
A General Approach to Under-Approximate
Reasoning About Concurrent Programs
Azalea Raad #Ñ

Imperial College London, UK

Julien Vanegue #

Bloomberg, New York, NY, USA

Josh Berdine #

Skiplabs, London, UK

Peter O’Hearn #

University College London, UK
Lacework, London, UK

Abstract
There is a large body of work on concurrent reasoning including Rely-Guarantee (RG) and Concurrent
Separation Logics. These theories are over-approximate: a proof identifies a superset of program
behaviours and thus implies the absence of certain bugs. However, failure to find a proof does
not imply their presence (leading to false positives in over-approximate tools). We describe a
general theory of under-approximate reasoning for concurrency. Our theory incorporates ideas from
Concurrent Incorrectness Separation Logic and RG based on a subset rather than a superset of
interleavings. A strong motivation of our work is detecting software exploits; we do this by developing
concurrent adversarial separation logic (CASL), and use CASL to detect information disclosure
attacks that uncover sensitive data (e.g. passwords) and out-of-bounds attacks that corrupt data. We
also illustrate our approach with classic concurrency idioms that go beyond prior under-approximate
theories which we believe can inform the design of future concurrent bug detection tools.

2012 ACM Subject Classification Theory of computation → Separation logic; Theory of computation
→ Programming logic; Theory of computation → Program analysis; Security and privacy → Logic
and verification

Keywords and phrases Under-approximate reasoning, incorrectness logic, bug detection, software
exploits, separation logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.25

Related Version Extended Version: https://www.soundandcomplete.org/papers/CONCUR2023/
CASL/appendix.pdf

Funding Azalea Raad: UKRI Future Leaders Fellowship under grant number MR/V024299/1

1 Introduction

Incorrectness Logic (IL) [16] presents a formal foundation for proving the presence of bugs
using under-approximation, i.e. focusing on a subset of behaviours to ensure one detects only
true positives (real bugs) rather than false positives (spurious bug reports). This is in contrast
to verification frameworks proving the absence of bugs using over-approximation, where a
superset of behaviours is considered. The key advantage of under-approximation is that tools
underpinned by it are accompanied by a no-false-positives (NFP) theorem for free, ensuring
all bugs reported are real bugs. This has culminated in a successful trend in automated
static analysis tools that use under-approximation for bug detection, e.g. RacerD [3] for data
race detection in Java programs, the work of Brotherston et al. [4] for deadlock detection,
and Pulse-X [13] which uses the under-approximate theory of ISL (incorrectness separation
logic, an IL extension) [17] for detecting memory safety bugs such as use-after-free errors. All

© Azalea Raad, Julien Vanegue, Josh Berdine, and Peter O’Hearn;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azalea.raad@imperial.ac.uk
https://www.soundandcomplete.org
https://orcid.org/0000-0002-2319-3242
mailto:julien.vanegue@gmail.com
mailto:josh@berdine.net
mailto:p.ohearn@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2023.25
https://www.soundandcomplete.org/papers/CONCUR2023/CASL/appendix.pdf
https://www.soundandcomplete.org/papers/CONCUR2023/CASL/appendix.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 A General Approach to Under-Approximate Reasoning About Concurrent Programs

three tools are currently industrially deployed and are state-of-the art techniques: RacerD
significantly outperforms other race detectors in terms of bugs found and fixed, while Pulse-X
has a higher fix-rate than the industrial Infer tool [7] used widely at Meta, Amazon and
Microsoft. IL and ISL, though, only support bug detection in sequential programs.

We present concurrent adversarial separation logic (CASL, pronounced “castle”), a
general, under-approximate framework for detecting concurrency bugs and exploits, including
a hitherto unsupported class of bugs. Inspired by adversarial logic [22], we model a vulnerable
program Cv and its attacker (adversarial) Ca as the concurrent program Ca || Cv, and use
the compositional principles of CASL to detect vulnerabilities in Cv. CASL is a parametric
framework that can be instantiated for a range of bugs/exploits. CASL combines under-
approximation with ideas from RGSep [20] and concurrent separation logic (CSL) [15] – we
chose RGSep rather than rely-guarantee [11] for compositionality (see p. 7). However, CASL
does not merely replace over- with under-approximation in RGSep/CSL: CASL includes an
additional component witnessing (under-approximating) the interleavings leading to bugs.

CASL builds on concurrent incorrectness separation logic (CISL) [18]. However, while
CISL was designed to capture the reasoning in cutting-edge tools such as RacerD, CASL
explicitly goes beyond these tools. Put differently, CISL aspired to be a specialised theory of
concurrent under-approximation, oriented to existing tools (and inheriting their limitations),
whereas CASL aspires to be more general. In particular, in our private communication
with CISL authors they have confirmed two key limitations of CISL. First, CISL can detect
certain bugs compositionally only by encoding buggy executions as normal ones. While this
is sufficient for bugs where encountering a bug does not force the program to terminate (e.g.
data races), it cannot handle bugs with short-circuiting semantics, e.g. null pointer exceptions,
where the execution is halted on encountering the bug (see §2 for details). Second and
more significantly, CISL cannot compositionally detect a large class of bugs, data-dependent
bugs, where a bug occurs only under certain interleavings and concurrent threads affect the
control flow of one another. To see this, consider the program P ≜ x := 1 || a := x; if (a) error,
where the left thread, τ1, writes 1 to x, the right thread, τ2, reads the value of x in a and
subsequently errors if a̸=0. That is, the error occurs only in interleavings where τ1 is executed
before τ2, and the two threads synchronise on the value of x; i.e. τ1 affects the control flow
of τ2 and the error occurrence is dependent on the data exchange between the threads.

Such data-dependency is rather prevalent as threads often synchronise via data exchange.
Moreover, a large number of security-breaking software exploits are data-dependent bugs.
An exploit (or attack) is code that takes advantage of a bug in a vulnerable program to cause
unintended or erroneous behaviours. Vulnerabilities are bugs that lead to critical security
compromises (e.g. leaking secrets or elevating privileges). Distinguishing vulnerabilities
from benign bugs is a growing problem; understanding the exploitability of bugs is a
time-consuming process requiring expert involvement, and large software vendors rely on
automated exploitability analysis to prioritise vulnerability fixing among a sheer number
of bugs. Rectifying vulnerabilities in the field requires expensive software mitigations (e.g.
addressing Meltdown [14]) and/or large-scale recalls. It is thus increasingly important to
detect vulnerabilities pre-emptively during development to avoid costly patches and breaches.

To our knowledge, CASL is the first under-approximate theory that can detect all
categories of concurrency bugs (including data-dependent ones) compositionally (by reasoning
about each thread in isolation). CASL is strictly stronger than CISL and supports all CISL
reasoning principles. Moreover, CASL is the first under-approximate and compositional
theory for exploit detection. We instantiate CASL to detect information disclosure attacks
that uncover sensitive data (e.g. Heartbleed [8]) and out-of-bounds attacks that corrupt data
(e.g. zero allocation [21]). Thanks to CASL soundness, each CASL instance is automatically
accompanied by an NFP theorem: all bugs/exploits identified by it are true positives.

A. Raad, J. Vanegue, J. Berdine, and P. O’Hearn 25:3

Contributions and Outline. Our contributions (detailed in §2) are as follows. We present
CASL (§3) and prove it sound, with the full proof given in the accompanying technical
appendix [19]. We instantiate CASL to detect information disclosure attacks on stacks (§4)
and heaps [19, §C] and memory safety attacks [19, §D]. We also develop an under-approximate
analogue of RG that is simpler but less expressive than CASL [19, §E and §F]. We discuss
related work in §5.

2 Overview

CISL and Its Limitations. CISL [18] is an under-approximate logic for detecting bugs in
concurrent programs with a built-in no-false-positives theorem ensuring all bugs detected
are true bugs. Specifically, CISL allows one to prove triples of the form [p] C [ϵ :q], stating
that every state in q is reachable by executing C starting in some state in p, under the (exit)
condition ϵ that may be either ok for normal (non-erroneous) executions, or ϵ ∈ ErExit
for erroneous executions, where ErExit contains erroneous conditions. The CISL authors
identify global bugs as those that are due to the interaction between two or more concurrent
threads and arise only under certain interleavings. To see this, consider the examples below
[18], where we write τ1 and τ2 for the left and right threads in each example, respectively:

l: free(x) l′: free(x) (DataAgn) free(x);
[z] := 1;

a := 0; a := [z];
if (a=1) l: [x] := 1 (DataDep)

In an interleaving of DataAgn in which τ1 is executed after (resp. before) τ2, a double-free
bug is reached at l (resp. l′). Analogously, in a DataDep interleaving where τ2 is executed
after τ1, value 1 is read from z in a, the condition of if is met and thus we reach a use-after-free
bug at l. Raad et al. [18] categorise global bugs as either data-agnostic or data-dependent,
denoting whether concurrent threads contributing to a global bug may affect the control
flow of one another. For instance, the bug at l in DataDep is data-dependent as τ1 may
affect the control flow of τ2: the value read in a := [z], and subsequently the condition of if
and whether l: [x] := 1 is executed depend on whether τ2 executes a := [z] before or after τ1
executes [z] := 1. By contrast, the threads in DataAgn cannot affect the control flow of one
another; hence the bugs at l and l′ are data-agnostic.

CISL-Par[
P1

]
C1

[
ok :Q1

] [
P2

]
C2

[
ok :Q2

][
P1 ∗ P2

]
C1 || C2

[
ok : Q1 ∗ Q2

]
In certain cases, CISL can detect data-agnostic bugs compositionally (i.e. by analysing

each thread in isolation) by encoding buggy executions as normal (ok) ones and then using
the CISL-Par rule shown across. In particular, when the targeted bugs do not manifest
short-circuiting (where bug encounter halts execution, e.g. a null-pointer exception), then
buggy executions can be encoded as normal ones and subsequently detected compositionally
using CISL-Par. For instance, when a data-agnostic data race is encountered, execution is not
halted (though program behaviour may be undefined), and thus data races can be encoded
as normal executions and detected by CISL-Par. By contrast, in the case of data-agnostic
errors such as null-pointer exceptions, the execution is halted (i.e. short-circuited) and thus
can no longer be encoded as normal executions that terminate. As such, CISL cannot detect
data-agnostic bugs with short-circuiting semantics compositionally.

CONCUR 2023

25:4 A General Approach to Under-Approximate Reasoning About Concurrent Programs

dom(G1) = {α1, α2} dom(G2) = {α′
1, α′

2} R1 ≜ G2 R2 ≜ G1 θ ≜ [α1, α2, α′
1, α′

2]
G1(α1)≜(x Z⇒ lx∗ lx 7→vx, ok, x Z⇒ lx∗ lx ̸7→) G2(α′

1)≜(z Z⇒ lz ∗ lz 7→1, ok, z Z⇒ lz ∗ lz 7→1)
G1(α2)≜(z Z⇒ lz ∗ lz 7→vz, ok, z Z⇒ lz ∗ lz 7→1) G2(α′

2)≜(x Z⇒ lx∗ lx ̸7→ , er , x Z⇒ lx∗ lx ̸7→)

∅, G1 ∪ G2, {[]} ⊢
[
a Z⇒va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
// Par

R1, G1,

{[]} ⊢
[

x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
1. free(x); // Atom, MS-Free

{[α1]} ⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→vz

]
2. [z] := 1; // Atom, MS-Write

{[α1, α2]} ⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→1

]
3. // EnvR

{[α1, α2, α′
1]}⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→1

]
4. // EnvR

{θ} ⊢
[
er : x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]

R2, G2,

{[]} ⊢
[
a Z⇒va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
5. // EnvL

{[α1]} ⊢
[
ok: a Z⇒va ∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→vz

]
6. // EnvL

{[α1,α2]}⊢
[
ok: a Z⇒va∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
7. a := 0; // AtomLocal, MS-AssignVal

{[α1,α2]}⊢
[
ok: a Z⇒0∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
8. a := [z]; // Atom, MS-Read

{[α1,α2,α′
1]}⊢

[
ok: a Z⇒1∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒lz ∗ lz 7→1

]
9. if (a = 1) [x] := 1 // Atom, MS-WriteUAF

{θ} ⊢
[
er : a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
∅, G1 ∪ G2, {θ} ⊢

[
er : a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
Figure 1 CASL proof of DataDep; the // denote CASL rules applied at each step. The R1, G1

and R2, G2 are not repeated at each step as they are unchanged.

More significantly, however, CISL is altogether unable to detect data-dependent bugs
compositionally. Consider the data-dependent use-after-free bug at l in DataDep. As
discussed, this bug occurs when τ2 is executed after τ1 is fully executed (i.e. 1 is written to z

and x is deallocated). That is, for τ2 to read 1 for z it must somehow infer that τ1 writes 1
to z; this is not possible without having knowledge of the environment. This is reminiscent
of rely-guarantee (RG) reasoning [11], where the environment behaviour is abstracted as a
relation describing how it may manipulate the state. As RG only supports global and not
compositional reasoning about states, RGSep [20] was developed by combining RG with
separation logic to support state compositionality. We thus develop CASL as an under-
approximate analogue of RGSep for bug catching (see p. 7 for a discussion on RGSep/RG).

2.1 CASL for Compositional Bug Detection
In CASL we prove under-approximate triples of the form R, G, Θ ⊢ [P] C [ϵ :Q], stating that
every post-world wq ∈Q is reached by running C on some pre-world wp ∈P , with R, G and
Θ described shortly. Each CASL world w is a pair (l, g), where l∈State is the local state
not accessible by the environment, while g ∈ State is the shared (global) state accessible
by all threads. We define CASL in a general, parametric way that can be instantiated for
different use cases. As such, the choice of the underlying states, State, is a parameter to be
instantiated accordingly. For instance, in what follows we instantiate CASL to detect the
use-after-free bug in DataDep, where we define states as State ≜ Stack × Heap (see §3),
i.e. each state comprises a variable store and a heap.

A. Raad, J. Vanegue, J. Berdine, and P. O’Hearn 25:5

For better readability, we use P, Q, R as meta-variable for sets of worlds and p, q, r for
sets of states. We write p ∗ q for sets of worlds (l, g) where the local state is given by p

(l∈p) and the shared state is given by q (g ∈q). Given P and Q describing e.g. the worlds
of two different threads, the composition P ∗ Q is defined component-wise on the local and
shared states. More concretely, as local states are thread-private, they are combined via
the composition operator ∗ on states in State (also supplied as a CASL parameter). On
the other hand, as shared states are globally visible to all threads, the views of different
threads of the shared state must agree and thus shared states are combined via conjunction
(∧). That is, given P ≜ p ∗ p′ and Q ≜ q ∗ q′ , then P ∗ Q ≜ p ∗ q ∗ p′∧ q′ .

The rely relation, R, describes how the environment threads may access/update the
shared state, while the guarantee relation, G, describes how the threads in C may do so.
Specifically, both R and G are maps of actions: given G(α)≜(p, ϵ, q), the α denotes an action
identifier and (p, ϵ, q) denotes its effect, where p, q are sets of shared states and ϵ is an exit
condition. Lastly, Θ denotes a set of traces (interleavings), such that each trace θ∈Θ is a
sequence of actions taken by the threads in C or the environment, i.e. the actions in dom(G)
and dom(R). In particular, R, G, Θ ⊢ [P] C [ϵ :Q] states that for all traces θ∈Θ, each world
in Q is reachable by executing C on some world in P culminating in θ, where the effects of
the threads in C (resp. in the environment of C) on the shared state are given by G and R,
respectively. We shortly elaborate on this through an example.

CASL for Detecting Data-Dependent Bugs. Although CASL can detect all bugs identified
by Raad et al. [18], we focus on using CASL for data-dependent bugs as they cannot
be handled by the state-of-the-art CISL framework. In Fig. 1 we present a CASL proof
sketch of the bug in DataDep. Let us write τ1 and τ2 for the left and right threads in
Fig. 1, respectively. Variables x and z are accessed by both threads and are thus shared,
whereas a is accessed by τ2 only and is local. Similarly, heap locations lx and lz (recorded
in x and z) are shared as they are accessed by both threads. This is denoted by P2 ≜
a Z⇒ va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz in the pre-condition of τ2 in Fig. 1, describing
worlds in which the local state is a Z⇒ va (stating that stack variable a records value va),
and the global state is x Z⇒ lx ∗ lx 7→ vx ∗ z Z⇒ lz ∗ lz 7→ vz – note that we use the Z⇒ and 7→
arrows for stack and heap resources, respectively. By contrast, the τ1 precondition is P1 ≜
x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz , comprising only shared resources and no local resources.

The actions in G1 (resp. G2), defined at the top of Fig. 1, describe the effect of τ1 (resp. τ2)
on the shared state. For instance, G1(α1) describes executing free(x) by τ1: when the shared
state contains x Z⇒ lx ∗ lx 7→vx, i.e. a sub-part of the shared state satisfies x Z⇒ lx ∗ lx 7→vx, then
free(x) terminates normally (ok) and deallocates x, updating this sub-part to x Z⇒ lx ∗ lx ̸7→,
denoting that lx is deallocated. Dually, the actions in R1 (resp. R2) describe the effect of
the threads in the environment of τ1 (resp. τ2); e.g. as the environment of τ1 comprises τ2
only and G2 describes the effect of τ2 on the shared state, we have R1≜G2.

Let us first consider analysing τ2 in isolation, ignoring the // annotations for now (these
become clear once we present the CASL proof rules in §3). Recall that in order to detect
the use-after-free bug at l, thread τ2 must account for an interleaving in which τ1 executes
both its instructions before τ2 proceeds with its execution. That is, τ2 may assume that
τ1 executes the actions associated with α1 and α2, as defined in R2. Note that after each
environment action (in R2) we extend the trace to record the associated action (we elaborate
on why this is needed below): starting from the empty trace [], we subsequently update it to
[α1] and [α1, α2] to record the environment actions assumed to have executed. Thread τ2
then executes the (local) assignment instruction a := 0 (line 7) which accesses its local state
(a Z⇒va) only. Subsequently, it proceeds to execute its instructions by accessing/updating
the shared state as prescribed in G2: it 1) takes action α′

1 associated with executing a := [z],

CONCUR 2023

25:6 A General Approach to Under-Approximate Reasoning About Concurrent Programs

whereby it reads from the heap location pointed to by z (i.e. lz) and stores it in a; and
then 2) takes action α′

2 associated with executing [x] := 1, where it attempts to write to
location lx pointed to by x and arrives at a use-after-free error as lx is deallocated, yielding
Q2 ≜ a Z⇒ 1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 . Note that after each G2 action α the trace is
extended with α, culminating in trace θ (defined at the top of Fig. 1). That is, each time a
thread accesses the shared state it must do so through an action in its guarantee and record
it in its trace. By contrast, when the instruction effect is limited to its local state (e.g. line 7
of τ2), it may be executed freely, without consulting the guarantee or recording an action.

We next analyse τ1 in isolation: τ1 executes its two instructions as given by α1 and α2 in
G1, updating the trace to [α1, α2]. It then assumes that τ2 in its environment executes its
actions (in R1), resulting in θ and yielding Q1 ≜ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 . Note that
τ1 may assume that the environment action α′

2 executes erroneously, as described in R1(α′
2).

Finally, we reason about the full program using the CASL parallel composition rule, Par (in
Fig. 3), stating that if we prove R1, G1, Θ1 ⊢ [P1] C1 [ϵ :Q1] and separately R2, G2, Θ2 ⊢ [P2]
C2 [ϵ :Q2], then we can prove R1 ∩ R2, G1 ∪ G2, Θ1 ∩ Θ2 ⊢ [P1 ∗ P2] C1 || C2 [ϵ :Q1 ∗ Q2] for
the concurrent program C1 || C2. In other words, (1) the pre-condition (resp. post-conditions)
of C1 || C2 is given by composing the pre-conditions (resp. post-conditions) of its constituent
threads, namely P1 ∗ P2 (resp. Q1 ∗ Q2); (2) the effect of C1 || C2 on the shared state is the
union of their respective effect (i.e. G1 ∪ G2); (3) the effect of the C1 || C2 environment on the
shared state is the effect of the threads in the environment of both C1 and C2 (i.e. R1 ∩ R2);
and (4) the traces generated by C1 || C2 are those generated by both C1 and C2 (i.e. Θ1 ∩ Θ2).

Returning to Fig. 1, we use Par to reason about the full program. Let C1 and C2 denote
the programs in the left and right threads, respectively. (1) Starting from P ≜ a Z⇒ va∗
x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz , we split P as P1 ∗ P2 (i.e. P = P1 ∗ P2) and pass P1 (resp.
P2) to τ1 (resp. τ2). (2) We analyse C1 and C2 in isolation and derive R1, G1, {θ}⊢ [P1] C1
[er :Q1] and R2, G2, {θ} ⊢ [P2] C2 [er :Q2]. (3) We use Par to combine the two triples and
derive ∅, G1 ∪ G2, {θ}⊢ [P] C1 || C2 [er : Q] with Q ≜ a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 .

CISL versus CASL. In contrast to CISL-Par where we can only derive normal (ok) triples
(and thus inevitably must encode erroneous behaviours as normal ones if possible), the CASL
Par rule makes no such stipulation (ϵ=ok or ϵ∈ErExit) and allows deriving both normal
and erroneous triples. More significantly, a CISL triple [P] C [ϵ :Q] executed by a thread τ

only allows τ to take actions (updating the state) by executing C, i.e. only allows actions
executed by τ itself and not those of other threads in the environment (executing another
program C′). This is also the case for all correctness triples in over-approximate settings,
e.g. RGSep and RG. By contrast, CASL triples additionally allow τ to take a particular
action by an environment thread, as specified by rely, thereby allowing one to consider a
specific interleaving (see the EnvL, EnvR and EnvEr rules in Fig. 3). This ability to assume
a specific execution by the environment is missing from CISL. This is a crucial insight for
data-dependent bugs that depend on certain data exchange/synchronisation between threads.

Recording Traces. Note that when taking a thread action (e.g. at line 1 in Fig. 1), the
executing thread τ must adhere to the behaviour in its guarantee and additionally witness
the action taken by executing corresponding instructions; this is captured by the CASL Atom
rule. That is, the guarantee denotes what τ can do, and provides no assurance that τ does
carry out those actions. This assurance is witnessed by executing corresponding instructions,
e.g. τ1 in Fig. 1 must execute free(x) on line 1 when taking α1. By contrast, when τ takes
an environment action (e.g. at line 3 in Fig. 1), it simply assumes the environment will

A. Raad, J. Vanegue, J. Berdine, and P. O’Hearn 25:7

take this action without witnessing it. That is, when reasoning about τ in isolation we
assume a particular interleaving and show a given world is reachable under that interleaving.
Therefore, the correctness of the compositional reasoning is contingent on the environment
fulfilling this assumption by adhering to the same interleaving. This is indeed why we record
θ, i.e. to ensure all threads assume the same sequence of actions on the shared state. As
mentioned above, R, G specify how the shared state is manipulated, and have no bearing on
thread-local states. As such, we record no trace actions for instructions that only manipulate
the local state (e.g. line 7 in Fig. 1); this is captured by the CASL AtomLocal rule.

Note that the Θ component of CASL is absent in its over-approximate counterpart RGSep.
This is because in the correctness setting of RGSep one must prove a program is correct for
all interleavings and it is not needed to record the interleavings considered. By contrast, in
the incorrectness setting of CASL our aim is to show the occurrence of a bug under certain
interleavings and thus we record them to ensure their feasibility: if a thread assumes a given
interleaving θ, we must ensure that θ is a feasible interleaving for all concurrent threads.

RGSep versus RG. We develop CASL as an under-approximate analogue of RGSep [20]
rather than RG [11]. We initially developed CASL as an under-approximate analogue of RG;
however, the lack of support for local reasoning led to rather verbose proofs. Specifically, as
discussed above and as we show in §4, the CASL AtomLocal rule allows local reasoning on
thread-local resources without accounting for them in the recorded traces. By contrast, in
RG there is no thread-local state and the entire state is shared (accessible by all threads).
Hence, were we to base CASL on RG, we could only support the Atom rule and not the local
AtomLocal variant, and thus every single action by each thread would have to be recorded
in the trace. This not only leads to verbose proofs (with long traces), but it is also somewhat
counter-intuitive. Specifically, thread-local computations (e.g. on thread-local registers) have
no bearing on the behaviour of other threads and need not be reflected in the global trace.
We present our original RG-based development [19, §E and §F] for the interested reader.

2.2 CASL for Compositional Exploit Detection
In practice, software attacks attempt to escalate privileges (e.g. Log4j) or steal credentials (e.g.
Heartbleed [8]) using an adversarial program written by a security expert. That is, attackers
typically use an adversarial program to interact with a codebase and exploit its vulnerabilities.
Therefore, we can model a vulnerable program Cv and its adversary (attacker) Ca as the
concurrent program Ca || Cv, and use CASL to detect vulnerabilities in Cv. Vulnerabilities
often fall into the data-dependent category, where the vulnerable program Cv receives an
input from the adversary Ca, and that input determines the next steps in the execution
of Cv, i.e. Ca affects the control flow of Cv. Hence, existing under-approximate techniques
such as CISL cannot detect such exploits, while the compositional techniques of CASL for
detecting data-dependent bugs is ideally-suited for them. Indeed, to our knowledge CASL is
the first formal, under-approximate theory that enables exploit detection. Thanks to the
compositional nature of CASL, the approaches described here can be used to build scalable
tools for exploit detection, as we discuss below. Moreover, by virtue of its under-approximate
nature and built-in no-false-positives theorem, exploits detected by CASL are certified in
that they are guaranteed to reveal true vulnerabilities.

In what follows we present an example of an information disclosure attack. Later we show
how we use CASL to detect several classes of exploits, including: 1) information disclosure
attacks on stacks (§4) and 2) heaps in the technical appendix [19, §C] to uncover sensitive
data, e.g. Heartbleed [8]; and 3) memory safety attacks [19, §D], e.g. zero allocation [21].

CONCUR 2023

25:8 A General Approach to Under-Approximate Reasoning About Concurrent Programs

Hereafter, we write Ca and Cv for the adversarial and vulnerable programs, respectively;
and write τa and τv for the threads running Ca and Cv, respectively. We represent exploits
as Ca || Cv, positioning Ca and Cv as the left and right threads, respectively. As we discuss
below, we model communication between τa and τv over a shared channel c, where each party
can transmit (send/receive) information over c using the send and recv instructions.

send(c, 8);
recv(c, y);

local sec := ∗;
local w[8] :={0};
recv(c, x);
if (x ≤ 8)

z := w[x];
send(c, z);

(InfDis)

Information Disclosure Attacks. Consider the InfDis example on the right, where τv (the
vulnerable thread) allocates two variables on the stack: sec, denoting a secret initialised with
a non-deterministic value (∗), and array w of size 8 initialised to 0. As per stack allocation,
sec and w are allocated contiguously from the top of the stack. That is, when the top of the
stack is denoted by top, then sec occupies the first unitof the stack (at top) and w occupies
the next 8 units (between top−1 and top−8). In other words, w starts at top−8 and thus
w[i] resides at top−8+i.

The τv then receives x from τa, retrieves the xth entry in w and sends it to τa over c.
Specifically, τv first checks that x is valid (within bounds) via x ≤ 8. However, as arrays
are indexed from 0, for x to be valid we must have x < 8 instead, and thus this check is
insufficient. That is, when τa sends 8 over c (send(c, 8)), then τv receives 8 on c and stores it
in x (recv(c, x)), i.e. x=8, resulting in an out-of-bounds access (z := w[x]). As such, since
w[i] resides at top−8+i, x=8 and sec is at top, accessing w[x] inadvertently retrieves the
secret value sec, stores it in z, which is subsequently sent to τa over c, disclosing sec to τa!

CASL for Scalable Exploit Detection. In the over-approximate setting proving correctness
(absence of bugs), a key challenge of developing scalable analysis tools lies in the need to
consider all possible interleavings and establish bug freedom for all interleavings. In the
under-approximate setting proving incorrectness (presence of bugs), this task is somewhat
easier: it suffices to find some buggy interleaving. Nonetheless, in the absence of heuristics
guiding the search for buggy interleavings, one must examine each interleaving to find buggy
ones. Therefore, in the worst case one may have to consider all interleavings.

When using CASL to detect data-dependent bugs, the problem of identifying buggy
interleavings amounts to determining when to account for environment actions. For instance,
detecting the bug in Fig. 1 relied on accounting for the actions of the left thread at lines 5
and 6 prior to reading from z. Therefore, the scalability of a CASL-based bug detection tool
hinges on developing heuristics that determine when to apply environment actions.

In the general case, where all threads may access any and all shared data (e.g. in DataDep),
developing such heuristics may require sophisticated analysis of the synchronisation patterns
used. However, in the case of exploits (e.g. in InfDis), the adversary and the vulnerable
programs operate on mostly separate states, with the shared state comprising a shared
channel (c) only, accessed through send and recv. In other words, the program syntax (send
and recv instructions) provides a simple heuristic prescribing when the environment takes an
action. Specifically, the computation carried out by τv is mostly local and does not affect
the shared state c (i.e. by instructions other than send/recv); as discussed, such local steps
need not be reflected in the trace and τa need not account for them. Moreover, when τv
encounters a recv(c, −) instruction, it must first assume the environment (τa) takes an action

A. Raad, J. Vanegue, J. Berdine, and P. O’Hearn 25:9

and sends a message over c to be subsequently received by τv. This leads to a simple heuristic:
take an environment action prior to executing recv. We believe this observation can pave
the way towards scalable exploit detection, underpinned by CASL and benefiting from its
no-false-positives guarantee, certifying that the exploits detected are true positives.

3 CASL: A General Framework for Bug Detection

We present the general theory of the CASL framework for detecting concurrency bugs. We
develop CASL in a parametric fashion, in that CASL may be instantiated for detecting
bugs and exploits in a multitude of contexts. CASL is instantiated by supplying it with the
specified parameters; the soundness of the instantiated CASL reasoning is then guaranteed
for free from the soundness of the framework (see Theorem 2). We present the CASL
ingredients as well as the parameters it is to be supplied with upon instantiation.

CASL Programming Language. The CASL language is parametrised by a set of atoms,
Atom, ranged over by a. For instance, our CASL instance for detecting memory safety
bugs [19, §D] includes atoms for accessing the heap. This allows us to instantiate CASL
for different scenarios without changing its underlying meta-theory. Our language is given
by the C grammar below, and includes atoms (a), skip, sequential composition (C1; C2),
non-deterministic choice (C1 + C2), loops (C⋆) and parallel composition (C1 || C2).

Comm ∋ C ::= a | skip | C1; C2 | C1 + C2 | C⋆ | C1 || C2

CASL States and Worlds. Reasoning frameworks [12, 18] typically reason at the level of
high-level states, equipped with additional instrumentation to support diverse reasoning
principles. In the frameworks based on separation logic, high-level states are modelled
by a partial commutative monoid (PCM) of the form (State, ◦, State0), where State
denotes the set of states; ◦ : State × State ⇀ State denotes the partial, commutative and
associative state composition function; and State0 ⊆ State denotes the set of unit states.
Two states l1, l2 ∈ State are compatible, written l1 # l2, if their composition is defined:
l1 # l2

def⇐⇒ ∃l. l=l1 ◦ l2. Once CASL is instantiated with the desired state PCM, we define
the notion of worlds, World, comprising pairs of states of the form (l, g), where l ∈ State is
the local state accessible only by the current thread(s), and g ∈ State is the shared (global)
state accessible by all threads (including those in the environment), provided that (l, g) is
well-formed. A pair (l, g) is well-formed if the local and shared states are compatible (l # g).

▶ Definition 1 (Worlds). Assume a PCM for states, (State, ◦, State0). The set of worlds
is World≜

{
(l, g)∈State × State l# g

}
. World composition, • : World × World ⇀

World, is defined component-wise, • ≜ (◦, ◦=), where g ◦= g′ ≜ g when g =g′, and is other-
wise undefined. The world unit set is World0≜

{
(l0, g)∈World l0 ∈State0 ∧ g ∈State

}
.

Notation. We use p, q, r as metavariables for state sets (in P(State)), and P, Q, R as
metavariables for world sets (in P(World)). We write P ∗ Q for

{
w • w′ w∈P ∧ w′∈Q

}
;

P ∧ Q for P ∩ Q; P ∨ Q for P ∪ Q; false for ∅; and true for P(World). We write p ∗ q for{
(l, g)∈World l∈ p∧ g ∈q

}
. When clear from the context, we lift p, q, r to sets of worlds

with arbitrary shared states; e.g. p denotes a set of worlds (l, g), where l∈p and g ∈State.

CONCUR 2023

25:10 A General Approach to Under-Approximate Reasoning About Concurrent Programs

α∈AId R, G ∈AMap ≜ AId ⇀ P(State) × Exit × P(State) Θ∈P(Trace)

θ ∈ Trace ≜ List⟨AId⟩ Θ0 ≜ {[]} Θ1 ++ Θ2 ≜
{

θ1 ++ θ2 θ1 ∈ Θ1 ∧ θ2 ∈ Θ2
}

α :: Θ ≜
{

α :: θ θ ∈ Θ
}

dsj(R, G) def⇐⇒ dom(R)∩dom(G)=∅

R1 ⊆R2
def⇐⇒ dom(R1)⊆dom(R2) ∧ ∀α∈dom(R1).R1(α)=R2(α)

R′ ≼θ R def⇐⇒ ∀α ∈ θ ∩ dom(R′). R′(α) = R(α) R′ ≼Θ R def⇐⇒ ∀θ ∈ Θ. R′ ≼θ R

wf(R, G) def⇐⇒ dsj(R, G) ∧ ∀α∈dom(R), p, q, l.R(α)=(p, −, q) ∧ q ∗ {l} ̸= ∅ ⇒ p ∗ {l} ̸= ∅

Figure 2 The CASL model definitions.

Error Conditions and Atomic Axioms. CASL uses under-approximate triples [16, 17, 18]
of the form R, G, Θ ⊢ [p] C [ϵ :q], where ϵ ∈ Exit≜{ok} ⊎ ErExit denotes an exit condition,
indicating normal (ok) or erroneous execution (ϵ∈ErExit). Erroneous conditions in ErExit
are reasoning-specific and are supplied as a parameter, e.g. npe for a null pointer exception.

We shortly define the under-approximate proof system of CASL. As atoms are a CASL
parameter, the CASL proof system is accordingly parametrised by their set of under-
approximate axioms, Axiom ⊆ P(State) × Atom × Exit × P(State), describing how they
may update states. Concretely, an atomic axiom is a tuple (p, a, ϵ, q), where p, q ∈P(State),
a∈Atom and ϵ∈Exit. As we describe shortly, atomic axioms are then lifted to CASL proof
rules (see Atom and AtomLocal), describing how atomic commands may modify worlds.

CASL Triples. A CASL triple R, G, Θ ⊢ [P] C [ϵ :Q] states that every world in Q can be
reached under ϵ for every witness trace θ∈Θ by executing C on some world in P . Moreover,
at each step the actions of the current thread (executing C) and its environment adhere to G
and R, respectively. The R, G are defined as action maps in Fig. 2, mapping each action
α∈AId to a triple describing its behaviour. Compared to original rely/guarantee relations
[20, 11], in CASL we record two additional components: 1) the exit condition (ϵ) indicating
a normal or erroneous step; and 2) the action id (α) to identify actions uniquely. The latter
allows us to construct a witness interleaving θ∈Trace as a list of actions (see Fig. 2). As
discussed in §2, to avoid false positives, if we detect a bug assuming the environment takes
action α, we must indeed witness the environment taking α. That is, if we detect a bug
assuming the environment takes α but the environment cannot do so, then the bug is a false
positive. Recording traces ensures each thread fulfils its assumptions, as we describe shortly.

Intuitively, each α corresponds to executing an atom that updates a sub-part of the shared
state. Specifically, G(α)=(p, ϵ, q) (resp. R(α)=(p, ϵ, q)) denotes that the current thread
(resp. an environment thread) may take α and update a shared sub-state in p to one in q

under ϵ, and in doing so it extends each trace in Θ with α. Moreover, the current thread
may take α with G(α)=(p, ϵ, q) only if it executes an atom a with behaviour (p, ϵ, q), i.e.
(p, a, ϵ, q)∈Axiom, thereby witnessing α. By contrast, this is not required for an environment
action. As we describe below, this is because each thread witnesses the G actions it takes,
and thus when combining threads (using the CASL Par rule described below), so long as
they agree on the interleavings (traces) taken, then the actions recorded have been witnessed.

A. Raad, J. Vanegue, J. Berdine, and P. O’Hearn 25:11

Lastly, we require R, G to be well-formed (wf(R, G) in Fig. 2), stipulating that: 1) R
and G be disjoint, dsj(R, G); and 2) the actions in R be frame-preserving: for all α with
R(α) = (p, −, q) and all states l, if l is compatible with q (i.e. q ∗ {l} ≠ ∅), then l is also
compatible with p (i.e. p ∗ {l} ≠ ∅). Condition (1) allows us to attribute actions uniquely to
threads (i.e. distinguish between R and G actions). Condition (2) is necessary for the CASL
Frame rule (see below), ensuring that applying an environment action does not inadvertently
update the state in such a way that invalidates the resources in the frame. Note that we
require no such condition on G actions. This is because as discussed, each G action taken is
witnessed by executing an atom axiomatised in Axiom; axioms in Axiom must in turn be
frame-preserving to ensure the soundness of CASL. That is, a G action is taken only if it is
witnessed by an atom which is frame-preserving by definition (see SoundAtoms in [19, §A]).

CASL Proof Rules. We present the CASL proof rules in Fig. 3, where we assume the
rely/guarantee relations in triple contexts are well-formed. Skip states that executing skip
leaves the worlds (P) unchanged and takes no actions, yielding a single empty trace Θ0 ≜ {[]}.
Seq, SeqEr, Choice, Loop1, Loop2 and BackwardsVariant are analogous to those of IL [16]
with S : N → P(World). Note that in Seq, the set of traces resulting from executing C1; C2
is given by Θ1++Θ2 (defined in Fig. 2) by point-wise combining the traces of C1 and C2.

Atom describes how executing an atom a affects the shared state: when the local state is
in p′ and the shared state is in p ∗ f , i.e. a sub-part of the shared state is in p, then executing
a with (p′ ∗p, a, ϵ, q′ ∗q)∈Axiom updates the local state from p′ to q′ and the shared sub-part
from p to q, provided that the effect on the shared state is given by a guarantee action α

(G(α)=(p, ϵ, q)). That is, the G action only captures the shared state, and the thread may
update its local state freely. In doing so, we witness α and record it in the set of traces
({[α]}). By contrast, AtomLocal states that so long as executing a does not touch the shared
state, it may update the local state arbitrarily, without recording an action.

EnvL, EnvR and EnvEr are the Atom counterparts in that they describe how the
environment may update the shared state. Specifically, EnvL and EnvR state that the
current thread may be interleaved by the environment. Given α ∈ dom(R), the current
thread may execute C either after or before the environment takes action α, as captured by
EnvL and EnvR, respectively. In the case of EnvL we further require that α (in dom(R))
denote a normal (ok) execution step, as otherwise the execution would short-circuit and the
current thread could not execute C. Note that unlike in Atom, the environment action α in
EnvL and EnvR only updates the shared state; e.g. in EnvL the p sub-part of the shared
state is updated to r and the local state p′ is left unchanged. Analogously, EnvEr states
that executing C may terminate erroneously under er if it is interleaved by an erroneous
step of the environment under er . That is, if the environment takes an erroneous step, the
execution of the current thread is terminated, as per the short-circuiting semantics of errors.

Note that Atom ensures action α is taken by the current thread (in G) only when the
thread witnesses it by executing a matching atom. By contrast, in EnvL, EnvR and EnvEr
we merely assume the environment takes action α in R. As such, each thread locally ensures
that it takes the guarantee actions in its traces.As shown in Par, when joining the threads
via parallel composition C1 || C2, we ensure their sets of traces agree: Θ1 ∩ Θ2 ≠∅. Moreover,
to ensure we can attribute each action in traces to a unique thread, we require that G1 and G2
be disjoint (dsj(G1, G2), see Fig. 2). Finally, when τ1 and τ2 respectively denote the threads
running C1 and C2, the R1 ⊆G2∪R2 premise ensures when τ1 attributes an action α to R1
(i.e. α is in R1), then α is an action of either τ2 (i.e. α is in G2) or its environment (i.e. of a
thread running concurrently with both τ1 and τ2); similarly for R2 ⊆G1∪R1.

CONCUR 2023

25:12 A General Approach to Under-Approximate Reasoning About Concurrent Programs

Skip
R, G, Θ0 ⊢

[
P

]
skip

[
ok : P

] Seq
R, G, Θ1 ⊢

[
P

]
C1

[
ok : R

]
R, G, Θ2 ⊢ [R] C2 [ϵ :Q]

R, G, Θ1 ++ Θ2 ⊢ [P] C1; C2 [ϵ :Q]

SeqEr
R, G, Θ ⊢ [P] C1 [er :Q] er ∈ErExit

R, G, Θ ⊢ [P] C1; C2 [er : Q]

Atom
G(α)=(p, ϵ, q) (p′ ∗ p, a, ϵ, q′ ∗ q) ∈ Axiom
R, G, {[α]} ⊢

[
p′ ∗ p ∗ f

]
a

[
ϵ :q′ ∗ q ∗ f

]
R, G, Θ0

Loop1
⊢

[
P

]
C⋆

[
ok : P

] Loop2
R, G, Θ ⊢ [P] C⋆; C [ϵ :Q]
R, G, Θ ⊢ [P] C⋆ [ϵ :Q]

AtomLocal
(p, a, ok, q) ∈ Axiom

R, G, {[]} ⊢
[
p
]

a
[
ok : q

]
BackwardsVariant
∀k. R, G, Θ⊢

[
S(k)

]
C

[
ok : S(k+1)

]
∀n>0. Θn =Θ++Θn−1

R, G, Θn ⊢
[
S(0)

]
C

[
ok : S(n)

]
Choice
R, G, Θ⊢ [P] Ci [ϵ :Q] for some i∈{1, 2}

R, G, Θ ⊢ [P] C1 + C2 [ϵ :Q]

Comb
R,G,Θ1 ⊢ [P] C [ϵ :Q] R,G,Θ2 ⊢ [P] C [ϵ :Q]

R, G, Θ1 ∪ Θ2 ⊢ [P] C [ϵ :Q]

EnvL
R(α)=(p,ok,r) R,G,Θ⊢

[
p′∗ r∗f

]
C [ϵ :Q]

R, G, α :: Θ ⊢
[
p′ ∗ p ∗ f

]
C [ϵ :Q]

EnvR
R,G,Θ⊢

[
P

]
C

[
ok :r′∗ r∗f

]
R(α)=(r,ϵ,q)

R, G, Θ ++ {[α]} ⊢ [P] C
[
ϵ :r′∗ q ∗ f

]
EnvEr
R(α) = (p, er , q) er ∈ ErExit

R, G, {[α]} ⊢
[

p ∗ f
]

C
[
er : q ∗ f

] Frame
R,G,Θ⊢ [P] C [ϵ :Q] stable(R, R∪G)

R, G, Θ ⊢ [P ∗ R] C [ϵ :Q ∗ R]

ParEr
R, G, Θ ⊢ [P] Ci [er : Q] for some i∈{1, 2}

er ∈ ErExit Θ ⊑ G
R, G, Θ ⊢ [P] C1 || C2 [er : Q]

Cons
P ′⊆P R′, G′, Θ′⊢

[
P ′] C

[
ϵ :Q′] Q⊆Q′

R≼Θ R′ G≼Θ G′ Θ⊆Θ′

R, G, Θ ⊢ [P] C [ϵ :Q]

Par
R1,G1,Θ1⊢ [P1] C1[ϵ :Q1] R2,G2,Θ2 ⊢ [P2] C2[ϵ :Q2]

R1 ⊆G2∪R2 R2 ⊆G1∪R1 dsj(G1,G2) Θ1∩Θ2 ̸=∅
R1 ∩ R2, G1 ∪ G2, Θ1 ∩ Θ2 ⊢ [P1 ∗ P2] C1 || C2 [ϵ :Q1 ∗ Q2]

with Θ ⊑ G def⇐⇒ ∀θ ∈Θ. θ ⊆ dom(G)
and stable(R, R) def⇐⇒ ∀(l,g)∈R, α. ∀(p, −, q)∈R(α), gq ∈q, gp ∈p, g′. g =gq ◦ g′ ⇒ (l, gp ◦ g′)∈R

Figure 3 The CASL proof rules, where R/G relations in contexts are well-formed.

Observe that Par can be used for both normal and erroneous triples (i.e. for any ϵ)
compositionally. This is in contrast to CISL, where only ok triples can be proved using
CISL-Par, and thus bugs can be detected only if they can be encoded as ok (see §2). In other
words, CISL cannot compositionally detect either data-agnostic bugs with short-circuiting
semantics or data-dependent bugs altogether, while CASL can detect both data-agnostic
and data-dependent bugs compositionally using Par, without the need to encode them as
ok. This is because CASL captures the environment in R, enabling compositional reasoning.
In particular, even when we do not know the program in parallel, so long as its behaviour
adheres to R, we can detect an error: R,G,Θ⊢ [P] C [er :Q] ensures the error is reachable as
long as the environment adheres to R, without knowing the program run in parallel to C.

A. Raad, J. Vanegue, J. Berdine, and P. O’Hearn 25:13

ParEr is the concurrent analogue of SeqEr, describing the short-circuiting semantics
of concurrent executions: given i∈{1, 2}, if running Ci in isolation results in an error, then
running C1 || C2 also yields an error. The Θ ⊑ G premise (defined in Fig. 3) ensures the
actions in Θ are from G, i.e. taken by the current thread and not assumed to have been
taken by the environment. Comb allows us to extend the traces: if the traces in both Θ1 and
Θ2 witness the execution of C, then the traces in Θ1 ∪ Θ2 also witness the execution of C.

Cons is the CASL rule of consequence. As with under-approximate logics [16, 17, 18],
the post-worlds Q may shrink (Q ⊆ Q′) and the pre-worlds P may grow (P ′ ⊆ P). The
traces may shrink (Θ ⊆ Θ′): if traces in Θ′ witness executing C, then so do the traces in
the smaller set Θ. Lastly, R ≼Θ R′ (resp. G ≼Θ G′) defined in Fig. 2 states that the rely
(resp. guarantee) may grow or shrink so long as it preserves the behaviour of actions in Θ.
This is in contrast to RG/RGSep where the rely may only shrink and the guarantee may
only grow. This is because in RG/RGSep one must defensively prove correctness against all
environment actions at all program points, i.e. for all interleavings. Therefore, if a program
is correct under a larger environment (with more actions) R′, then it is also correct under a
smaller environment R. In CASL, however, we show an outcome is reachable under a set of
witness interleavings Θ. Hence, for traces in Θ to remain valid witnesses, the rely/guarantee
may grow or shrink, so long as they faithfully reflect the behaviours of the actions in Θ.

Lastly, Frame states that if we show R, G, Θ ⊢ [P] C [ϵ :Q], we can also show R, G, Θ ⊢
[P ∗ R]C [ϵ :Q ∗ R], so long as the worlds in R are stable under R, G (stable(R, R ∪ G), defined
in Fig. 3), in that R accounts for possible updates. That is, given (l, g) ∈ R and α with
(p, −, q)∈R(α) ∪ G(α), if a sub-part gq of the shared g is in q (g =gq ◦ g′ for some gq ∈ q and
g′), then replacing gq with an arbitrary gp ∈p results in a world (i.e. (l, gp ◦ g′)) also in R.

CASL Soundness. We define the formal interpretation of CASL triples via semantic triples
of the form R, G, Θ |= [P] C [ϵ :Q] (see [19, §A]). We show CASL is sound by showing its
triples in Fig. 3 induce valid semantics triples. We do this in the theorem below, with its
proof in [19, §B].

▶ Theorem 2 (Soundness). For all R, G, Θ, p, C, ϵ, q, if R, G, Θ ⊢ [p] C [ϵ :q] is derivable
using the rules in Fig. 3, then R, G, Θ |=[p] C [ϵ :q] holds.

4 CASL for Exploit Detection

We present CASLID, a CASL instance for detecting stack-based information disclosure exploits.
In the technical appendix [19] we present CASLHID for detecting heap-based information
disclosure exploits [19, §C] and CASLMS for detecting memory safety attacks [19, §D].

The CASLID atomics, AtomID, are below, where l∈N is a label, x, y are (local) variables,
c is a shared channel and v is a value. They include assume statements and primitives
for generating a random value ∗ (local x :=τ ∗) used to model a secret value (e.g. a private
key), declaring an array x of size n initialised with v (local x[n] :=τ {v}), array assignment
l: x[k] :=τ y, sending (send(c, x) and send(c, v)) and receiving (recv(c, x)) over channel c. As
is standard, we encode if (b) then C1 else C2 as (assume(b); C1) + (assume(¬b); C2).

AtomID ∋ a ::= l: assume(b) | l: local x :=τ ∗ | l: local x[k] :=τ {v} | l: x :=τ y[k]
| l: send(c, x)τ | l: send(c, v)τ | l: recv(c, x)τ

CASLID States. A CASLID state, (s, h, h), comprises a variable stack s ∈Stack ≜ Var⇀

Ṽal, mapping variables to instrumented values; a heap h ∈Heap ≜ Loc⇀(Ṽal∪List⟨Ṽal⟩),
mapping shared locations (e.g. channel c) to (lists of) instrumented values; and a ghost

CONCUR 2023

25:14 A General Approach to Under-Approximate Reasoning About Concurrent Programs

ID-VarSecret[
sτ 799K n

]
l: local x :=τ ∗

[
ok : sτ 799K(n+1) ∗ x= top−n ∗ x Z⇒(v, τ, 1)

]
ID-VarArray[
sτ 799Kn∗k >0

]
l: local x[k]:=τ {v}

[
ok :sτ 799K(n+k)∗x= top−(n+k−1)∗∗k−1

j=0 (x+j Z⇒(v,τ,0))∗k >0
]

ID-ReadArray[
k Z⇒(v, τv, b) ∗ y+v Z⇒Vy ∗ x Z⇒−

]
l: x :=τ y[k]

[
ok : k Z⇒(v, τv, b) ∗ y+v Z⇒Vy ∗ x Z⇒Vy

]
ID-SendVal[
c 7→L

]
l: send(c,v)τ

[
ok :c 7→L++[(v,τ,0)]

] ID-Send[
c 7→L∗x Z⇒V

]
l: send(c,x)τ

[
ok :c 7→L++[V]

]
ID-Recv[
c 7→ [(v,τt,ι)]++L ∗ x Z⇒−∗(ι=0 ∨τ ∈Trust)

]
l: recv(c, x)τ

[
ok :c 7→L ∗ x Z⇒(v,τt,ι)∗(ι=0 ∨τ ∈Trust)

]
ID-RecvEr
[c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust] l: recv(c, x)τ [er : c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust]

Figure 4 The CASLID axioms.

heap h∈GHeap ≜ ({s} × TId)⇀Val, tracking the stack size (s). An instrumented value,
(v, τ, ι) ∈ Ṽal ≜ Val × TId × {0, 1}, comprises a value (v), its provenance (τ , the thread
from which v originated), and its secret attribute (ι∈{0, 1}) denoting whether the value is
secret (1) or not (0). We use x, y as metavariables for local variables, c for shared channels,
v for values, L for value lists and V for instrumented values. State composition is defined
as (⊎, ⊎, ⊎), where ⊎ denotes disjoint function union. The state unit set is {(∅, ∅, ∅)}. We
write x Z⇒V for states in which the stack comprises a single variable x mapped on to V and
the heap and ghost heaps are empty, i.e. {([x 7→ V], ∅, ∅)}. Similarly, we write c 7→ L for
{(∅, [c 7→L], ∅)}, and sτ 799Kv for {(∅, ∅, [(s, τ) 7→v])}.

CASLID Axioms. We present the CASLID atomic axioms in Fig. 4. We assume that each
variable declaration (via local x :=τ ∗ and local x[n] :=τ {v}) defines a fresh name, and thus
avoid the need for variable renaming at declaration time. We assume the stack top is given by
the constant top; thus when the stack of thread τ is of size n (i.e. sτ 799K n), the next empty
stack spot is at top−n. Executing l: local x :=τ ∗ in ID-VarSecret increments the stack size
(sτ 799K n+1), reserves the next empty spot for x and initialises x with a value (v) marked
secret (1) with its provenance (thread τ). Analogously, ID-VarArray describes declaring
an array of size k, where the next k spots are reserved for x (the ∗ denotes ∗-iteration:∗n

j=1(x+j Z⇒V) ≜ x+1 Z⇒V ∗ · · · ∗ x+n Z⇒V). When k holds value v, ID-ReadArray reads
the vth entry of y (at y+v) in x. ID-SendVal extends the content of c with (v, τ, 0). ID-Recv
describes safe data receipt (not leading to information disclosure), i.e. the value received is
not secret (ι=0) or the recipient is trusted (τ ∈Trust≜TId\{τa}). By contrast, ID-RecvEr
describes when receiving data leads to information disclosure, i.e. the value received is secret
and the recipient is untrusted (τ ̸∈Trust), in which case the state is unchanged.

Example: InfDis. In Fig. 5 we present a CASLID proof sketch of the information disclosure
exploit in InfDis. The proof of the full program is given in Fig. 5a. Starting from Pa ∗Pv with
a singleton empty trace (Θ0, defined in Fig. 2), we use Par to pass Pa and Pv respectively
to τa and τv, analyse each thread in isolation, and combine their results (Qa and Qv) into
Qa ∗ Qv, with the two agreeing on the trace set Θ generated. Figures 5b and 5c show the
proofs of τa and τv, respectively, where we have also defined their pre- and post-conditions.

A. Raad, J. Vanegue, J. Berdine, and P. O’Hearn 25:15

Rv(α′
1) ≜ (c 7→ [], ok, c 7→ [(n, τa, 0)]) Rv(α′

2) ≜ (c 7→ [(v, τ, 1)], ok, c 7→ []) Ra ≜ Gv Ga ≜ Rv

Gv(α1) ≜ (c 7→ [(n, τa, 0)], ok, c 7→ []) Gv(α2) ≜ (c 7→ [], ok, c 7→(v, τ, 1)) Θ ≜ {[α′
1, α1, α2, α′

2]}

∅, Ga ∪ Gv, Θ0 ⊢ [Pa ∗ Pv] // Par

Ra, Ga, Θ0 ⊢ [Pa]
l′

1: send(c, 8)τa

l′
2: recv(c, y)τa

Ra, Ga, Θ ⊢ [er : Qa]

Rv, Gv, Θ0 ⊢ [Pv]
l1: local sec :=τv ∗
l2: local w[8] :=τv{v}
l3: recv(c, x)τv

l4: z :=τv w[x]
l5: send(c, z)τv

Rv, Gv, Θ ⊢ [er : Qv]
∅, Ga ∪ Gv, Θ ⊢ [er : Qa ∗ Qv]

(a)

Ra, Ga, Θ0 ⊢
[
Pa ≜ c 7→ [] ∗ τa ̸∈Trust

]
l′

1: send(c, 8)τa // Atom + ID-SendVal
Ra, Ga, {[α′

1]}⊢
[
ok: c 7→ [(8, τa, 0)] ∗ τa ̸∈Trust

]
// EnvL × 2

Ra,Ga,{[α′
1, α1, α2]}⊢

[
ok: c 7→[(v, τv, 1)] ∗τa̸∈Trust

]
l′

2: recv(c, t)τa // Atom + ID-RecvEr
Ra, Ga, Θ ⊢

[
er : Qa ≜ c 7→[(v, τv, 1)] ∗ τa ̸∈Trust

]
(b)

Rv, Gv,

Θ0 ⊢
[
P ≜ sτv 799K 0 ∗ x Z⇒− ∗ z Z⇒− ∗ c 7→ []

]
l1: local sec :=τv ∗ // AtomLocal+ID-VarSecret

Θ0 ⊢
[
ok: sτv 799K1 ∗ x Z⇒− ∗ z Z⇒− ∗ c 7→ [] ∗ sec=top ∗ sec Z⇒(vs, τv, 1)

]
l2: local w[8] :=τv {v}; // AtomLocal + ID-VarArray

Θ0 ⊢
[
ok: sτv 799K9∗ x Z⇒−∗z Z⇒−∗ c 7→ [] ∗sec=top∗sec Z⇒(vs,τv,1)∗ w=top−8∗ ∗7

j=0(w+j Z⇒(v,τv))
]

// Frame
Θ0 ⊢

[
ok: x Z⇒−∗ z Z⇒−∗ c 7→ [] ∗ sec=top∗ sec Z⇒(vs, τv, 1)∗ w=top−8

]
// EnvL

{[α′
1]}⊢

[
ok: x Z⇒−∗ z Z⇒−∗ c 7→ [(8,τa,0)] ∗ sec=top∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
l3: recv(c, x)τv ; // (Atom + ID-Recv)

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒−∗ c 7→ [] ∗ sec=top∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
// Cons

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒−∗ c 7→ [] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
if (x ≤ 8) l4: z :=τv w[x] // AtomLocal+ID-ReadArray

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
l5: send(c, z)τv // Atom+ID-Send

{[α′
1,α1,α2]}⊢

[
ok: x Z⇒(8,τa,0)∗z Z⇒(vs,τv,1)∗ c 7→[(vs,τv,1)] ∗sec=w+8∗sec Z⇒(vs,τv,1)∗w=top−8

]
// EnvEr
Θ⊢

[
er : x Z⇒(8,τa,0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [(vs, τv, 1)] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
Θ⊢

[
er : Qv ≜ sτv 799K 9∗ x Z⇒(8, τa, 0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [(vs, τv, 1)] ∗ sec=w+8∗ sec Z⇒(vs, τv, 1)

∗w=top−8 ∗ ∗7
j=0(w+j Z⇒(v, τv))

]
(c)

Figure 5 Proofs of InfDis (a), its adversary (b) and vulnerable (c) programs.

All stack variables are local and channel c is the only shared resource. As such, rely/guar-
antee relations describe how τa and τv transmit data over c: α1 and α2 capture the recv and
send in τv, while α′

1 and α′
2 capture the send and recv in τa. Using AtomLocal and CASLID

axioms, τv executes its first two instructions. It then uses Frame to frame off unneeded
resources and applies EnvL to account for τa sending (8, τa, 0) over c. Using Atom with
ID-Recv it receives this value in x. After using Cons to rewrite sec = top ∗ w = top−8
equivalently to sec=w+8 ∗ w= top−8, it applies AtomLocal with ID-ReadArray to read

CONCUR 2023

25:16 A General Approach to Under-Approximate Reasoning About Concurrent Programs

from w[x] (i.e. the secret value at sec=w+8) in z. It then sends this value over c, arriving
at an error using EnvEr as the value received by the adversary τa is secret. The last line
then adds on the resources previously framed off. The proof of τa in Fig. 5b is analogous.

5 Related Work

Under-Approximate Reasoning. CASL builds on and generalises CISL [18]. As with IL
[16] and ISL [17], CASL is an instance of under-approximate reasoning. However, IL and ISL
support only sequential programs and not concurrent ones. Vanegue [22] recently developed
adversarial logic (AL) as an under-approximate technique for detecting exploits. While we
model Cv and Ca as Ca || Cv as with AL, there are several differences between AL and CASL.
CASL is a general, under-approximate framework that can be 1) used to detect both exploits
and bugs in concurrent programs, while AL is tailored towards exploits only; 2) instantiated
for different classes of bugs/exploits, while the model of AL is hard-coded. Moreover, CASL
borrows ideas from CISL to enable 3) state-local reasoning (only over parts of the state
accessed), while AL supports global reasoning only (over the entire state); and 4) thread-local
reasoning (analysing each thread in isolation), while AL accounts for all threads.

Automated Exploit Generation. Determining the exploitability of bugs is central to pri-
oritising fixes at large scale. Automated exploit generation (AEG) tools craft an exploit
based on predetermined heuristics and preconditioned symbolic execution of unsafe binary
programs [2, 5]. Additional improvements use random walk techniques to exploit heap buffer
overflow vulnerabilities reachable from known bugs [9, 1, 10]. Exploits for use-after-free
vulnerabilities [23] and unsafe memory write primitives [6] have also been partially automated.

As with CASL, AEG tools are fundamentally under-approximate and may not find all
attacks. Assumptions made by AEG tools are hard-coded in their implementation, in contrast
to CASL which can be instantiated for new classes of vulnerabilities without redesigning the
core logic from scratch. Finally, traditional AEG tools have no notion of locality and require
global reasoning, making existing tools unable to cope with the path explosion problem and
large targets without compromising coverage. By contrast, CASL mostly acts on local states,
making it more suitable for large-scale exploit detection than current tools.

References
1 Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan. Chainsaw:

Chained automated workflow-based exploit generation. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 641–652, 2016.

2 Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Maverick Woo,
and David Brumley. Automatic exploit generation. Communications of the ACM, 57(2):74–84,
2014.

3 Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. Racerd: Compositional
static race detection. Proc. ACM Program. Lang., 2(OOPSLA), October 2018. doi:10.1145/
3276514.

4 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich. A compositional
deadlock detector for android java. In Proceedings of ASE-36. ACM, 2021. URL: http:
//www0.cs.ucl.ac.uk/staff/J.Brotherston/ASE21/deadlocks.pdf.

5 Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Unleashing
mayhem on binary code. In 2012 IEEE Symposium on Security and Privacy, pages 380–394.
IEEE, 2012.

https://doi.org/10.1145/3276514
https://doi.org/10.1145/3276514
http://www0.cs.ucl.ac.uk/staff/J.Brotherston/ASE21/deadlocks.pdf
http://www0.cs.ucl.ac.uk/staff/J.Brotherston/ASE21/deadlocks.pdf

A. Raad, J. Vanegue, J. Berdine, and P. O’Hearn 25:17

6 Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. {KOOBE}: Towards facilitating
exploit generation of kernel {Out-Of-Bounds} write vulnerabilities. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1093–1110, 2020.

7 Facebook, 2021. URL: https://fbinfer.com/.
8 Heartbleed. The heartbleed bug, 2014. URL: https://heartbleed.com/.
9 Sean Heelan, Tom Melham, and Daniel Kroening. Automatic heap layout manipulation for

exploitation. In 27th USENIX Security Symposium (USENIX Security 18), pages 763–779,
2018.

10 Sean Heelan, Tom Melham, and Daniel Kroening. Gollum: Modular and greybox exploit
generation for heap overflows in interpreters. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1689–1706, 2019.

11 C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst., 5(4):596–619, October 1983. doi:10.1145/69575.69577.

12 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 637–650, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2676726.2676980.

13 Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn.
Finding real bugs in big programs with incorrectness logic. Proc. ACM Program. Lang.,
6(OOPSLA1), April 2022. doi:10.1145/3527325.

14 Lars Müller. KPTI: A mitigation method against meltdown, 2018. URL: https://www.cs.
hs-rm.de/~kaiser/events/wamos2018/Slides/mueller.pdf.

15 Peter W. O’Hearn. Resources, concurrency and local reasoning. In Philippa Gardner and
Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory, pages 49–67, Berlin, Heidel-
berg, 2004. Springer Berlin Heidelberg.

16 Peter W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang., 4(POPL):10:1–10:32,
December 2019. doi:10.1145/3371078.

17 Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard.
Local reasoning about the presence of bugs: Incorrectness separation logic. In Shuvendu K.
Lahiri and Chao Wang, editors, Computer Aided Verification, pages 225–252, Cham, 2020.
Springer International Publishing.

18 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. Concurrent incorrectness
separation logic. Proc. ACM Program. Lang., 6(POPL), January 2022. doi:10.1145/3498695.

19 Azalea Raad, Julien Vanegue, Josh Berdine, and Peter O’Hearn. Technical appendix, 2023.
URL: https://www.soundandcomplete.org/papers/CONCUR2023/CASL/appendix.pdf.

20 Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic.
In Luís Caires and Vasco T. Vasconcelos, editors, CONCUR 2007 – Concurrency Theory,
pages 256–271, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

21 Julien Vanegue. Zero-sized heap allocations vulnerability analysis. In Proceedings of the 4th
USENIX Conference on Offensive Technologies, WOOT’10, pages 1–8, USA, 2010. USENIX
Association.

22 Julien Vanegue. Adversarial logic. Proc. ACM Program. Lang., (SAS), December 2022.
23 Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. {FUZE}: Towards

facilitating exploit generation for kernel {Use-After-Free} vulnerabilities. In 27th USENIX
Security Symposium (USENIX Security 18), pages 781–797, 2018.

CONCUR 2023

https://fbinfer.com/
https://heartbleed.com/
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3527325
https://www.cs.hs-rm.de/~kaiser/events/wamos2018/Slides/mueller.pdf
https://www.cs.hs-rm.de/~kaiser/events/wamos2018/Slides/mueller.pdf
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3498695
https://www.soundandcomplete.org/papers/CONCUR2023/CASL/appendix.pdf

	1 Introduction
	2 Overview
	2.1 CASL for Compositional Bug Detection
	2.2 CASL for Compositional Exploit Detection

	3 CASL: A General Framework for Bug Detection
	4 CASL for Exploit Detection
	5 Related Work

