
Beyond Weak Memory Consistency:
The Challenges of Memory Persistency

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

Imperial College London

Azalea Raad
MPI-SWS

Viktor Vafeiadis

Part I: Low-Level Persistency Models

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

Computer Storage

HDD

RAM

2

Computer Storage

HDD

RAM✓ fast
✗ volatile

2

Computer Storage

HDD

RAM✓ fast
✗ volatile

✗ slow
✓ persistent

2

What is Non-Volatile Memory (NVM)?

HDD

RAM

3

What is Non-Volatile Memory (NVM)?

RAMNVM

NVM: Hybrid Storage + Memory
Best of both worlds:
✓ persistent (like HDD)
✓ fast, random access (like RAM)

3

4

5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

A: Program Verification

5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

A: Program Verification

5

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

What about Concurrency?

C1 || C2 || ... || Cn
// ???

// x = y = ... = 0

// ???
// recovery routine

time

Difficulty

Sequential

😊

6

(1940s)

Formal Semantic Models

time

Difficulty

Sequential

😊

6

(1940s)
SC

😐

(1979)

Formal Semantic Models

time

Difficulty

Sequential

😊
WMC

☹

(1990s)

6

(1940s)
SC

😐

(1979)

Formal Semantic Models

Weak Memory Consistency (WMC)

7

 No total execution order (to) ⇒

 weak behaviour absent under SC, caused by:

• instruction reordering by compiler
• write propagation across cache hierarchy

WMC: Store Buffering

8

x:=1;

a:=y

y:=1;

b:=x

1

2

3

4

a b
0 1
1 0
1 1

WMC: Store Buffering

8

x:=1;

a:=y

y:=1;

b:=x

1

2

3

4

a b
0 1
1 0
1 1
0 0possible, due to reordering!

a:=y;

x:=1

b:=x;

y:=1

2

1

4

3

☛

WMC: Store Buffering

8

x:=1;

a:=y

y:=1;

b:=x

1

2

3

4

a b
0 1
1 0
1 1
0 0possible, due to reordering!

a:=y;

x:=1

b:=x;

y:=1

2

1

4

3

store buffering(SB)☛

Weak Memory Consistency (WMC)

9

 No total execution order (to) ⇒

 weak behaviour absent under SC, caused by:

• instruction reordering by compiler
• write propagation across cache hierarchy

Weak Memory Consistency (WMC)

9

 No total execution order (to) ⇒

 weak behaviour absent under SC, caused by:

• instruction reordering by compiler
• write propagation across cache hierarchy

Consistency Model
the order in which

writes are made visible

to other threads

e.g. x86 (TSO), ARMv8, C11, Java

time

Difficulty

Sequential

😊

10

(1940s)
SC

😐

(1979)
WMC

☹

(1990s)

Formal Semantic Models

time

Difficulty

Sequential

😊

10

😣

WNVMC

This Talk

(2017)(1940s)
SC

😐

(1979)
WMC

☹

(1990s)

Formal Semantic Models

x := 1;

// recovery routine

// x=y=0

y := 1;

What Can Go Wrong?

11

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

11

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

11

!! Execution continues ahead of persistence
 — asynchronous persists

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

11

!! Execution continues ahead of persistence
 — asynchronous persists

!! Writes may persist out of order
 — relaxed persists

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

11

!! Execution continues ahead of persistence
 — asynchronous persists

!! Writes may persist out of order
 — relaxed persists

Consistency Model
the order in which writes

are made visible to other threads

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

11

!! Execution continues ahead of persistence
 — asynchronous persists

!! Writes may persist out of order
 — relaxed persists

Consistency Model
the order in which writes

are made visible to other threads

Persistency Model
the order in which writes

are persisted to NVM

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

11

!! Execution continues ahead of persistence
 — asynchronous persists

!! Writes may persist out of order
 — relaxed persists

Consistency Model
the order in which writes

are made visible to other threads

Persistency Model
the order in which writes

are persisted to NVM

NVM Semantics
Consistency + Persistency Model

Outline
1. An intuitive account of Intel-x86 persistency: Px86

✢ Warmup: Sequential Px86

✢ Concurrent Px86

2. A formal account Px86: operational semantics

3. A formal account Px86: declarative semantics

4. Other Low-level (hardware) persistency models

5. Further reading

Warmup: Sequential Px86

13

1. An intuitive account of Px86

CPU

(Volatile) Memory

Sequential Hardware

w
rit

e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory
w

rit
e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory

a:=x : reads x from memory
w

rit
e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

w
rit

e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

Persistence Buffer

CPU

(Persistent) Memory

w
rit

e
w

rit
e

re
ad

re
ad

w
rit

e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

Persistence Buffer

CPU

(Persistent) Memory

w
rit

e
w

rit
e

re
ad

re
ad

w
rit

e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

Persistence Buffer

CPU

(Persistent) Memory

w
rit

e
w

rit
e

re
ad

re
ad

w
rit

e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

p-buffer lost; memory retainedPersistence Buffer

CPU

(Persistent) Memory

w
rit

e
w

rit
e

re
ad

re
ad

w
rit

e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

p-buffer lost; memory retained

unbuffer* : p-buffer to memory

* at non-deterministic times

Persistence Buffer

CPU

(Persistent) Memory

w
rit

e
w

rit
e

re
ad

re
ad

w
rit

e

re
ad

CPU

(Volatile) Memory

Sequential Hardware

x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

p-buffer lost; memory retained

unbuffer* : p-buffer to memory

* at non-deterministic times

Persistence Buffer

CPU

(Persistent) Memory

w
rit

e
w

rit
e

re
ad

re
ad

w
rit

e

re
ad

Unbuffered at non-deterministic points in time
Buffering & unbuffering orders may disagree

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

15

!! out of order persists
☛ explicit persists?

Handling Relaxed Persists

x := 1;

// recovery routine

// x=0;y=0

y := 1;

16

Explicit Persists: Desiderata

☛ explicit persists?

persist x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!! out of order persists

17

x86 Persists: clwb, clflushopt, clflush

Strength
(ordering constraints)

Performance

17

x86 Persists: clwb, clflushopt, clflush

✤ clwb and clflushopt: same ordering constraints

Strength
(ordering constraints)

clwb

clflushopt

Performance

17

x86 Persists: clwb, clflushopt, clflush

✤ clwb and clflushopt: same ordering constraints

Strength
(ordering constraints)

clwb

clflushopt

Performance
clflushopt

clwb

✤ clwb does not invalidate cache line
✤ clflushopt invalidates cache line

17

x86 Persists: clwb, clflushopt, clflush

✤ clwb and clflushopt: same ordering constraints

Strength
(ordering constraints)

clwb

clflushopt

clflush

Performance

clflush

clflushopt

clwb

✤ clwb does not invalidate cache line

✤ clflush: strongest ordering constraints; invalidates cache line

✤ clflushopt invalidates cache line

x := 1;

// recovery routine

// x=0;y=0

y := 1;

18

Strong (Synchronous) Explicit Persists: clflush

clflush x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

19

Weak (Asynchronous) Explicit Persists: clflushopt & clwb

clflushopt x / clwb x; ☛

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

19

Weak (Asynchronous) Explicit Persists: clflushopt & clwb

clflushopt x / clwb x; ☛

weak explicit persists of x86

are

asynchronous

and can themselves

persist out of order !

x := 1;

// recovery routine

// x=0;y=0

y := 1;

20

clflushopt x/clwb x;
sfence/mfence/RMW;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist Sequences

x := 1;

// recovery routine

// x=0;y=0

y := 1;

20

clflushopt x/clwb x;
sfence/mfence/RMW;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist Sequences

✤ Waits until earlier writes on x are persisted ✓ synchronous persists

x := 1;

// recovery routine

// x=0;y=0

y := 1;

20

clflushopt x/clwb x;
sfence/mfence/RMW;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist Sequences

✤ Waits until earlier writes on x are persisted
✤ Disallows reordering

✓ synchronous persists
✓ no out of order persists

21

Concurrent Px86

1. An intuitive account of Px86

22

x86: (Volatile) Concurrent Hardware Model (TSO)

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

. . .

22

x86: (Volatile) Concurrent Hardware Model (TSO)

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

. . .
x:=1 : adds x:=1 to buffer

22

x86: (Volatile) Concurrent Hardware Model (TSO)

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

. . .
x:=1 : adds x:=1 to buffer

unbuffer* : buffer to memory

* at non-deterministic times

22

x86: (Volatile) Concurrent Hardware Model (TSO)

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

. . .
x:=1 : adds x:=1 to buffer

a:=x : if buffer contains x, reads latest entry
else reads from memory

unbuffer* : buffer to memory

* at non-deterministic times

22

x86: (Volatile) Concurrent Hardware Model (TSO)

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

. . .
x:=1 : adds x:=1 to buffer

a:=x : if buffer contains x, reads latest entry
else reads from memory

buffer and memory lost

unbuffer* : buffer to memory

* at non-deterministic times

Software WMC: Store Buffering

23

x:=1;

a:=y

y:=1;

b:=x

1

2

3

4

a b
0 1
1 0
1 1
0 0possible, due to reordering!

a:=y;

x:=1

b:=x;

y:=1

2

1

4

3

store buffering(SB)☛

Hardware (Intel x86) WMC: Store Buffering

24

Hardware (Intel x86) WMC: Store Buffering

24

Thread2

Buffer

(Volatile) Memory

Thread1

Buffer

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

☛ ☛

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1

☛
☛

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1 y = 1

☛ ☛

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1 y = 1

☛ ☛

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1 y = 1

☛ ☛

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1 y = 1

☛
☛// 0

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1 y = 1

☛
☛// 0

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1 y = 1

☛
☛// 0

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1 y = 1

☛ ☛
// 0 // 0

Store Buffering (SB)

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1

y = 1

☛ ☛
// 0 // 0

Store Buffering (SB)

; y = 0;

Hardware (Intel x86) WMC: Store Buffering

24

Thread2Thread1

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1

☛ ☛
// 0 // 0

Store Buffering (SB)

; y = 1;

Px86: Persistent & Concurrent x86

25

(Persistent) Memory

CPU

Persistence Buffer

Sequential, Persistent x86

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

Concurrent, Volatile x86

Px86: Persistent & Concurrent x86

25

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

(Persistent) Memory

CPU

Persistence Buffer

Sequential, Persistent x86

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

Concurrent, Volatile x86

Persistent x86 (Px86)

26

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

Persistent x86 (Px86)

26

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: consistency model

Persistent x86 (Px86)

26

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model

buffer/unbuffer order: consistency model

Persistent x86 (Px86)

26

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model

buffer/unbuffer order: consistency model NVM
Semantics

(Px86)

Persistent x86 (Px86)

26

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

Operational Semantics

27

2. A formal account of Px86

28

Px86 Programming Language

28

Px86 Programming Language

RMW instructions

28

Px86 Programming Language

used for persistency

RMW instructions

28

Px86 Programming Language

used for persistency

RMW instructions

29

Px86 Operational Semantics
=

Px86 Program Transitions
+

Px86 Storage Transitions

➡ First formulated by Raad et al. [2]
➡ Later simplified by Khyzha and Lahav [3]

30

Px86 Program Transitions

30

Px86 Program Transitions

30

Px86 Program Transitions

30

Px86 Program Transitions

30

Px86 Program Transitions

30

Px86 Program Transitions

31

Px86 Program Transitions

31

Px86 Program Transitions

31

Px86 Program Transitions

32

Px86 Program Transitions

33

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

33

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

33

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

33

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: consistency model
 → execution reordering

33

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: consistency model
 → execution reordering

Order preserved? : yes : no : iff on the same location

33

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: consistency model
 → execution reordering

✤ Reads reordered before writes/sfence/flushopt/flush

→ delay writes/sfence/flushopt/flush execution in thread buffers

Order preserved? : yes : no : iff on the same location

33

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: consistency model
 → execution reordering

✤ Reads reordered before writes/sfence/flushopt/flush

→ delay writes/sfence/flushopt/flush execution in thread buffers

✤ flushopt reordered w.r.t. writes/flushopt/flush on diff. locations

→ their buffer/unbuffer orders (in thread buffers) can disagree

Order preserved? : yes : no : iff on the same location

✤ writes/flush/sfence ordered w.r.t. one another

→ their buffer/unbuffer orders agree (FIFO)

34

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model
 → persist reordering

34

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model
 → persist reordering

✤ Persisting writes may be delayed

✤ Writes on different locations persist in different orders

 → per-location persist buffers
 → record & delay writes in pbuff

34

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model
 → persist reordering

✤ Persisting writes may be delayed

✤ Writes on different locations persist in different orders

 → per-location persist buffers
 → record & delay writes in pbuff

✤ flush executed synchronously

 → no need to delay/record them in pbuff

34

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model
 → persist reordering

✤ Persisting writes may be delayed

✤ Writes on different locations persist in different orders

 → per-location persist buffers
 → record & delay writes in pbuff

✤ flush executed synchronously

 → no need to delay/record them in pbuff

✤ flushopt executed asynchronously

 → record & delay them in pbuff

34

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model
 → persist reordering

✤ Persisting writes may be delayed

✤ Writes on different locations persist in different orders

 → per-location persist buffers
 → record & delay writes in pbuff

✤ flush executed synchronously

 → no need to delay/record them in pbuff

✤ flushopt executed asynchronously

 → record & delay them in pbuff

✤ flushopt + sfence/mfence/RMW = persist sequence

 → ensure no flushopt in pbuff

34

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model
 → persist reordering

✤ Persisting writes may be delayed

✤ Writes on different locations persist in different orders

 → per-location persist buffers
 → record & delay writes in pbuff

✤ flush executed synchronously

 → no need to delay/record them in pbuff

✤ flushopt executed asynchronously

 → record & delay them in pbuff

✤ flushopt + sfence/mfence/RMW = persist sequence

 → ensure no flushopt in pbuff

simplification due to

Khyzha & Lahav [3]

34

Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model
 → persist reordering

✤ Persisting writes may be delayed

✤ Writes on different locations persist in different orders

 → per-location persist buffers
 → record & delay writes in pbuff

✤ flush executed synchronously

 → no need to delay/record them in pbuff

✤ flushopt executed asynchronously

 → record & delay them in pbuff

✤ flushopt + sfence/mfence/RMW = persist sequence

 → ensure no flushopt in pbuff

simplification due to

Khyzha & Lahav [3]

➡ Original model by Raad et al. [2] : one pbuff for all locations

35

Px86 Storage Transitions: Execution

35

Px86 Storage Transitions: Execution

35

Px86 Storage Transitions: Execution

35

Px86 Storage Transitions: Execution

35

Px86 Storage Transitions: Execution

flushopt + mfence/RMW = persist sequence

 → ensure no flushopt in pbuff

35

Px86 Storage Transitions: Execution

flushopt + mfence/RMW = persist sequence

 → ensure no flushopt in pbuff

36

Px86 Storage Transitions: Delayed Propagation

36

Px86 Storage Transitions: Delayed Propagation

✤ writes/flush/sfence ordered w.r.t. one another → their buffer/unbuffer orders agree (FIFO)
✤ Persisting writes may be delayed → record & delay writes in pbuff

36

Px86 Storage Transitions: Delayed Propagation

✤ writes/flush/sfence ordered w.r.t. one another → their buffer/unbuffer orders agree (FIFO)
✤ Persisting writes may be delayed → record & delay writes in pbuff
✤ flush executed synchronously → no need to delay/record them in pbuff

36

Px86 Storage Transitions: Delayed Propagation

✤ writes/flush/sfence ordered w.r.t. one another → their buffer/unbuffer orders agree (FIFO)

✤ flushopt + sfence/mfence/RMW = persist sequence → ensure no flushopt in pbuff

✤ Persisting writes may be delayed → record & delay writes in pbuff
✤ flush executed synchronously → no need to delay/record them in pbuff

36

Px86 Storage Transitions: Delayed Propagation

✤ flushopt reordered w.r.t. writes/flushopt/flush on diff. locations → their buffer/unbuffer orders can disagree

✤ writes/flush/sfence ordered w.r.t. one another → their buffer/unbuffer orders agree (FIFO)

✤ flushopt + sfence/mfence/RMW = persist sequence → ensure no flushopt in pbuff
✤ flushopt executed asynchronously → record & delay them in pbuff

✤ Persisting writes may be delayed → record & delay writes in pbuff
✤ flush executed synchronously → no need to delay/record them in pbuff

37

Px86 Storage Transitions: Delayed Persists

38

Px86 Operational Semantics

38

Px86 Operational Semantics

38

Px86 Operational Semantics

38

Px86 Operational Semantics

38

Px86 Operational Semantics

Declarative Semantics

39

3. A formal account of Px86

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >
✤ E is the set of events (graph nodes), including initialisation writes

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

‣ each event if of the form (n, 𝝉, l)
unique event id

thread id

✤ E is the set of events (graph nodes), including initialisation writes

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

‣ each event if of the form (n, 𝝉, l)
unique event id

thread id
event label: W(x, v), R(x, v), U(x, v, v’), MF, SF, FL(x), FO(x)

✤ E is the set of events (graph nodes), including initialisation writes

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

‣ each event if of the form (n, 𝝉, l)
unique event id

thread id
event label: W(x, v), R(x, v), U(x, v, v’), MF, SF, FL(x), FO(x)

✤ E is the set of events (graph nodes), including initialisation writes

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

‣ each event if of the form (n, 𝝉, l)
unique event id

thread id
event label: W(x, v), R(x, v), U(x, v, v’), MF, SF, FL(x), FO(x)

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

✤ E is the set of events (graph nodes), including initialisation writes

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

✤ E is the set of events (graph nodes), including initialisation writes

‣ po is the program order: strict total order on events of the same thread
✤ po, rf and mo are relations on events (graph edges)

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

✤ E is the set of events (graph nodes), including initialisation writes

‣ po is the program order: strict total order on events of the same thread
✤ po, rf and mo are relations on events (graph edges)

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

✤ E is the set of events (graph nodes), including initialisation writes

‣ po is the program order: strict total order on events of the same thread
‣ rf is the reads-from relation: relating each read/update to exactly one write/update on the same

location with the same value

✤ po, rf and mo are relations on events (graph edges)

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

✤ E is the set of events (graph nodes), including initialisation writes

‣ po is the program order: strict total order on events of the same thread
‣ rf is the reads-from relation: relating each read/update to exactly one write/update on the same

location with the same value

✤ po, rf and mo are relations on events (graph edges)

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

✤ E is the set of events (graph nodes), including initialisation writes

‣ po is the program order: strict total order on events of the same thread
‣ rf is the reads-from relation: relating each read/update to exactly one write/update on the same

location with the same value
‣ mo is the modification order: strict total order on the writes/updates of the same location

✤ po, rf and mo are relations on events (graph edges)

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

✤ E is the set of events (graph nodes), including initialisation writes

‣ po is the program order: strict total order on events of the same thread
‣ rf is the reads-from relation: relating each read/update to exactly one write/update on the same

location with the same value
‣ mo is the modification order: strict total order on the writes/updates of the same location

‣ Derived relation, rb = , is the reads-before relationrf -1 mo

✤ po, rf and mo are relations on events (graph edges)

40

Declarative Consistency Semantics (w/o Persistency)

✤ Represent program behaviours as a set of consistent executions (graphs)
✤ An execution graph is a tuple: < E, po, rf, mo >

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

✤ E is the set of events (graph nodes), including initialisation writes

‣ po is the program order: strict total order on events of the same thread
‣ rf is the reads-from relation: relating each read/update to exactly one write/update on the same

location with the same value
‣ mo is the modification order: strict total order on the writes/updates of the same location

‣ Derived relation, rb = , is the reads-before relationrf -1 mo

✤ po, rf and mo are relations on events (graph edges)

41

Consistent Executions (w/o Persistency)
✤ What is a consistent execution?

41

Consistent Executions (w/o Persistency)
✤ What is a consistent execution?
‣ Depends on the (concurrency) memory model

41

Consistent Executions (w/o Persistency)
✤ What is a consistent execution?
‣ Depends on the (concurrency) memory model
‣ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po (Internal)

Ri : internal (same-thread) subset of R
Re : external (diff.-thread) subset of R: R \ Ri

41

Consistent Executions (w/o Persistency)
✤ What is a consistent execution?
‣ Depends on the (concurrency) memory model
‣ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po (Internal)

Ri : internal (same-thread) subset of R
Re : external (diff.-thread) subset of R: R \ Ri

irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+ (External)

41

Consistent Executions (w/o Persistency)
✤ What is a consistent execution?
‣ Depends on the (concurrency) memory model
‣ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po (Internal)

Ri : internal (same-thread) subset of R
Re : external (diff.-thread) subset of R: R \ Ri

irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+ (External)

preserved program order: sloc or in table

41

Consistent Executions (w/o Persistency)
✤ What is a consistent execution?

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

‣ Depends on the (concurrency) memory model

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

‣ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po (Internal)

Ri : internal (same-thread) subset of R
Re : external (diff.-thread) subset of R: R \ Ri

irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+ (External)

preserved program order: sloc or in table

41

Consistent Executions (w/o Persistency)
✤ What is a consistent execution?

Store Buffer

x:=1;

a:=y //0

y:=1;

b:=x //0

1

2

3

4

‣ Depends on the (concurrency) memory model

1

2

3

4

W(x, 1) W(y, 1)

R(y, 0) R(x, 0)

[init]

‣ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po (Internal)

Ri : internal (same-thread) subset of R
Re : external (diff.-thread) subset of R: R \ Ri

irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+ (External)

preserved program order: sloc or in table

x86-consistent execution

42

Declarative Consistency & Persistency Semantics

✤ Represent program behaviours as a set of consistent & persistent executions

42

Declarative Consistency & Persistency Semantics

✤ Represent program behaviours as a set of consistent & persistent executions
✤ An execution graph is a tuple: < E, po, rf, mo, P, nvo >

‣ Let D ⊆ E be the set of durable events: events whose effect can reach NVM — model-specific
for Intel-x86: D = W ∪	U ∪	FL ∪	FO

42

Declarative Consistency & Persistency Semantics

✤ Represent program behaviours as a set of consistent & persistent executions
✤ An execution graph is a tuple: < E, po, rf, mo, P, nvo >

‣ Let D ⊆ E be the set of durable events: events whose effect can reach NVM — model-specific
for Intel-x86: D = W ∪	U ∪	FL ∪	FO

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

42

Declarative Consistency & Persistency Semantics

✤ Represent program behaviours as a set of consistent & persistent executions
✤ An execution graph is a tuple: < E, po, rf, mo, P, nvo >

‣ P ⊆ D is the set of persisted events: events whose effect have reached NVM, s.t. init ⊆ P

‣ Let D ⊆ E be the set of durable events: events whose effect can reach NVM — model-specific
for Intel-x86: D = W ∪	U ∪	FL ∪	FO

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

42

Declarative Consistency & Persistency Semantics

✤ Represent program behaviours as a set of consistent & persistent executions
✤ An execution graph is a tuple: < E, po, rf, mo, P, nvo >

‣ P ⊆ D is the set of persisted events: events whose effect have reached NVM, s.t. init ⊆ P

‣ Let D ⊆ E be the set of durable events: events whose effect can reach NVM — model-specific
for Intel-x86: D = W ∪	U ∪	FL ∪	FO

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

i : persisted event (in P)

durable events
 (in D)

42

Declarative Consistency & Persistency Semantics

✤ Represent program behaviours as a set of consistent & persistent executions
✤ An execution graph is a tuple: < E, po, rf, mo, P, nvo >

‣ P ⊆ D is the set of persisted events: events whose effect have reached NVM, s.t. init ⊆ P

‣ nvo ⊆ D x D is the non-volatile-order: a strict (partial) order on D that is downward-closed on P:
if (e, e’) ∈ nvo and e’ ∈ P, then e ∈ P

‣ Let D ⊆ E be the set of durable events: events whose effect can reach NVM — model-specific
for Intel-x86: D = W ∪	U ∪	FL ∪	FO

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

i : persisted event (in P)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

i : persisted event (in P)

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

strong persists

i : persisted event (in P)

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

persist sequencesstrong persists

i : persisted event (in P)

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

D D ⊆ nvoob ∩	sloc

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

D D ⊆ nvoob ∩	sloc

ppo ⊆ ob∩sloc
1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

D D ⊆ nvoob ∩	sloc

(FO ∪ FL) D ⊆ nvoob

ppo ⊆ ob∩sloc
1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

D D ⊆ nvoob ∩	sloc

(FO ∪ FL) D ⊆ nvoob

ppo ⊆ ob∩sloc

ppo

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

D D ⊆ nvoob ∩	sloc

(FO ∪ FL) D ⊆ nvoob

ppo ⊆ ob∩sloc

ppo

ppo

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

D D ⊆ nvoob ∩	sloc

(FO ∪ FL) D ⊆ nvoob

ppo ⊆ ob∩sloc

ppo

ppo

ppo ⊆ ob

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

D D ⊆ nvoob ∩	sloc

(FO ∪ FL) D ⊆ nvoob

ppo ⊆ ob∩sloc

ppo

ppo

ppo ⊆ ob

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

43

Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi ⊆ po
irreflexive(ob) ob=(ppo∪rfe∪moe ∪rbe)+

preserved program order
(sloc or in table)

✤ Intel-x86 persistency (simplified):

x:=1;

clflushopt x;

sfence;

y:=1

1

2

3

4

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

i : persisted event (in P)

D D ⊆ nvoob ∩	sloc

(FO ∪ FL) D ⊆ nvoob

ppo ⊆ ob∩sloc

ppo

ppo

ppo ⊆ ob

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events
 (in D)

x86-valid execution

44

4. Other hardware persistency models

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

✤ ARMv8 Persistency
‣ Weak explicit persists: DC CVAP x — analogous to clflushopt x

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

✤ ARMv8 Persistency
‣ Weak explicit persists: DC CVAP x — analogous to clflushopt x
‣ Persist sequences: DC CVAP x; DSB SY — DSB SY is a strong fence (analogous to mfence)

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

✤ ARMv8 Persistency
‣ Weak explicit persists: DC CVAP x — analogous to clflushopt x
‣ Persist sequences: DC CVAP x; DSB SY — DSB SY is a strong fence (analogous to mfence)
‣ Operational model: an extension of promising semantics by Cho et al. [5]

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

✤ ARMv8 Persistency
‣ Weak explicit persists: DC CVAP x — analogous to clflushopt x
‣ Persist sequences: DC CVAP x; DSB SY — DSB SY is a strong fence (analogous to mfence)
‣ Operational model: an extension of promising semantics by Cho et al. [5]
‣ Declarative model: by Raad et al. [4], and Cho et al. [5] — (simplified)

Intel-x86 PersistencyARMv8 Persistency

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

✤ ARMv8 Persistency
‣ Weak explicit persists: DC CVAP x — analogous to clflushopt x
‣ Persist sequences: DC CVAP x; DSB SY — DSB SY is a strong fence (analogous to mfence)
‣ Operational model: an extension of promising semantics by Cho et al. [5]
‣ Declarative model: by Raad et al. [4], and Cho et al. [5] — (simplified)

Intel-x86 PersistencyARMv8 Persistency

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

✤ ARMv8 Persistency
‣ Weak explicit persists: DC CVAP x — analogous to clflushopt x
‣ Persist sequences: DC CVAP x; DSB SY — DSB SY is a strong fence (analogous to mfence)
‣ Operational model: an extension of promising semantics by Cho et al. [5]
‣ Declarative model: by Raad et al. [4], and Cho et al. [5] — (simplified)

dom(DC_CVAP DSB_SY) ⊆ Ppo FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

Intel-x86 PersistencyARMv8 Persistency

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

✤ ARMv8 Persistency
‣ Weak explicit persists: DC CVAP x — analogous to clflushopt x
‣ Persist sequences: DC CVAP x; DSB SY — DSB SY is a strong fence (analogous to mfence)
‣ Operational model: an extension of promising semantics by Cho et al. [5]
‣ Declarative model: by Raad et al. [4], and Cho et al. [5] — (simplified)

dom(DC_CVAP DSB_SY) ⊆ Ppo

D D ⊆ nvoob ∩	sloc D D ⊆ nvoob ∩	sloc

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

Intel-x86 PersistencyARMv8 Persistency

45

ARMv8 Consistency & Persistency Models
✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
‣ Declarative model: by Pulte et al. — defines the ob relation

✤ ARMv8 Persistency
‣ Weak explicit persists: DC CVAP x — analogous to clflushopt x
‣ Persist sequences: DC CVAP x; DSB SY — DSB SY is a strong fence (analogous to mfence)
‣ Operational model: an extension of promising semantics by Cho et al. [5]
‣ Declarative model: by Raad et al. [4], and Cho et al. [5] — (simplified)

dom(DC_CVAP DSB_SY) ⊆ Ppo

D D ⊆ nvoob ∩	sloc

(DC_CVAP) D ⊆ nvoob
D D ⊆ nvoob ∩	sloc

(FL ∪ FO) D ⊆ nvoob

FL ∪	dom(FO SF∪MF∪U) ⊆ Ppo

46

5. Further Reading
A. Intel-x86 / TSO Persistency Models

[1] Persistence Semantics for Weak Memory: Integrating Epoch Persistency with the TSO Memory Model
 Azalea Raad, Viktor Vafeiadis

[4] Weak Persistency Semantics from the Ground Up: Formalising the Persistency Semantics of ARMv8 and Transactional Models
 Azalea Raad, John Wickerson, Viktor Vafeiadis

[2] Persistency Semantics of the Intel-x86 Architecture
 Azalea Raad, John Wickerson, Gil Neiger, Viktor Vafeiadis
[3] Taming x86-TSO Persistency
 Artem Khyzha, Ori Lahav

B. ARMv8 Persistency Models

[5] Revamping Hardware Persistency Models: View-Based and Axiomatic Persistency Models for Intel-x86 and Armv8
 Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, Jeehoon Kang

C. Persistent Verification
[6] Linearizability of Persistent Memory Objects Under a Full-System-Crash Failure Model
 Joseph Izraelevitz, Hammurabi Mendes, Michael L. Scott
[7] Persistent Owicki-Gries Reasoning: A Program Logic for Reasoning about Persistent Programs on Intel-x86
 Azalea Raad, Ori Lahav, Viktor Vafeiadis
[8] Defining and Verifying Durable Opacity: Correctness for Persistent Software Transactional Memory
 Eleni Bila, Simon Doherty, Brijesh Dongol, John Derrick, Gerhard Schellhorn, Heike Wehrheim
[9] PerSeVerE: Persistency Semantics for Verification under Ext4
 Michalis Kokologiannakis, Ilya Kaisin, Azalea Raad, Viktor Vafeiadis
[10] Deciding reachability under persistent x86-TSO
 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, Prakash Saivasan

