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Concurrent Program Logic Genealogy
Verifying concurrent algorithms is difficult…
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Verifying concurrent algorithms is difficult…
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Graph Algorithms
Verifying graph algorithms is difficult…

• Subtle correctness argument 
• Overlapping structure (unspecified sharing via pointer aliasing) 
‣ Non-compositional reasoning (preventing the use of the frame rule)
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Concurrent Graph Algorithms
Verifying concurrent graph algorithms is even more difficult…

• Subtle correctness argument 
• Overlapping structure (unspecified sharing via pointer aliasing) 
‣ Non-compositional reasoning (preventing the use of the frame rule) 

• Reasoning about each thread in isolation
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Contributions
• Verified 4 concurrent fine-grained graph algorithms 

‣ Copying dags (directed acyclic graphs) 
‣ Speculative variant of Dijkstra’s shortest path 
‣ Computing the spanning tree of a graph 
‣ Marking a graph
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‣ “Baking-in” is unnecessary
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Copying Binary DAGs

atomic blocks

struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
  struct node *l, *r, *ll, *rr, *x’;  bool b;
  if (!x) {return 0;}
  x’ = malloc(sizeof(struct node));
  b = <CAS(x->c, 0, x’)>;
  if (b) {
    l = x->l; r = x->r;
    ll = copy_dag(l)  ||  rr = copy_dag(r)
    <x’->l = ll>; <x’->r = rr>;
    return x’;
  } else {
    free(x’, sizeof(struct node));  return x->c;
  }
}
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copy_dag(x)   Specification
struct node {struct node *c, *l, *r}
copy_dag(struct node *x) {
  struct node *l, *r, *ll, *rr, *x’;  bool b;
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    l = x->l; r = x->r;
    ll = copy_dag(l)  ||  rr = copy_dag(r)
    <x’->l = ll>; <x’->r = rr>;
    return x’;
  } else {
    free(x’, sizeof(struct node));  return x->c;
  }
}
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• Specification challenges 
‣ When copy_dag(x) returns, x is copied but its children may not be  
‣ If x is already copied, copy_dag(x) simply returns: 
       the thread that copied x has made a promise to visit x’s children  
       and ensure they are copied
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1. Tokens
• Thread identification  
• Thread progress tracking 

A token mechanism for
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The copy_dag token mechanism for
1. Tokens

• Thread identification  
‣ distinguish one token (thread) from another 
‣ identify two distinct sub-tokens given any token (at recursive call points) 
‣ model a parent-child relation (spawner-spawnee) 

• Thread progress tracking  
‣ marking thread ids as tokens 
‣ promise sets as token sets
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2. Mathematical Objects
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V = {x, l, r, y, z}

Vertices
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E (x) = l, r 
E (l ) = 0, y 
E (r) = y, 0 
E (y) = z, 0 
E (z) = 0, 0

2. Mathematical Objects
• An abstract representation of the underlying data structure 
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L (x) = x’, π, { } 
L (l ) = l’, π.l, { } 
L (r) = r’, π.r, { } 
L (y) = 0, 0, {π.r.l, π.l.r} 
L (z) = 0, 0, { }
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copy

Labels
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L (x) = x’, π, { } 
L (l ) = l’, π.l, { } 
L (r) = r’, π.r, { } 
L (y) = 0, 0, {π.r.l, π.l.r} 
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• An abstract representation of the underlying data structure 

‣ e.g. a pair of mathematical dags (δ, δc) 
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copy(x) thread(x) promise(x)
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3. Mathematical Actions
• An abstraction of thread actions (on mathematical objects) 

‣ atomic blocks as well as ghost actions  
‣ Aπ denotes the actions of thread π
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struct
copy_dag(
  struct
  if
  x’ = 
  b = <CAS(x->c, 0, x’)>;
  if
    l = x->l; r = x->r;
    ll = copy_dag(l)  ||  rr = copy_dag(r)
    <x’->l = ll>; <x’->r = rr>
    
  } else {
    
  }
}

b = <CAS(x->c, 0, x’)>;
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3. Mathematical Actions
• An abstraction of thread actions (on mathematical objects) 

‣ atomic blocks as well as ghost actions  
‣ Aπ denotes the actions of thread π

12

(δ, δc) = ( (V , E , L), (Vc, Ec, Lc) ) (δ’, δ’c) = ( (V , E , L’ ), (V’c, E’c, L’c) )

struct
copy_dag(
  struct
  if
  x’ = 
  b = <CAS(x->c, 0, x’)>;
  if
    l = x->l; r = x->r;
    ll = copy_dag(l)  ||  rr = copy_dag(r)
    <x’->l = ll>; <x’->r = rr>
    
  } else {
    
  }
}

b = <CAS(x->c, 0, x’)>;

    L’ = L[x ↦ x’, π, { }][l ↦ 0,0,{π.l}][r ↦ 0,0,{π.r}] 
V’c=Vc  ⊎ {x’ }    E’c=Ec ⊎ [x’ ↦…]   L’c=Lc ⊎ [x’ ↦…]

  L(x) = 0, 0, {π } 
   L(l ) = 0, 0, { } 
  L(r) = 0, 0, { }

12

⇝Aπ



Inv(δ, δc) ≜ δ  and  δc are both acyclic; 
                   every node x’ in the copy δc corresponds to a unique node x in the original δ; 
                               every node x in the original δ has some copy value x’

4. Mathematical Specification
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     there exists some y in δ s.t. 
       1) the promise set of y is non-empty; 2) y can reach x along a path p; 
       and 3) every node along the path p is not copied 
⇒	 when y is eventually copied, it’ll visit x along p and copy it too
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ic(x, x’, δ, δc) ≜



Inv(δ, δc) ≜ acyc(δ)  ∧  acyc(δc)  ∧  ∀x’ ∈ δc. ∃!x ∈ δ. copy(x)= x’      
                            ∧  ∀x ∈ δ. ∃x’. copy(x)=x’ ∧ ic(x, x’, δ, δc)

4. Mathematical Specification

Pπ(x, δ) ≜ π has made a promise to visit x ; π has made a promise to x only; and  
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Speculative Concurrent Shortest Path
parallel_dijkstra((int[][] a, int[] c, int size, src) {
  bitarray work[size], done[size];
  for (i=0; i<size; i++){
    c[i] = a[src][i]; work[i] = 1; done[i] = 0;  //initialisation
  }; c[src] = 0;
  dijkstra(a,c,size,work,done) || ... || dijkstra(a,c,size,work,done)
}

dijkstra(int[][] a, int[] c, int size, bitarray work, done){ 
  i = 0;
  while(done != 2^size-1){ 
    b = <CAS(work[i], 1, 0)>;
    if(b){ cost = c[i];
      for(j=0; j<size; j++){ newcost = cost + a[i][j]; b = true;
        do{ oldcost = c[j];
          if(newcost < oldcost){
            b = <CAS(work[j], 1, 0)>;
            if(b){ b = <CAS(c[j], oldcost, newcost)>; <work[j] = 1>; }
            else { b = <CAS(done[j], 1, 0)>;
              if(b){ b = <CAS(c[j], oldcost, newcost)>;
                if(b){ < work[j] = 1 > } else { < done[j] = 1 > }
          } } }
        } while(!b)
      } < done[i] = 1 >;
    } i = (i+1) mod size;
} }
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