
Verifying Concurrent Graph Algorithms

Azalea Raad Aquinas Hobor Jules Villard Philippa Gardner

Imperial College London
National University of Singapore

APLAS’16
22 November 2016

1

Concurrent Program Logic Genealogy
Verifying concurrent algorithms is difficult…

2

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Concurrent Program Logic Genealogy

Graph credit: Ilya Sergey

Verifying concurrent algorithms is difficult…

2

Graph Algorithms
Verifying graph algorithms is difficult…

• Subtle correctness argument
• Overlapping structure (unspecified sharing via pointer aliasing)
‣ Non-compositional reasoning (preventing the use of the frame rule)

3

Graph Algorithms
Verifying graph algorithms is difficult…

• Subtle correctness argument
• Overlapping structure (unspecified sharing via pointer aliasing)
‣ Non-compositional reasoning (preventing the use of the frame rule)

3

Graph Algorithms
Verifying graph algorithms is difficult…

• Subtle correctness argument
• Overlapping structure (unspecified sharing via pointer aliasing)
‣ Non-compositional reasoning (preventing the use of the frame rule)

3

Graph Algorithms
Verifying graph algorithms is difficult…

• Subtle correctness argument
• Overlapping structure (unspecified sharing via pointer aliasing)
‣ Non-compositional reasoning (preventing the use of the frame rule)

3

Graph Algorithms
Verifying graph algorithms is difficult…

• Subtle correctness argument
• Overlapping structure (unspecified sharing via pointer aliasing)
‣ Non-compositional reasoning (preventing the use of the frame rule)

3

Concurrent Graph Algorithms
Verifying concurrent graph algorithms is even more difficult…

• Subtle correctness argument
• Overlapping structure (unspecified sharing via pointer aliasing)
‣ Non-compositional reasoning (preventing the use of the frame rule)

• Reasoning about each thread in isolation

4

Concurrent Graph Algorithms
Verifying concurrent graph algorithms is even more difficult…

• Subtle correctness argument
• Overlapping structure (unspecified sharing via pointer aliasing)
‣ Non-compositional reasoning (preventing the use of the frame rule)

• Reasoning about each thread in isolation

4

Concurrent Graph Algorithms
Verifying concurrent graph algorithms is even more difficult…

• Subtle correctness argument
• Overlapping structure (unspecified sharing via pointer aliasing)
‣ Non-compositional reasoning (preventing the use of the frame rule)

• Reasoning about each thread in isolation

4

Contributions
• Verified 4 concurrent fine-grained graph algorithms

‣ Copying dags (directed acyclic graphs)
‣ Speculative variant of Dijkstra’s shortest path
‣ Computing the spanning tree of a graph
‣ Marking a graph

5

Contributions
• Verified 4 concurrent fine-grained graph algorithms

‣ Copying dags (directed acyclic graphs)
‣ Speculative variant of Dijkstra’s shortest path
‣ Computing the spanning tree of a graph
‣ Marking a graph

• Presented a common proof pattern for graph algorithms
‣ Abstract mathematical graphs for Functional correctness
‣ Concrete Spatial (heap-represented) graphs for memory safety
‣ Combined reasoning for full proof

5

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Contributions
• Verified 4 concurrent fine-grained graph algorithms

‣ Copying dags (directed acyclic graphs)
‣ Speculative variant of Dijkstra’s shortest path
‣ Computing the spanning tree of a graph
‣ Marking a graph

• Presented a common proof pattern for graph algorithms
‣ Abstract mathematical graphs for Functional correctness
‣ Concrete Spatial (heap-represented) graphs for memory safety
‣ Combined reasoning for full proof
‣ Inspired by existing logics where this pattern is “baked-in” to the model
‣ “Baking-in” is unnecessary

5

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Contributions
• Verified 4 concurrent fine-grained graph algorithms

‣ Copying dags (directed acyclic graphs)
‣ Speculative variant of Dijkstra’s shortest path
‣ Computing the spanning tree of a graph
‣ Marking a graph

• Presented a common proof pattern for graph algorithms
‣ Abstract mathematical graphs for Functional correctness
‣ Concrete Spatial (heap-represented) graphs for memory safety
‣ Combined reasoning for full proof
‣ Inspired by existing logics where this pattern is “baked-in” to the model
‣ “Baking-in” is unnecessary

5

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

This Talk
• Verified 4 concurrent fine-grained graph algorithms

 Copying dags (directed acyclic graphs)
‣ Speculative variant of Dijkstra’s shortest path
‣ Computing the spanning tree of a graph
‣ Marking a graph
 Presented a common proof pattern for graph algorithms
‣ Abstract mathematical graphs for Functional correctness
‣ Concrete Spatial (heap-represented) graphs for memory safety
‣ Combined reasoning for full proof
‣ Inspired by existing logics where this pattern is “baked-in” to the model
‣ “Baking-in” is unnecessary

6

Copying Binary DAGs

atomic blocks

struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

7

copy_dag(x) Specification
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

8

• Specification challenges
‣ When copy_dag(x) returns, x is copied but its children may not be
‣ If x is already copied, copy_dag(x) simply returns:
 the thread that copied x has made a promise to visit x’s children
 and ensure they are copied

copy_dag(x): A Trace
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

9

copy_dag(x): A Trace
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

9

copy_dag(x): A Trace
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

9

copy_dag(x): A Trace
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

9

copy_dag(x): A Trace
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

9

copy_dag(x): A Trace
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

9

copy_dag(x): A Trace
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

9

copy_dag(x): A Trace
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

9

1. Tokens
• Thread identification
• Thread progress tracking

A token mechanism for

10

The copy_dag token mechanism for
1. Tokens

• Thread identification
‣ distinguish one token (thread) from another
‣ identify two distinct sub-tokens given any token (at recursive call points)
‣ model a parent-child relation (spawner-spawnee)

• Thread progress tracking
‣ marking thread ids as tokens
‣ promise sets as token sets

10

The copy_dag token mechanism for
1. Tokens

• Thread identification
‣ distinguish one token (thread) from another
‣ identify two distinct sub-tokens given any token (at recursive call points)
‣ model a parent-child relation (spawner-spawnee)

• Thread progress tracking
‣ marking thread ids as tokens
‣ promise sets as token sets

10

The copy_dag token mechanism for
1. Tokens

• Thread identification
‣ distinguish one token (thread) from another
‣ identify two distinct sub-tokens given any token (at recursive call points)
‣ model a parent-child relation (spawner-spawnee)

• Thread progress tracking
‣ marking thread ids as tokens
‣ promise sets as token sets

10

The copy_dag token mechanism for
1. Tokens

• Thread identification
‣ distinguish one token (thread) from another
‣ identify two distinct sub-tokens given any token (at recursive call points)
‣ model a parent-child relation (spawner-spawnee)

• Thread progress tracking
‣ marking thread ids as tokens
‣ promise sets as token sets

⊏ = {(π.l, π), (π.r, π)} sub-thread relation+

10

The copy_dag token mechanism for
1. Tokens

• Thread identification
‣ distinguish one token (thread) from another
‣ identify two distinct sub-tokens given any token (at recursive call points)
‣ model a parent-child relation (spawner-spawnee)

• Thread progress tracking
‣ marking thread ids as tokens
‣ promise sets as token sets

top-most (maximal) token

⊏ = {(π.l, π), (π.r, π)} sub-thread relation+

10

The copy_dag token mechanism for
1. Tokens

• Thread identification
‣ distinguish one token (thread) from another
‣ identify two distinct sub-tokens given any token (at recursive call points)
‣ model a parent-child relation (spawner-spawnee)

• Thread progress tracking
‣ marking thread ids as tokens
‣ promise sets as token sets

top-most (maximal) token

⊏ = {(π.l, π), (π.r, π)} sub-thread relation+

10

!

!.l !.r

!.l.l !.l.r !.r.l !.r.r

2. Mathematical Objects

11

2. Mathematical Objects
• An abstract representation of the underlying data structure

11

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)

11

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)
‣ each dag is a triple:

δ = (V , E , L)

11

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)
‣ each dag is a triple:

δ = (V , E , L)

V = {x, l, r, y, z}

Vertices

11

E (x) = l, r
E (l) = 0, y
E (r) = y, 0
E (y) = z, 0
E (z) = 0, 0

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)
‣ each dag is a triple:

δ = (V , E , L)

Edges

11

L (x) = x’, π, { }
L (l) = l’, π.l, { }
L (r) = r’, π.r, { }
L (y) = 0, 0, {π.r.l, π.l.r}
L (z) = 0, 0, { }

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)
‣ each dag is a triple:

δ = (V , E , L)
copy

Labels

11

L (x) = x’, π, { }
L (l) = l’, π.l, { }
L (r) = r’, π.r, { }
L (y) = 0, 0, {π.r.l, π.l.r}
L (z) = 0, 0, { }

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)
‣ each dag is a triple:

δ = (V , E , L)
copy

Labels

copying thread

11

L (x) = x’, π, { }
L (l) = l’, π.l, { }
L (r) = r’, π.r, { }
L (y) = 0, 0, {π.r.l, π.l.r}
L (z) = 0, 0, { }

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)
‣ each dag is a triple:

δ = (V , E , L)
copy

Labels

copying thread promise set

11

L (x) = x’, π, { }
L (l) = l’, π.l, { }
L (r) = r’, π.r, { }
L (y) = 0, 0, {π.r.l, π.l.r}
L (z) = 0, 0, { }

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)
‣ each dag is a triple:

δ = (V , E , L)
copy

Labels

copying thread promise set

ghost components

11

L (x) = x’, π, { }
L (l) = l’, π.l, { }
L (r) = r’, π.r, { }
L (y) = 0, 0, {π.r.l, π.l.r}
L (z) = 0, 0, { }

2. Mathematical Objects
• An abstract representation of the underlying data structure

‣ e.g. a pair of mathematical dags (δ, δc)
‣ each dag is a triple:

δ = (V , E , L)

Labels

copy(x) thread(x) promise(x)

11

3. Mathematical Actions
• An abstraction of thread actions (on mathematical objects)

‣ atomic blocks as well as ghost actions
‣ Aπ denotes the actions of thread π

1212

3. Mathematical Actions
• An abstraction of thread actions (on mathematical objects)

‣ atomic blocks as well as ghost actions
‣ Aπ denotes the actions of thread π

12

struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
 struct node *l, *r, *ll, *rr, *x’; bool b;
 if (!x) {return 0;}
 x’ = malloc(sizeof(struct node));
 b = <CAS(x->c, 0, x’)>;
 if (b) {
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>;
 return x’;
 } else {
 free(x’, sizeof(struct node)); return x->c;
 }
}

12

3. Mathematical Actions
• An abstraction of thread actions (on mathematical objects)

‣ atomic blocks as well as ghost actions
‣ Aπ denotes the actions of thread π

12

struct
copy_dag(
 struct
 if
 x’ =
 b = <CAS(x->c, 0, x’)>;
 if
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>

 } else {

 }
}

b = <CAS(x->c, 0, x’)>;

12

3. Mathematical Actions
• An abstraction of thread actions (on mathematical objects)

‣ atomic blocks as well as ghost actions
‣ Aπ denotes the actions of thread π

12

(δ, δc) = ((V , E , L), (Vc, Ec, Lc)) (δ’, δ’c) = ((V , E , L’), (V’c, E’c, L’c))

struct
copy_dag(
 struct
 if
 x’ =
 b = <CAS(x->c, 0, x’)>;
 if
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>

 } else {

 }
}

b = <CAS(x->c, 0, x’)>;

 L’ = L[x ↦ x’, π, { }][l ↦ 0,0,{π.l}][r ↦ 0,0,{π.r}]
V’c=Vc ⊎ {x’ } E’c=Ec ⊎ [x’ ↦…] L’c=Lc ⊎ [x’ ↦…]

 L(x) = 0, 0, {π }
 L(l) = 0, 0, { }
 L(r) = 0, 0, { }

12

⇝Aπ

Inv(δ, δc) ≜ δ and δc are both acyclic;
 every node x’ in the copy δc corresponds to a unique node x in the original δ;
 every node x in the original δ has some copy value x’

4. Mathematical Specification

13

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧
 every node x’ in the copy δc corresponds to a unique node x in the original δ;
 every node x in the original δ has some copy value x’

4. Mathematical Specification

13

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’ ∧
 every node x in the original δ has some copy value x’

4. Mathematical Specification

13

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

13

ic(x, x’, δ, δc) ≜ if x’ is 0 (x is not copied yet), then x will eventually be copied:

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

13

 there exists some y in δ s.t.
 1) the promise set of y is non-empty; 2) y can reach x along a path p;
 and 3) every node along the path p is not copied
⇒	 when y is eventually copied, it’ll visit x along p and copy it too

ic(x, x’, δ, δc) ≜ if x’ is 0 (x is not copied yet), then x will eventually be copied:

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

13

 there exists some y in δ s.t.
 1) the promise set of y is non-empty; 2) y can reach x along a path p;
 and 3) every node along the path p is not copied

ic(x, x’, δ, δc) ≜ if x’ is 0 (x is not copied yet), then x will eventually be copied:

otherwise, x’ is a node in δc and
the children of x, (l,r), are also copied to some (l’,r’):
 ic(l, l’, δ, δc) and ic(r, r’, δ, δc)

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

13

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

13

ic(x, x’, δ, δc) ≜

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Pπ(x, δ) ≜ π has made a promise to visit x ; π has made a promise to x only; and
 π has not spawned any threads yet:
 its subthreads are not in the graph (in promise sets or as copying thread)

13

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Pπ(x, δ) ≜ x ≠ 0 ⇒	 π ∈ promise(x) ∧ π has made a promise to x only; and
 π has not spawned any threads yet:
 its subthreads are not in the graph (in promise sets or as copying thread)

13

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Pπ(x, δ) ≜ x ≠ 0 ⇒	 π ∈ promise(x) ∧ ∀z ∈ δ. π ∈ promise(z) ⇒	 x = z
 π has not spawned any threads yet:
 its subthreads are not in the graph (in promise sets or as copying thread)

13

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Pπ(x, δ) ≜ x ≠ 0 ⇒	 π ∈ promise(x) ∧ ∀z ∈ δ. π ∈ promise(z) ⇒	 x = z
 ∀z ∈ δ. ∀ π’ ⊏ π. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

13

Qπ(x, x’, δ, δc) ≜ x is copied to x’ in δc ; and
 π and all its subthreads have finished executing (have joined):
 they are not in the graph (in promise sets or as copying thread)

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Pπ(x, δ) ≜ x ≠ 0 ⇒	 π ∈ promise(x) ∧ ∀z ∈ δ. π ∈ promise(z) ⇒	 x = z
 ∀z ∈ δ. ∀ π’ ⊏ π. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

13

Qπ(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 π and all its subthreads have finished executing (have joined):
 they are not in the graph (in promise sets or as copying thread)

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Pπ(x, δ) ≜ x ≠ 0 ⇒	 π ∈ promise(x) ∧ ∀z ∈ δ. π ∈ promise(z) ⇒	 x = z
 ∀z ∈ δ. ∀ π’ ⊏ π. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

13

Qπ(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 ∀z ∈ δ. ∀ π’ ⊑ π. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Pπ(x, δ) ≜ x ≠ 0 ⇒	 π ∈ promise(x) ∧ ∀z ∈ δ. π ∈ promise(z) ⇒	 x = z
 ∀z ∈ δ. ∀ π’ ⊏ π. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

13

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Q!(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 ∀z ∈ δ. ∀ π’ ⊑ !. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

14

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Q!(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 ∀z ∈ δ. ∀ π’ ⊑ !. π’ ∉ promise(z) ∧ π’ ≠ thread(x) ∀ π. π ⊑ !

14

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Q!(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 ∀z ∈ δ. ∀ π’. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

14

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Q!(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 ∀z ∈ δ. ∀ π’. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

ic(x, x’, δ, δc) ≜ if x’ is 0 (x is not copied yet), then x will eventually be copied:
 there exists some y in δ s.t.
 1) the promise set of y is non-empty; 2) y can reach x along a path p;
 and 3) every node along the path p is not copied
 otherwise, x’ is a node in δc and the children of x are also copied

14

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Q!(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 ∀z ∈ δ. ∀ π’. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

ic(x, x’, δ, δc) ≜ if x’ is 0 (x is not copied yet), then x will eventually be copied:
 there exists some y in δ s.t.
 1) the promise set of y is non-empty; 2) y can reach x along a path p;
 and 3) every node along the path p is not copied
 otherwise, x’ is a node in δc and the children of x are also copied

14

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Q!(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 ∀z ∈ δ. ∀ π’. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

ic(x, x’, δ, δc) ≜ x’ is a node in δc and the children of x are also copied

14

Inv(δ, δc) ≜ acyc(δ) ∧ acyc(δc) ∧ ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’
 ∧ ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Q!(x, x’, δ, δc) ≜ copy(x) = x’ ∧ x’ ∈ δc ∧
 ∀z ∈ δ. ∀ π’. π’ ∉ promise(z) ∧ π’ ≠ thread(x)

ic(x, x’, δ, δc) ≜ x’ is a node in δc and the children of x are also copied

Q!(x, x’, δ, δc) ∧ ic(x, x’, δ, δc) ⇒	 	 all nodes in δ are copied to nodes in δc

14

5. Spatial Objects

15

5. Spatial Objects
• A concrete implementation of the data structures in the heap

15

5. Spatial Objects
• A concrete implementation of the data structures in the heap

‣ e.g. a pair of heap-represented dags:

a

15

icdag(δ, δc) ≜ d δ, δc ✽ dag(δ) ✽ dag(δc)⇀⇁

5. Spatial Objects
• A concrete implementation of the data structures in the heap

‣ e.g. a pair of heap-represented dags:

a

15

Tracking the abstract state of the dags:
 recorded in the ghost heap; not “baked in” to model

icdag(δ, δc) ≜ d δ, δc ✽ dag(δ) ✽ dag(δc)⇀⇁

5. Spatial Objects
• A concrete implementation of the data structures in the heap

‣ e.g. a pair of heap-represented dags:

a

‣ each dag(δ) implemented as a collection of nodes:

dag(δ) ≜ ✽ node(x, δ)
x ∈ δ

15

Tracking the abstract state of the dags:
 recorded in the ghost heap; not “baked in” to model

icdag(δ, δc) ≜ d δ, δc ✽ dag(δ) ✽ dag(δc)⇀⇁

5. Spatial Objects
• A concrete implementation of the data structures in the heap

‣ e.g. a pair of heap-represented dags:

a

‣ each dag(δ) implemented as a collection of nodes:

dag(δ) ≜ ✽ node(x, δ)
x ∈ δ

node(x, (V , E , L)) ≜ ∃l, r, x’, P, π. E(x)= l, r ∧ L(x)= x’, π, P ∧
 x ↦ x’, l, r ✽ x π, P⇀⇁

15

Tracking the abstract state of the dags:
 recorded in the ghost heap; not “baked in” to model

icdag(δ, δc) ≜ d δ, δc ✽ dag(δ) ✽ dag(δc)⇀⇁

6. Spatial Actions

16

6. Spatial Actions
• An implementation of thread actions (on spatial objects)

‣ atomic blocks as well as ghost actions

16

6. Spatial Actions
• An implementation of thread actions (on spatial objects)

‣ atomic blocks as well as ghost actions

(δ, δc) (δ’, δ’c)

struct
copy_dag(
 struct
 if
 x’ =
 b = <CAS(x->c, 0, x’)>;
 if
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>

 } else {

 }
}

b = <CAS(x->c, 0, x’)>;

16

⇝Aπ

6. Spatial Actions
• An implementation of thread actions (on spatial objects)

‣ atomic blocks as well as ghost actions
‣ Lifting of mathematical actions Aπ to spatial ones [Aπ]

(δ, δc) (δ’, δ’c)

struct
copy_dag(
 struct
 if
 x’ =
 b = <CAS(x->c, 0, x’)>;
 if
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>

 } else {

 }
}

b = <CAS(x->c, 0, x’)>;

16

⇝Aπ

6. Spatial Actions
• An implementation of thread actions (on spatial objects)

‣ atomic blocks as well as ghost actions
‣ Lifting of mathematical actions Aπ to spatial ones [Aπ]

(δ, δc) (δ’, δ’c)

struct
copy_dag(
 struct
 if
 x’ =
 b = <CAS(x->c, 0, x’)>;
 if
 l = x->l; r = x->r;
 ll = copy_dag(l) || rr = copy_dag(r)
 <x’->l = ll>; <x’->r = rr>

 } else {

 }
}

b = <CAS(x->c, 0, x’)>;

icdag(δ, δc) icdag(δ’, δ’c)

16

⇝Aπ

⇝[Aπ]

Verifying copy_dag(x)

17

Changes reflected in the
pure (mathematical) part
as highlighted

Verifying copy_dag(x)

17

The spatial part appears
unchanged as highlighted

Changes reflected in the
pure (mathematical) part
as highlighted

Verifying copy_dag(x)

17

The spatial part appears
unchanged as highlighted

Changes reflected in the
pure (mathematical) part
as highlighted

icdag(δ1, δ2)

Conclusions
 Verified 4 concurrent fine-grained graph algorithms

 Copying dags (directed acyclic graphs)
 Speculative variant of Dijkstra’s shortest path
 Computing the spanning tree of a graph
 Marking a graph

 Presented a common proof pattern for graph algorithms
 Abstract mathematical graphs for Functional correctness
 Concrete Spatial (heap-represented) graphs for memory safety
 Combined reasoning for full proof
 Inspired by existing logics where this pattern is “baked-in” to the model
 “Baking-in” is unnecessary; demonstrated by CoLoSL reasoning

18

Conclusions
 Verified 4 concurrent fine-grained graph algorithms

 Copying dags (directed acyclic graphs)
 Speculative variant of Dijkstra’s shortest path
 Computing the spanning tree of a graph
 Marking a graph

 Presented a common proof pattern for graph algorithms
 Abstract mathematical graphs for Functional correctness
 Concrete Spatial (heap-represented) graphs for memory safety
 Combined reasoning for full proof
 Inspired by existing logics where this pattern is “baked-in” to the model
 “Baking-in” is unnecessary; demonstrated by CoLoSL reasoning

18

Thank you for listening!

Speculative Concurrent Shortest Path
parallel_dijkstra((int[][] a, int[] c, int size, src) {
 bitarray work[size], done[size];
 for (i=0; i<size; i++){
 c[i] = a[src][i]; work[i] = 1; done[i] = 0; //initialisation
 }; c[src] = 0;
 dijkstra(a,c,size,work,done) || ... || dijkstra(a,c,size,work,done)
}

dijkstra(int[][] a, int[] c, int size, bitarray work, done){
 i = 0;
 while(done != 2^size-1){
 b = <CAS(work[i], 1, 0)>;
 if(b){ cost = c[i];
 for(j=0; j<size; j++){ newcost = cost + a[i][j]; b = true;
 do{ oldcost = c[j];
 if(newcost < oldcost){
 b = <CAS(work[j], 1, 0)>;
 if(b){ b = <CAS(c[j], oldcost, newcost)>; <work[j] = 1>; }
 else { b = <CAS(done[j], 1, 0)>;
 if(b){ b = <CAS(c[j], oldcost, newcost)>;
 if(b){ < work[j] = 1 > } else { < done[j] = 1 > }
 } } }
 } while(!b)
 } < done[i] = 1 >;
 } i = (i+1) mod size;
} }

19

