
Incorrectness Logic & Under-Approximation:
Foundations of Bug Detection

Azalea Raad

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

Imperial College London

Principles of Programming Languages
16 January 2023

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

❖ Lots of work on reasoning for proving correctness

State of the Art: Correctness

➡ Compositionality

in resources accessed ⇒ spatial locality
in code ⇒ reasoning about incomplete components

➡ Scalability to large teams and codebases

➡ Prove the absence of bugs
➡ Over-approximate reasoning

2

{p} C {q} iff

For all states s in p
 if running C on s terminates in s’, then s’ is in q

post(C)p ⊆ qHoare triples

Hoare Logic (HL)

3

{p} C {q} iff post(C)p ⊆ qHoare triples

Hoare Logic (HL)

q over-approximates post(C)p

post(C)p

q
false positive

true positive

3

“Don’t spam the developers!”

4

“Don’t spam the developers!”

4

Incorrectness Logic:
A Formal Foundation

for
Bug Catching

Part I.
Incorrectness Logic (IL)

&
Incorrectness Separation Logic (ISL)

{p} C {q} iff

For all states s in p
 if running C on s terminates in s’, then s’ is in q

post(C)p ⊆ qHoare triples

[p] C [q] iffIncorrectness
triples

For all states s in q
 s can be reached by running C on some s’ in p

post(C)p q⊇

Incorrectness Logic (IL)

6

{p} C {q} iff post(C)p ⊆ qHoare triples
q over-approximates post(C)p

post(C)p

q
false positive

true positive

⊇[p] C [q] iffIncorrectness
triples

post(C)p q
q under-approximates post(C)p

q

post(C)p

false negative
true positive

Incorrectness Logic (IL)

7

[p] C [!: q]
!: exit condition
 ok: normal execution
 er : erroneous execution

[y=v] x:=y [ok: x=y=v] [p] error() [er: p]

Incorrectness Logic (IL)

8

[p] C [!: q] iff post(C, !)p ⊇ q

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

Equivalent Definition (reachability)

Incorrectness Logic (IL)

9

IL Proof Rules and Principles (Sequencing)

[p] C1; C2 [er: q]
[p] C1 [er: q]

❖ Short-circuiting semantics for errors

[p] C1; C2 [!: q]
[p] C1 [ok: r] [r] C2 [!: q]

10

IL Proof Rules and Principles (Branches)

[p] C1 + C2 [!: q]
[p] Ci [!: q] some i ∊{1, 2}

❖ Drop paths/branches (this is a sound under-approximation)
❖ Scalable bug detection!

11

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

Example

12

if (is-even(x))
 y:= 42

[y=0] [ok: y=42] ?

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

Example

12

if (is-even(x))
 y:= 42

[y=0] [ok: y=42] ?

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

p q

q={(x=0, y=42), (x=1, y=42), (x=2, y=42), …}

Example

12

if (is-even(x))
 y:= 42

[y=0] [ok: y=42]

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

p q

q={(x=0, y=42), (x=1, y=42), (x=2, y=42), …}
✔ ✘ ✔

✘

Example

13

if (is-even(x))
 y:= 42

[y=0] [ok: y=42 ∧ even(x)]

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

q

q={(x=0, y=42), (x=2, y=42), (x=4, y=42), …}
✔ ✔ ✔

✔
p

IL Proof Rules and Principles (Loops)

❖ Bounded unrolling of loops (this is a sound under-approximation)
❖ Scalable bug detection!

[p] C* [ok: p]
(Unroll-Zero)

[p] C* [!: q]
[p] C*; C [!: q]

(Unroll-Many)

14

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

IL Proof Rules and Principles (Loops continued)

❖ Loop invariants are inherently over-approximate
❖ Reason about loops under-approximately via sub-variants

[p(0)] C* [ok: p(k)]
∀n∊ℕ. [p(n)] C [ok: p(n+1)] k∊ℕ

(Backwards-Variant)

15

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

Example

16

(x++)*; if (x==2,000,000) error; [x=0] [er: x=2,000,000]

Example

16

(x++)*; if (x==2,000,000) error; [x=0] [er: x=2,000,000]

[p(0)] C* [ok: p(k)]
∀n∊ℕ. [p(n)] C [ok: p(n+1)] k∊ℕ

(Backwards-Variant)

 (x++)*;

 if (x==2,000,000)
 error;

[x=0]

[ok: x=2,000,000]
// Backwards-Variant

p(n): x=n

Example

16

(x++)*; if (x==2,000,000) error; [x=0] [er: x=2,000,000]

[p(0)] C* [ok: p(k)]
∀n∊ℕ. [p(n)] C [ok: p(n+1)] k∊ℕ

(Backwards-Variant)

 (x++)*;

 if (x==2,000,000)
 error;

[x=0]

[ok: x=2,000,000]

[er: x=2,000,000]

// Backwards-Variant
p(n): x=n

✔

❖ Shrink the post (e.g. drop disjuncts)
❖ Scalable bug detection!

(Cons)[p] C [!: q]
[p’] C [!: q’]p’⊆p q’⊇q

17

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

IL Proof Rules and Principles (Consequence)

❖ Shrink the post (e.g. drop disjuncts)
❖ Scalable bug detection!

(Cons)[p] C [!: q]
[p’] C [!: q’]p’⊆p q’⊇q

17

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[p] C [!: q1]
[p] C [!: q1 ∨ q2]

IL Proof Rules and Principles (Consequence)

❖ Shrink the post (e.g. drop disjuncts)
❖ Scalable bug detection!

(Cons)[p] C [!: q]
[p’] C [!: q’]p’⊆p q’⊇q

(HL-Cons)
{p} C {q}
{p’} C {q’}p’⊇p q’⊆q

17

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[p] C [!: q1]
[p] C [!: q1 ∨ q2]

IL Proof Rules and Principles (Consequence)

+ Under-approximate analogue of Hoare Logic

Incorrectness Logic: Summary

+ Formal foundation for bug catching

— Global reasoning: non-compositional (as in original Hoare Logic)

— Cannot target memory safety bugs (e.g. use-after-free)

18

+ Under-approximate analogue of Hoare Logic

Incorrectness Logic: Summary

+ Formal foundation for bug catching

— Global reasoning: non-compositional (as in original Hoare Logic)

— Cannot target memory safety bugs (e.g. use-after-free)Our Solution

Incorrectness Separation Logic

18

What Is Separation Logic (SL)?

[x]:= 1;
[y]:= 2;
[z]:= 3;

SL : Local & compositional reasoning via ownership & separation

 ☛ ideal for heap-manipulating programs with aliasing

{x = 1 ∧ y = 2 ∧ z = 3}post:

19

What Is Separation Logic (SL)?

[x]:= 1;
[y]:= 2;
[z]:= 3;

SL : Local & compositional reasoning via ownership & separation

 ☛ ideal for heap-manipulating programs with aliasing

{x = 1 ∧ y = 2 ∧ z = 3}post:

{x ≠ y ∧ x ≠ z ∧ y ≠ z}pre:

19

What Is Separation Logic (SL)?

SL : Local & compositional reasoning via ownership & separation

 ☛ ideal for heap-manipulating programs with aliasing

[x1]:= 1;
[x2]:= 2;
…
[xn]:= n;

{ x1 = 1 ∧ … ∧ xn = n }post:

{ x1 ≠ x2 ∧ x1 ≠ x3 ∧ … }pre:
n!/2 conjuncts !

19

What Is Separation Logic (SL)?

SL : Local & compositional reasoning via ownership & separation

 ☛ ideal for heap-manipulating programs with aliasing

[x]:= 1;
[y]:= 2;
[z]:= 3;

{ x ↦ 1 牎�y ↦ 2 牎�z ↦ 3 }post:

{ x ↦ - 牎�y ↦ - 牎�z ↦ - }pre:

20

What Is Separation Logic (SL)?

SL : Local & compositional reasoning via ownership & separation

 ☛ ideal for heap-manipulating programs with aliasing

[x]:= 1;
[y]:= 2;
[z]:= 3;

{ x ↦ 1 牎�y ↦ 2 牎�z ↦ 3 }post:

{ x ↦ - 牎�y ↦ - 牎�z ↦ - }pre:
ownership
of heap cell at x ‘and separately’

∀x,v,v’. x ↦ v 牎�x ↦ v’ ⇒ false

20

The Essence of Separation Logic (SL)

{p牎r} C {q牎r}
{p} C {q}

Frame Rule

x ↦ v 牎�x ↦ v’ ⇔ false p 牎�HPS�⇔ p

21

The Essence of Separation Logic (SL)

{p牎r} C {q牎r}
{p} C {q}

Frame Rule

{x ↦ -} [x]:= v {x ↦ v}

Local Axioms

{x ↦ v} y:= [x] {x ↦ v ∧ y=v}
{emp} x:= alloc() {∃l. l ↦ -∧ x=l}
{x ↦ -} free(x) { emp }

x ↦ v 牎�x ↦ v’ ⇔ false p 牎�HPS�⇔ p

WRITE

READ

ALLOC

FREE

21

Incorrectness Separation Logic (ISL)

[p] C [!: q]

IL

{p牎r} C {q牎r}
{p} C {q}

x ↦ - 牎�x ↦ - ⇔ false
x ↦ v 牎�HPS�⇔ x ↦ v

SL

[p牎r] C [!: q牎r]
[p] C [!: q] x ↦ v 牎�x ↦ v’ ⇔ false

x ↦ v 牎�HPS�⇔ x ↦ v

ISL

22

ISL: Local Axioms (First Attempt)

[x ↦ v’] [x]:= v [ok: x ↦ v]
WRITE

[x=null] [x]:= v [er: x=null]
null-pointer dereference error

23

ISL: Local Axioms (First Attempt)

[x ↦ v’] [x]:= v [ok: x ↦ v]
WRITE

[x=null] [x]:= v [er: x=null]

[x ↦ v] y:= [x] [ok: x ↦ v∧y=v] [x=null] y:= [x] [er: x=null]
READ

[emp] x:= alloc() [ok:∃l. l ↦ v ∧ x=l]
ALLOC

null-pointer dereference error

23

ISL: Local Axioms (First Attempt)

[x ↦ v’] [x]:= v [ok: x ↦ v]
WRITE

[x=null] [x]:= v [er: x=null]

[x ↦ v] y:= [x] [ok: x ↦ v∧y=v] [x=null] y:= [x] [er: x=null]
READ

[emp] x:= alloc() [ok:∃l. l ↦ v ∧ x=l]
ALLOC

[x ↦ v] free(x) [ok: emp] [x=null] free(x) [er: x=null]
FREE

null-pointer dereference error

23

ISL: Local Axioms (First Attempt)

[x ↦ v’] [x]:= v [ok: x ↦ v]
WRITE

[x=null] [x]:= v [er: x=null]

[x ↦ v] y:= [x] [ok: x ↦ v∧y=v] [x=null] y:= [x] [er: x=null]
READ

[emp] x:= alloc() [ok:∃l. l ↦ v ∧ x=l]
ALLOC

[x ↦ v] free(x) [ok: emp] [x=null] free(x) [er: x=null]
FREE

null-pointer dereference error

23

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[x ↦ v] free(x) [ok: emp]

[p牎r] C [!: q牎r]
[p] C [!: q] x ↦ v 牎�x ↦ v’ ⇔ false

 emp 牎�S�⇔ p
ISL

ISL: Local Axioms (First Attempt)

24

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[x ↦ v] free(x) [ok: emp]
[x ↦ v牎x ↦ v] free(x) [ok: emp牎x ↦ v]

[p牎r] C [!: q牎r]
[p] C [!: q] x ↦ v 牎�x ↦ v’ ⇔ false

 emp 牎�S�⇔ p
ISL

ISL: Local Axioms (First Attempt)

(Frame)

24

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[x ↦ v] free(x) [ok: emp]
[x ↦ v牎x ↦ v] free(x) [ok: emp牎x ↦ v]

[false] free(x) [ok: x ↦ v]

[p牎r] C [!: q牎r]
[p] C [!: q] x ↦ v 牎�x ↦ v’ ⇔ false

 emp 牎�S�⇔ p
ISL

ISL: Local Axioms (First Attempt)

(Frame)

(Cons)

24

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[x ↦ v] free(x) [ok: emp]
[x ↦ v牎x ↦ v] free(x) [ok: emp牎x ↦ v]

[false] free(x) [ok: x ↦ v]

[p牎r] C [!: q牎r]
[p] C [!: q] x ↦ v 牎�x ↦ v’ ⇔ false

 emp 牎�S�⇔ p
ISL

[false] C [!: q] ✗ (unless q ⇒ false)

ISL: Local Axioms (First Attempt)

(Frame)

(Cons)

24

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[x ↦ v] free(x) [ok: emp]
[x ↦ v牎x ↦ v] free(x) [ok: emp牎x ↦ v]

[false] free(x) [ok: x ↦ v]

[p牎r] C [!: q牎r]
[p] C [!: q] x ↦ v 牎�x ↦ v’ ⇔ false

 emp 牎�S�⇔ p
ISL

[false] C [!: q] ✗ (unless q ⇒ false)

ISL: Local Axioms (First Attempt)

(Frame)

(Cons)

Solution:
Track Deallocated

Locations!

24

Solution: Track Deallocated Locations!

x ↦ v 牎�x ↦ v’ ⇔ false
p 牎�HPS�⇔ p

x ↦ 牎 x ↦ ⇔ false

x is deallocated

x ↦ v 牎 x ↦ ⇔ false

[x ↦ v] free(x) [ok:]↦x

25

Solution: Track Deallocated Locations!

[x ↦ v] free(x) [ok: x]↦

26

Solution: Track Deallocated Locations!

[x ↦ v] free(x) [ok: x]↦
[x ↦ v牎x ↦ v] free(x) [ok: x 牎x ↦ v]↦

26

Solution: Track Deallocated Locations!

[x ↦ v] free(x) [ok: x]↦

[false] free(x) [ok: false]
[x ↦ v牎x ↦ v] free(x) [ok: x 牎x ↦ v]↦

[p] C [!: false]✔ (vacuous)

✔

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

26

ISL: Local Axioms
[x ↦ v] free(x) [ok: x] [x=null] free(x) [er: x=null]↦
FREE

double-free error

[x] free(x) [er: x]↦ ↦

27

ISL: Local Axioms
[x ↦ v] free(x) [ok: x] [x=null] free(x) [er: x=null]↦
FREE

double-free error

[x] free(x) [er: x]↦ ↦

[x ↦ v’] [x]:= v [ok: x ↦ v] [x=null] [x]:= v [er: x=null]
[x] [x]:= v [er: x]↦ ↦WRITE

[x ↦ v] y:= [x] [ok: x ↦ v∧y=v] [x=null] y:= [x] [er: x=null]
[x] y:= [x] [er: x]↦ ↦READ

[emp] x:= alloc() [ok:∃l. l ↦ v ∧ x=l]
ALLOC

27

ISL: Local Axioms
[x ↦ v] free(x) [ok: x] [x=null] free(x) [er: x=null]↦
FREE

double-free error

[x] free(x) [er: x]↦ ↦

[x ↦ v’] [x]:= v [ok: x ↦ v] [x=null] [x]:= v [er: x=null]
[x] [x]:= v [er: x]↦ ↦WRITE

[x ↦ v] y:= [x] [ok: x ↦ v∧y=v] [x=null] y:= [x] [er: x=null]
[x] y:= [x] [er: x]↦ ↦READ

[emp] x:= alloc() [ok:∃l. l ↦ v ∧ x=l]
ALLOC [y] x:= alloc() [ok: y ↦ v ∧ x=y]↦

27

ISL Summary
❖ Incorrectness Separation Logic (ISL)
➡ IL + SL for compositional bug catching
➡ Under-approximate analogue of SL
➡ Targets memory safety bugs (e.g. use-after-free)

❖ Combining IL+SL: not straightforward
➡ invalid frame rule!

❖ Fix: a monotonic model for frame preservation
❖ Recovering the footprint property for completeness
❖ ISL-based analysis
➡ No-false-positives theorem:

 All bugs found are true bugs

28

Part II.
Pulse-X: ISL for Scalable Bug Detection

Pulse-X at a Glance
❖ Automated program analysis for memory safety errors (NPEs, UAFs) and leaks
❖ Underpinned by ISL (under-approximate) — no false positives*
❖ Inter-procedural and bi-abductive — under-approximate analogue of Infer
❖ Compositional (begin-anywhere analysis) — important for CI
❖ Deployed at Meta
❖ Performance: comparable to Infer, though merely an academic tool!
❖ Fix rate: comparable or better than Infer!
❖ Three dimensional scalability

30

➡ code size (large codebases)
➡ people (large teams, CI)
➡ speed (high frequency of code changes)

Compositional, Begin-Anywhere Analysis

31

❖Analysis result of a program = analysis results of its parts
+

a method of combining them

➡ Parts: Procedures

➡ Method: under-approximate bi-abduction

➡ Analysis result: incorrectness triples (under-approximate specs)

Pulse-X Algorithm: Proof Search in ISL
❖ Analyse each procedure f in isolation, find its summary (collection of ISL triples)

➡ A summary table T, initially populated only with local (pre-defined) axioms
➡ Use bi-abduction and T to find the summary of f
➡ Recursion: bounded unrolling
➡ Extend T with the summary of f

❖ Similar bi-abductive mechanism to Infer, but:
➡ Can soundly drop execution paths/branches
➡ Can soundly bound loop unrolling

32

Pulse-X: Null Pointer Dereference in OpenSSL

33

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

33

calls CRYPTO_malloc (a malloc wrapper)

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

33

calls CRYPTO_malloc (a malloc wrapper)
null pointer

dereference CRYPTO_malloc may return null!

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

33

calls CRYPTO_malloc (a malloc wrapper)
null pointer

dereference CRYPTO_malloc may return null!

[emp] *exc= app_malloc(sz, …) [ok: exc = null]

[exc = null] memset(exc,-,-) [er: exc = null]
+☞

[emp] ssl_excert_prepend(…) [er: exc = null]

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

34

Pulse-X: Null Pointer Dereference in OpenSSL

34

Created pull request #15836 to commit the fix.

Pulse-X: Bug Reporting

No False Positives: Report All Bugs Found?

Not quite…

35

Pulse-X: Bug Reporting

1.void foo(int *x){
2. *x = 42;
}

[x=null] *x = v [er: x=null]WRITE

[x=null] foo(x) [er: x=null]

☞

36

Pulse-X: Bug Reporting

1.void foo(int *x){
2. *x = 42;
}

[x=null] *x = v [er: x=null]WRITE

[x=null] foo(x) [er: x=null]

☞
Should we report this NPD?

yes no

Developer Pulse-X

“But I never call foo with null!” “Which bugs shall I report then?”
36

Pulse-X: Bug Reporting

1.void foo(int *x){
2. *x = 42;
}

[x=null] *x = v [er: x=null]WRITE

[x=null] foo(x) [er: x=null]

☞
Should we report this NPD?

yes no

Developer Pulse-X

“But I never call foo with null!” “Which bugs shall I report then?”
36

Problem
Must consider the whole program

to decide whether to report

Solution
Manifest Errors

Pulse-X: Manifest Errors

37

∀ s. ∃ s’. (s,s’) ∈ [C]er ∧ s’ ∈ (q * true)

❖ Intuitively: the error occurs for all input states
❖ Formally: [p] C [er: q] is manifest iff:

❖ Algorithmically: [p] C [er: q] is manifest if when: q = ∃ . hq ∧ "q :X

➡ for all : sat (/ flv(q) ∪)v Xv

➡ p = emp ∧ true
X➡ sat(q) and locs(q) ⊆

Pulse-X: Manifest Errors

37

∀ s. ∃ s’. (s,s’) ∈ [C]er ∧ s’ ∈ (q * true)

❖ Intuitively: the error occurs for all input states
❖ Formally: [p] C [er: q] is manifest iff:

❖ Algorithmically: [p] C [er: q] is manifest if when: q = ∃ . hq ∧ "q :X

➡ for all : sat (/ flv(q) ∪)v Xv

➡ p = emp ∧ true
X➡ sat(q) and locs(q) ⊆

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

38

calls CRYPTO_malloc (a malloc wrapper)
null pointer

dereference CRYPTO_malloc may return null!

[emp] ssl_excert_prepend(…) [er: exc = null]

Manifest Error (all calls to ssl_excert_prepend can trigger the error)!

Pulse-X: Latent Errors

39

An error triple [p] C [er: q] is latent iff it is not manifest

1.int chopup_args(ARGS *args,…){
 …
2. if (args->count == 0) {
3. args->count=20;
4. args->data= (char**)ssl_excert_prepend(…);
5. }
5. for (i=0; i<args->count; i++) {
6. args->data[i]=NULL;
 …
 }

Pulse-X: Latent Error

40

1.int chopup_args(ARGS *args,…){
 …
2. if (args->count == 0) {
3. args->count=20;
4. args->data= (char**)ssl_excert_prepend(…);
5. }
5. for (i=0; i<args->count; i++) {
6. args->data[i]=NULL;
 …
 }

Pulse-X: Latent Error

40

null pointer

dereference

1.int chopup_args(ARGS *args,…){
 …
2. if (args->count == 0) {
3. args->count=20;
4. args->data= (char**)ssl_excert_prepend(…);
5. }
5. for (i=0; i<args->count; i++) {
6. args->data[i]=NULL;
 …
 }

Pulse-X: Latent Error

40

Latent Error:

only calls with args->count == 0 can trigger the error

null pointer

dereference

Pulse-X: Memory Leak in OpenSSL

41

static int www_body(…){
 ...
 io = BIO_new(BIO_f_buffer());
 ssl_bio BIO_new(BIO_f_ssl());
 ...
 BIO_push(io, ssl_bio);
 ...
 BIO_free_all(io);
 ...
 return ret;
}

Pulse-X: Memory Leak in OpenSSL

41

static int www_body(…){
 ...
 io = BIO_new(BIO_f_buffer());
 ssl_bio BIO_new(BIO_f_ssl());
 ...
 BIO_push(io, ssl_bio);
 ...
 BIO_free_all(io);
 ...
 return ret;
}

does nothing when io is null

Pulse-X: Memory Leak in OpenSSL

41

static int www_body(…){
 ...
 io = BIO_new(BIO_f_buffer());
 ssl_bio BIO_new(BIO_f_ssl());
 ...
 BIO_push(io, ssl_bio);
 ...
 BIO_free_all(io);
 ...
 return ret;
}

does nothing when io is null

leaks ssl_bio

Pulse-X: Memory Leak in OpenSSL

41

static int www_body(…){
 ...
 io = BIO_new(BIO_f_buffer());
 ssl_bio BIO_new(BIO_f_ssl());
 ...
 BIO_push(io, ssl_bio);
 ...
 BIO_free_all(io);
 ...
 return ret;
}

426 lines of complex code:
io manipulated by several procedures

and multiple loops

Pulse-X performs under-approximation
with bounded loop unrolling

does nothing when io is null

leaks ssl_bio

No-False Positives: Caveat

42

❖ Unknown procedures (e.g. where the code is unavailable) are treated as skip
❖ Incomplete arithmetic solver

Speed

(fast but simplistic)

Precision

(slow but accurate)vs

No-False Positives: Caveat

42

❖ Unknown procedures (e.g. where the code is unavailable) are treated as skip
❖ Incomplete arithmetic solver

Speed

(fast but simplistic)

Precision

(slow but accurate)vs

“Scientists seek perfection and are
idealists. ... An engineer’s task is to not be
idealistic. You need to be realistic as you have
to compromise between conflicting interests.”

Conclusions
❖ Incorrectness Separation Logic (ISL)
➡ Combining IL and SL for compositional bug catching (in sequential programs)
➡ no-false-positives theorem

Thank You for Listening!

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

❖ Pulse-X
➡ Automated program analysis for detecting memory safety errors and leaks
➡ Manifest errors (underpinned by ISL): no false positives*
➡ compositional, scalable, begin-anywhere

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

Incorrectness Logic & Under-Approximation:
Foundations of Bug Detection

Azalea Raad

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

Imperial College London

Principles of Programming Languages
16 January 2023

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

Part III.

ISL Extension:
Concurrent Incorrectness Separation Logic (CISL)

&
Concurrent Adversarial Separation Logic (CASL)

&
Incorrectness Non-Termination Logic (INTL)

Extension 1: Concurrent Incorrectness Separation Logic (CISL)

ISL

[p牎r] C [!: q牎r]
[p] C [!: q]

{p1牎p2} C1 || C2 {q1牎q2}
{p1} C1 {q1} {p2} C2 {q2}

CSL

[p1牎p2] C1 || C2 [!: q1牎q2]
[p1] C1 [!: q1] [p2] C2 [!: q2]CISL

46

47

Which CISL?
CSL (Correctness) Family Tree…

Graph courtesy of Ilya Sergey

47

Which CISL?
CSL (Correctness) Family Tree…

Graph courtesy of Ilya Sergey

Pitfall

The Next 700
Concurrent Separation Logics

47

Which CISL?
CSL (Correctness) Family Tree…

Graph courtesy of Ilya Sergey

Pitfall

The Next 700
Concurrent Separation Logics

Pitfall

The Next 700
Concurrent Incorrectness Separation Logics

47

Which CISL?
CSL (Correctness) Family Tree…

Graph courtesy of Ilya Sergey

Pitfall

The Next 700
Concurrent Separation Logics

Pitfall

The Next 700
Concurrent Incorrectness Separation Logics

Solution

CISL: general, parametric framework
that can be instantiated

for different use cases
à la Views [Dinsdale-Young et al., 2013]

48

CISL Framework
❖ First unifying framework for concurrent under-approximate reasoning
❖ General framework for multiple bug catching analyses

➡ Memory safety errors (e.g. null-pointer exception, use-after-free errors): CISLSV
➡ Races: CISLRD
➡ Deadlocks: CISLDD

❖ Sound: no false positives (NFP) guaranteed
❖ Underpins scalable bug-catching tools (NFP for free)

➡ CISLRD: analogous to RacerD @Meta
➡ CISLDD: analogous to DLTool @Meta

❖ Caveat: cannot detect bugs where there are control flow dependencies between threads

49

Three Faces of Concurrency Bugs:
1. Local Bugs

local use-after-free (memory safety) bug at L

What are they?
➡ They are due to one thread

49

Three Faces of Concurrency Bugs:
1. Local Bugs

local use-after-free (memory safety) bug at L

Thread-local analysis tools?
➡ Existing (sequential) tools out of the box

e.g. PulseX @Meta (based on ISL)

CISL

[p] C1 || C2 [er: q]
[p] C1 [er: q]

ParEr

Short-circuiting on errors

What are they?
➡ They are due to one thread

50

Bug is due to two or more threads, under certain interleavings
2. data-agnostic: threads do not affect one another’s control flow

(global) data-agnostic
use-after-free bug at L (L’) (global) data-agnostic use-after-free bug at L

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

50

Bug is due to two or more threads, under certain interleavings
2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

(global) data-agnostic
use-after-free bug at L (L’) (global) data-agnostic use-after-free bug at L

(global) data-dependent use-after-free bug at L

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

51

Thread-local analysis tools?
2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

➡ encode errors as ok (no short-circuiting)
➡ assumed by existing tools: RacerD, DLTool @Meta

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]

➡ not handled compositionally in CISL theory

CISL

51

Thread-local analysis tools?
2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

➡ encode errors as ok (no short-circuiting)
➡ assumed by existing tools: RacerD, DLTool @Meta

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]

➡ not handled compositionally in CISL theory

52

CISLRD: Data-Agnostic Races
Two memory accesses (reads/writes), a and b, in program C race iff

➡ they are by distinct threads
➡ on the same location
➡ at least one of them is a write

1.a and b are conflicting:

2. they appear next to each other in an interleaving (history) of C

52

CISLRD: Data-Agnostic Races
Two memory accesses (reads/writes), a and b, in program C race iff

➡ they are by distinct threads
➡ on the same location
➡ at least one of them is a write

1.a and b are conflicting:

2. they appear next to each other in an interleaving (history) of C

Race between lines 3, 5witnessed by:
H = [1, 2, 4, 3, 5, 6]

52

CISLRD: Data-Agnostic Races
Two memory accesses (reads/writes), a and b, in program C race iff

➡ they are by distinct threads
➡ on the same location
➡ at least one of them is a write

1.a and b are conflicting:

2. they appear next to each other in an interleaving (history) of C

Race between lines 3, 5witnessed by:
H = [1, 2, 4, 3, 5, 6]

No races

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

53

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

53

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

53

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

CISLRD

CISLRD

[# ↦ H] lock# l [ok: # ↦ H’]
H’ = H ++ [L(#, l)]

RD-Lock
H’ is well-formed

CISLRD: Lock Axiom

H is well-formed iff it respects the lock semantics:
➡ lock l is acquired only if it is not already held
➡ lock l is released by # only if it is already held by #

54

55

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

CISLRD

[# ↦ H] unlock# l [ok: # ↦ H’]
H’ = H ++ [U(#, l)]

RD-Unlock
H’ is well-formed

CISLRD: Unlock Axiom

A history H is well-formed iff it respects the lock semantics:
➡ lock l is acquired only if it is not already held
➡ lock l is released by # only if it is already held by #

56

57

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

CISLRD

[# ↦ H] L: a :=# [x] [ok: # ↦ H’]
H’ = H ++ [R(#, L, x)]

RD-Read

[# ↦ H] L: [x] :=# a [ok: # ↦ H’]
H’ = H ++ [W(#, L, x)]

RD-Write

CISLRD: Memory Access Axioms

We do not record the values read/written

58

59

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)]]

[ok: #2 ↦ [L(#2, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

59

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)]]

[ok: #2 ↦ [L(#2, l)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

59

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)]]

[ok: #2 ↦ [L(#2, l)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)] * #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

59

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)]]

[ok: #2 ↦ [L(#2, l)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)] * #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

60

CISLRD: race Predicate

#1 ↦ H1 * #2 ↦ H2 ⇒ race(L1, L2, H) iff:
there exist H’1, H’2, H’, a, b such that:
➡ a and b are conflicting accesses
➡ H1 = H’1 ++ [a] ++ — and H2 = H’2 ++ [b] ++ —
➡ H = H’ ++ [a, b]
➡ H’ is a permutation of H’1 ++ H’2
➡ H is well-formed

61

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)]]

[ok: #2 ↦ [L(#2, l)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

CISLRD

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)] * #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

61

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)]]

[ok: #2 ↦ [L(#2, l)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)] * #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]
 ⋀ race(3, 5, [L(#1, l), U(#1, l), L(#2, l), W(#1, 3, x), W(#2, 5, x)])]

CISLRD

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)] * #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

61

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

[#1 ↦ []]
[#1 ↦ [] * #2 ↦ []]

[#2 ↦ []]

[ok: #1 ↦ [L(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)]]

[ok: #2 ↦ [L(#2, l)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x)]]

[ok: #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)] * #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]
 ⋀ race(3, 5, [L(#1, l), U(#1, l), L(#2, l), W(#1, 3, x), W(#2, 5, x)])]

CISLRD

[ok: #1 ↦ [L(#1, l), U(#1, l), W(#1, 3, x)] * #2 ↦ [L(#2, l), W(#2, 5, x), U(#2, l)]]

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

Simple
yet

Effective in Practice

à la RacerD

62

CISL Framework
❖ First unifying framework for concurrent under-approximate reasoning
❖ General framework for multiple bug catching analyses

➡ Memory safety errors (e.g. null-pointer exception, use-after-free errors): CISLSV
➡ Races: CISLRD
➡ Deadlocks: CISLDD

❖ Sound: no false positives (NFP) guaranteed
❖ Underpins scalable bug-catching tools (NFP for free)

➡ CISLRD: analogous to RacerD @Meta
➡ CISLDD: analogous to DLTool @Meta

❖ Caveat: cannot detect bugs where there are control flow dependencies between threads

63

Extension 2: Concurrent Adversarial Separation Logic (CASL)
❖ A general framework for concurrent under-approximate reasoning
❖ It subsumes CISL
❖ Can handle both data-agnostic and data-dependent bugs
❖ Instantiated to detect software exploits/attacks

➡ Information disclosure attacks (over stacks & heaps)
➡ Buffer overflow attacks (over stacks & heaps)
➡ Memory safety attacks (e.g. zero allocation)

CASL for Exploit Detection: Information Disclosure Attacks

adversary vulnerable program

64

CASL for Exploit Detection: Information Disclosure Attacks

topstack

. . .

0
1
2
3
4
5
6
7
8adversary vulnerable program

64

CASL for Exploit Detection: Information Disclosure Attacks

topstack

. . .

0
1
2
3
4
5
6
7
8

sec

adversary vulnerable program

64

CASL for Exploit Detection: Information Disclosure Attacks

topstack

. . .

0
1
2
3
4
5
6
7
8

sec

W[0]
W[1]
W[2]
W[3]
W[4]
W[5]
W[6]
W[7]

adversary vulnerable program

64

CASL for Exploit Detection: Information Disclosure Attacks

topstack

. . .

0
1
2
3
4
5
6
7
8

sec

W[0]
W[1]
W[2]
W[3]
W[4]
W[5]
W[6]
W[7]

// 8

adversary vulnerable program

64

CASL for Exploit Detection: Information Disclosure Attacks

topstack

. . .

0
1
2
3
4
5
6
7
8

sec

W[0]
W[1]
W[2]
W[3]
W[4]
W[5]
W[6]
W[7]

// 8

z

// sec

adversary vulnerable program

64

CASL for Exploit Detection: Information Disclosure Attacks

topstack

. . .

0
1
2
3
4
5
6
7
8

sec

W[0]
W[1]
W[2]
W[3]
W[4]
W[5]
W[6]
W[7]

// 8

z

// sec

// sec

adversary vulnerable program

64

CASL for Exploit Detection: Information Disclosure Attacks

topstack

. . .

0
1
2
3
4
5
6
7
8

sec

W[0]
W[1]
W[2]
W[3]
W[4]
W[5]
W[6]
W[7]

// 8

z

// sec

// sec

adversary vulnerable program

information disclosure!

64

CASL for Exploit Detection: Memory Safety Attacks

65

adversary vulnerable program

CASL for Exploit Detection: Memory Safety Attacks

// maxInt

65

adversary vulnerable program

CASL for Exploit Detection: Memory Safety Attacks

// maxInt

// y=0

65

adversary vulnerable program

CASL for Exploit Detection: Memory Safety Attacks

// maxInt

// y=0
// x=null

65

adversary vulnerable program

CASL for Exploit Detection: Memory Safety Attacks

// maxInt

// y=0
// x=null

65

adversary vulnerable program

null pointer dereference!

Termination vs Non-Termination

❖ Showing termination is compatible with correctness frameworks:

➡ Every trace of a given program must terminate
➡ Inherently over-approximate

skip + x:=1

66

Termination vs Non-Termination

❖ Showing termination is compatible with correctness frameworks:

➡ Every trace of a given program must terminate
➡ Inherently over-approximate

skip + x:=1

❖ Showing non-termination compatible with incorrectness frameworks:

➡ Some trace of a given program must not-terminate
➡ Inherently under-approximate

66

skip + while(true) skip

Extension 3: Incorrectness Non-Termination Logic (INTL)

❖ A framework for detecting non-termination bugs
❖ Supports unstructured constructs (goto), as well exceptions and breaks
❖ Reasons for non-termination:

➡ Infinite loops
➡ Infinite recursion
➡ Cyclic goto soups

67

INTL Proof Rules and Principles

68

INTL Proof Rules
=

ISL Proof Rules
+

Divergence (Non-Termination) Rules

INTL Divergence Proof Rules

69

[p] C [∞]

Starting from some state in p, C has a divergent trace

INTL Divergence Proof Rules (Sequencing)

[p] C1; C2 [∞]
[p] C1 [∞]

[p] C1; C2 [∞]
[p] C1 [ok: q] [q] C2 [∞]

70

INTL Divergence Proof Rules (Branches)

[p] C1 + C2 [!: q]
[p] Ci [∞] some i ∊{1, 2}

❖ Drop paths/branches (this is a sound under-approximation)
❖ Scalable bug detection!

71

INTL Divergence Proof Rules (Loops)

72

[p] C* [∞]
[p] C [∞]

[p] C* [∞]
[p] C [ok: p] [extra condition omitted]

Conclusions

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

❖ CISL and CASL
➡ Combining ISL and CSL for concurrent bug catching
➡ no-false-positives theorem
➡ Race detection, deadlock detection, exploit detection

❖ INTL
➡ ISL for detecting non-termination bugs
➡ Unstructured language (goto construct)
➡ no-false-positives theorem
➡ Infinite loop detection
➡ Infinite recursion detection — ongoing work
➡ Cyclic goto-soup — ongoing work

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

Announcement

Thank You for Listening!

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

I’m hiring!

Join my team (Veritas) @Imperial College

̣ Internship opportunities

̣PhD studentships

̣Post-doc positions

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

