
Local Reasoning About the Presence of Bugs 27

A Null Pointer Dereference Bug in OpenSSL

(CVE-2014-0198)

NPD(b), local xb, xp in

xb := [b];�
assume(xb=null); setup write buffer(b)

+
�
assume(xb 6=null); skip

;

dispatch alert(b) + skip;
xp := [b]; lrp: [xp] := 666

Fig. 9. The NPD program from OpenSSL adapted to the ISL language

We consider a null-pointer-dereference bug in OpenSSL, adapted to our ISL
language as the NPD(b) program in Fig. 9. The NPD(b) program makes calls to
the setup write buffer(b) and dispatch alert(b) procedures, assumed to be
inlined within NPD(b), as before. For brevity, we omit the code of these two
procedures, and note that while setup write buffer(b) always ensures that the
bu↵er at b is allocated, dispatch alert(b) may accidentally deallocate the bu↵er
at b and set it to null, causing a null-pointer-dereference error later. We thus
assume the following specifications for these procedures:

[b 7! e] setup write buffer(b) [ok : 9l2. b 7! l2 ⇤ l2 7! e] (NPD-Setup)

[b 7! l2 ⇤ l2 7! �] dispatch alert(b) [ok : b 7! null ⇤ l2 67!] (NPD-Alert)

We can then prove the following error specifications for NPD(b):

[b 7! null] NPD(b) [er(lrp) : 9l2. b 7! null ⇤ l2 67!] (NPD-Er-1)

[b 7! l2 ⇤ l2 7! �] NPD(b) [er(lrp) : b 7! null ⇤ l2 67!] (NPD-Er-2)

(NPD-Er-1) describes the case where the bu↵er at b is originally unallocated and
is subsequently allocated by setup write buffer(b), only to be deallocated by
dispatch alert(b) shortly after, causing a null-pointer-dereference error at lrp.
Analogously, (NPD-Er-2) describes the case where the bu↵er is initially allocated
and later deallocated by dispatch alert(b), causing an error at lrp.

The proofs of (NPD-Er-1) and (NPD-Er-2) are straightforward. A proof
sketch of (NPD-Er-1) is given in Fig. 10; the (NPD-Er-2) proof is analogous and
omitted.

28 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

[b 7! null]

local xb, xp in

xb := [b]; // (Load)

[ok :xb = null ⇤ b 7! null]

{ assume(xb=null); // (Assume)

[ok :xb=null ⇤ b 7! null]

setup write buffer(b); // (NPD-Setup)

[ok :xb=null ⇤ 9l2. b 7! l2 ⇤ l2 7! �]

}+ {. . .}; // (Choice)

[ok :xb=null ⇤ 9l2. b 7! l2 ⇤ l2 7! �]

[ok :b 7! l2 ⇤ l2 7! �]

(dispatch alert(b); // (NPD-Alert)

[ok :b 7! null ⇤ l2 67!]

[ok :xb=null ⇤ 9l2. b 7! null ⇤ l2 67!] // (Exist, 4.2)

+ . . .); // (Choice)

[ok :xb=null ⇤ 9l2. b 7! null ⇤ l2 67!]

xp := [b]; // (Load)

[ok :xb=xp=null ⇤ 9l2. b 7! null ⇤ l2 67!]

lrp: [xp] := 666 // (StoreNull)

[er(lrp) : xb=xp=null ⇤ 9l2. b 7! null ⇤ l2 67!]

// (Local,Cons)

[er(lrp) : 9l2. b 7! null ⇤ l2 67!]

Fig. 10. A proof sketch of NPD-Er-1

Local Reasoning About the Presence of Bugs 29

B Soundness

Definition 1.
s1 ⇠A s2

def() 8x 2 A. s1(x)=s2(x)

Proposition 1. For all assertions p and all s, s 0, h, if (s, h) 2 p and s ⇠fv(p) s
0,

then (s 0, h) 2 p.
For all ✏, C, x, v, (s1, h1) and (s2, h2), if ((s1, h1), (s2, h2)) 2 JCK and x 62 fv(C),
then ((s1[x 7! v], h1), (s2[x 7! v], h2)) 2 JCK.

Lemma 1. For all p,C, q, ✏, if ` [p] C [✏ :q] holds, then:

8(sq, hq) 2 q. 8h. hq # h =)
9(sp, hp) 2 p. sp ⇠mod(C) sq ^

�
(sp, hp] h), (sq, hq] h)

�
2 JCK✏

where hq # h
def() dom(hq) \ dom(h)=; denotes that hq and h are compatible

in that their composition is defined.

Proof. We proceed by induction on the structure of incorrectness triples. In what
follows we write h0 to denote an empty heap (i.e., dom(h0) = ;).

Case Skip

Pick an arbitrary �q=(s, hq) 2 emp and an arbitrary h such that hq # h. It then
su�ces to show that ((s, hq] h), (s, hq] h)) 2 JskipKok , which follows from the
semantics of skip immediately.

Case Assign

Pick an arbitrary x, e, h and (sq, hq) 2 q such that hq] h. We then know hq=h0
and sq(x)=sq(e[x0/x]). Let sp=sq[x 7! sq(x0)]. By definition we then know that
sp ⇠mod(C) sq and (sp, hq) 2 p. It then su�ces to show that ((sp, hq] h), (sq, hq]
h)) 2 Jx := eKok , which follows from the semantics of x := e immediately.

The proof of Havoc is analogous and omitted here.

Case Load

Pick an arbitrary x, y and (sq, hq) 2 q. Pick an arbitrary h such that hq # h. We
then know there exist l, v such that sq(x)=sq(e[x0/x])=v, sq(y)=l and hq , [l 7! v].
Let sp , sq[x 7! sq(x0)]. By definition we then know that sp ⇠mod(C) sq and

(sp, hq) 2 p. It then su�ces to show ((sp, hq]h), (sq, hq]h)) 2 Jx := [y]Kok , which
follows from the semantics of x := [y] immediately.

Case LoadEr

Pick an arbitrary x, y and (sq, hq) 2 q. Pick an arbitrary h such that hq # h.
We then know there exist l such that sq(y)=l and hq , [l 7! ?]. By defini-
tion we then know that sq ⇠mod(C) sq and (sq, hq) 2 p. It then su�ces to show

((sq, hq] h), (sq, hq] h)) 2 Jx := [y]Ker(l), which follows from the semantics of
x := [y] immediately.

30 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

Case LoadNull

Pick an arbitrary x, y and (sq, hq) 2 q. Pick an arbitrary h such that hq # h. We
then know hq=h0 and sq(y)=null. By definition we then know that sq ⇠mod(C) sq
and (sq, hq) 2 p. It then su�ces to show ((sq, hq]h), (sq, hq]h)) 2 Jx := [y]Ker(l),
which follows from the semantics of x := [y] immediately.

The proofs of the Store, StoreEr and StoreNull cases are analogous to
those of Load, LoadEr and LoadNull respectively, and are omitted here.

Case Alloc1

Pick an arbitrary x and (sq, hq) 2 q. We then know there exists l and v 2 Val
such that sq(x)=l and hq , [l 7! v]. Pick an arbitrary h such that hq # h. Let
sp , sq[x 7! sq(x0)], hp=h0. By definition we then know that sp ⇠mod(C) sq and

(sp, hp) 2 p. Since hq # h and dom(hp) ✓ dom(hq), from the definition of] we
also know that hp # h. It then su�ces to show that ((sp, hp] h), (sq, hq] h)) 2
Jx := alloc()Kok , which follows from the semantics of x := alloc().

Case Alloc2

Pick an arbitrary x, y and (sq, hq) 2 q. We then know there exists l and v 2 Val
such that sq(x)=sq(y)=l and hq , [l 7! v]. Pick an arbitrary h such that
hq # h. Let sp , sq[x 7! sq(x0)], hp=[l 7! ?]. By definition we then know
that sp ⇠mod(C) sq and (sp, hp) 2 p. Since hq # h and dom(hp)=dom(hq), from
the definition of] we also know that hp # h. It then su�ces to show that
((sp, hp] h), (sq, hq] h)) 2 Jx := alloc()Kok , which follows from the semantics
of x := alloc().

Case Free

Pick an arbitrary x and (sq, hq) 2 q. We then know there exists l such that sq(x)=l
and hq , [l 7! ?]. Pick an arbitrary h such that hq # h. Let hp=[l 7! sq(e)]. By
definition we then know that sq ⇠mod(C) sq and (sq, hp) 2 p. Since hq # h and

dom(hp)=dom(hq), from the definition of] we also know that hp # h. It then
su�ces to show that ((sq, hp] h), (sq, hq] h)) 2 Jfree(x)Kok , which follows from
the semantics of free(x) immediately.

Case FreeEr

Pick an arbitrary x and (sq, hq) 2 q. We then know there exists l such that sq(x)=l
and hq , [l 7! ?]. Pick an arbitrary h such that hq # h. By definition we then
know that sq ⇠mod(C) sq. It then su�ces to show that ((sq, hq] h), (sq, hq] h)) 2
Jfree(x)Ker(l), which follows from the semantics of free(x) immediately.

Case FreeNull

Pick an arbitrary x and (sq, hq) 2 q. We then know hq=h0 and sq(x)=null. Pick
an arbitrary h such that hq # h. By definition we then know that sq ⇠mod(C) sq.

It then su�ces to show that ((sq, hq] h), (sq, hq] h)) 2 Jfree(x)Ker(l), which

Local Reasoning About the Presence of Bugs 31

follows from the semantics of free(x) immediately.

Case Error

Pick an arbitrary (sq, hq) 2 q. We then know that hq , h0. Pick an arbi-
trary h such that hq # h. As (sq, hq) 2 q, it then su�ces to show that
((sq, hq] h), (sq, hq] h)) 2 JerrorKer(l), which follows from the semantics of
error immediately.

Case Assume

Pick an arbitrary (sq, hq) 2 q. We then know that sq(B) 6= 0. Pick an ar-
bitrary h such that hq # h. Since q=p ^ B and (sq, hq) 2 q, we also have
(sq, hq) 2 p. By definition we know that sq ⇠mod(C) sq. It thus su�ces to show

that ((sq, hq]h), (sq, hq]h)) 2 Jassume(B)Kok , which follows from the semantics
of assume(B) immediately.

Case Local

Pick an arbitrary x, h and (sq, hq) 2 9x. q such that hq # h. From the semantics
of assertions we then know that there exists v and s 0

q
such that s 0

q
= sq[x 7! v]

and (s 0
q
, hq) 2 q. Since from the premise of Local we have [p] C [✏ :q], from

the inductive hypothesis we know there exist s 0
p
, hp such that s 0

p
⇠mod(C) s 0

q
,

(s 0
p
, hp) 2 p and ((s 0

p
, hp] h), (s 0

q
, hq] h)) 2 JCK✏. Let sp = s 0

p
[x 7! sq(x)]. Note

that since sp[x 7! s 0
p
(x)] = s 0

p
and (s 0

p
, hp) 2 p, from the semantics of asser-

tions we have (sp, hp) 2 9x. p. On the other hand, since sp(x) = sq(x) and
((s 0

p
, hp] h), (s 0

q
, hq] h)) 2 JCK✏, from the definitions of J.K, sp, s 0p, sq and s 0

q

we also have ((sp, hp] h), (sq, hq] h)) 2 Jlocal x in CK✏. Moreover, since
s 0
p
⇠mod(C) s 0

q
and sp = s 0

p
[x 7! sq(x)] and thus sq(x) = sp(x), we also have

sp ⇠mod(local x in C) sq, as required.

Case Exist

Pick an arbitrary x, h and (sq, hq) 2 9x. q such that hq # h. From the semantics
of assertions we then know that there exists v and s 0

q
such that s 0

q
= sq[x 7! v]

and (s 0
q
, hq) 2 q. Since from the premise of Exist we have [p] C [✏ :q], from

the inductive hypothesis we know there exist s 0
p
, hp such that s 0

p
⇠mod(C) s 0

q
,

(s 0
p
, hp) 2 p and ((s 0

p
, hp] h), (s 0

q
, hq] h)) 2 JCK✏. Let sp = s 0

p
[x 7! sq(x)]. Note

that since sp[x 7! s 0
p
(x)] = s 0

p
and (s 0

p
, hp) 2 p, from the semantics of asser-

tions we have (sp, hp) 2 9x. p. On the other hand, since sp(x) = sq(x) and
((s 0

p
, hp] h), (s 0

q
, hq] h)) 2 JCK✏, and since x 62 fv(C), from Proposition 1 and

the definitions of sp, s 0p, sq and s 0
q
we also have ((sp, hp] h), (sq, hq] h)) 2 JCK✏.

Moreover, since s 0
p
⇠mod(C) s

0
q
and sp = s 0

p
[x 7! sq(x)] and thus sq(x) = sp(x),

from the definitions of sp, s 0p, sq and s 0
q
we also have sp ⇠mod(C) sq, as required.

Case Seq1

Pick an arbitrary (sq, hq) 2 q and h such that hq # h. Since from the premise of
Seq1 we have [p] C [✏ :q] with ✏ 6= ok , from the inductive hypothesis we know there
exist sp, hp such that sp ⇠mod(C1)

sq, (sp, hp) 2 p and ((sp, hp] h), (sq, hq] h)) 2

32 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

JC1K✏. As such, since mod(C1) ✓ mod(C1;C2), we know sp ⇠mod(C1;C2)
sq,

(sp, hp) 2 p and from the semantics of C1;C2 we have ((sp, hp] h), (sq, hq] h)) 2
JC1;C2K✏, as required.

Case Seq2

Pick arbitrary (sq, hq) 2 q and h such that hq # h. As from the second
premise of Seq2 we have [r] C2 [✏ :q] and mod(C2) ✓ mod(C1;C2), from the
inductive hypothesis we know there exist sr, hr such that sr ⇠mod(C1;C2)

sq,

(sr, hr) 2 r and ((sr, hr] h), (sq, hq] h)) 2 JC2K✏. Moreover, as from the
first premise we have [p] C1 [ok :r] and mod(C1) ✓ mod(C1;C2), from the
inductive hypothesis we know there exist sp, hp such that sp ⇠mod(C1;C2)

sr,

(sp, hp) 2 p and ((sp, hp]h), (sr, hr]h)) 2 JC1Kok . As such, since sp ⇠mod(C1;C2)
sr,

sr ⇠mod(C1;C2)
sq we know sp ⇠mod(C1;C2)

sq, (sp, hp) 2 p and from the semantics

of C1;C2 we have ((sp, hp] h), (sq, hq] h)) 2 JC1;C2K✏, as required.

Case Choice

Pick arbitrary (sq, hq) 2 q and h such that hq # h. From the premise of Choice

we know there exists i 2 {1, 2} such that [p] Ci [✏ :q]. As such, from the inductive
hypothesis we know there exist sp, hp such that sp ⇠mod(Ci)

sq, (sp, hp) 2 p and

((sp, hp] h), (sq, hq] h)) 2 JCiK✏. As such, since mod(Ci) ✓ mod(C1 + C2), we
know sp ⇠mod(C1+C2)

sq, (sp, hp) 2 p and from the semantics of C1 + C2 we have

((sp, hp] h), (sq, hq] h)) 2 JC1 + C2K✏, as required.

Case Loop1

Pick an arbitrary (sq, hq) 2 q and an arbitrary h such that hq # h. It then su�ces
to show that ((sq, hq]h), (sq, hq]h)) 2 JC?Kok , which follows from the semantics
of C? immediately.

Case Loop2

Pick arbitrary (sq, hq) 2 q and h such that hq # h. From the premise of Loop2

we have [p] C?;C [✏ :q] and thus from the inductive hypothesis we know there
exists sp, hp such that sp ⇠mod(C;C?)

sq, (sp, hp) 2 p and ((sp, hp] h), (sq, hq]
h)) 2 JC?;CK✏. Moreover, by definition we have mod(C?;C)=mod(C?). On the
other hand, it is straightforward to show that JC?;CK =

S
i2N+

JCiK and thus

JC?;CK ✓ JC?K. Consequently, we know there exists sp, hp such that sp ⇠mod(C?)
sq,

(sp, hp) 2 p and ((sp, hp] h), (sq, hq] h)) 2 JC?K✏, as required.

Case Cons

Pick arbitrary (sq, hq) 2 q and h such that hq # h. As form the premise of
Cons we have q) q0, we also know that (sq, hq) 2 q0. On the other hand,
from the premise of Cons we have [p0] C [✏ :q0] and thus from the inductive
hypothesis we know there exist sp, hp such that sp ⇠mod(C) sq, (sp, hp) 2 p0 and

((sp, hp] h), (sq, hq] h)) 2 JCK✏. Moreover, as p0) p and (sp, hp) 2 p0 we also

Local Reasoning About the Presence of Bugs 33

have (sp, hp) 2 p. That is, we know there exists sp, hp such that sp ⇠mod(C) sq,

(sp, hp) 2 p and ((sp, hp] h), (sq, hq] h)) 2 JCK✏, as required.

Case 4.2

Pick arbitrary (s2, h2) 2 q ⇤ r and h such that h2 # h. From the definition of ⇤ we
then know there exists hq, hr such that (s2, hq) 2 q, (s2, hr) 2 r and h2 , hq] hr.
From the definition of # and] we then also have hq # hr] h. On the other
hand, from the premise of 4.2 we have [p] C [✏ :q] and thus from the inductive
hypothesis we know there exists s1, hp such that s1 ⇠mod(C) s2, (s1, hp) 2 p and

((s1, hp] hr] h), (sq, hq] hr] h)) 2 JCK✏. Moreover, since s1 ⇠mod(C) s2 and as

from the premise of 4.2 we have mod(C) \ fv(r)=;, we also have s1 ⇠fv(r) s2.
Consequently, since (s2, hr) 2 r, from Proposition 1 we have (s1, hr) 2 r. As
such from the definition of ⇤ we have (s1, hp] hr) 2 p ⇤ r. That is, we know
there exists s1 and h1=hp] hr such that s1 ⇠mod(C) s2, (s1, h1) 2 p ⇤ r and

((s1, h1] h), (sq, h2] h)) 2 JCK✏, as required.

Case Disj

Pick arbitrary (sq, hq) 2 q1 _ q2 and h such that hq # h. We then know there
exists i 2 {1, 2} such that (sq, hq) 2 qi. From the premise of Disj we have [pi] C
[✏ :qi] and thus from the inductive hypothesis we know there exists sp, hp such
that sp ⇠mod(C) sq, (sp, hp) 2 pi and ((sp, hp] h), (sq, hq] h)) 2 JCK✏. Moreover,

since pi ✓ p1 _ p2 and (sp, hp) 2 pi, we also have (sp, hp) 2 p1 _ p2. That
is, we know there exists sp, hp such that sp ⇠mod(C) sq, (sp, hp) 2 p1 _ p2 and

((sp, hp] h), (sq, hq] h)) 2 JCK✏, as required.

Theorem 4 (Soundness). For all p,C, q, ✏, if ` [p] C [✏ :q] holds, then |= [p]
C [✏ :q] also holds.

Proof. Pick arbitrary p,C, q, ✏ such that ` [p] C [✏ :q] holds. Pick an arbi-
trary (sq, hq) 2 q. It then su�ces to show there exists (sp, hp) 2 p such that
((sp, hp), (sq, hq)) 2 JCK✏.

From the definition of] and # we then know that hq # h0. As such, from
Lemma 1 we know there exists (sp, hp) 2 p such that ((sp, hp] h0), (sq, hq] h0)) 2
JCK✏. That is, there exists (sp, hp) 2 p such that ((sp, hp), (sq, hq)) 2 JCK✏, as
required.

34 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

foot (.) : Comm ! Exit ! P(State⇥ State)

foot (skip) ✏ ,
�
((s, h0), (s, h0)) s 2 Store

foot (x := e) ok ,
�
((s, h0), (s[x 7! s(e)], h0)) s 2 Store

foot (x := e) er(�) , ;

foot (x := *) ok ,
�
((s, h0), (s[x 7! v], h0)) v 2 Val

foot (x := *) er(�) , ;

foot (assume(B)) ok ,
�
(�,�) �=(s, h0) ^ s(B) 6=0

foot (assume(B)) er(�) , ;

foot (local x in C) ✏ ,
⇢
((s[x 7! v], h), (s 0[x 7! v], h 0))

((s, h), (s 0, h 0)) 2 foot (C) ✏
^v 2 Val

�

foot (l: error) ok , ;

foot (l: error) er(l0) ,
�
((�,�) �=(s, h0) ^ l=l0

foot (C1;C2) ✏ ,
�
(�,�0) ✏ 6= ok ^ (�,�0) 2 foot (C1) ✏

[
⇢
(�1 • �,�2 • �0)

9�c. (�1,�
0 • �c) 2 foot (C1) ok

^ (�c • �,�2) 2 foot (C2) ✏

�

foot (C1 + C2) ✏ , foot (C1) ✏ [foot (C2) ✏

foot (C?) ✏ ,
��

(s, h0), (s, h0)
�

✏=ok

[

[

i2N+

foot

⇣
Ci
⌘
✏

foot (x := alloc()) ok ,
��

(s, h), (s[x 7! l], [l 7! v])
�

v 2 Val ^ (h=h0 _ h=[l 7! ?]

foot (x := alloc()) er(�) , ;

foot (l: free(x)) ok ,
��

(s, [l 7! v]), (s, [l 7! ?])
�

s(x)=l ^ v 2 Val

foot (l: free(x)) er(l0) ,
��

(s, [l 7! ?]), (s, [l 7! ?])
�

l=l0^ s(x)=l

[
��

(s, h0), (s, h0)
�

l=l0^ s(x)=null

foot (l:x := [y]) ok ,
��

(s, [l 7! v]), (s[x 7! v], [l 7! v])
�

s(y)=l

foot (l:x := [y]) er(l0) ,
��

(s, [l 7! ?]), (s, [l 7! ?])
�

l=l0^ s(y)=l

[
��

(s, h0), (s, h0)
�

l=l0^ s(y)=null

foot (l: [x] := y) ok ,
��

(s, [l 7! v]), (s, [l 7! s(y)])
�

s(x)=l ^ v 2 Val

foot (l: [x] := y) er(l0) ,
��

(s, [l 7! ?]), (s, [l 7! ?])
�

l=l0^ s(x)=l

[
��

(s, h0), (s, h0)
�

l=l0^ s(x)=null

Fig. 11. The local ISL footprints where h0 denotes an empty heap (dom(h0)=;)

C Footprints

ISL Footprints The definition of ISL footprints is given in Fig. 11. Note that
the definitions of footSL(C) and foot (C) ok agree for all C with the exception of
C=x := alloc() and C=free(x). In the case of C=x := alloc() this is because
foot (C) additionally allows allocation from a singleton heap with a deallocated

Local Reasoning About the Presence of Bugs 35

location. In the case of C=free(x) this is because foot (C) simply mutates the
location at x to record ? and does not remove it from the heap.

It is straightforward to demonstrate that the footprint of a program is included
in its semantics, as captured by the following lemma.

Lemma 2. For all C 2 Comm and ✏ 2 Exit: foot (C) ✏ ✓ JCK✏.

Proof. Follows by straightforward induction on the structure of C.

We next proceed with several auxiliary lemmas and then prove our footprint
theorem (Theorem 5).

Lemma 3 (Cross-split property). For all h1, h2, h3, h4 2 Heap:

h1] h2 = h3] h4) 9h13, h14, h23, h24. h1=h13] h14 ^ h2=h23] h24
^ h3=h13] h23 ^ h4=h14] h24

Proof. Follows from the definition of] on heaps.

Lemma 4 (Heap Monotonicity). For all s1, s2, h, h1, h2,C, ✏, if ((s1, h1), (s2, h2)) 2
JCK✏ and h2 # h, then ((s1, h1] h), (s2, h2] h)) 2 JCK✏.

Proof. Follows by straightforward induction on the structure of C.

Corollary 1. For all s1, s2, h, h1, h2,C, ✏, if ((s1, h1), (s2, h2)) 2 foot (C) ✏ and
h2 # h, then ((s1, h1] h), (s2, h2] h)) 2 JCK✏.

Proof. Follows immediately from Lemma 2 and Lemma 4.

Theorem 5. For all C 2 Comm and ✏ 2 Exit: JCK✏ = frame (foot (C) ✏).

Proof. By induction on the structure of C.

Case C = skip
There are two cases to consider: 1) ✏=er(l0) for some l0; or 2) ✏=ok . In case (1) by
definition we have JCK✏=;=frame (foot (C) ✏), as required. In case (2), from the
definitions of foot (.), frame (.) and J.K we have JCK✏ =

�
(�,�) � 2 State

=��

(s, h0] h), (s, h0] h)
�

h 2 Heap

=frame (foot (C) ✏), as required.

Case C = x := e
There are two cases to consider: 1) ✏=er(l0) for some l0; or 2) ✏=ok . In case (1)
by definition we have JCK✏=;=frame (foot (C) ✏), as required. In case (2) from
the definitions of foot (.), frame (.) and J.K we have:

JCK✏ =
�
((s, h), (s[x 7! s(e)], h)) (s, h) 2 State

=
�
((s, h0] h), (s[x 7! s(e)], h0] h)) h 2 Heap

= frame (foot (C) ✏)
Case C = x := *
The proof of this case is analogous to that of the previous case and is omitted.

36 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

Case C = l:x := [y]
There are three cases to consider: 1) ✏=ok ; or 2) ✏=er(l); or 3) ✏=er(l0) for some
l0 6= l. In case (1) from the definitions of foot (.), frame (.) and J.K we have:

JCK✏ =
�
((s, h), (s[x 7! v], h)) h(s(y))=v 2 Val

=
�
((s, [l 7! v]] h), (s[x 7! v], [l 7! v]] h)) v2Val ^ s(y)=l ^ h2Heap

= frame (foot (C) ✏)
Similarly, in case (2) we have:

JCK✏ =
�
((s, h), (s, h)) h(s(y))=?

=
�
((s, [l 7! ?]] h), (s, [l 7! ?]] h)) s(y)=l ^ h2Heap

= frame (foot (C) ✏)
Finally, in case (3) we have JCK✏=;=frame (foot (C) ✏), as required.

Case C = l: [x] := y
The proof of this case is analogous to that of the previous case and is omitted.

Case C = x := alloc()
There are two cases to consider: 1) ✏=er(l0) for some l0; or 2) ✏=ok . In case (1)
by definition we have JCK✏=;=frame (foot (C) ✏), as required. In case (2) from
the definitions of foot (.), frame (.) and J.K we have:

JCK✏ =
�
((s, h), (s[x 7! l], h[l 7! v])) v 2 Val ^ (l 62 dom(h) _ h(l)=?)

=

⇢
((s, h] h 0), (s[x 7! l], [l 7! v]] h 0))

v 2 Val ^ (h=h0 _ h=[l 7! ?])
^ h 0 2 Heap

�

= frame (foot (C) ✏)

Case C = free(x)
There are three cases to consider: 1) ✏=ok ; or 2) ✏=er(l); or 3) ✏=er(l0) for some
l0 6= l. In case (1) from the definitions of foot (.), frame (.) and J.K we have:

JCK✏ =
�
((s, h), (s, h[l 7! ?])) s(x)=l ^ h(l) 2 Val

=
�
((s, [l 7! v]] h), (s, [l 7! ?]] h)) s(x)=l ^ v2Val ^ h2Heap

= frame (foot (C) ✏)
Similarly, in case (2) we have:

JCK✏ =
�
((s, h), (s, h)) s(x)=l ^ h(l)=?

=
�
((s, [l 7! ?]] h), (s, [l 7! ?]] h)) s(x)=l ^ h2Heap

= frame (foot (C) ✏)
Finally, in case (3) we have JCK✏=;=frame (foot (C) ✏), as required.

Case C = l: error
There are three cases to consider: 1) ✏=ok ; or 2) ✏=er(l0) for l0 6= l; or 3)
✏=er(l). In (1) and (2) by definition we have JCK✏=;=frame (foot (C) ✏), as

Local Reasoning About the Presence of Bugs 37

required. In (3) from the definitions of foot (.), frame (.) and J.K we have JCK✏ =�
(�,�) � 2 State

=
��

(s, h0] h), (s, h0] h)
�

h 2 Heap

=frame (foot (C) ✏),

as required.

Case C = assume(B)
There are two cases to consider: 1) ✏=er(l0) for some l0; or 2) ✏=ok . In case (1)
by definition we have JCK✏=;=frame (foot (C) ✏), as required. In case (2) from
the definitions of foot (.), frame (.) and J.K we have:

JCK✏ =
�
((s, h), (s, h)) s(B) 6= 0

=
�
((s, h0] h), (s, h0] h)) s(B) 6= 0 ^ h 2 Heap

= frame (foot (C) ✏)

Case C = local x in C0

8✏. JC0K✏=frame (foot (C0) ✏) (I.H)

From the definitions of foot (.), frame (.), J.K and (I.H) we have:

JCK✏ ,
⇢
((s[x 7! v], h), (s 0[x 7! v], h 0))

((s, h), (s 0, h 0)) 2 JC0K✏
^ v 2 Val

�

(I.H)

=

⇢
((s[x 7! v], h), (s 0[x 7! v], h 0))

((s, h), (s 0, h 0)) 2 frame (foot (C0) ✏)
^ v 2 Val

�

= frame

✓⇢
((s[x 7! v], h), (s 0[x 7! v], h 0))

((s, h), (s 0, h 0)) 2 foot (C0) ✏
^ v 2 Val

�◆

= frame (foot (C) ✏)

Case C = C1;C2

8✏. JC1K✏=frame (foot (C1) ✏) ^ JC2K✏=frame (foot (C2) ✏) (I.H)

In what follows we show JCK✏ ✓ frame (foot (C) ✏) and frame (foot (C) ✏) ✓
JCK✏, thus establishing JCK✏ = frame (foot (C) ✏), as required.

For the first part, from the definitions of foot (.), frame (.), J.K, Lemma 3
and (I.H) we have:

JCK✏ ,
⇢
(�,�0)

✏ 6= ok ^ (�,�0) 2 JC1K✏
_ 9�00. (�,�00) 2 JC1Kok ^ (�00,�0) 2 JC2K✏

�

=
�
(�,�0) ✏ 6= ok ^ (�,�0) 2 JC1K✏

[
�
(�,�0) 9�00. (�,�00) 2 JC1Kok ^ (�00,�0) 2 JC2K✏

I.H
=
�
(�,�0) ✏ 6= ok ^ (�,�0) 2 frame (foot (C1) ✏)

[
⇢
(�,�0)

9�00. (�,�00) 2 frame (foot (C1) ok)
^ (�00,�0) 2 frame (foot (C2) ✏)

�

= frame
��

(�1,�2) ✏ 6= ok ^ (�1,�2) 2 foot (C1) ✏
 �

[

8
<

:((s1, h1] h), (s2, h2] h 0))
9s 00, h3, h4. ((s1, h1), (s 0, h3)) 2 foot (C1) ok

^ ((s 0, h4), (s2, h2)) 2 foot (C2) ✏
^ h3] h=h4] h 0

9
=

;

38 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

(Lemma 3) ✓ frame
��

(�1,�2) ✏ 6= ok ^ (�1,�2) 2 foot (C1) ✏
 �

[

8
>>>><

>>>>:

((s1, h1] h), (s2, h2] h 0))

9s 00, h3, h4. ((s1, h1), (s 0, h3)) 2 foot (C1) ok
^ ((s 0, h4), (s2, h2)) 2 foot (C2) ✏

^ 9h34, h3b, ha4, hab.
h3=h34] h3b ^ h=ha4] hab
^ h4=h34] ha4 ^ h 0=h3b] hab

9
>>>>=

>>>>;

= frame
��

(�1,�2) ✏ 6= ok ^ (�1,�2) 2 foot (C1) ✏
 �

[
⇢
((s1, h1] ha4] hab), (s2, h2] h3b] hab)

9h34. ((s1, h1), (s 0, h34] h3b)) 2 foot (C1) ok
^ ((s 0, h34] ha4), (s2, h2)) 2 foot (C2) ✏

�

= frame
��

(�1,�2) ✏ 6= ok ^ (�1,�2) 2 foot (C1) ✏
 �

[frame

✓⇢
((s1, h1] ha4), (s2, h2] h3b))

9h34. ((s1, h1), (s 0, h34] h3b)) 2 foot (C1) ok
^ ((s 0, h34] ha4), (s2, h2)) 2 foot (C2) ✏

�◆

= frame

0

@

�
(�1,�2) ✏ 6= ok ^ (�1,�2) 2 foot (C1) ✏

[
⇢
(�1 • �a4,�2 • �3b)

9�34. (�1,�34 • �3b) 2 foot (C1) ok
^ (�34 • �a4,�2) 2 foot (C2) ✏

�
1

A

= frame (foot (C1;C2) ✏)

= frame (foot (C) ✏)
For the second part, from the definitions of foot (.), frame (.), J.K, Lemma 4

and (I.H) we have:

frame (foot (C) ✏) =
�
((s1, h1] hr), (s2, h2] hr)) ((s1, h1), (s2, h2)) 2 foot (C) ✏ ^ h 2 Heap

=
�
((s1, h1] hr), (s2, h2] hr)) ✏ 6= ok ^ ((s1, h1), (s2, h2)) 2 foot (C1) ✏

[
⇢
((s1, h1] h] hr), (s2, h2] h 0] hr))

9hc, s3. ((s1, h1), (s3, h 0] hc)) 2 foot (C1) ok
^ ((s3, hc] h), (s2, h2)) 2 foot (C2) ✏

�

(Corollary 1) ✓
�
((s1, h1] hr), (s2, h2] hr)) ✏ 6= ok ^ ((s1, h1] hr), (s2, h2] hr)) 2 JC1K✏

[

8
<

:((s1, h1] h] hr), (s2, h2] h 0] hr))
9hc, s3.
(((s1, h1] h] hr), (s3, h

0] hc] h] hr)) 2 JC1Kok
^ ((s3, hc] h] h 0] hr), (s2, h2] h 0] hr)) 2 JC2K✏

9
=

;

=
�
(�,�0) ✏ 6= ok ^ (�,�0) 2 JC1K✏

[
�
(�,�0) 9�00. (�,�00) 2 JC1Kok ^ (�00,�0) 2 JC2K✏

=

⇢
(�,�0)

✏ 6= ok ^ (�,�0) 2 JC1K✏
_ 9�00. (�,�00) 2 JC1Kok ^ (�00,�0) 2 JC2K✏

�

= JCK✏

Case C = C1 + C2

8✏. JC1K✏=frame (foot (C1) ✏) ^ JC2K✏=frame (foot (C2) ✏) (I.H)

From the definitions of foot (.), frame (.), J.K and (I.H) we have:

JCK✏ = JC1K✏ [JC2K✏
= frame (foot (C1) ✏) [frame (foot (C2) ✏)

Local Reasoning About the Presence of Bugs 39

= frame (foot (C1 + C2) ✏)

= frame (foot (C) ✏)

Case C = C?

r

We first demonstrate that:

8i 2 N. JCi

r
K✏=frame

�
foot

�
Ci

r

�
✏
�

(1)

We proceed by induction on i.
Base case i = 0
It su�ces to show that JskipK✏=frame (foot (skip) ✏), which follows from the
proof of case skip above.

Inductive case i = n+1
From the definition of Cn+1

r
we then have JCn+1

r
K✏ = JCr;Cn

r
K✏. On the other

hand, from the proof of the sequential case composition we have JCr;Cn

r
K✏ =

frame (foot (Cr;Cn

r
) ✏), and thus we have JCn+1

r
K✏ = frame (foot (Cr;Cn

r
) ✏).

Finally, from definition of Cn+1

r
we have Cr;Cn

r
= Cn+1

r
and thus we have

JCn+1

r
K✏ = frame

�
foot

�
Cn+1

r

�
✏
�
, as required.

From the definitions of foot (.), frame (.), J.K and (1) we have:

JCK✏ =
[

i2N
JCi

r
K✏

(1)

=
[

i2N
frame

�
foot

�
Ci

r

�
✏
�

= frame

[

i2N
foot

�
Ci

r

�
✏

!

= frame (foot (C) ✏)

40 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

D Symbolic Execution Rules

We now list all rules for the analysis described in §5.

SE-Seq1
[p]C [ok : q] Ci [p1] C;C1 [✏1 :q1]

[p1]C;C1 [✏1 :q1] C2 [p2] C;C1;C2 [✏2 :q2]

[p]C [ok : q] C1;C2 [p2] C;C1;C2 [✏2 :q2]

SE-Seq2
[p]C1 [er(l) : q] C2 [p] C1;C2 [er(l) : q]

SE-Local
[p[x0/x]]C [ok : q[x0/x]] C0 [p0] C;C0 [✏ :q0]
x0 62 fv(p, q,C,C0) z 62 fv(p0, q0,C,C0)

[p]C [ok : q] local x in C0 [p0[z/x0]] C; local x in C0 [✏ :q0[z/x0]]
SE-Loop
[p]C0 [ok : q] skip+ C+ (C;C) + · · ·+ CNloops

 [p0] C0; skip+ C+ (C;C) + · · ·+ CNloops [✏ :q0]

[p]C0 [ok : q] C? [p0] C0;C? [✏ :q0]
SE-Choice

[p]C [ok : q] Ci [pi] C;Ci [✏i :qi]

[p]C [ok : q] C1 + C2 [pi] C;C1 + C2 [✏i :qi]
SE-Skip
[p]C [ok : q] skip [p]C; skip [ok : q]

SE-Error
[p]C [ok : q] l: error [p] C; l: error [er(l) : q]

SE-Assign
x0 /2 fv(p,C, x, e, q)

[p]C [ok : q] x := e [p]C;x := e [ok : x = e[x0/x] ⇤ q[x0/x]]
SE-Havoc

x0 /2 fv(p,C, x, q)
[p]C [ok : q] x := * [p]C;x := * [ok : q[x0/x]]

SE-Assume
[p]C [ok : q] assume(B) [p]C; assume(B) [ok : B ⇤ q]

Note that SE-Assume does not require B ⇤ q to be explicitly satisfiable. This
is because we implicitly stop the symbolic execution any time either the inferred
presumption or current state becomes inconsistent due to the application of any
rule.

SE-Alloc1
x0, v /2 fv(p,C, x, q)

[p]C [ok : q] x := alloc() [p]C;x := alloc() [ok : q[x0/x] ⇤ x 7! v]

There is no rule corresponding to Alloc2 in our analysis. This is not a fundamental
choice but rather a practical one, as including such a rule would introduce
branching on all known invalidated addresses at each alloc() call site, which
can blow up the exploration space. To put it another way, we could easily include

Local Reasoning About the Presence of Bugs 41

an analogue of SE-Alloc1 for re-using known-invalidated addresses; the ability
not to do so is granted to us by the under-approximate setting.

SE-Load
y 7! e ⇤ F ` q ⇤M

mod(C) \ fv(M) = ; x /2 fv(F) x0 /2 fv(p,C, x, y, q)
[p]C [ok : q] x := [y] [p ⇤M]C;x := [y] [ok : y 7! e[x0/x] ⇤ x = e[x0/x] ⇤ F]

SE-LoadEr
q ` y 67! ⇤ true

[p]C [ok : q] l:x := [y] [p] C; l:x := [y] [er(l) : q]
SE-LoadNull

q ` y = null ⇤ true
[p]C [ok : q] l:x := [y] [p] C; l:x := [y] [er(l) : q]

SE-Store
x 7! e ⇤ F ` q ⇤M mod(C) \ fv(M) = ;

[p]C [ok : q] [x] := y [p ⇤M]C; [x] := y [ok : x 7! y ⇤ F]
SE-StoreEr

q ` x 67! ⇤ true
[p]C [ok : q] l: [x] := y [p] C; l: [x] := y [er(l) : q]
SE-StoreNull

q ` x = null ⇤ true
[p]C [ok : q] l: [x] := y [p] C; l: [x] := y [er(l) : q]

SE-Free
x 7! e ⇤ F ` q ⇤M mod(C) \ fv(M) = ;

[p]C [ok : q] free(x) [p ⇤M]C; free(x) [ok : x 67! ⇤ F]
SE-FreeEr

q ` x 67! ⇤ true
[p]C [ok : q] free(x) [p] C; free(x) [er(l) : q]

	Local Reasoning about the Presence of Bugs: Incorrectness Separation Logic

