
Specifying & Verifying
Non-Volatile Memory

Azalea Raad

Max Planck Institute for Software Systems (MPI-SWS)

azalea@mpi-sws.org @azalearaadSoundAndComplete.org

What is Non-Volatile Memory (NVM)?

Computer Storage

HDD

RAM✓ fast
✗ volatile

✗ slow
✓ persistent

!3

What is Non-Volatile Memory (NVM)?

RAMNVM

NVM: Hybrid Storage + Memory
Best of both worlds:
✓ persistent (like HDD)
✓ fast, random access (like RAM)

!4

Why NVM Now?

!5

✓ Persistent

✓ Higher capacity (than RAM)

✓ Green
‣ 32x capacity for 3x power consumption

✓ Low latency — no intermediaries
‣ no OS/FS intermediaries
‣ no paging, no context switching, no interrupts, no kernel code
‣ short instruction path

✓ Many applications
‣ fast in-memory databases
‣ file systems
‣ …

!6

A: Program Verification

!7

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

A: Program Verification

!7

Q: Why Formal NVM Semantics?

Volatile memory

x := 1
// x = 1

// x = 0

// x = 0
// no recovery

Non-Volatile memory

x := 1
// x = 1

// x = 0

// x = 1
// recovery routine

What about Concurrency?

C1 || C2 || ... || Cn
// ???

// x = y = ... = 0

// ???
// recovery routine

time

Difficulty

Sequential

!
WMC

☹

(1990s)

!8

(1940s)
SC

"

(1979)

Formal Semantic Models

Weak Memory Consistency (WMC)

!9

 No total execution order (to) ⇒
 weak behaviour absent under SC, caused by:

• software
 instruction reordering by compiler

• hardware
 write propagation across cache hierarchy

Weak Memory Consistency (WMC)

!9

 No total execution order (to) ⇒
 weak behaviour absent under SC, caused by:

• software
 instruction reordering by compiler

• hardware
 write propagation across cache hierarchy

Consistency Model

the order in which

writes are made visible

to other threads

e.g. x86-TSO, ARM, POWER, C11, Java

time

Difficulty

Sequential

!

!10

$

WNVMC

My Research

(2017)(1940s)
SC

"

(1979)
WMC

☹

(1990s)

Formal Semantic Models

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!11

!! Execution continues ahead of persistence
 — asynchronous persists

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!11

!! Writes may persist out of order
 — relaxed persists

!! Execution continues ahead of persistence
 — asynchronous persists

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!11

!! Writes may persist out of order
 — relaxed persists

!! Execution continues ahead of persistence
 — asynchronous persists

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

NVM Semantics
Consistency + Persistency Model

$

WNVMC

My Research

(2017)

$

!12

time

Difficulty

Sequential

!

(1940s)
SC

"

(1979)
WMC

☹

(1990s)

Formal Concurrency Models

$

WNVMC

My Research

(2017)

$

!12

%

time

Difficulty

Sequential

!

(1940s)
SC

"

(1979)
WMC

☹

(1990s)

Formal Concurrency Models

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!13

!! out of order persists

Challenge #1: Relaxed Persists

x := 1;

// recovery routine

// x=0;y=0

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Persist Barriers

!14

y := 1;
☛

e.g. SFENCE on Intel
 DSBfull on ARM

!! out of order persists
☛ persist barriers

!15

x := 1;

// recovery routine

// x=0;y=0

// x=1;y=1 OR x=0;y=0 OR x=1;y=0

y := 1;

!! Execution continues ahead of persistence

Challenge #2: Asynchronous Persists

!16

Explicit Persists

x := 1;

// recovery routine

// x=0;y=0

// x=1;y=1 OR x=0;y=0 OR x=1;y=0

y := 1;

☛ persist instructions
!! Execution continues ahead of persistence

e.g. CLWB/CLFLUSHOPT/CLFLUSH on Intel (per cache line)
 DC-CVAP on ARM (per cache line)

 psync under epoch persistency (global)

persist x;☛

!17

Here’s Some Maths!

ARM Persistence Semantics
• together w. ARM UK
• declarative specification
• discovered ambiguities in manual

Intel Persistence Semantics
• Together w. Intel US
• declarative specification
• operational specification
• equivalence theorem
• discovered ambiguities in manual

!17

Here’s Some Maths!

ARM Persistence Semantics
• together w. ARM UK
• declarative specification
• discovered ambiguities in manual

Intel Persistence Semantics
• Together w. Intel US
• declarative specification
• operational specification
• equivalence theorem
• discovered ambiguities in manual

Problem
counter-intuitive semantics

low-level hardware details

Solution

high-level, hardware-agnostic
 NVM libraries:

Persistent Transactions

‣ TM (Transactional Memory): run on volatile hardware
➡ No persistency guarantees

‣ Database transactions: run on persistent hardware
➡ Specific persistency guarantees

✦ only strict persistency
✦ only synchronous persistency

‣ NVM transactions: run on persistent hardware
➡ Range of persistency guarantees

✦ strict or relaxed persistency
✦ synchronous or asynchronous persistency

Transactions: NVM vs. TM/Databases

!18

What is a Transaction?
Concurrency control mechanism:
‣ atomic work unit:

➡ all-or-nothing writes

‣ consistent (e.g. serialisable)

[T :
x := 1;
y := 1;

// x = y = 0

// x = y = 0 OR x = y = 1

!19

Concurrency & persistency control mechanism:
‣ atomic work unit:

➡ all-or-nothing writes
➡ all-or-nothing persists

‣ consistent (e.g. serialisable)

What is a Persistent Transaction?

!20

[T :
x := 1;
y := 1;

// x = y = 0

// recovery routine
// x = y = 0 OR x = y = 1

Concurrency & persistency control mechanism:
‣ atomic work unit:

➡ all-or-nothing writes
➡ all-or-nothing persists

‣ consistent (e.g. serialisable)

What is a Persistent Transaction?

!20

[T :
x := 1;
y := 1;

// x = y = 0

// recovery routine
// x = y = 0 OR x = y = 1

‣ persistent (e.g. persistently serialisable)

Serialisability (SER)

!21

All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →
// a = 0 b = 1 // a = 1 b = 0

Persistent Serialisability (PSER)

!22

All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

A prefix of transactions appears to persist in the same sequential order

Persistent Serialisability (PSER)

!22

All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

A prefix of transactions appears to persist in the same sequential order

// x = y = 0T1 T2⇢⇢

// x = 1 y = 0T1 T2⇢→

T1 → T2 → // x = y = 1

Persistent Serialisability (PSER)

!23

All transactions appear to execute in a sequential order
A prefix of transactions appears to persist in the same sequential order

T1 → → …→T3 T5 T7T2 T4 T6→ → → →

all persist none persist

Persistent Serialisability (PSER)

!24

All transactions appear to execute in a sequential order
A prefix of transactions appears to persist in the same sequential order
 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashes

Persistent Serialisability (PSER)

!24

All transactions appear to execute in a sequential order
A prefix of transactions appears to persist in the same sequential order
 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashesPSER

Strong guarantees
Intuitive semantics

Persistent Serialisability (PSER)

!24

All transactions appear to execute in a sequential order
A prefix of transactions appears to persist in the same sequential order
 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashesPSER

Strong guarantees
Intuitive semantics

PSER Evaluation

1. Is PSER feasible?

2. Is PSER useful?

✢ add code for persistence — e.g. psync

Is PSER Feasible?

!25

✓ PSER implementation in ARM
✓ PSER implementation in Intel

✢ add code to log metadata for recovery

✢ add recovery mechanism

⇒
recovery mechanism

check log for incomplete transactions:

 either complete
 or rollback

Take SER Implementation — e.g. 2-PL

✢ add code for persistence — e.g. psync

Is PSER Feasible?

!25

✓ PSER implementation in ARM
✓ PSER implementation in Intel

✢ add code to log metadata for recovery

✢ add recovery mechanism

⇒
recovery mechanism

check log for incomplete transactions:

 either complete
 or rollback

Take SER Implementation — e.g. 2-PL

Yes!

Correct Implementation in ARM & Intel

Is PSER Useful?

!26

1. Take any correct sequential implementation of L
Given library L (e.g. queue library):

enq(q,v)=
 pser{
 < enq_body > }

deq(q)=
 pser{
 < deq_body > }

enq(q,v)=
 < enq_body >

deq(q)=
 < deq_body >

sequential queue imp.

2. wrap each operation in a PSER transaction

Is PSER Useful?

!26

1. Take any correct sequential implementation of L
Given library L (e.g. queue library):

⇒ correct, concurrent & persistent implementation of L

enq(q,v)=
 pser{
 < enq_body > }

deq(q)=
 pser{
 < deq_body > }

enq(q,v)=
 < enq_body >

deq(q)=
 < deq_body >

sequential queue imp.
correct

concurrent & persistent
queue imp.

2. wrap each operation in a PSER transaction

Is PSER Useful?

!26

1. Take any correct sequential implementation of L
Given library L (e.g. queue library):

⇒ correct, concurrent & persistent implementation of L

enq(q,v)=
 pser{
 < enq_body > }

deq(q)=
 pser{
 < deq_body > }

enq(q,v)=
 < enq_body >

deq(q)=
 < deq_body >

sequential queue imp.
correct

concurrent & persistent
queue imp.

2. wrap each operation in a PSER transaction
Yes!

any correct sequential implementation

⇒

correct, concurrent & persistent

implementation

Summary

azalea@mpi-sws.org @azalearaadSoundAndComplete.org

✢ PSER
✢ Feasibility: implemented PSER on ARM and Intel
✢ Utility: PSER for concurrent & persistent library implementation

✓ Formalised language-level NVM semantics:

✓ Formalised architecture-level NVM semantics:
✢ ARM
✢ Intel

? Future Work:
✢ other transactional models
✢ model checking algorithms
✢ program logics

Thank You for Listening!

