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What is Non-Volatile Memory (NVM)?

RAMNVM

NVM: Hybrid Storage + Memory 
Best of both worlds: 
✓ persistent (like HDD)  
✓ fast, random access (like RAM) 
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Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

What about Concurrency?

C1 || C2 || ... || Cn
// ???

// x = y = ... = 0

// ???
// recovery routine
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Weak Memory Consistency (WMC)
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 No total execution order (to) ⇒ 

    weak behaviour absent under SC, caused by:  

• instruction reordering by compiler 
• write propagation across cache hierarchy



WMC: Store Buffering
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 No total execution order (to) ⇒ 

    weak behaviour absent under SC, caused by:  

• instruction reordering by compiler 
• write propagation across cache hierarchy

Consistency Model 
the order in which 


writes are made visible 

to other threads


e.g. x86 (TSO), ARMv8, C11, Java
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x := 1;

// recovery routine

// x=y=0

y := 1;

//  x=y=1  OR   x=y=0  OR   x=1;y=0  OR  x=0;y=1

What Can Go Wrong?

11

!! Execution continues ahead of persistence 
    — asynchronous persists

!! Writes may persist out of order 
    — relaxed persists

Consistency Model
the order in which writes

are made visible to other threads

Persistency Model
the order in which writes 

are persisted to NVM

NVM Semantics
Consistency + Persistency Model
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1.  An intuitive account of Px86
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x:=1 :  adds x:=1 to memory

a:=x :  reads x from memory 

memory lost

x:=1 :  adds x:=1 to p-buffer

a:=x :  if p-buffer contains x, reads latest entry 
else reads from memory

p-buffer lost; memory retained
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Unbuffered at non-deterministic points in time
Buffering & unbuffering orders may disagree



x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1
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!! out of order persists
☛  explicit persists? 

Handling Relaxed Persists



x := 1;

// recovery routine

// x=0;y=0

y := 1;

16

Explicit Persists: Desiderata

☛  explicit persists?

persist x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!! out of order persists
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x86 Persists: clwb, clflushopt, clflush

✤ clwb and clflushopt: same ordering constraints

Strength 
(ordering constraints)

clwb

clflushopt

clflush

Performance

clflush

clflushopt

clwb

✤ clwb does not invalidate cache line

✤ clflush: strongest ordering constraints; invalidates cache line

✤ clflushopt invalidates cache line
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// recovery routine

// x=0;y=0

y := 1;

18

Strong (Synchronous) Explicit Persists: clflush

clflush x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1
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Weak (Asynchronous) Explicit Persists: clflushopt & clwb

clflushopt x / clwb x; ☛
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Weak (Asynchronous) Explicit Persists: clflushopt & clwb

clflushopt x / clwb x; ☛

weak explicit persists of x86

are


asynchronous

and can themselves


persist out of order !
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x := 1;

// recovery routine

// x=0;y=0

y := 1;

20

clflushopt x/clwb x; 
sfence/mfence/RMW;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist Sequences

✤ Waits until earlier writes on x are persisted
✤ Disallows reordering

✓  synchronous persists
✓ no out of order persists
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Concurrent Px86

1.  An intuitive account of Px86
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x86: (Volatile) Concurrent Hardware Model (TSO)

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

. . .
x:=1 :  adds x:=1 to buffer

a:=x :  if buffer contains x, reads latest entry 
else reads from memory

buffer and memory lost

unbuffer* : buffer to memory

* at non-deterministic times
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x:=1; 

a:=y

y:=1; 

b:=x 
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a b
0 1
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0 0possible, due to reordering!

a:=y; 

x:=1

b:=x; 

y:=1 
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store buffering(SB)☛
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Hardware (Intel x86) WMC: Store Buffering
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x := 1;
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Thread2
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Store Buffering (SB)
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Thread2Thread1

x := 1;
a := y;

Thread1

y := 1;
b := x;

Thread2

x = 1

☛ ☛
// 0 // 0

Store Buffering (SB)

; y = 1;
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buffer/unbuffer order: consistency model NVM  
Semantics 

(Px86)

Persistent x86 (Px86)
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2.  A  formal account of Px86
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RMW instructions
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Px86 Operational Semantics 
= 

Px86 Program Transitions 
+ 

Px86 Storage Transitions

➡ First formulated by Raad et al. [2] 
➡ Later simplified by Khyzha and Lahav [3]
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Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: consistency model  
                                  → execution reordering

✤ Reads reordered before writes/sfence/flushopt/flush

→ delay writes/sfence/flushopt/flush execution in thread buffers

✤ flushopt  reordered w.r.t. writes/flushopt/flush on diff. locations

→  their buffer/unbuffer orders (in thread buffers) can disagree

Order preserved? : yes : no : iff on the same location

✤ writes/flush/sfence ordered w.r.t. one another

→  their buffer/unbuffer orders agree (FIFO)
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Px86 Storage System

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model  
                                 → persist reordering

✤ Persisting writes may be delayed

✤ Writes on different locations persist in different orders

    → per-location persist buffers 
    → record & delay writes in pbuff

✤ flush executed synchronously 

    → no need to delay/record them in pbuff

✤ flushopt executed asynchronously 

    → record & delay them in pbuff

✤ flushopt + sfence/mfence/RMW = persist sequence

    → ensure no flushopt  in pbuff

simplification due to 

Khyzha & Lahav [3]

➡ Original model by Raad et al. [2] : one pbuff for all locations
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3.  A  formal account of Px86
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‣ Intel-x86 consistency: 

rfi∪moi ∪rbi  ⊆  po (Internal)

Ri : internal (same-thread) subset of R
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x86-consistent execution
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 (in D)
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Valid (Consistent & Persistent) Executions
✤ Intel-x86 consistency:

rfi∪moi ∪rbi  ⊆  po
irreflexive(ob)     ob=( ppo∪rfe∪moe ∪rbe)+ 

preserved program order 
(sloc or      in table) 

✤ Intel-x86 persistency (simplified):

x:=1; 

clflushopt x; 

sfence; 

y:=1 

1

2

3

4

FL ∪	dom(FO         SF∪MF∪U)  ⊆  Ppo

i : persisted event (in P)

D                    D  ⊆  nvoob ∩	sloc

(FO ∪ FL)          D  ⊆  nvoob

ppo ⊆ ob∩sloc

ppo

ppo

ppo ⊆ ob

1 W(x, 1)

2 FO(x)

3 SF

4 W(y, 1)

durable events 
 (in D)

x86-valid execution
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4.  Other hardware persistency models
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✤ ARMv8 Consistency
‣ A complex model; much weaker than Intel-x86 consistency
‣ Operational model: promising semantics by Kang et al.
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‣ Operational model: an extension of promising semantics by Cho et al. [5]
‣ Declarative model: by Raad et al. [4], and Cho et al. [5] — (simplified) 

dom(DC_CVAP         DSB_SY)  ⊆  Ppo

D                    D  ⊆  nvoob ∩	sloc

(DC_CVAP)          D  ⊆  nvoob
D                    D  ⊆  nvoob ∩	sloc

(FL ∪ FO)          D  ⊆  nvoob

FL ∪	dom(FO         SF∪MF∪U)  ⊆  Ppo
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