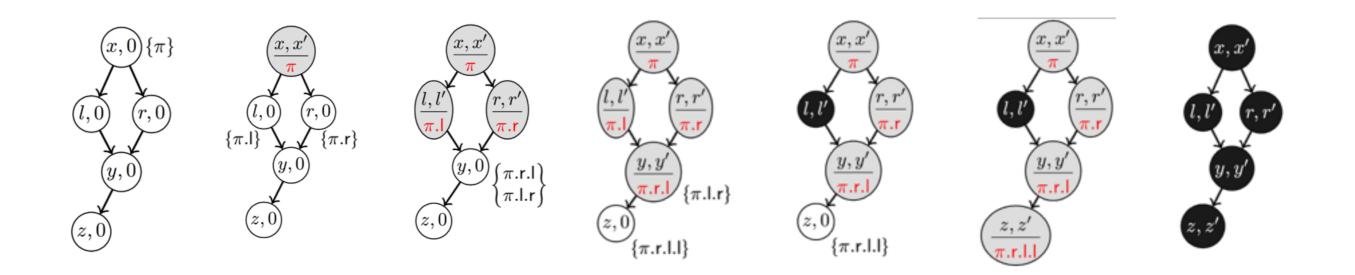


 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $P^{\pi}(x, \delta) \triangleq x \neq 0 \implies \pi \in \text{promise}(x) \land \forall z \in \delta. \ \pi \in \text{promise}(z) \implies x = z$ $\forall z \in \delta. \ \forall \ \pi' \sqsubset \pi. \quad \pi' \notin \text{promise}(z) \land \pi' \neq \text{thread}(x)$

 $Q^{\pi}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \land x' \in \delta_{c} \land$

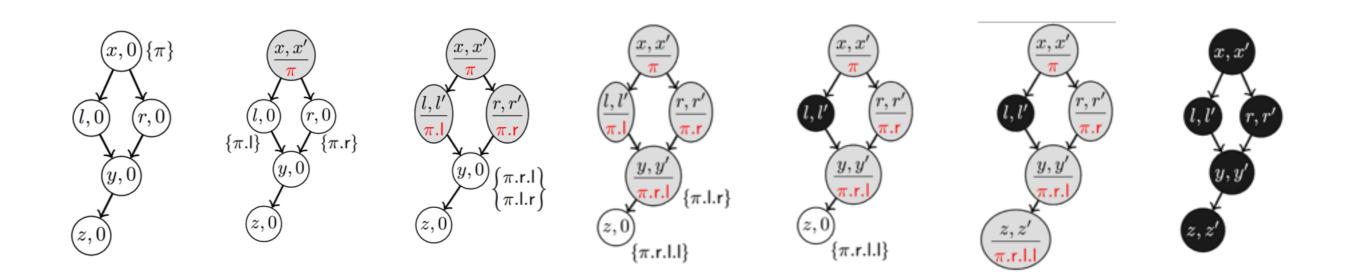
 π and all its subthreads have finished executing (have joined): they are not in the graph (in promise sets or as copying thread)



 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $P^{\pi}(x, \delta) \triangleq x \neq 0 \implies \pi \in \text{promise}(x) \land \forall z \in \delta. \ \pi \in \text{promise}(z) \implies x = z$ $\forall z \in \delta. \ \forall \ \pi' \sqsubset \pi. \quad \pi' \notin \text{promise}(z) \land \pi' \neq \text{thread}(x)$

 $Q^{\pi}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \land x' \in \delta_{c} \land$ $\forall z \in \delta. \ \forall \ \pi' \sqsubseteq \pi. \quad \pi' \notin \operatorname{promise}(z) \land \pi' \neq \operatorname{thread}(x)$



 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $Q^{\bullet}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \land x' \in \delta_{c} \land$ $\forall z \in \delta. \ \forall \ \pi' \sqsubseteq \bullet. \quad \pi' \notin \operatorname{promise}(z) \land \ \pi' \neq \operatorname{thread}(x)$

 $\forall \pi. \pi \sqsubseteq \bullet$

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $Q^{\bullet}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \land x' \in \delta_{c} \land$ $\forall z \in \delta. \ \forall \ \pi' \sqsubseteq \bullet. \quad \pi' \notin \operatorname{promise}(z) \land \pi' \neq \operatorname{thread}(x)$

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $Q^{\bullet}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \wedge x' \in \delta_{c} \wedge \\ \forall z \in \delta. \forall \pi'. \qquad \pi' \notin \operatorname{promise}(z) \wedge \pi' \neq \operatorname{thread}(x)$

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $Q^{\bullet}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \wedge x' \in \delta_{c} \wedge \\ \forall z \in \delta. \forall \pi'. \qquad \pi' \notin \operatorname{promise}(z) \wedge \pi' \neq \operatorname{thread}(x)$

ic(x, x', δ, δ_c) \triangleq if x' is 0 (x is not copied yet), then x will eventually be copied: there exists some y in δ s.t. 1) the promise set of y is non-empty; 2) y can reach x along a path p; and 3) every node along the path p is not copied otherwise, x' is a node in δ_c and the children of x are also copied

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $Q^{\bullet}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \land x' \in \delta_{c} \land$ $\forall z \in \delta. \forall \pi'. \qquad \pi' \notin \operatorname{promise}(z) \land \pi' \neq \operatorname{thread}(x)$

ic(x, x', δ , δ_c) \triangleq if x' is 0 (x is not copied yet), then x will eventually be copied:

there exists some y in δ s.t.

1) the promise set of y is non-empty; 2) y can reach x along a path p;

and 3) every node along the path p is not copied

otherwise, x' is a node in δ_c and the children of x are also copied

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $Q^{\bullet}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \land x' \in \delta_{c} \land$ $\forall z \in \delta. \forall \pi'. \qquad \pi' \notin \operatorname{promise}(z) \land \pi' \neq \operatorname{thread}(x)$

ic(x, x', δ , δ_c) \triangleq x' is a node in δ_c and the children of x are also copied

 $lnv(\delta, \delta_{c}) \triangleq acyc(\delta) \land acyc(\delta_{c}) \land \forall x' \in \delta_{c}. \exists !x \in \delta. copy(x) = x' \land \forall x \in \delta. \exists x'. copy(x) = x' \land ic(x, x', \delta, \delta_{c})$

 $Q^{\bullet}(x, x', \delta, \delta_{c}) \triangleq \operatorname{copy}(x) = x' \wedge x' \in \delta_{c} \wedge \\ \forall z \in \delta. \forall \pi'. \qquad \pi' \notin \operatorname{promise}(z) \wedge \pi' \neq \operatorname{thread}(x)$

ic(x, x', δ , δ_c) \triangleq x' is a node in δ_c and the children of x are also copied

 $Q^{\bullet}(x, x', \delta, \delta_c) \wedge ic(x, x', \delta, \delta_c) \implies$ all nodes in δ are copied to nodes in δ_c

5. Spatial Objects

5. Spatial Objects

• A concrete implementation of the data structures in the heap

- A concrete implementation of the data structures in the heap
 - e.g. a pair of heap-represented dags:

 $icdag(\delta, \delta_c) \triangleq d \Rightarrow \delta, \delta_c * dag(\delta) * dag(\delta_c)$

- A concrete implementation of the data structures in the heap
 - e.g. a pair of heap-represented dags:

icdag(
$$\delta$$
, δ_c) $\triangleq (d \Rightarrow \delta, \delta_c) * dag(\delta) * dag(\delta_c)$
Tracking the abstract state of the dags:

recorded in the ghost heap; not "baked in" to model

- A concrete implementation of the data structures in the heap
 - e.g. a pair of heap-represented dags:

icdag(
$$\delta, \delta_c$$
) $\triangleq (d \Rightarrow \delta, \delta_c) * dag(\delta) * dag(\delta_c)$
Tracking the abstract state of the dags:
recorded in the *ghost heap; not "baked in"* to model

• each dag(δ) implemented as a collection of nodes:

$$dag(\delta) \triangleq \underset{x \in \delta}{\ast} node(x, \delta)$$

- A concrete implementation of the data structures in the heap
 - e.g. a pair of heap-represented dags:

icdag(δ, δ_c) ≜
$$(d \Rightarrow \delta, \delta_c)$$
 * dag(δ) * dag(δ_c)
Tracking the abstract state of the dags:
recorded in the *ghost heap; not "baked in"* to model

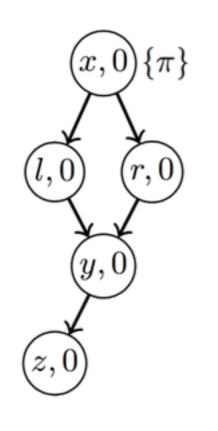
• each dag(δ) implemented as a collection of nodes:

$$dag(\delta) \triangleq * node(x, \delta)$$
$$x \in \delta$$

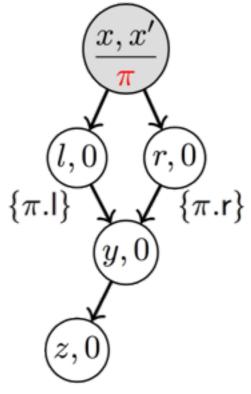
 $\begin{aligned} \mathsf{node}(x,\,(V\,,\,E\,,\,L)\,) &\triangleq \,\exists\,l,\,r,\,x\,',\,P,\,\,\pi. \ \, E(x) = l,\,r \ \wedge \ \, L(x) = x\,',\,\pi,\,P \ \wedge \\ x \mapsto x\,',\,l,\,r \ * \ x \Rightarrow \pi,\,P \end{aligned}$

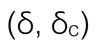
- An implementation of thread actions (on spatial objects)
 - atomic blocks as well as ghost actions

- An implementation of thread actions (on spatial objects)
 - atomic blocks as well as ghost actions



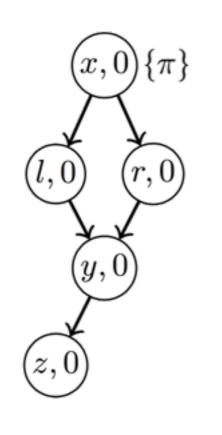
copy_dag(= < CAS(x + > c, 0, x') >;l = x->l; r = x->r; ll = copy_dag(l) || rr = copy_dag(r) <x'->1 = 11>; <x'->r = rr> } else {



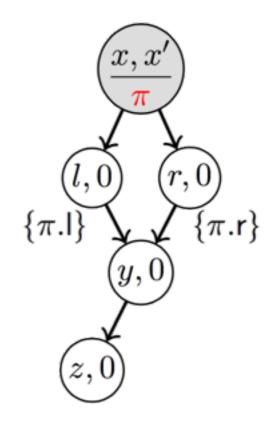


(δ', δ'_c)

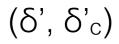
- An implementation of thread actions (on spatial objects)
 - atomic blocks as well as ghost actions
 - Lifting of mathematical actions A^{π} to spatial ones $[A^{\pi}]$



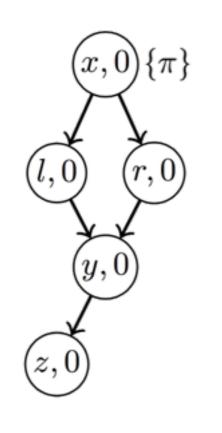
copy_dag(= < CAS(x + > c, 0, x') >;l = x->l; r = x->r; ll = copy_dag(l) || rr = copy_dag(r) ->1 = 11>; <x'->r = rr> } else {



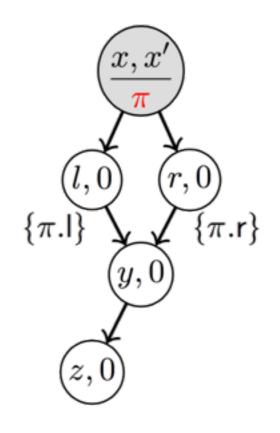
(δ, δ_c)



- An implementation of thread actions (on spatial objects)
 - atomic blocks as well as ghost actions
 - Lifting of mathematical actions A^{π} to spatial ones $[A^{\pi}]$



copy_dag(= < CAS(x + > c, 0, x') >;l = x->l; r = x->r; ll = copy_dag(l) || rr = copy_dag(r) ->1 = 11>; <x'->r = rr> } else {



(δ, δ_c)

 $icdag(\delta, \delta_c)$

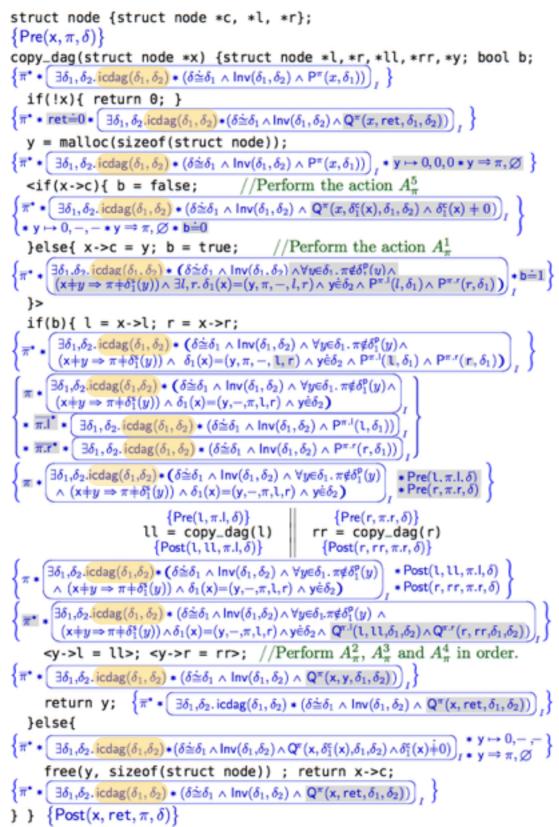
(δ', δ'_c)

 $icdag(\delta', \delta'_c)$

Verifying copy_dag(x)

Changes reflected in the pure (mathematical) part as highlighted

Verifying copy_dag(x)



Changes reflected in the pure (mathematical) part as highlighted

The spatial part appears unchanged as highlighted

Verifying copy_dag(x)

Changes reflected in the pure (mathematical) part as highlighted

The spatial part appears unchanged as highlighted

Conclusions

Solution of the second state of the second sta

- Copying dags (directed acyclic graphs)
- Speculative variant of Dijkstra's shortest path
- Computing the spanning tree of a graph
- Marking a graph

Presented a common proof pattern for graph algorithms

- Sectional Correctness (Mathematical Graphs for Functional Correctness)
- Section of the sectio
- Combined reasoning for full proof
- Inspired by existing logics where this pattern is "baked-in" to the model
- """ "Baking-in" is unnecessary; demonstrated by CoLoSL reasoning

Conclusions

Solution of the second state of the second sta

- Copying dags (directed acyclic graphs)
- Speculative variant of Dijkstra's shortest path
- Computing the spanning tree of a graph
- 🗹 Marking a graph

Presented a common proof pattern for graph algorithms

- Sectional Correctness (Marchine) (Content of Content of
- Section 12 (Interpretation of the content of the co
- **Markov** Combined reasoning for full proof
- Inspired by existing logics where this pattern is "baked-in" to the model
- """ "Baking-in" is unnecessary; demonstrated by CoLoSL reasoning

Thank you for listening!

Speculative Concurrent Shortest Path

```
parallel dijkstra((int[][] a, int[] c, int size, src) {
  bitarray work[size], done[size];
  for (i=0; i<size; i++){</pre>
    c[i] = a[src][i]; work[i] = 1; done[i] = 0; //initialisation
  }; c[src] = 0;
  dijkstra(a,c,size,work,done) || ... || dijkstra(a,c,size,work,done)
}
dijkstra(int[][] a, int[] c, int size, bitarray work, done){
  i = 0;
  while(done != 2^size-1){
    b = <CAS(work[i], 1, 0)>;
    if(b) \{ cost = c[i];
      for(j=0; j<size; j++){ newcost = cost + a[i][j]; b = true;</pre>
        do{ oldcost = c[j];
          if(newcost < oldcost){</pre>
            b = <CAS(work[j], 1, 0)>;
            if(b){ b = <CAS(c[j], oldcost, newcost)>; <work[j] = 1>; }
            else { b = <CAS(done[j], 1, 0)>;
              if(b){ b = <CAS(c[j], oldcost, newcost)>;
                if(b){ < work[j] = 1 > } else { < done[j] = 1 > }
          } } }
        } while(!b)
      } < done[i] = 1 >;
    } i = (i+1) \mod size;
} }
```