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Abstract11

There is a large body of work on concurrent reasoning including Rely-Guarantee (RG) and Concurrent12

Separation Logics. These theories are over-approximate: a proof identifies a superset of program13

behaviours and thus implies the absence of certain bugs. However, failure to find a proof does14

not imply their presence (leading to false positives in over-approximate tools). We describe a15

general theory of under-approximate reasoning for concurrency. Our theory incorporates ideas from16

Concurrent Incorrectness Separation Logic and RG based on a subset rather than a superset of17

interleavings. A strong motivation of our work is detecting software exploits; we do this by developing18

concurrent adversarial separation logic (CASL), and use CASL to detect information disclosure19

attacks that uncover sensitive data (e.g. passwords) and out-of-bounds attacks that corrupt data. We20

also illustrate our approach with classic concurrency idioms that go beyond prior under-approximate21

theories which we believe can inform the design of future concurrent bug detection tools.22
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1 Introduction29

Incorrectness Logic (IL) [16] presents a formal foundation for proving the presence of bugs30

using under-approximation, i.e. focusing on a subset of behaviours to ensure one detects31

only true positives (real bugs) rather than false positives (spurious bug reports). This is in32

contrast to verification frameworks proving the absence of bugs using over-approximation,33

where a superset of behaviours is considered. The key advantage of under-approximation34

is that tools underpinned by it are accompanied by a no-false-positives (NFP) theorem for35

free, ensuring all bugs reported are real bugs. This has culminated in a successful trend in36

automated static analysis tools that use under-approximation for bug detection, e.g. RacerD37

[3] for data race detection in Java programs, the work of Brotherston et al. [4] for deadlock38

detection, and Pulse-X [13] which uses the under-approximate theory of ISL (incorrectness39

separation logic, an IL extension) [17] for detecting memory safety bugs such as use-after-free40

errors. All three tools are currently industrially deployed and are state-of-the art techniques:41

RacerD significantly outperforms other race detectors in terms of bugs found and fixed, while42

Pulse-X has a higher fix-rate than the industrial Infer tool [7] used widely at Meta, Amazon43

and Microsoft. IL and ISL, though, only support bug detection in sequential programs.44
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25:2 A General Approach to Under-approximate Reasoning about Concurrent Programs

We present concurrent adversarial separation logic (CASL, pronounced ‘castle’), a general,45

under-approximate framework for detecting concurrency bugs and exploits, including a46

hitherto unsupported class of bugs. Inspired by adversarial logic [22], we model a vulnerable47

program Cv and its attacker (adversarial) Ca as the concurrent program Ca ||Cv, and use48

the compositional principles of CASL to detect vulnerabilities in Cv. CASL is a parametric49

framework that can be instantiated for a range of bugs/exploits. CASL combines under-50

approximation with ideas from RGSep [20] and concurrent separation logic (CSL) [15] – we51

chose RGSep rather than rely-guarantee [11] for compositionality (see p. 7). However, CASL52

does not merely replace over- with under-approximation in RGSep/CSL: CASL includes an53

additional component witnessing (under-approximating) the interleavings leading to bugs.54

CASL builds on concurrent incorrectness separation logic (CISL) [18]. However, while55

CISL was designed to capture the reasoning in cutting-edge tools such as RacerD, CASL56

explicitly goes beyond these tools. Put differently, CISL aspired to be a specialised theory of57

concurrent under-approximation, oriented to existing tools (and inheriting their limitations),58

whereas CASL aspires to be more general. In particular, in our private communication59

with CISL authors they have confirmed two key limitations of CISL. First, CISL can detect60

certain bugs compositionally only by encoding buggy executions as normal ones. While this61

is sufficient for bugs where encountering a bug does not force the program to terminate (e.g.62

data races), it cannot handle bugs with short-circuiting semantics, e.g. null pointer exceptions,63

where the execution is halted on encountering the bug (see §2 for details). Second and64

more significantly, CISL cannot compositionally detect a large class of bugs, data-dependent65

bugs, where a bug occurs only under certain interleavings and concurrent threads affect the66

control flow of one another. To see this, consider the program P , x := 1 || a := x; if (a) error,67

where the left thread, τ1, writes 1 to x, the right thread, τ2, reads the value of x in a and68

subsequently errors if a6=0. That is, the error occurs only in interleavings where τ1 is executed69

before τ2, and the two threads synchronise on the value of x; i.e. τ1 affects the control flow70

of τ2 and the error occurrence is dependent on the data exchange between the threads.71

Such data-dependency is rather prevalent as threads often synchronise via data exchange.72

Moreover, a large number of security-breaking software exploits are data-dependent bugs.73

An exploit (or attack) is code that takes advantage of a bug in a vulnerable program to cause74

unintended or erroneous behaviours. Vulnerabilities are bugs that lead to critical security75

compromises (e.g. leaking secrets or elevating privileges). Distinguishing vulnerabilities76

from benign bugs is a growing problem; understanding the exploitability of bugs is a77

time-consuming process requiring expert involvement, and large software vendors rely on78

automated exploitability analysis to prioritise vulnerability fixing among a sheer number79

of bugs. Rectifying vulnerabilities in the field requires expensive software mitigations (e.g.80

addressing Meltdown [14]) and/or large-scale recalls. It is thus increasingly important to81

detect vulnerabilities pre-emptively during development to avoid costly patches and breaches.82

To our knowledge, CASL is the first under-approximate theory that can detect all83

categories of concurrency bugs (including data-dependent ones) compositionally (by reasoning84

about each thread in isolation). CASL is strictly stronger than CISL and supports all CISL85

reasoning principles. Moreover, CASL is the first under-approximate and compositional86

theory for exploit detection. We instantiate CASL to detect information disclosure attacks87

that uncover sensitive data (e.g. Heartbleed [8]) and out-of-bounds attacks that corrupt data88

(e.g. zero allocation [21]). Thanks to CASL soundness, each CASL instance is automatically89

accompanied by an NFP theorem: all bugs/exploits identified by it are true positives.90

Contributions and Outline. Our contributions (detailed in §2) are as follows. We present91

CASL (§3) and prove it sound, with the full proof given in the accompanying technical92
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appendix [19]. We instantiate CASL to detect information disclosure attacks on stacks (§4)93

and heaps [19, §C] and memory safety attacks [19, §D]. We also develop an under-approximate94

analogue of RG that is simpler but less expressive than CASL [19, §E and §F]. We discuss95

related work in §5.96

2 Overview97

CISL and Its Limitations. CISL [18] is an under-approximate logic for detecting bugs in98

concurrent programs with a built-in no-false-positives theorem ensuring all bugs detected99

are true bugs. Specifically, CISL allows one to prove triples of the form [p] C [ε :q], stating100

that every state in q is reachable by executing C starting in some state in p, under the (exit)101

condition ε that may be either ok for normal (non-erroneous) executions, or ε ∈ ErExit102

for erroneous executions, where ErExit contains erroneous conditions. The CISL authors103

identify global bugs as those that are due to the interaction between two or more concurrent104

threads and arise only under certain interleavings. To see this, consider the examples below105

[18], where we write τ1 and τ2 for the left and right threads in each example, respectively:106

l: free(x) l′: free(x) (DataAgn) free(x);
[z] := 1;

a := 0; a := [z];
if (a=1) l: [x] := 1 (DataDep)107

In an interleaving of DataAgn in which τ1 is executed after (resp. before) τ2, a double-free108

bug is reached at l (resp. l′). Analogously, in a DataDep interleaving where τ2 is executed109

after τ1, value 1 is read from z in a, the condition of if is met and thus we reach a use-after-free110

bug at l. Raad et al. [18] categorise global bugs as either data-agnostic or data-dependent,111

denoting whether concurrent threads contributing to a global bug may affect the control112

flow of one another. For instance, the bug at l in DataDep is data-dependent as τ1 may113

affect the control flow of τ2: the value read in a := [z], and subsequently the condition of if114

and whether l: [x] := 1 is executed depend on whether τ2 executes a := [z] before or after τ1115

executes [z] := 1. By contrast, the threads in DataAgn cannot affect the control flow of one116

another; hence the bugs at l and l′ are data-agnostic.117
CISL-Par[
P1
]
C1
[
ok :Q1

] [
P2
]
C2
[
ok :Q2

][
P1 ∗ P2

]
C1 ||C2

[
ok : Q1 ∗Q2

]In certain cases, CISL can detect data-agnostic bugs118

compositionally (i.e. by analysing each thread in isola-119

tion) by encoding buggy executions as normal (ok) ones120

and then using the CISL-Par rule shown across. In particular, when the targeted bugs121

do not manifest short-circuiting (where bug encounter halts execution, e.g. a null-pointer122

exception), then buggy executions can be encoded as normal ones and subsequently detected123

compositionally using CISL-Par. For instance, when a data-agnostic data race is encountered,124

execution is not halted (though program behaviour may be undefined), and thus data races125

can be encoded as normal executions and detected by CISL-Par. By contrast, in the case126

of data-agnostic errors such as null-pointer exceptions, the execution is halted (i.e. short-127

circuited) and thus can no longer be encoded as normal executions that terminate. As such,128

CISL cannot detect data-agnostic bugs with short-circuiting semantics compositionally.129

More significantly, however, CISL is altogether unable to detect data-dependent bugs130

compositionally. Consider the data-dependent use-after-free bug at l in DataDep. As131

discussed, this bug occurs when τ2 is executed after τ1 is fully executed (i.e. 1 is written to z132

and x is deallocated). That is, for τ2 to read 1 for z it must somehow infer that τ1 writes 1133

to z; this is not possible without having knowledge of the environment. This is reminiscent134

of rely-guarantee (RG) reasoning [11], where the environment behaviour is abstracted as a135

relation describing how it may manipulate the state. As RG only supports global and not136

compositional reasoning about states, RGSep [20] was developed by combining RG with137
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25:4 A General Approach to Under-approximate Reasoning about Concurrent Programs

dom(G1) = {α1, α2} dom(G2) = {α′1, α′2} R1 , G2 R2 , G1 θ , [α1, α2, α
′
1, α
′
2]

G1(α1),(x Z⇒ lx∗ lx 7→vx, ok, x Z⇒ lx∗ lx 67→) G2(α′1),(z Z⇒ lz∗ lz 7→1, ok, z Z⇒ lz∗ lz 7→1)
G1(α2),(z Z⇒ lz∗ lz 7→vz, ok, z Z⇒ lz∗ lz 7→1) G2(α′2),(x Z⇒ lx∗ lx 67→ , er , x Z⇒ lx∗ lx 67→)

∅,G1 ∪ G2, {[ ]} `
[
a Z⇒va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
//Par

R1,G1,

{[ ]} `
[
x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
1. free(x); //Atom,MS-Free

{[α1]} `

[
ok: x Z⇒ lx∗ lx 67→
∗z Z⇒ lz∗ lz 7→vz

]
2. [z] := 1; //Atom,MS-Write

{[α1, α2]} `

[
ok: x Z⇒ lx∗ lx 67→
∗z Z⇒ lz∗ lz 7→1

]
3. //EnvR

{[α1, α2, α
′
1]}`

[
ok: x Z⇒ lx∗ lx 67→
∗z Z⇒ lz∗ lz 7→1

]
4. //EnvR
{θ} `

[
er : x Z⇒ lx∗ lx 67→ ∗ z Z⇒ lz∗ lz 7→1

]

R2,G2,

{[ ]} `
[
a Z⇒va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
5. //EnvL
{[α1]} `

[
ok: a Z⇒va ∗ x Z⇒ lx∗ lx 67→ ∗ z Z⇒ lz∗ lz 7→vz

]
6. //EnvL
{[α1,α2]}`

[
ok: a Z⇒va∗ x Z⇒ lx∗ lx 67→ ∗ z Z⇒ lz∗ lz 7→1

]
7. a := 0; //AtomLocal,MS-AssignVal
{[α1,α2]}`

[
ok: a Z⇒0∗ x Z⇒ lx∗ lx 67→ ∗ z Z⇒ lz∗ lz 7→1

]
8. a := [z]; //Atom,MS-Read
{[α1,α2,α

′
1]}`

[
ok: a Z⇒1∗ x Z⇒ lx∗ lx 67→ ∗ z Z⇒lz∗ lz 7→1

]
9. if (a = 1) [x] := 1 //Atom,MS-WriteUAF
{θ} `

[
er : a Z⇒1 ∗ x Z⇒ lx ∗ lx 67→ ∗ z Z⇒ lz ∗ lz 7→1

]
∅,G1 ∪ G2, {θ} `

[
er : a Z⇒1 ∗ x Z⇒ lx ∗ lx 67→ ∗ z Z⇒ lz ∗ lz 7→1

]
Figure 1 CASL proof of DataDep; the // denote CASL rules applied at each step. The R1,G1

and R2,G2 are not repeated at each step as they are unchanged.

separation logic to support state compositionality. We thus develop CASL as an under-138

approximate analogue of RGSep for bug catching (see p. 7 for a discussion on RGSep/RG).139

2.1 CASL for Compositional Bug Detection140

In CASL we prove under-approximate triples of the form R,G,Θ ` [P ] C [ε :Q], stating that141

every post-world wq∈Q is reached by running C on some pre-world wp∈P , with R, G and142

Θ described shortly. Each CASL world w is a pair (l, g), where l∈State is the local state143

not accessible by the environment, while g∈State is the shared (global) state accessible144

by all threads. We define CASL in a general, parametric way that can be instantiated for145

different use cases. As such, the choice of the underlying states, State, is a parameter to be146

instantiated accordingly. For instance, in what follows we instantiate CASL to detect the147

use-after-free bug in DataDep, where we define states as State , Stack×Heap (see §3),148

i.e. each state comprises a variable store and a heap.149

For better readability, we use P,Q,R as meta-variable for sets of worlds and p, q, r for150

sets of states. We write p ∗ q for sets of worlds (l, g) where the local state is given by p151

(l∈p) and the shared state is given by q (g∈q). Given P and Q describing e.g. the worlds152

of two different threads, the composition P ∗Q is defined component-wise on the local and153

shared states. More concretely, as local states are thread-private, they are combined via154

the composition operator ∗ on states in State (also supplied as a CASL parameter). On155

the other hand, as shared states are globally visible to all threads, the views of different156

threads of the shared state must agree and thus shared states are combined via conjunction157

(∧). That is, given P , p ∗ p′ and Q , q ∗ q′ , then P ∗Q , p ∗ q ∗ p′∧ q′ .158

The rely relation, R, describes how the environment threads may access/update the159

shared state, while the guarantee relation, G, describes how the threads in C may do so.160
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Specifically, both R and G are maps of actions: given G(α),(p, ε, q), the α denotes an action161

identifier and (p, ε, q) denotes its effect, where p, q are sets of shared states and ε is an exit162

condition. Lastly, Θ denotes a set of traces (interleavings), such that each trace θ∈Θ is a163

sequence of actions taken by the threads in C or the environment, i.e. the actions in dom(G)164

and dom(R). In particular, R,G,Θ ` [P ] C [ε :Q] states that for all traces θ∈Θ, each world165

in Q is reachable by executing C on some world in P culminating in θ, where the effects of166

the threads in C (resp. in the environment of C) on the shared state are given by G and R,167

respectively. We shortly elaborate on this through an example.168

CASL for Detecting Data-Dependent Bugs. Although CASL can detect all bugs169

identified by Raad et al. [18], we focus on using CASL for data-dependent bugs as they170

cannot be handled by the state-of-the-art CISL framework. In Fig. 1 we present a CASL171

proof sketch of the bug in DataDep. Let us write τ1 and τ2 for the left and right threads172

in Fig. 1, respectively. Variables x and z are accessed by both threads and are thus shared,173

whereas a is accessed by τ2 only and is local. Similarly, heap locations lx and lz (recorded174

in x and z) are shared as they are accessed by both threads. This is denoted by P2 ,175

a Z⇒ va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz in the pre-condition of τ2 in Fig. 1, describing176

worlds in which the local state is a Z⇒ va (stating that stack variable a records value va),177

and the global state is x Z⇒ lx ∗ lx 7→ vx ∗ z Z⇒ lz ∗ lz 7→ vz – note that we use the Z⇒ and 7→178

arrows for stack and heap resources, respectively. By contrast, the τ1 precondition is P1 ,179

x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz , comprising only shared resources and no local resources.180

The actions in G1 (resp. G2), defined at the top of Fig. 1, describe the effect of τ1 (resp. τ2)181

on the shared state. For instance, G1(α1) describes executing free(x) by τ1: when the shared182

state contains x Z⇒ lx ∗ lx 7→vx, i.e. a sub-part of the shared state satisfies x Z⇒ lx ∗ lx 7→vx, then183

free(x) terminates normally (ok) and deallocates x, updating this sub-part to x Z⇒ lx ∗ lx 67→,184

denoting that lx is deallocated. Dually, the actions in R1 (resp. R2) describe the effect of185

the threads in the environment of τ1 (resp. τ2); e.g. as the environment of τ1 comprises τ2186

only and G2 describes the effect of τ2 on the shared state, we have R1,G2.187

Let us first consider analysing τ2 in isolation, ignoring the // annotations for now (these188

become clear once we present the CASL proof rules in §3). Recall that in order to detect189

the use-after-free bug at l, thread τ2 must account for an interleaving in which τ1 executes190

both its instructions before τ2 proceeds with its execution. That is, τ2 may assume that191

τ1 executes the actions associated with α1 and α2, as defined in R2. Note that after each192

environment action (in R2) we extend the trace to record the associated action (we elaborate193

on why this is needed below): starting from the empty trace [], we subsequently update it to194

[α1] and [α1, α2] to record the environment actions assumed to have executed. Thread τ2195

then executes the (local) assignment instruction a := 0 (line 7) which accesses its local state196

(a Z⇒va) only. Subsequently, it proceeds to execute its instructions by accessing/updating197

the shared state as prescribed in G2: it 1) takes action α′1 associated with executing a := [z],198

whereby it reads from the heap location pointed to by z (i.e. lz) and stores it in a; and199

then 2) takes action α′2 associated with executing [x] := 1, where it attempts to write to200

location lx pointed to by x and arrives at a use-after-free error as lx is deallocated, yielding201

Q2 , a Z⇒ 1 ∗ x Z⇒ lx ∗ lx 67→ ∗ z Z⇒ lz ∗ lz 7→1 . Note that after each G2 action α the trace is202

extended with α, culminating in trace θ (defined at the top of Fig. 1). That is, each time a203

thread accesses the shared state it must do so through an action in its guarantee and record204

it in its trace. By contrast, when the instruction effect is limited to its local state (e.g. line 7205

of τ2), it may be executed freely, without consulting the guarantee or recording an action.206

We next analyse τ1 in isolation: τ1 executes its two instructions as given by α1 and α2 in207

G1, updating the trace to [α1, α2]. It then assumes that τ2 in its environment executes its208
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actions (in R1), resulting in θ and yielding Q1 , x Z⇒ lx ∗ lx 67→ ∗ z Z⇒ lz ∗ lz 7→1 . Note that209

τ1 may assume that the environment action α′2 executes erroneously, as described in R1(α′2).210

Finally, we reason about the full program using the CASL parallel composition rule, Par (in211

Fig. 3), stating that if we prove R1,G1,Θ1 ` [P1] C1 [ε :Q1] and separately R2,G2,Θ2 ` [P2]212

C2 [ε :Q2], then we can prove R1 ∩R2,G1 ∪ G2,Θ1 ∩Θ2 ` [P1 ∗ P2] C1 ||C2 [ε :Q1 ∗Q2] for213

the concurrent program C1 ||C2. In other words, (1) the pre-condition (resp. post-conditions)214

of C1 ||C2 is given by composing the pre-conditions (resp. post-conditions) of its constituent215

threads, namely P1 ∗ P2 (resp. Q1 ∗Q2); (2) the effect of C1 ||C2 on the shared state is the216

union of their respective effect (i.e. G1 ∪ G2); (3) the effect of the C1 ||C2 environment on the217

shared state is the effect of the threads in the environment of both C1 and C2 (i.e. R1 ∩R2);218

and (4) the traces generated by C1 ||C2 are those generated by both C1 and C2 (i.e. Θ1 ∩Θ2).219

Returning to Fig. 1, we use Par to reason about the full program. Let C1 and C2 denote220

the programs in the left and right threads, respectively. (1) Starting from P , a Z⇒ va∗221

x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz , we split P as P1 ∗ P2 (i.e. P = P1 ∗ P2) and pass P1 (resp.222

P2) to τ1 (resp. τ2). (2) We analyse C1 and C2 in isolation and derive R1,G1, {θ}` [P1] C1223

[er :Q1] and R2,G2, {θ}` [P2] C2 [er :Q2]. (3) We use Par to combine the two triples and224

derive ∅,G1 ∪ G2, {θ}` [P ] C1 ||C2 [er : Q] with Q , a Z⇒1 ∗ x Z⇒ lx ∗ lx 67→ ∗ z Z⇒ lz ∗ lz 7→1 .225

CISL versus CASL. In contrast to CISL-Par where we can only derive normal (ok) triples226

(and thus inevitably must encode erroneous behaviours as normal ones if possible), the CASL227

Par rule makes no such stipulation (ε=ok or ε∈ErExit) and allows deriving both normal228

and erroneous triples. More significantly, a CISL triple [P ] C [ε :Q] executed by a thread τ229

only allows τ to take actions (updating the state) by executing C, i.e. only allows actions230

executed by τ itself and not those of other threads in the environment (executing another231

program C′). This is also the case for all correctness triples in over-approximate settings,232

e.g. RGSep and RG. By contrast, CASL triples additionally allow τ to take a particular233

action by an environment thread, as specified by rely, thereby allowing one to consider a234

specific interleaving (see the EnvL, EnvR and EnvEr rules in Fig. 3). This ability to assume235

a specific execution by the environment is missing from CISL. This is a crucial insight for236

data-dependent bugs that depend on certain data exchange/synchronisation between threads.237

Recording Traces. Note that when taking a thread action (e.g. at line 1 in Fig. 1), the238

executing thread τ must adhere to the behaviour in its guarantee and additionally witness239

the action taken by executing corresponding instructions; this is captured by the CASL Atom240

rule. That is, the guarantee denotes what τ can do, and provides no assurance that τ does241

carry out those actions. This assurance is witnessed by executing corresponding instructions,242

e.g. τ1 in Fig. 1 must execute free(x) on line 1 when taking α1. By contrast, when τ takes243

an environment action (e.g. at line 3 in Fig. 1), it simply assumes the environment will244

take this action without witnessing it. That is, when reasoning about τ in isolation we245

assume a particular interleaving and show a given world is reachable under that interleaving.246

Therefore, the correctness of the compositional reasoning is contingent on the environment247

fulfilling this assumption by adhering to the same interleaving. This is indeed why we record248

θ, i.e. to ensure all threads assume the same sequence of actions on the shared state. As249

mentioned above, R,G specify how the shared state is manipulated, and have no bearing on250

thread-local states. As such, we record no trace actions for instructions that only manipulate251

the local state (e.g. line 7 in Fig. 1); this is captured by the CASL AtomLocal rule.252

Note that the Θ component of CASL is absent in its over-approximate counterpart RGSep.253

This is because in the correctness setting of RGSep one must prove a program is correct for254

all interleavings and it is not needed to record the interleavings considered. By contrast, in255

the incorrectness setting of CASL our aim is to show the occurrence of a bug under certain256
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interleavings and thus we record them to ensure their feasibility: if a thread assumes a given257

interleaving θ, we must ensure that θ is a feasible interleaving for all concurrent threads.258

RGSep versus RG. We develop CASL as an under-approximate analogue of RGSep [20]259

rather than RG [11]. We initially developed CASL as an under-approximate analogue of RG;260

however, the lack of support for local reasoning led to rather verbose proofs. Specifically, as261

discussed above and as we show in §4, the CASL AtomLocal rule allows local reasoning on262

thread-local resources without accounting for them in the recorded traces. By contrast, in263

RG there is no thread-local state and the entire state is shared (accessible by all threads).264

Hence, were we to base CASL on RG, we could only support the Atom rule and not the local265

AtomLocal variant, and thus every single action by each thread would have to be recorded266

in the trace. This not only leads to verbose proofs (with long traces), but it is also somewhat267

counter-intuitive. Specifically, thread-local computations (e.g. on thread-local registers) have268

no bearing on the behaviour of other threads and need not be reflected in the global trace.269

We present our original RG-based development [19, §E and §F] for the interested reader.270

2.2 CASL for Compositional Exploit Detection271

In practice, software attacks attempt to escalate privileges (e.g. Log4j) or steal credentials (e.g.272

Heartbleed [8]) using an adversarial program written by a security expert. That is, attackers273

typically use an adversarial program to interact with a codebase and exploit its vulnerabilities.274

Therefore, we can model a vulnerable program Cv and its adversary (attacker) Ca as the275

concurrent program Ca ||Cv, and use CASL to detect vulnerabilities in Cv. Vulnerabilities276

often fall into the data-dependent category, where the vulnerable program Cv receives an277

input from the adversary Ca, and that input determines the next steps in the execution278

of Cv, i.e. Ca affects the control flow of Cv. Hence, existing under-approximate techniques279

such as CISL cannot detect such exploits, while the compositional techniques of CASL for280

detecting data-dependent bugs is ideally-suited for them. Indeed, to our knowledge CASL is281

the first formal, under-approximate theory that enables exploit detection. Thanks to the282

compositional nature of CASL, the approaches described here can be used to build scalable283

tools for exploit detection, as we discuss below. Moreover, by virtue of its under-approximate284

nature and built-in no-false-positives theorem, exploits detected by CASL are certified in285

that they are guaranteed to reveal true vulnerabilities.286

In what follows we present an example of an information disclosure attack. Later we show287

how we use CASL to detect several classes of exploits, including: 1) information disclosure288

attacks on stacks (§4) and 2) heaps in the technical appendix [19, §C] to uncover sensitive289

data, e.g. Heartbleed [8]; and 3) memory safety attacks [19, §D], e.g. zero allocation [21].290

Hereafter, we write Ca and Cv for the adversarial and vulnerable programs, respectively;291

and write τa and τv for the threads running Ca and Cv, respectively. We represent exploits292

as Ca ||Cv, positioning Ca and Cv as the left and right threads, respectively. As we discuss293

below, we model communication between τa and τv over a shared channel c, where each party294

can transmit (send/receive) information over c using the send and recv instructions.295

send(c, 8);
recv(c, y);

local sec := ∗;
localw[8] :={0};
recv(c, x);
if (x ≤ 8)

z := w[x];
send(c, z);

(InfDis)

Information Disclosure Attacks. Consider the InfDis296

example on the right, where τv (the vulnerable thread)297

allocates two variables on the stack: sec, denoting a secret298

initialised with a non-deterministic value (∗), and array299

w of size 8 initialised to 0. As per stack allocation, sec300

and w are allocated contiguously from the top of the stack.301

That is, when the top of the stack is denoted by top, then302
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sec occupies the first unitof the stack (at top) and w occupies the next 8 units (between303

top−1 and top−8). In other words, w starts at top−8 and thus w[i] resides at top−8+i.304

The τv then receives x from τa, retrieves the xth entry in w and sends it to τa over c.305

Specifically, τv first checks that x is valid (within bounds) via x ≤ 8. However, as arrays306

are indexed from 0, for x to be valid we must have x < 8 instead, and thus this check is307

insufficient. That is, when τa sends 8 over c (send(c, 8)), then τv receives 8 on c and stores it308

in x (recv(c, x)), i.e. x=8, resulting in an out-of-bounds access (z := w[x]). As such, since309

w[i] resides at top−8+i, x=8 and sec is at top, accessing w[x] inadvertently retrieves the310

secret value sec, stores it in z, which is subsequently sent to τa over c, disclosing sec to τa!311

CASL for Scalable Exploit Detection. In the over-approximate setting proving correct-312

ness (absence of bugs), a key challenge of developing scalable analysis tools lies in the need313

to consider all possible interleavings and establish bug freedom for all interleavings. In the314

under-approximate setting proving incorrectness (presence of bugs), this task is somewhat315

easier: it suffices to find some buggy interleaving. Nonetheless, in the absence of heuristics316

guiding the search for buggy interleavings, one must examine each interleaving to find buggy317

ones. Therefore, in the worst case one may have to consider all interleavings.318

When using CASL to detect data-dependent bugs, the problem of identifying buggy319

interleavings amounts to determining when to account for environment actions. For instance,320

detecting the bug in Fig. 1 relied on accounting for the actions of the left thread at lines 5321

and 6 prior to reading from z. Therefore, the scalability of a CASL-based bug detection tool322

hinges on developing heuristics that determine when to apply environment actions.323

In the general case, where all threads may access any and all shared data (e.g. in DataDep),324

developing such heuristics may require sophisticated analysis of the synchronisation patterns325

used. However, in the case of exploits (e.g. in InfDis), the adversary and the vulnerable326

programs operate on mostly separate states, with the shared state comprising a shared327

channel (c) only, accessed through send and recv. In other words, the program syntax (send328

and recv instructions) provides a simple heuristic prescribing when the environment takes an329

action. Specifically, the computation carried out by τv is mostly local and does not affect330

the shared state c (i.e. by instructions other than send/recv); as discussed, such local steps331

need not be reflected in the trace and τa need not account for them. Moreover, when τv332

encounters a recv(c,−) instruction, it must first assume the environment (τa) takes an action333

and sends a message over c to be subsequently received by τv. This leads to a simple heuristic:334

take an environment action prior to executing recv. We believe this observation can pave335

the way towards scalable exploit detection, underpinned by CASL and benefiting from its336

no-false-positives guarantee, certifying that the exploits detected are true positives.337

3 CASL: A General Framework for Bug Detection338

We present the general theory of the CASL framework for detecting concurrency bugs. We339

develop CASL in a parametric fashion, in that CASL may be instantiated for detecting340

bugs and exploits in a multitude of contexts. CASL is instantiated by supplying it with the341

specified parameters; the soundness of the instantiated CASL reasoning is then guaranteed342

for free from the soundness of the framework (see Theorem 2). We present the CASL343

ingredients as well as the parameters it is to be supplied with upon instantiation.344

CASL Programming Language. The CASL language is parametrised by a set of atoms,345

Atom, ranged over by a. For instance, our CASL instance for detecting memory safety346

bugs [19, §D] includes atoms for accessing the heap. This allows us to instantiate CASL347

for different scenarios without changing its underlying meta-theory. Our language is given348
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α∈AId R,G∈AMap , AId ⇀ P(State)× Exit× P(State) Θ∈P(Trace)
θ ∈ Trace , List〈AId〉 Θ0 , {[ ]} Θ1 ++ Θ2 ,

{
θ1 ++ θ2 θ1 ∈ Θ1 ∧ θ2 ∈ Θ2

}
α :: Θ ,

{
α :: θ θ ∈ Θ

}
dsj(R,G) def⇐⇒ dom(R)∩dom(G)=∅

R1⊆R2
def⇐⇒ dom(R1)⊆dom(R2) ∧ ∀α∈dom(R1).R1(α)=R2(α)

R′ 4θ R
def⇐⇒ ∀α ∈ θ ∩ dom(R′). R′(α) = R(α) R′ 4Θ R

def⇐⇒ ∀θ ∈ Θ. R′ 4θ R

wf(R,G) def⇐⇒ dsj(R,G) ∧ ∀α∈dom(R), p, q, l.R(α)=(p,−, q) ∧ q ∗ {l} 6= ∅ ⇒ p ∗ {l} 6= ∅

Figure 2 The CASL model definitions

by the C grammar below, and includes atoms (a), skip, sequential composition (C1; C2),349

non-deterministic choice (C1 + C2), loops (C?) and parallel composition (C1 ||C2).350

Comm 3 C ::= a | skip | C1; C2 | C1 + C2 | C? | C1 ||C2351

CASL States and Worlds. Reasoning frameworks [12, 18] typically reason at the level352

of high-level states, equipped with additional instrumentation to support diverse reasoning353

principles. In the frameworks based on separation logic, high-level states are modelled354

by a partial commutative monoid (PCM) of the form (State, ◦,State0), where State355

denotes the set of states; ◦ : State× State ⇀ State denotes the partial, commutative and356

associative state composition function; and State0 ⊆ State denotes the set of unit states.357

Two states l1, l2 ∈ State are compatible, written l1 # l2, if their composition is defined:358

l1 # l2
def⇐⇒ ∃l. l=l1 ◦ l2. Once CASL is instantiated with the desired state PCM, we define359

the notion of worlds, World, comprising pairs of states of the form (l, g), where l ∈ State is360

the local state accessible only by the current thread(s), and g ∈ State is the shared (global)361

state accessible by all threads (including those in the environment), provided that (l, g) is362

well-formed. A pair (l, g) is well-formed if the local and shared states are compatible (l # g).363

I Definition 1 (Worlds). Assume a PCM for states, (State, ◦,State0). The set of worlds364

is World,
{

(l, g)∈State× State l# g
}
. World composition, • : World ×World ⇀365

World, is defined component-wise, • , (◦, ◦=), where g ◦= g′ , g when g=g′, and is other-366

wise undefined. The world unit set is World0,
{

(l0, g)∈World l0∈State0 ∧ g∈State
}
.367

Notation. We use p, q, r as metavariables for state sets (in P(State)), and P,Q,R as368

metavariables for world sets (in P(World)). We write P ∗Q for
{
w • w′ w∈P ∧ w′∈Q

}
;369

P ∧Q for P ∩Q; P ∨Q for P ∪Q; false for ∅; and true for P(World). We write p ∗ q for370 {
(l, g)∈World l∈ p∧ g∈q

}
. When clear from the context, we lift p, q, r to sets of worlds371

with arbitrary shared states; e.g. p denotes a set of worlds (l, g), where l∈p and g∈State.372

Error Conditions and Atomic Axioms. CASL uses under-approximate triples [16, 17, 18]373

of the form R,G,Θ ` [p] C [ε :q], where ε ∈ Exit,{ok}]ErExit denotes an exit condition,374

indicating normal (ok) or erroneous execution (ε∈ErExit). Erroneous conditions in ErExit375

are reasoning-specific and are supplied as a parameter, e.g. npe for a null pointer exception.376

We shortly define the under-approximate proof system of CASL. As atoms are a CASL377

parameter, the CASL proof system is accordingly parametrised by their set of under-378

approximate axioms, Axiom ⊆ P(State)×Atom×Exit×P(State), describing how they379

may update states. Concretely, an atomic axiom is a tuple (p,a, ε, q), where p, q∈P(State),380

a∈Atom and ε∈Exit. As we describe shortly, atomic axioms are then lifted to CASL proof381

rules (see Atom and AtomLocal), describing how atomic commands may modify worlds.382
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CASL Triples. A CASL triple R,G,Θ ` [P ] C [ε :Q] states that every world in Q can be383

reached under ε for every witness trace θ∈Θ by executing C on some world in P . Moreover,384

at each step the actions of the current thread (executing C) and its environment adhere to G385

and R, respectively. The R,G are defined as action maps in Fig. 2, mapping each action386

α∈AId to a triple describing its behaviour. Compared to original rely/guarantee relations387

[20, 11], in CASL we record two additional components: 1) the exit condition (ε) indicating388

a normal or erroneous step; and 2) the action id (α) to identify actions uniquely. The latter389

allows us to construct a witness interleaving θ∈Trace as a list of actions (see Fig. 2). As390

discussed in §2, to avoid false positives, if we detect a bug assuming the environment takes391

action α, we must indeed witness the environment taking α. That is, if we detect a bug392

assuming the environment takes α but the environment cannot do so, then the bug is a false393

positive. Recording traces ensures each thread fulfils its assumptions, as we describe shortly.394

Intuitively, each α corresponds to executing an atom that updates a sub-part of the shared395

state. Specifically, G(α)=(p, ε, q) (resp. R(α)=(p, ε, q)) denotes that the current thread396

(resp. an environment thread) may take α and update a shared sub-state in p to one in q397

under ε, and in doing so it extends each trace in Θ with α. Moreover, the current thread398

may take α with G(α)=(p, ε, q) only if it executes an atom a with behaviour (p, ε, q), i.e.399

(p,a, ε, q)∈Axiom, thereby witnessing α. By contrast, this is not required for an environment400

action. As we describe below, this is because each thread witnesses the G actions it takes,401

and thus when combining threads (using the CASL Par rule described below), so long as402

they agree on the interleavings (traces) taken, then the actions recorded have been witnessed.403

Lastly, we require R, G to be well-formed (wf(R,G) in Fig. 2), stipulating that: 1) R404

and G be disjoint, dsj(R,G); and 2) the actions in R be frame-preserving: for all α with405

R(α) = (p,−, q) and all states l, if l is compatible with q (i.e. q ∗ {l} 6= ∅), then l is also406

compatible with p (i.e. p ∗ {l} 6= ∅). Condition (1) allows us to attribute actions uniquely to407

threads (i.e. distinguish between R and G actions). Condition (2) is necessary for the CASL408

Frame rule (see below), ensuring that applying an environment action does not inadvertently409

update the state in such a way that invalidates the resources in the frame. Note that we410

require no such condition on G actions. This is because as discussed, each G action taken is411

witnessed by executing an atom axiomatised in Axiom; axioms in Axiom must in turn be412

frame-preserving to ensure the soundness of CASL. That is, a G action is taken only if it is413

witnessed by an atom which is frame-preserving by definition (see SoundAtoms in [19, §A]).414

CASL Proof Rules. We present the CASL proof rules in Fig. 3, where we assume the415

rely/guarantee relations in triple contexts are well-formed. Skip states that executing skip416

leaves the worlds (P ) unchanged and takes no actions, yielding a single empty trace Θ0 , {[ ]}.417

Seq, SeqEr, Choice, Loop1, Loop2 and BackwardsVariant are analogous to those of IL [16]418

with S : N→ P(World). Note that in Seq, the set of traces resulting from executing C1; C2419

is given by Θ1++Θ2 (defined in Fig. 2) by point-wise combining the traces of C1 and C2.420

Atom describes how executing an atom a affects the shared state: when the local state is421

in p′ and the shared state is in p ∗ f , i.e. a sub-part of the shared state is in p, then executing422

a with (p′ ∗p,a, ε, q′ ∗q)∈Axiom updates the local state from p′ to q′ and the shared sub-part423

from p to q, provided that the effect on the shared state is given by a guarantee action α424

(G(α)=(p, ε, q)). That is, the G action only captures the shared state, and the thread may425

update its local state freely. In doing so, we witness α and record it in the set of traces426

({[α]}). By contrast, AtomLocal states that so long as executing a does not touch the shared427

state, it may update the local state arbitrarily, without recording an action.428

EnvL, EnvR and EnvEr are the Atom counterparts in that they describe how the429

environment may update the shared state. Specifically, EnvL and EnvR state that the430
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Skip
R,G,Θ0 `

[
P
]

skip
[
ok : P

] Seq
R,G,Θ1 `

[
P
]

C1
[
ok : R

]
R,G,Θ2 ` [R] C2 [ε :Q]

R,G,Θ1 ++ Θ2 ` [P ] C1; C2 [ε :Q]

SeqEr
R,G,Θ ` [P ] C1 [er :Q] er ∈ErExit

R,G,Θ ` [P ] C1; C2 [er : Q]

Atom
G(α)=(p, ε, q) (p′ ∗ p,a, ε, q′ ∗ q) ∈ Axiom
R,G, {[α]} `

[
p′ ∗ p ∗ f

]
a
[
ε :q′ ∗ q ∗ f

]
R,G,Θ0

Loop1
`
[
P
]

C?
[
ok : P

] Loop2
R,G,Θ ` [P ] C?; C [ε :Q]
R,G,Θ ` [P ] C? [ε :Q]

AtomLocal
(p,a, ok, q) ∈ Axiom
R,G, {[ ]} `

[
p
]

a
[
ok : q

]
BackwardsVariant
∀k. R,G,Θ`

[
S(k)

]
C
[
ok : S(k+1)

]
∀n>0. Θn=Θ++Θn−1

R,G,Θn `
[
S(0)

]
C
[
ok : S(n)

]
Choice
R,G,Θ` [P ] Ci [ε :Q] for some i∈{1, 2}

R,G,Θ ` [P ] C1 + C2 [ε :Q]

Comb
R,G,Θ1` [P ] C [ε :Q] R,G,Θ2` [P ] C [ε :Q]

R,G,Θ1 ∪Θ2 ` [P ] C [ε :Q]

EnvL
R(α)=(p,ok,r) R,G,Θ`

[
p′∗ r∗f

]
C [ε :Q]

R,G, α :: Θ `
[
p′ ∗ p ∗ f

]
C [ε :Q]

EnvR
R,G,Θ`

[
P
]
C
[
ok :r′∗ r∗f

]
R(α)=(r,ε,q)

R,G,Θ ++ {[α]} ` [P ] C
[
ε :r′∗ q ∗ f

]
EnvEr
R(α) = (p, er , q) er ∈ ErExit
R,G, {[α]} `

[
p ∗ f

]
C
[
er : q ∗ f

] Frame
R,G,Θ` [P ] C [ε :Q] stable(R,R∪G)
R,G,Θ ` [P ∗R] C [ε :Q ∗R]

ParEr
R,G,Θ ` [P ] Ci [er : Q] for some i∈{1, 2}

er ∈ ErExit Θ v G
R,G,Θ ` [P ] C1 ||C2 [er : Q]

Cons
P ′⊆P R′,G′,Θ′`

[
P ′
]

C
[
ε :Q′

]
Q⊆Q′

R4ΘR′ G4ΘG′ Θ⊆Θ′

R,G,Θ ` [P ] C [ε :Q]

Par
R1,G1,Θ1` [P1] C1[ε :Q1] R2,G2,Θ2` [P2] C2[ε :Q2]

R1⊆G2∪R2 R2⊆G1∪R1 dsj(G1,G2) Θ1∩Θ2 6=∅
R1 ∩R2,G1 ∪ G2,Θ1 ∩Θ2 ` [P1 ∗ P2] C1 ||C2 [ε :Q1 ∗Q2]

with Θ v G def⇐⇒ ∀θ∈Θ. θ ⊆ dom(G)
and stable(R,R) def⇐⇒ ∀(l,g)∈R,α. ∀(p,−, q)∈R(α), gq∈q, gp∈p, g′. g=gq ◦ g′⇒ (l, gp ◦ g′)∈R

Figure 3 The CASL proof rules, where R/G relations in contexts are well-formed.

current thread may be interleaved by the environment. Given α ∈ dom(R), the current431

thread may execute C either after or before the environment takes action α, as captured by432

EnvL and EnvR, respectively. In the case of EnvL we further require that α (in dom(R))433

denote a normal (ok) execution step, as otherwise the execution would short-circuit and the434

current thread could not execute C. Note that unlike in Atom, the environment action α in435

EnvL and EnvR only updates the shared state; e.g. in EnvL the p sub-part of the shared436

state is updated to r and the local state p′ is left unchanged. Analogously, EnvEr states437

that executing C may terminate erroneously under er if it is interleaved by an erroneous438

step of the environment under er . That is, if the environment takes an erroneous step, the439
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execution of the current thread is terminated, as per the short-circuiting semantics of errors.440

Note that Atom ensures action α is taken by the current thread (in G) only when the441

thread witnesses it by executing a matching atom. By contrast, in EnvL, EnvR and EnvEr442

we merely assume the environment takes action α in R. As such, each thread locally ensures443

that it takes the guarantee actions in its traces. As shown in Par, when joining the threads444

via parallel composition C1 ||C2, we ensure their sets of traces agree: Θ1 ∩Θ2 6=∅. Moreover,445

to ensure we can attribute each action in traces to a unique thread, we require that G1 and G2446

be disjoint (dsj(G1,G2), see Fig. 2). Finally, when τ1 and τ2 respectively denote the threads447

running C1 and C2, the R1⊆G2∪R2 premise ensures when τ1 attributes an action α to R1448

(i.e. α is in R1), then α is an action of either τ2 (i.e. α is in G2) or its environment (i.e. of a449

thread running concurrently with both τ1 and τ2); similarly for R2⊆G1∪R1.450

Observe that Par can be used for both normal and erroneous triples (i.e. for any ε)451

compositionally. This is in contrast to CISL, where only ok triples can be proved using452

CISL-Par, and thus bugs can be detected only if they can be encoded as ok (see §2). In other453

words, CISL cannot compositionally detect either data-agnostic bugs with short-circuiting454

semantics or data-dependent bugs altogether, while CASL can detect both data-agnostic455

and data-dependent bugs compositionally using Par, without the need to encode them as456

ok. This is because CASL captures the environment in R, enabling compositional reasoning.457

In particular, even when we do not know the program in parallel, so long as its behaviour458

adheres to R, we can detect an error: R,G,Θ` [P ] C [er :Q] ensures the error is reachable as459

long as the environment adheres to R, without knowing the program run in parallel to C.460

ParEr is the concurrent analogue of SeqEr, describing the short-circuiting semantics461

of concurrent executions: given i∈{1, 2}, if running Ci in isolation results in an error, then462

running C1 ||C2 also yields an error. The Θ v G premise (defined in Fig. 3) ensures the463

actions in Θ are from G, i.e. taken by the current thread and not assumed to have been464

taken by the environment. Comb allows us to extend the traces: if the traces in both Θ1 and465

Θ2 witness the execution of C, then the traces in Θ1 ∪Θ2 also witness the execution of C.466

Cons is the CASL rule of consequence. As with under-approximate logics [16, 17, 18],467

the post-worlds Q may shrink (Q ⊆ Q′) and the pre-worlds P may grow (P ′ ⊆ P ). The468

traces may shrink (Θ ⊆ Θ′): if traces in Θ′ witness executing C, then so do the traces in469

the smaller set Θ. Lastly, R 4Θ R′ (resp. G 4Θ G′) defined in Fig. 2 states that the rely470

(resp. guarantee) may grow or shrink so long as it preserves the behaviour of actions in Θ.471

This is in contrast to RG/RGSep where the rely may only shrink and the guarantee may472

only grow. This is because in RG/RGSep one must defensively prove correctness against all473

environment actions at all program points, i.e. for all interleavings. Therefore, if a program474

is correct under a larger environment (with more actions) R′, then it is also correct under a475

smaller environment R. In CASL, however, we show an outcome is reachable under a set of476

witness interleavings Θ. Hence, for traces in Θ to remain valid witnesses, the rely/guarantee477

may grow or shrink, so long as they faithfully reflect the behaviours of the actions in Θ.478

Lastly, Frame states that if we show R,G,Θ` [P ] C [ε :Q], we can also show R,G,Θ`479

[P ∗R]C [ε :Q ∗R], so long as the worlds in R are stable under R,G (stable(R,R∪ G), defined480

in Fig. 3), in that R accounts for possible updates. That is, given (l, g) ∈R and α with481

(p,−, q)∈R(α)∪G(α), if a sub-part gq of the shared g is in q (g=gq ◦ g′ for some gq ∈ q and482

g′), then replacing gq with an arbitrary gp∈p results in a world (i.e. (l, gp ◦ g′)) also in R.483

CASL Soundness. We define the formal interpretation of CASL triples via semantic triples484

of the form R,G,Θ |= [P ] C [ε :Q] (see [19, §A]). We show CASL is sound by showing its485

triples in Fig. 3 induce valid semantics triples. We do this in the theorem below, with its486

proof in [19, §B].487
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ID-VarSecret[
sτ 799K n

]
l: localx :=τ ∗

[
ok : sτ 799K(n+1) ∗ x= top−n ∗ x Z⇒(v, τ, 1)

]
ID-VarArray[
sτ 799Kn∗k>0

]
l: localx[k]:=τ {v}

[
ok :sτ 799K(n+k)∗x= top−(n+k−1)∗∗k−1

j=0 (x+j Z⇒(v,τ,0))∗k>0
]

ID-ReadArray[
k Z⇒(v, τv, b) ∗ y+v Z⇒Vy ∗ x Z⇒−

]
l:x :=τ y[k]

[
ok : k Z⇒(v, τv, b) ∗ y+v Z⇒Vy ∗ x Z⇒Vy

]
ID-SendVal[
c 7→L

]
l: send(c,v)τ

[
ok :c 7→L++[(v,τ,0)]

] ID-Send[
c 7→L∗x Z⇒V

]
l: send(c,x)τ

[
ok :c 7→L++[V ]

]
ID-Recv[
c 7→ [(v,τt,ι)]++L ∗ x Z⇒−∗(ι=0 ∨τ ∈Trust)

]
l: recv(c, x)τ

[
ok :c 7→L ∗ x Z⇒(v,τt,ι)∗(ι=0 ∨τ ∈Trust)

]
ID-RecvEr
[c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust] l: recv(c, x)τ [er : c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust]

Figure 4 The CASLID axioms

I Theorem 2 (Soundness). For all R,G,Θ, p,C, ε, q, if R,G,Θ ` [p] C [ε :q] is derivable488

using the rules in Fig. 3, then R,G,Θ |=[p] C [ε :q] holds.489

4 CASL for Exploit Detection490

We present CASLID, a CASL instance for detecting stack-based information disclosure exploits.491

In the technical appendix [19] we present CASLHID for detecting heap-based information492

disclosure exploits [19, §C] and CASLMS for detecting memory safety attacks [19, §D].493

The CASLID atomics, AtomID, are below, where l∈N is a label, x, y are (local) variables,494

c is a shared channel and v is a value. They include assume statements and primitives495

for generating a random value ∗ (localx :=τ ∗) used to model a secret value (e.g. a private496

key), declaring an array x of size n initialised with v (localx[n] :=τ {v}), array assignment497

l:x[k] :=τ y, sending (send(c, x) and send(c, v)) and receiving (recv(c, x)) over channel c. As498

is standard, we encode if (b) then C1 else C2 as (assume(b); C1) + (assume(¬b); C2).499

AtomID 3 a ::= l: assume(b) | l: localx :=τ ∗ | l: localx[k] :=τ {v} | l:x :=τ y[k]
| l: send(c, x)τ | l: send(c, v)τ | l: recv(c, x)τ

500

CASLID States. A CASLID state, (s, h,h), comprises a variable stack s∈Stack , Var⇀501

Ṽal, mapping variables to instrumented values; a heap h∈Heap , Loc⇀(Ṽal∪List〈Ṽal〉),502

mapping shared locations (e.g. channel c) to (lists of) instrumented values; and a ghost503

heap h∈GHeap , ({s} ×TId)⇀Val, tracking the stack size (s). An instrumented value,504

(v, τ, ι) ∈ Ṽal,Val × TId × {0, 1}, comprises a value (v), its provenance (τ , the thread505

from which v originated), and its secret attribute (ι∈{0, 1}) denoting whether the value is506

secret (1) or not (0). We use x, y as metavariables for local variables, c for shared channels,507

v for values, L for value lists and V for instrumented values. State composition is defined508

as (],],]), where ] denotes disjoint function union. The state unit set is {(∅, ∅, ∅)}. We509

write x Z⇒V for states in which the stack comprises a single variable x mapped on to V and510

the heap and ghost heaps are empty, i.e. {([x 7→ V ], ∅, ∅)}. Similarly, we write c 7→L for511

{(∅, [c 7→L], ∅)}, and sτ 799Kv for {(∅, ∅, [(s, τ) 7→v])}.512
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CASLID Axioms. We present the CASLID atomic axioms in Fig. 4. We assume that each513

variable declaration (via localx :=τ ∗ and localx[n] :=τ {v}) defines a fresh name, and thus514

avoid the need for variable renaming at declaration time. We assume the stack top is given by515

the constant top; thus when the stack of thread τ is of size n (i.e. sτ 799K n), the next empty516

stack spot is at top−n. Executing l: localx :=τ ∗ in ID-VarSecret increments the stack size517

(sτ 799K n+1), reserves the next empty spot for x and initialises x with a value (v) marked518

secret (1) with its provenance (thread τ). Analogously, ID-VarArray describes declaring519

an array of size k, where the next k spots are reserved for x (the ∗ denotes ∗-iteration:520 ∗nj=1(x+j Z⇒V ) , x+1 Z⇒V ∗ · · · ∗ x+n Z⇒V ). When k holds value v, ID-ReadArray reads521

the vth entry of y (at y+v) in x. ID-SendVal extends the content of c with (v, τ, 0). ID-Recv522

describes safe data receipt (not leading to information disclosure), i.e. the value received is523

not secret (ι=0) or the recipient is trusted (τ ∈Trust,TId\{τa}). By contrast, ID-RecvEr524

describes when receiving data leads to information disclosure, i.e. the value received is secret525

and the recipient is untrusted (τ 6∈Trust), in which case the state is unchanged.526

Example: InfDis. In Fig. 5 we present a CASLID proof sketch of the information disclosure527

exploit in InfDis. The proof of the full program is given in Fig. 5a. Starting from Pa ∗Pv with528

a singleton empty trace (Θ0, defined in Fig. 2), we use Par to pass Pa and Pv respectively529

to τa and τv, analyse each thread in isolation, and combine their results (Qa and Qv) into530

Qa ∗Qv, with the two agreeing on the trace set Θ generated. Figures 5b and 5c show the531

proofs of τa and τv, respectively, where we have also defined their pre- and post-conditions.532

All stack variables are local and channel c is the only shared resource. As such, rely/guar-533

antee relations describe how τa and τv transmit data over c: α1 and α2 capture the recv and534

send in τv, while α′1 and α′2 capture the send and recv in τa. Using AtomLocal and CASLID535

axioms, τv executes its first two instructions. It then uses Frame to frame off unneeded536

resources and applies EnvL to account for τa sending (8, τa, 0) over c. Using Atom with537

ID-Recv it receives this value in x. After using Cons to rewrite sec = top ∗ w = top−8538

equivalently to sec=w+8 ∗ w= top−8, it applies AtomLocal with ID-ReadArray to read539

from w[x] (i.e. the secret value at sec=w+8) in z. It then sends this value over c, arriving540

at an error using EnvEr as the value received by the adversary τa is secret. The last line541

then adds on the resources previously framed off. The proof of τa in Fig. 5b is analogous.542

5 Related Work543

Under-Approximate Reasoning. CASL builds on and generalises CISL [18]. As with IL544

[16] and ISL [17], CASL is an instance of under-approximate reasoning. However, IL and ISL545

support only sequential programs and not concurrent ones. Vanegue [22] recently developed546

adversarial logic (AL) as an under-approximate technique for detecting exploits. While we547

model Cv and Ca as Ca ||Cv as with AL, there are several differences between AL and CASL.548

CASL is a general, under-approximate framework that can be 1) used to detect both exploits549

and bugs in concurrent programs, while AL is tailored towards exploits only; 2) instantiated550

for different classes of bugs/exploits, while the model of AL is hard-coded. Moreover, CASL551

borrows ideas from CISL to enable 3) state-local reasoning (only over parts of the state552

accessed), while AL supports global reasoning only (over the entire state); and 4) thread-local553

reasoning (analysing each thread in isolation), while AL accounts for all threads.554

Automated Exploit Generation. Determining the exploitability of bugs is central to555

prioritising fixes at large scale. Automated exploit generation (AEG) tools craft an exploit556

based on predetermined heuristics and preconditioned symbolic execution of unsafe binary557

programs [2, 5]. Additional improvements use random walk techniques to exploit heap buffer558
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Rv(α′1) , (c 7→ [], ok, c 7→ [(n, τa, 0)]) Rv(α′2) , (c 7→ [(v, τ, 1)], ok, c 7→ []) Ra , Gv Ga , Rv
Gv(α1) , (c 7→ [(n, τa, 0)], ok, c 7→ []) Gv(α2) , (c 7→ [], ok, c 7→(v, τ, 1)) Θ , {[α′1, α1, α2, α

′
2]}

∅,Ga ∪ Gv,Θ0 ` [Pa ∗ Pv] //Par

Ra,Ga,Θ0 ` [Pa]
l′1: send(c, 8)τa

l′2: recv(c, y)τa

Ra,Ga,Θ ` [er : Qa]

Rv,Gv,Θ0 ` [Pv]
l1: local sec :=τv ∗
l2: localw[8] :=τv{v}
l3: recv(c, x)τv

l4: z :=τv w[x]
l5: send(c, z)τv
Rv,Gv,Θ ` [er : Qv]

∅,Ga ∪ Gv,Θ ` [er : Qa ∗Qv]

(a)

Ra,Ga,Θ0 `
[
Pa , c 7→ [] ∗ τa 6∈Trust

]
l′1: send(c, 8)τa //Atom + ID-SendVal
Ra,Ga, {[α′1]}`

[
ok: c 7→ [(8, τa, 0)] ∗ τa 6∈Trust

]
//EnvL× 2
Ra,Ga,{[α′1, α1, α2]}`

[
ok: c 7→[(v, τv, 1)]∗τa6∈Trust

]
l′2: recv(c, t)τa //Atom + ID-RecvEr
Ra,Ga,Θ `

[
er : Qa , c 7→[(v, τv, 1)] ∗ τa 6∈Trust

]
(b)

Rv,Gv,
Θ0`

[
P , sτv 799K 0 ∗ x Z⇒− ∗ z Z⇒− ∗ c 7→ []

]
l1: local sec :=τv ∗ //AtomLocal+ID-VarSecret

Θ0`
[
ok: sτv 799K1 ∗ x Z⇒− ∗ z Z⇒− ∗ c 7→ [] ∗ sec=top ∗ sec Z⇒(vs, τv, 1)

]
l2: localw[8] :=τv {v}; //AtomLocal + ID-VarArray

Θ0`
[
ok: sτv 799K9∗ x Z⇒−∗z Z⇒−∗ c 7→ [] ∗sec=top∗sec Z⇒(vs,τv,1)∗ w=top−8∗∗7

j=0(w+j Z⇒(v,τv))
]

//Frame
Θ0`

[
ok:x Z⇒−∗ z Z⇒−∗ c 7→ [] ∗ sec=top∗ sec Z⇒(vs, τv, 1)∗ w=top−8

]
//EnvL

{[α′1]}`
[
ok:x Z⇒−∗ z Z⇒−∗ c 7→ [(8,τa,0)] ∗ sec=top∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
l3: recv(c, x)τv ; // (Atom + ID-Recv)

{[α′1, α1]}`
[
ok:x Z⇒(8,τa,0)∗ z Z⇒−∗ c 7→ [] ∗ sec=top∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
//Cons

{[α′1, α1]}`
[
ok:x Z⇒(8,τa,0)∗ z Z⇒−∗ c 7→ [] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
if (x ≤ 8) l4: z :=τv w[x] //AtomLocal+ID-ReadArray

{[α′1, α1]}`
[
ok:x Z⇒(8,τa,0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
l5: send(c, z)τv //Atom+ID-Send

{[α′1,α1,α2]}`
[
ok:x Z⇒(8,τa,0)∗z Z⇒(vs,τv,1)∗ c 7→[(vs,τv,1)]∗sec=w+8∗sec Z⇒(vs,τv,1)∗w=top−8

]
//EnvEr
Θ`
[
er : x Z⇒(8,τa,0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [(vs, τv, 1)] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
Θ`

[
er :Qv, sτv 799K 9∗ x Z⇒(8, τa, 0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [(vs, τv, 1)] ∗ sec=w+8∗ sec Z⇒(vs, τv, 1)

∗w=top−8 ∗∗7
j=0(w+j Z⇒(v, τv))

]
(c)

Figure 5 Proofs of InfDis (a), its adversary (b) and vulnerable (c) programs

overflow vulnerabilities reachable from known bugs [9, 1, 10]. Exploits for use-after-free559

vulnerabilities [23] and unsafe memory write primitives [6] have also been partially automated.560

As with CASL, AEG tools are fundamentally under-approximate and may not find all561

attacks. Assumptions made by AEG tools are hard-coded in their implementation, in contrast562

to CASL which can be instantiated for new classes of vulnerabilities without redesigning the563

core logic from scratch. Finally, traditional AEG tools have no notion of locality and require564

global reasoning, making existing tools unable to cope with the path explosion problem and565

large targets without compromising coverage. By contrast, CASL mostly acts on local states,566

making it more suitable for large-scale exploit detection than current tools.567
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a a−→ skip

C1
l−→ C′1

C1; C2
l−→ C′1; C2 skip; C id−→ C

i ∈ {1, 2}

C1 + C2
id−→ Ci C? id−→ skip C? id−→ C; C?

C1
l−→ C′1

C1 ||C2
l−→ C′1 ||C2

C2
l−→ C′2

C1 ||C2
l−→ C1 ||C′2 skip ||C id−→ C C || skip id−→ C

skip,m 0=⇒ ok,m

er ∈ ErExit C l−→ C′ (m,m′) ∈ JlKer

C,m 1=⇒ er ,m′

C l−→ C′ (m,m′′) ∈ JlKok
C′,m′′ n=⇒ ε,m′

C,m n+1==⇒ ε,m′

Figure 6 The CASL control flow transitions (above); the CASL operational semantics (below)

A The CASL Operational Semantics and Semantic Triples631

CASL Machine States and Operational Semantics. The states in State (Def. 1)632

denote a high-level representation of the program state, while the low-level representation of633

the memory is given by machine states, MState, also supplied as a CASL parameter. As634

atomic commands (Atom) are a CASL parameter, we also parametrise their semantics given635

as machine state transformers: we assume an atomic semantics function J.KA : Atom →636

Exit→ P(MState×MState).637

As in CISL, we formulate the CASL operational semantics by separating its control638

flow transitions (describing the sequential execution steps in each thread) from its state-639

transforming transitions (describing how the underlying machine states determine the overall640

execution of a (concurrent) program). The CASL control flow transitions at the top of641

Fig. 6 are of the form C l−→ C′, where l ∈ Lab , Atom ] {id} denotes the transition label,642

which may be either id for silent transitions (no-ops), or a∈Atom for executing an atomic643

command a. The state-transforming function, J.K : Lab→ Exit→ P(MState×MState),644

is an extension of J.KA, where given a transition label l, the JlKε is defined as 1) JlKAε when645

l ∈ Atom; 2) {(m,m) | m ∈ MState} when l=id and ε=ok; and 3) ∅ when l=id and646

ε ∈ ErExit. That is, atomic transitions transform the state as per their semantics, while647

no-op transitions (id) always execute normally and leave the state unchanged.648

The CASL state-transforming transitions are given at the bottom of Fig. 6 and are of the649

form C,m n=⇒ ε,m′, stating that starting from machine state m, program C terminates after n650

steps in machine state m′ under ε . The first transition states that skip trivially terminates651

(after zero steps) successfully (under ok) and leaves the underlying state unchanged. The652

second transition states that starting from m, program C terminates erroneously (with653

er ∈ ErExit) after one step in m′ if it takes an erroneous step. The last transition states654

that if C takes one normal (ok) step transforming m to m′′, and the resulting program C′′655

subsequently terminates after n steps with ε transforming m′′ to m′, then the overall program656

terminates after n+1 steps with ε transforming m to m′.657

We define the notion of world erasure, b.c : World → P(MState), relating a CASL658

world (l, g) to a set of machine states, by first composing l and g together into the state l ◦ g,659

and then erasing the resulting state via the state erasure function b.cS.660

I Definition 3 (World erasure). The world erasure function, b.c : World→ P(MState),661

is defined as: bwc , bTwUcS with T(l, g)U , l ◦ g.662

In order to account for local atomic executions in AtomLocal, we introduce the notion663

of instrumented traces. An instrumented trace is a sequence of AId ∪ {L}, where each entry664
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is either 1) an action α ∈ AId, denoting the execution of an action (in rely or guarantee)665

that changes the underlying shared state; or 2) the token L, denoting a local execution that666

leaves the shared state unchanged.667

I Definition 4 (Instrumented traces). The set of instrumented traces is δ ∈ ITrace ,668

List〈AId ∪ {L}〉. The trace erasure, b.c : ITrace→ Trace, is defined as follows:669

b[ ]c , [ ] bα :: δc , α :: bδc bL :: δc , bδc670

Notation. Given a world w = (l, g), we write wL and wG for l and g, respectively.671

To show CASL is sound we must show that its (syntactic) triples in Fig. 3 induce valid672

semantics triples: if R,G,Θ ` [P ] C [ε :Q] is derivable using the rules in Fig. 3, then673

R,G,Θ |= [P ] C [ε :Q] holds, as defined below. Note that we must also show this for the674

atomic axioms (Axiom) as they are lifted to CASL rules via Atom and AtomLocal. As atomic675

axioms are a CASL parameter, we thus require that they (1) induce valid semantic triples;676

and (2) preserve all ∗-compatible states. Condition (1) ensures that Atom/AtomLocal induce677

valid semantic triples; concretely, (p,a, ε, q) induces a valid semantic triple iff every machine678

state mq∈bqcS is reachable under ε by executing a on some mp∈bpcS, i.e. (mp,mq)∈JaKAε.679

Condition (2) ensures that atomic commands of one thread preserve the states of concurrent680

threads in the environment and is necessary for the soundness of Frame. Putting the two681

together, we assume atomic soundness (a CASL parameter) as follows:682

∀(p,a, ε, q)∈Axiom, l. ∀mq∈bq ∗ {l}cS. ∃mp∈bp ∗ {l}cS. (mp,mq)∈JaKAε

(SoundAtoms)
683

684

Semantic CASL Triples. We next present the formal interpretation of CASL triples.685

Recall that a semantic CASL triple R,G,Θ |= [P ] C [ε :Q] states that every world in q can686

be reached in n steps (for some n) under ε for every trace θ∈Θ by executing C on some world687

in P , with the actions of the current thread (executing C) and its environment adhering to688

G and R, respectively. Put formally: R,G,Θ |= [P ] C [ε :Q] def⇐⇒ ∀θ ∈ Θ. R,G, θ |= [P ] C689

[ε :Q], where690

R,G, θ |= [P ] C [ε :Q] def⇐⇒ ∃δ. bδc=θ ∧ ∀wq∈Q. ∃n. reachn(R,G, θ, P,C, ε, wq)691

with:692

reachn(R,G, θ, P,C, ε, w) def⇐⇒ ∃k, δ′, α, p, q, r, R,a,C′.
n=0 ∧ δ=[ ] ∧ ε=ok ∧ C id−→∗skip ∧ w ∈ P
∨n=1 ∧ ε∈ErExit ∧ δ=[α] ∧R(α)=(p, ε, q) ∧ rely(p, q, P, {w})
∨n=1 ∧ ε∈ErExit ∧ δ=[α] ∧ G(α)=(p, ε, q) ∧ guar(p, q, P, {w},C,C′,a, ε)
∨n=k+1 ∧ δ=[α] ++ δ′∧R(α)=(p, ok, r) ∧ rely(p, r, P,R) ∧ reachk(R,G, δ′, R,C, ε, w)
∨n=k+1 ∧ δ=[α] ++ δ′∧ G(α)=(p, ok, r) ∧ guar(p, r, P,R,C,C′,a, ok) ∧ reachk(R,G, δ′, R,C′, ε, w)
∨n=k+1 ∧ δ=[L] ++ δ′∧ C, P a

 L C′, R, ok ∧ reachk(R,G, δ′, R,C′, ε, w)

693

and694

rely(p, q, P,Q) def⇐⇒∀w∈Q.∃gq∈q.wG=gq ◦ − ∧ ∀gq∈q, (l, gq ◦ g)∈Q.∅⊂
{

(l, gp ◦ g) gp∈p
}
⊆P

guar(p, q, P,Q,C,C′,a, ε) def⇐⇒∀wq∈Q. ∃gq∈q, gp∈p, wp∈P, g. wG
p=gp ◦ g ∧ wG

q=gq ◦ g ∧ C, wp
a
 C′, wq, ε

695

696

C, wp
a
 C′, wq, ε

def⇐⇒ C id−→∗ a−→ C′∧ ∀l. ∀mq∈bTwqU ◦ lc. ∃mp∈bTwpU ◦ lc. (mp,mq)∈JaKε
C, wp

a
 L C′, wq, ε

def⇐⇒ C, wp
a
 C′, wq, ε ∧ wG

p=wG
q

C, P a
 L C′, Q, ε def⇐⇒ ∀wq∈Q. ∃wp∈P. C, wp

a
 L C′, wq, ε

697
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The first disjunct in reach simply states that any world (l, g) ∈ P can be simply reached698

under ok in zero steps with an empty trace [ ], provided that C simply reduces to skip silently,699

i.e. without executing any atomic steps (C id−→∗skip). The next two disjuncts capture the700

short-circuit semantics of errors (ε∈ErExit). Specifically, the second disjunct states that701

mq can be reached in one step under error ε when the environment executes a corresponding702

action α, i.e. when R(α)=(p, ε, q), mq∈bqc and bpc ⊆ P ; the trace of such execution is then703

given by [α]. Similarly, the third disjunct states that mq can be reached in one step under ε704

when the current thread executes a corresponding action α (G(α)=(p, ε, q)). Moreover, the705

current thread must fulfil the specification (p, ε, q) of α by executing an atomic instruction706

a: C may take several silent steps reducing C to C′ (C id−→∗C′) and subsequently execute707

a, reducing p to q under ε (C′, p a
 −, q, ε). The latter ensures that C′ can be reduced by708

executing a (C′ a−→ −) and all states in q are reachable under ε from some state in p by709

executing a: ∀mq ∈ bqc. ∃mp ∈ bpc. (mp,mq) ∈ JaKε. Analogously, the last two disjuncts710

capture the inductive cases (n=k+1) where either the environment (penultimate disjunct) or711

the current thread (last disjunct) take an ok step, and mq is subsequently reached in k steps712

under ε.713
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B CASL Soundness714

We introduce the following additional rules and later in Theorem 23 show that they are
sound:

SkipEnv
R(α) = (p, ε, q) wf(R,G)

R,G, {[α]} `
[
p ∗ f

]
skip

[
ε : q ∗ f

] EndSkip
R,G,Θ ` [P ] C [ε :Q]

R,G,Θ ` [P ] C; skip [ε :Q]

In the following, whenever we write reach(.)(R,G, ., ., ., ., .), we assume wf(R,G) holds.715

I Lemma 5. For all R,G, w, P,C, if w∈P and C id−→∗skip, then reach0(R,G, [ ], P,C, ok, w)716

holds.717

Proof. Follows immediately from the definition of reach0. J718

I Corollary 6. For all R,G, w, P , if w∈P , then reach0(R,G, [ ], P, skip, ok, w) holds.719

Proof. Follows immediately from Lemma 5 and since skip id−→∗skip. J720

I Lemma 7. For all n,R,G, δ, P, w,C, ε, if reachn(R,G, δ, P,C, ε, w) then P 6= ∅.721

Proof. By induction on n.722

723

Case n=0724

Pick arbitrary R,G, δ, P, w,C, ε such that reach0(R,G, δ, P,C, ε, w). From the definition of725

reach0 we then have w ∈ P and thus P 6= ∅, as required.726

727

Case n=1, ε ∈ ErExit728

Pick arbitrary R,G, δ, P, w,C, ε such that reachn(R,G, δ, P,C, ε, w). We then know that there729

exists α, p, q,a,C′ such that either:730

1) δ = [α], R(α) = (p, ε, q), rely(p, q, P, {w}); or731

2) δ = [α], G(α)=(p, ε, q), guar(p, q, P, {w},C,C′,a, ε).732

In case (1), from the definition of rely(p, q, P, {w}) we know there exists gq ∈ q, l, g such733

that w = (l, gq ◦ g) and ∅ ⊂
{

(l, gp ◦ g) gp ∈ p
}
⊆ P , i.e. P 6= ∅, as required.734

735

In case (2), from the definition of guar(p, q, P, {w},C,C′,a, ε) we know there exists gq ∈ q,736

gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG = gq ◦ g and C, wp

a
 C′, w, ok. That is,737

since wp ∈ P , we have P 6= ∅, as required.738

739

Case n=k+1740

∀R,G, δ, P, w,C, ε. reachk(R,G, δ, P,C, ε, w) ⇒ P 6= ∅ (I.H)741742

Pick arbitrary R,G, δ, P, w,C, ε such that reachn(R,G, δ, P,C, ε, w).743

From reachn(R,G, δ, P,C, ε, w) we then know that there exist α, δ′, p, r,C′,a, R such that744

either:745

1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P,R) and reachk(R,G, δ′, R,C, ε, w); or746

2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P,R,C,C′,a, ok), reachk(R,G, δ′, R,C′, ε, w); or747

3) δ=[L] ++ δ′, reachk(R,G, δ′, R,C′, ε, w) and C, P a
 L C′, R, ok.748

In case (1), from reachk(R,G, δ′, R,C, ε, w) and I.H we know R 6= ∅. Thus let us pick an749

arbitrary wr ∈ R. From the definition of rely(p, r, P,R) we know there exists gr ∈ r, l, g such750

that wr = (l, gr ◦ g) and ∅ ⊂
{

(l, gp ◦ g) gp ∈ p
}
⊆ P , i.e. P 6= ∅, as required.751
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In case (2), from reachk(R,G, δ′, R,C′, ε, w) and I.H we know R 6= ∅. Thus let us pick an752

arbitrary wr ∈ R. From the definition of guar(p, q, P,R,C,C′,a, ok) we know there exists753

gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

r = gr ◦ g and C, wp
a
 C′, wr, ok. That754

is, since wp ∈ P , we have P 6= ∅, as required.755

In case (3), from reachk(R,G, δ′, R,C′, ε, w) and I.H we know R 6= ∅. Thus let us pick756

an arbitrary wr ∈ R. From C, P a
 L C′, R, ok, we know there exists wp ∈ P such that757

C, wp
a
 L C′, wr, ok. That is, since wp ∈ P , we have P 6= ∅, as required. J758

I Lemma 8. For all n,R,G, δ, P,C1,C2, ε, wq, if ε ∈ ErExit and reachn(R,G, δ, P,C1, ε,759

wq), then reachn(R,G, δ, P,C1; C2, ε, wq).760

Proof. We proceed by induction on n.761

762

Case n = 1, ε ∈ ErExit763

We then know that there exists α, p, q,a,C′1 such that either:764

1) δ = [α], R(α) = (p, ε, q), rely(p, q, P, {wq}); or765

2) δ = [α], G(α)=(p, ε, q), guar(p, q, P, {wq},C1,C′1,a, ε).766

In case (1), from the definition of reach we have reach1(R,G, [α], P,C1; C2, ε, wq), as767

required.768

In case (2), from guar(p, q, P, {wq},C1,C′1,a, ε) we know there exists gq ∈ q, gp ∈ p, g769

and wp ∈ P such that wG
p = gp ◦ g, wG

q = gq ◦ g and C1, wp
a
 C′1, wq, ε. As such,770

from C1, wp
a
 C′1, wq, ε, the definition of a

 and control flow transitions we also have771

C1; C2, wp
a
 C′1; C2, wq, ε. Consequently, by definition we also have guar(p, q, P, {wq},C1; C2,772

C′1; C2,a, ε), and thus from the definition of reach we also have reach1(R,G, [α], P,C1; C2, ε,773

wq), as required.774

775

Case n = k+1776

∀R,G, δ, P,C1,C2, ε, wq.

ε ∈ ErExit ∧ reachk(R,G, δ, P,C1, ε, wq)⇒ reachk(R,G, δ, P,C1; C2, ε, wq)
(I.H)777

778

We then know that there exist α, δ′, p, r,C′1,a, R such that either:779

1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P,R) and reachk(R,G, δ′, R,C1, ε, wq); or780

2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P,R,C1,C′1,a, ok), reachk(R,G, δ′, R,C′1, ε, wq); or781

3) δ=[L] ++ δ′, reachk(R,G, δ′, R,C′1, ε, wq) and C1, P
a
 L C′1, R, ok.782

In case (1), from reachk(R,G, δ′, R,C1, ε, wq) and (I.H) we have reachk(R,G, δ′, R,C1; C2,783

ε, wq). Consequently, as δ=[α] ++ δ′, R(α)=(p, ok, r) and rely(p, r, P,R), by definition of784

reach we also have reachn(R,G, δ, P,C1; C2, ε, wq), as required.785

In case (2), from reachk(R,G, δ′, R,C′1, ε, wq) and (I.H) we have reachk(R,G, δ′, R,C′1; C2,786

ε, wq). Pick an arbitrary wr ∈ R. From guar(p, r, P,R,C1,C′1,a, ok) we know there exists787

gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

r = gr ◦ g and C1, wp
a
 C′1, wr, ok. As788

such, from the definition of a
 and the control flow transitions we also have C1; C2, wp

a
 789

C′1; C2, wr, ok, and thus from the definition of guar we also have guar(p, r, P,R,C1; C2,C′1; C2,790

a, ok). Consequently, as δ=[α] ++ δ′, G(α)=(p, ok, r) and guar(p, r, P,R,C1; C2,C′1; C2,a, ok),791

from the definition of reach we also have reachn(R,G, δ, P,C1; C2, ε, wq), as required.792

In case (3), from reachk(R,G, δ′, R,C′1, ε, wq) and (I.H) we have reachk(R,G, δ′, R,C′1; C2,793

ε, wq). Moreover, from reachk(R,G, δ′, R,C′1, ε, wq) and Lemma 7 we know R 6= ∅. As794

such, from C1, P
a
 L C′1, R, ok, we know C1

id−→ ∗ a−→ C′1 and thus from the control flow795

transitions (Fig. 6) we know C1; C2
id−→∗ a−→ C′1; C2. Therefore, from C1, P

a
 L C′1, R, ok we796

also have C1; C2, P
a
 L C′1; C2, R, ok. Consequently, from reachk(R,G, δ′, R,C′1; C2, ε, wq),797
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C1; C2, P
a
 L C′1; C2, R, ok, δ=[L] ++ δ′ and the definition of reach we also have reachn(R,G,798

δ, P,C1; C2, ε, wq), as required. J799

I Lemma 9. For all n,R,G, δ, P,C1,C2, ε, wq, if ε ∈ ErExit, bδc ⊆ dom(G) and reachn(R,800

G, δ, P,C1, ε, wq), then reachn(R,G, δ, P,C1 ||C2, ε, wq).801

Proof. We proceed by induction on n.802

803

Case n = 1804

As ε ∈ ErExit and bδc ⊆ dom(G), we then know that there exists α, p, q,a,C′1 such that805

δ = [α], G(α)=(p, ε, q) and guar(p, q, P, {wq},C1,C′1,a, ε). From guar(p, q, P, {wq},C1,C′1,a,806

ε) we know there exists gq ∈ q, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

q = gq ◦ g807

and C1, wp
a
 C′1, wq, ε. As such, from C1, wp

a
 C′1, wq, ε, the definition of a

 and control808

flow transitions we also have C1 ||C2, wp
a
 C′1 ||C2, wq, ε. Consequently, by definition we also809

have guar(p, q, P, {wq},C1 ||C2,C′1 ||C2,a, ε), and thus from the definition of reach we also810

have reach1(R,G, [α], P,C1 ||C2, ε, wq), as required.811

812

Case n = k+1813

∀R,G, δ, P,C1,C2, ε, wq.

ε ∈ ErExit ∧ reachk(R,G, δ, P,C1, ε, wq)⇒ reachk(R,G, δ, P,C1; C2, ε, wq)
(I.H)814

815

As bδc ⊆ dom(G), we then know that there exist α, δ′, p, r,C′1,a, R such that either:816

1) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P,R,C1,C′1,a, ok), reachk(R,G, δ′, R,C′1, ε, wq); or817

2) δ=[L] ++ δ′, reachk(R,G, δ′, R,C′1, ε, wq) and C1, P
a
 L C′1, R, ok.818

In case (1), from reachk(R,G, δ′, R,C′1, ε, wq) and (I.H) we have reachk(R,G, δ′, R,C′1 ||C2,819

ε, wq). Pick an arbitrary wr ∈ R. From guar(p, r, P,R,C1,C′1,a, ok) we know there ex-820

ists gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

r = gr ◦ g and C1, wp
a
 821

C′1, wr, ok. As such, from the definition of a
 and the control flow transitions we also have822

C1 ||C2, wp
a
 C′1 ||C2, wr, ok, and thus from the definition of guar we also have guar(p, r,823

P,R,C1 ||C2,C′1 ||C2,a, ok). Consequently, as δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P,R,824

C1 ||C2,C′1; C2,a, ok) and reachk(R,G, δ′, R,C′1 ||C2, ε, wq), from the definition of reach we825

also have reachn(R,G, δ, P,C1 ||C2, ε, wq), as required.826

In case (2), from reachk(R,G, δ′, R,C′1, ε, wq) and (I.H) we have reachk(R,G, δ′, R,C′1 ||C2,827

ε, wq). Moreover, from reachk(R,G, δ′, R,C′1, ε, wq) and Lemma 7 we know R 6= ∅. As828

such, from C1, P
a
 L C′1, R, ok, we know C1

id−→ ∗ a−→ C′1 and thus from the control flow829

transitions (Fig. 6) we know C1 ||C2
id−→∗ a−→ C′1 ||C2. Therefore, from C1, P

a
 L C′1, R, ok we830

also have C1 ||C2, P
a
 L C′1 ||C2, R, ok. Consequently, from reachk(R,G, δ′, R,C′1 ||C2, ε, wq),831

C1 ||C2, P
a
 L C′1 ||C2, R, ok, δ=[L] ++ δ′ and the definition of reach we have reachn(R,G, δ,832

P,C1 ||C2, ε, wq), as required. J833

I Lemma 10. For all n,R,G, δ, P,C1,C2, ε, wq, if ε ∈ ErExit, bδc ⊆ dom(G) and reachn(R,834

G, δ, P,C2, ε, wq), then reachn(R,G, δ, P,C1 ||C2, ε, wq).835

Proof. The proof is analogous to the proof of Lemma 9 and is omitted. J836

I Lemma 11. For all n,R,G, δ, P, wq,C1,C2, ε, if reachn(R,G, δ, P,C2, ε, wq) and C1
id−→∗C2,837

then reachn(R,G, δ, P,C1, ε, wq).838

Proof. By induction on n.839

840
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Case n=0841

Pick arbitrary R,G, δ, P, wq,C1,C2, ε such that reach0(R,G, δ, P,C2, ε, wq) and C1
id−→ ∗C2.842

From the definition of reach0 we then know δ=[ ], ε=ok, C2
id−→∗skip and wq ∈ P . We thus843

have C1
id−→∗C2

id−→∗skip, i.e. C1
id−→∗skip. Consequently, as δ=[ ], ε=ok and wq ∈ P , we also844

have reach0(R,G, δ, P,C1, ε, wq), as required.845

846

Case n=1, ε ∈ ErExit847

Pick arbitrary R,G, δ, P, wq,C1,C2, ε such that reachn(R,G, δ, P,C2, ε, wq) and C1
id−→∗C2. We848

then know that there exists α, p, q,a,C′2 such that either:849

1) δ = [α], R(α) = (p, ε, q), rely(p, q, P, {wq}); or850

2) δ = [α], G(α)=(p, ε, q), guar(p, q, P, {wq},C2,C′2,a, ε).851

In case (1), from the definition of reach we also have reach1(R,G, δ, P,C1, ε, wq), as852

required.853

In case (2), from guar(p, q, P, {wq},C2,C′2,a, ε) we know there exists gq∈q, gp∈p, g and854

wp∈P such that wG
p=gp ◦ g, wG

q =gq ◦ g and C2, wp
a
 C′2, wq, ok. As such, from the definition855

of a
 , the control flow transitions and C1

id−→∗C2 we have C1, wp
a
 C′2, wq, ok, and thus856

from the definition of guar we have guar(p, q, P, {wq},C1,C′2,a, ε). Consequently, as δ=[α],857

G(α)=(p, ok, q) and guar(p, r, P, {wq},C1,C′2,a, ε), from the definition of reach we also have858

reach1(R,G, δ, P,C1, ε, wq), as required.859

860

Case n=k+1861

∀R,G, δ, P, wq,C1,C2, ε. reachk(R,G, δ, P,C2, ε, wq) ∧ C1
id−→∗C2 ⇒ reachk(R,G, δ, P,C1, ε, wq)

(I.H)
862

863

Pick arbitrary R,G, δ, P, wq,C1,C2, ε such that reachn(R,G, δ, P,C2, ε, wq) and C1
id−→∗C2.864

From reachn(R,G, δ, P,C2, ε, wq) we then know that there exist α, δ′, p, r,C′2,a, R such865

that either:866

1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P,R) and reachk(R,G, δ′, R,C2, ε, wq); or867

2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P,R,C2,C′2,a, ok), reachk(R,G, δ′, R,C′2, ε, wq); or868

3) δ=[L] ++ δ′, reachk(R,G, δ′, R,C′2, ε, wq) and C2, P
a
 L C′2, R, ok.869

In case (1), from reachk(R,G, δ′, R,C2, ε, wq) and (I.H) we have reachk(R,G, δ′, R,C1, ε,870

wq). Consequently, as δ=[α] ++ δ′, R(α)=(p, ok, r) and rely(p, r, P,R), by definition of reach871

we have reachn(R,G, δ, P,C1, ε, wq), as required.872

In case (2), pick an arbitrary wr ∈ R. From guar(p, r, P,R,C2,C′2,a, ok) we know there873

exists gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp◦g, wG

r = gr ◦g and C2, wp
a
 C′2, wr, ok.874

As such, from the definition of a
 , the control flow transitions and since C1

id−→∗C2, we also875

have C1, wp
a
 C′2, wr, ok, and thus from the definition of guar we also have guar(p, r, P,R,C1,876

C′2,a, ok). Consequently, as δ=[α] ++ δ′, G(α)=(p, ok, r), reachk(R,G, δ′, R,C′2, ε, wq) and877

guar(p, r, P,R,C1,C′2,a, ok), from the definition of reach we also have reachn(R,G, δ, P,C1, ε,878

wq), as required.879

In case (3), from reachk(R,G, δ′, R,C′2, ε, wq) we know R 6= ∅ and thus from C2, P
a
 L880

C′2, R, ok, we know C2
id−→∗ a−→ C′2 and thus from the control flow transitions (Fig. 6) and since881

C1
id−→∗C2, we know C1

id−→∗ a−→ C′2. As such, from C2, P
a
 L C′2, R, ok we also have C1, P

a
 L882

C′2, R, ok. Consequently, from δ=[L] ++ δ′, reachk(R,G, δ′, R,C′2, ε, wq), C1, P
a
 L C′2, R, ok883

and the definition of reach we also have reachn(R,G, δ, P,C1, ε, wq), as required. J884

I Lemma 12. for all n,R,G, P, δ, ε,C1, if reachn(R,G, δ, P,C1, ε, w) and C2
id−→∗skip, then885

reachn(R,G, δ, P,C1; C2, ε, w).886
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Proof. By induction on n.887

888

Case n=0889

Pick arbitrary R,G, δ, P, wq,C1,C2, ε such that reach0(R,G, δ, P,C1, ε, wq) and C2
id−→∗skip.890

From the definition of reach0 we then know δ=[ ], ε=ok, C1
id−→∗skip and wq ∈ P . We thus891

have C1; C2
id−→∗skip; C2

id−→∗C2
id−→∗skip, i.e. C1; C2

id−→∗skip. Consequently, as δ=[ ], ε=ok and892

wq ∈ P , we also have reach0(R,G, δ, P,C1; C2, ε, wq), as required.893

894

Case n=1, ε ∈ ErExit895

Pick arbitrary R,G, δ, P, wq,C1,C2,C′1, ε such that reachn(R,G, δ, P,C1, ε, wq) and C2
id−→∗C2.896

We then know that there exists α, p, q,a,C′2 such that either:897

1) δ = [α], R(α) = (p, ε, q), rely(p, q, P, {wq}); or898

2) δ = [α], G(α)=(p, ε, q), guar(p, q, P, {wq},C1,C′1,a, ε).899

In case (1), from the definition of reach we also have reach1(R,G, δ, P,C1; C2, ε, wq), as900

required.901

In case (2), from guar(p, q, P, {wq},C1,C′1,a, ε) we know there exists gq ∈ q, gp ∈ p, g and902

wp ∈ P such that wG
p = gp ◦ g, wG

q = gq ◦ g and C1, wp
a
 C′1, wq, ok. As such, from the903

definition of a
 and the control flow transitions we also have C1; C2, wp

a
 C′1; C2, wq, ok, and904

thus from the definition of guar we also guar(p, q, P, {wq},C1; C2,C′1; C2,a, ε). Consequently,905

as δ=[α], G(α)=(p, ok, q) and guar(p, r, P, {wq},C1; C2,C′1; C2,a, ε), from the definition of906

reach we also have reach1(R,G, δ, P,C1; C2, ε, wq), as required.907

908

Case n=k+1909

∀R,G, δ, P, wq,C1,C2, ε. reachk(R,G, δ, P,C1, ε, wq) ∧ C2
id−→∗skip⇒ reachk(R,G, δ, P,C1; C2, ε, wq)

(I.H)
910

911

Pick arbitrary R,G, δ, P, wq,C1,C2, ε such that reachn(R,G, δ, P,C1, ε, wq) and C2
id−→∗skip.912

From reachn(R,G, δ, P,C1, ε, wq) we then know that there exist α, δ′, p, r,C′1,a, R such913

that either:914

1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P,R) and reachk(R,G, δ′, R,C1, ε, wq); or915

2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P,R,C1,C′1,a, ok), reachk(R,G, δ′, R,C′1, ε, wq); or916

3) δ=[L] ++ δ′, reachk(R,G, δ′, R,C′1, ε, wq) and C1, P
a
 L C′1, R, ok.917

In case (1), from reachk(R,G, δ′, R,C1, ε, wq) and (I.H) we have reachk(R,G, δ′, R,C1; C2,918

ε, wq). Consequently, as δ=[α] ++ δ′, R(α)=(p, ok, r) and rely(p, r, P,R), by definition of919

reach we have reachn(R,G, δ, P,C1; C2, ε, wq), as required.920

In case (2), from reachk(R,G, δ′, R,C′1, ε, wq) and (I.H) we have reachk(R,G, δ′, R,C′1; C2,921

ε, wq). Pick an arbitrary wr ∈ R. From guar(p, r, P,R,C1,C′1,a, ok) we know there exists922

gr ∈ r, gp ∈ p, g and wp ∈ P such that wG
p = gp ◦ g, wG

r = gr ◦ g and C1, wp
a
 C′1, wr, ok. As923

such, from the definition of a
 and the control flow transitions we also have C1; C2, wp

a
 924

C′1; C2, wr, ok, and thus from the definition of guar we also have guar(p, r, P,R,C1; C2,C′1; C2,925

a, ok). Consequently, as δ=[α] ++ δ′, G(α)=(p, ok, r), reachk(R,G, δ′, R,C′1; C2, ε, wq) and926

guar(p, r, P,R,C1; C2,C′1; C2,a, ok), from the definition of reach we also have reachn(R,G, δ,927

P,C1; C2, ε, wq), as required.928

In case (3), from reachk(R,G, δ′, R,C′1, ε, wq) and I.H we have reachk(R,G, δ′, R,C′1; C2,929

ε, wq). As such, from C1, P
a
 L C′1, R, ok, the definition of a

 L and control flow transitions930

we have C1; C2, P
a
 L C′1; C2, R, ok. Consequently, from reachk(R,G, δ′, R,C′1; C2, ε, wq),931

C1; C2, P
a
 L C′1; C2, R, ok, δ=[L]++δ′ and the definition of reach we have reachn(R,G, δ, P,932

C1; C2, ε, wq), as required. J933
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I Definition 13. The weak reachability predicate, wreach, is defined as follows:934

wreachn(R,G, δ, P,C, ε, w) def⇐⇒ ∃k, δ′, α, p, q, r, R,a,C′.
n≥0 ∧ δ=[ ] ∧ ε=ok ∧ C id−→∗skip ∧ w ∈ P
∨n≥1 ∧ ε∈ErExit ∧ δ=[α] ∧R(α)=(p, ε, q) ∧ rely(p, q, P, {w})
∨n≥1 ∧ ε∈ErExit ∧ δ=[α] ∧ G(α)=(p, ε, q) ∧ guar(p, q, P, {w},C,C′,a, ε)
∨n=k+1 ∧ δ=[α] ++ δ′∧R(α)=(p, ok, r) ∧ rely(p, r, P,R) ∧ wreachk(R,G, δ′, R,C, ε, w)
∨n=k+1 ∧ δ=[α] ++ δ′∧ G(α)=(p, ok, r) ∧ guar(p, r, P,R,C,C′,a, ok) ∧ wreachk(R,G, δ′, R,C′, ε, w)
∨n=k+1 ∧ δ=[L] ++ δ′∧ C, P a

 L C′, R, ok ∧ wreachk(R,G, δ, R,C′, ε, w)

935

I Proposition 14. For all n,R,G, δ, P,C, ε, w, k, if reachn(R,G, δ, P,C, ε, w) and k ≥ n, then936

wreachk(R,G, δ, P,C, ε, w).937

I Proposition 15. For all n,R,G, δ, P,C, ε, w, if wreachn(R,G, δ, P,C, ε, w), then there exists938

k ≤ n such that reachk(R,G, δ, P,C, ε, w).939

I Lemma 16. For all n, k,R,G, δ1, δ2, P,R,wq, wr,C1,C2, ε, if wreachk(R,G, δ2, R,C2, ε,940

wq) and ∀wr ∈ R. wreachn(R,G, δ1, P,C1, ok, wr), then wreachn+k(R,G, δ1 ++ δ2, P,C1; C2,941

ε, wq).942

Proof. By induction on n.943

944

Case n=0945

Pick arbitrary k,R,G, δ1, δ2, P,R,wq, wr,C1,C2, ε such that wreachk(R,G, δ2, R,C2, ε, wq)946

and ∀wr ∈ R. wreach0(R,G, δ1, P,C1, ok, wr).947

From wreachk(R,G, δ2, R,C2, ε, wq) and Lemma 7 we know R 6= ∅. Pick an arbitrary948

wr ∈ R; we then have wreach0(R,G, δ1, P,C1, ok, wr). Consequently, from the definition949

of wreach0 we know that δ1=[ ], C1
id−→∗skip and wr ∈ P . Moreover, since for an arbitrary950

wr ∈ R we also have wr ∈ P we can conclude that R ⊆ P . On the other hand, as C1
id−→∗skip,951

from the control flow transitions we have C1; C2
id−→∗skip; C2

id−→∗C2. As such, from Lemma 11952

and wreachk(R,G, δ2, R,C2, ε, wq) we have wreachk(R,G, δ2, R,C1; C2, ε, wq). That is, as953

δ1 ++ δ2=[ ] ++ δ2=δ2, we also have wreachk(R,G, δ1 ++ δ2, R,C1; C2, ε, wq). Consequently,954

as R ⊆ P , from Lemma 22 we have wreachk(R,G, δ1 ++ δ2, P,C1; C2, ε, wq), as required.955

956

Case n=j+1957

958

∀k,R,G, δ1, δ2, P,R,wq, wr,C1,C2, ε.

wreachk(R,G, δ2, R,C2, ε, wq) ∧ ∀wr ∈ R. wreachj(R,G, δ1, P,C1, ok, wr)
⇒ wreachj+k(R,G, δ1 ++ δ2, P,C1; C2, ε, wq)

(I.H)959

960

Pick arbitrary k,R,G, δ1, δ2, P,R,wq, wr,C1,C2, ε such that wreachk(R,G, δ2, R,C2, ε, wq)961

and ∀wr ∈ R. wreachn(R,G, δ1, P,C1, ok, wr).962

As ∀wr ∈ R. wreachn(R,G, δ1, P,C1, ok, wr) and dsj(R,G) holds (i.e. dom(R)∩dom(G)=∅),963

from the definition of wreachn we then know that for all wr ∈ R, there exist α, δ′1, p, r, S,C′1,a964

such that either:965

1) δ1=[ ], C1
id−→∗skip and wr ∈ P ; or966

2) δ1=[α] ++ δ′1, R(α)=(p, ok, r), rely(p, r, P, S) and wreachj(R,G, δ′1, S,C1, ok, wr); or967

3) δ1=[α] ++ δ′1, G(α)=(p, ok, r), guar(p, r, P, S,C1,C′1,a, ok) and wreachj(R,G, δ′1, S,C′1, ok,968

wr); or969

4) δ1=[L] ++ δ′1, wreachj(R,G, δ′1, S,C′1, ok, wr) and C1, P
a
 L C′1, S, ok.970

The proof of case (1) is analogous to that of the base case (n=0) and is thus omitted971

here.972
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In case (2), from I.H, wreachj(R,G, δ′1, S,C1, ok, wr) and wreachk(R,G, δ2, R,C2, ε, wq) we973

have wreachj+k(R,G, δ′1 ++ δ2, S,C1; C2, ε, wq). Consequently, as δ1 ++ δ2=[α] ++ δ′1 ++ δ2,974

rely(p, r, P, S) and R(α)=(p, ok, r), from the definition of wreach we have wreachn+k(R,G,975

δ1 ++ δ2, P,C1; C2, ε, wq), as required.976

In case (3), from I.H, wreachj(R,G, δ′1, S,C′1, ok, wr) and wreachk(R,G, δ2, R,C2, ε, wq) we977

have wreachj+k(R,G, δ′1 ++ δ2, S,C′1; C2, ε, wq). Pick an arbitrary ws ∈ S; from guar(p, r, P,978

S,C1,C′1,a, ok) we then know there exists gr ∈ r, gp ∈ p, wp ∈ P and g such that wG
p = gp ◦g,979

wG
s = gr ◦ g and C1, wp

a
 C′1, ws, ok. From C1, wp

a
 C′1, ws, ok we know C1

id−→∗ a−→ C′1980

and thus from the control flow transitions (Fig. 6) we know C1; C2
id−→∗ a−→ C′1; C2. As such,981

from C1, wp
a
 C′1, ws, ok we also have C1; C2, wp

a
 C′1; C2, ws, ok. That is, for an arbitrary982

ws ∈ S we found gr ∈ r, gp ∈ p, wp ∈ P and g such that wG
p = gp ◦ g, wG

s = gr ◦ g and983

C1; C2, wp
a
 C′1; C2, ws, ok. Therefore, from the definition of guar we have guar(p, r, P, S,984

C1; C2,C′1; C2,a, ok). Consequently, as δ1 ++ δ2=[α] ++ δ′1 ++ δ2, G(α)=(p, ok, r), guar(p, r,985

P, S,C1; C2,C′1; C2,a, ok) and wreachj+k(R,G, δ′1 ++ δ2, S,C′1; C2, ε, wq), from the definition986

of wreach we have wreachn+k(R,G, δ1 ++ δ2, P,C1; C2, ε, wq), as required.987

In case (4), from I.H, wreachj(R,G, δ′1, S,C′1, ok, wr) and wreachk(R,G, δ2, R,C2, ε, wq)988

we have wreachj+k(R,G, δ′1 ++ δ2, S,C′1; C2, ε, wq). On the other hand, from wreachj(R,G,989

δ′1, S,C′1, ok, wr) we know S 6= ∅ and thus from C1, P
a
 L C′1, S, ok, we know C1

id−→∗ a−→ C′1 and990

thus from the control flow transitions (Fig. 6) we know C1; C2
id−→∗ a−→ C′1; C2. As such, from991

C1, P
a
 L C′1, S, ok we also have C1; C2, P

a
 L C′1; C2, S, ok. Consequently, as δ1=[L] ++ δ′1,992

C1; C2, P
a
 L C′1; C2, S, ok and wreachj+k(R,G, δ′1 ++ δ2, S,C′1; C2, ε, wq), from the definition993

of wreach we have wreachn+k(R,G, δ1 ++ δ2, P,C1; C2, ε, wq), as required. J994

I Lemma 17. For all k,R,G, δ1, δ2, P,R,wq, wr,C1,C2, ε, if reachk(R,G, δ2, R,C2, ε, wq) and995

∀wr ∈ R. ∃n. reachn(R,G, δ1, P,C1, ok, wr), then ∃m. reachm(R,G, δ1 ++ δ2, P,C1; C2, ε, wq).996

Proof. Pick arbitrary k,R,G, δ1, δ2, P,R,wq, wr,C1,C2, ε such that reachk(R,G, δ2, R,C2, ε,997

wq) and ∀wr ∈ R. ∃n. reachn(R,G, δ1, P,C1, ok, wr). From reachk(R,G, δ2, R,C2, ε, wq) and998

Prop. 14 we have wreachk(R,G, δ2, R,C2, ε, wq). As such, from Lemma 7 we know R 6= ∅.999

Let us then enumerate the worlds in R as follows: R = w1 · · ·wj . From ∀wr ∈1000

R. ∃n. reachn(R,G, δ1, P,C1, ok, wr) we know there exists n1 · · ·nj such that reachn1(R,1001

G, δ1, P,C1, ok, w1) ∧ · · · ∧ reachnj (R,G, δ1, P,C1, ok, wj). Let n = max(n1, · · · , nj), i.e.1002

n ≥ n1 ∧ · · · ∧ n ≥ nj Consequently, since R = w1 · · ·wj , reachn1(R,G, δ1, P,C1, ok,1003

w1) ∧ · · · ∧ reachnj (R,G, δ1, P,C1, ok, wj) and n ≥ n1 ∧ · · · ∧ n ≥ nj , from Prop. 14 we1004

have ∀wr ∈ R. wreachn(R,G, δ1, P,C1, ok, wr). As such, since wreachk(R,G, δ2, R,C2, ε, wq)1005

and ∀wr ∈ R. wreachn(R,G, δ1, P,C1, ok, wr), from Lemma 16 we have wreachn+k(R,G,1006

δ1 ++ δ2, P,C1; C2, ε, wq). Therefore, from Prop. 15 we know there exists m ≤ n+k such that1007

reachm(R,G, δ1 ++ δ2, P,C1; C2, ε, wq), as required. J1008

I Definition 18. For all traces, δ1, δ2, if bδ1c=bδ2c, then their parallel composition, δ1 || δ2,1009

is defined as follows:1010

δ1 || δ2 ,


α :: (δ′1 || δ′2) if δ1=α :: δ′1 ∧ δ′2=α :: δ′2
L :: (δ′1 || δ2) if δ1=L :: δ′1
L :: (δ1 || δ′2) if δ2=L :: δ′2
[ ] if δ1=δ2=[ ]

1011

I Proposition 19. For all traces, δ1, δ2, if bδ1c=bδ2c, then bδ1 || δ2c=bδ1c=bδ2c.1012
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I Lemma 20. For all n, k,R1,R2,G1,G2, δ1, δ2, P1, P2, w1, w2,C1,C2, ε, if R1 ⊆ G2 ∪ R2,1013

R2 ⊆ G1 ∪R1, bδ1c=bδ2c, w1 •w2 is defined, reachn(R1,G1, δ1, P1,C1, ε, w1), reachk(R2,G2,1014

δ2, P2,C2, ε, w2), wf(R1,G1), wf(R2,G2) and wf(R1 ∩R2,G1 ] G2), then there exists i such1015

that reachi(R1 ∩R2,G1 ] G2, δ1 || δ2, P1 ∗ P2,C1 ||C2, ε, w1 • w2).1016

Proof. By double induction on n and k.1017

1018

Case n=0, k=01019

As we have reach0(R1,G1, δ1, P1,C1, ε, w1) and reachk(R2,G2, δ2, P2,C2, ε, w2), we then know1020

that δ1=δ2=[ ], C1
id−→∗skip, C2

id−→∗skip, ε=ok, w1 ∈ P1 and w2 ∈ P2, and thus by definition1021

we have w1 • w2 ∈ P1 ∗ P2. On the other hand, as C1
id−→∗skip and C2

id−→∗skip, from the1022

control flow transitions we have C1 ||C2
id−→∗skip. As such, since ε=ok, w1 • w2 ∈ P1 ∗ P21023

and δ1 || δ2=[ ], from the definition of reach we have reach0(R1 ∩R2,G1 ] G2, δ1 || δ2, P1 ∗ P2,1024

C1 ||C2, ε, w1 • w2), as required.1025

1026

Case n=0, k=j+11027

From reach0(R1,G1, δ1, P1,C1, ε, w1) we know δ1=[ ], C1
id−→∗skip, ε=ok and w1 ∈ P1. As such,1028

since k 6=0 and ε=ok and bδ1c=bδ2c=[ ], from reachk(R2,G2, δ2, P2,C2, ε, w2) we know there1029

exist a,C′, R, δ′ such that δ2=[L] ++ δ′, bδ′c=bδ1c=[ ], C2, P2
a
 L C′, R, ok and reachj(R2,G2,1030

δ′, R,C′, ε, w2). From reach0(R1,G1, δ1, P1,C1, ε, w1), reachj(R2,G2, δ
′, R,C′, ε, w2), and the1031

inductive hypothesis we then know there exists i such that reachi(R1 ∩R2,G1 ] G2, δ1 || δ′,1032

P1 ∗R,C1 ||C′, ε, w1 •w2). On the other hand, from reachj(R,G, δ′, R,C′, ε, w2) and Lemma 71033

we know R 6= ∅ and thus from C2, P2
a
 L C′, R, ok we know that C2

id−→∗ a−→C′. As such, from1034

control flow transitions we have C1 ||C2
id−→∗ a−→ C1 ||C′.1035

Pick an arbitrary w ∈ P1∗R, l, m ∈ bTwU◦lc. We then know there exists w1
p = (lp, g′) ∈ P11036

and wr = (lr, g′) ∈ R such that w = (lp ◦ lr, g′) and m ∈ blp ◦ lr ◦ g′ ◦ lc = b(lr ◦ g′) ◦ lp ◦ lc =1037

bTwrU ◦ lp ◦ lc. As such, from the definition of C2, P2
a
 L C′, R, ok we know there exists1038

w2
p ∈ P2, m′ ∈ bTw2

pU◦ lp ◦ lc such that (m′,m) ∈ JaKok and (w2
p)G=wG

r=g′. Let w′ = w1
p •w2

p;1039

since w1
p = (lp, g′), we then have bTw2

pU ◦ lp ◦ lc = bTw1
p • w2

pU ◦ lc = bTw′U ◦ lc. As such, we1040

know m′ ∈ bTw′U ◦ lc. Moreover, we have (w′)G=wG=g′. On the other hand, as w1
p ∈ P1,1041

w2
p ∈ P2 and w′ = w1

p • w2
p, we know w′ ∈ P1 ∗ P2. Consequently, from C1 ||C2

id−→∗ a−→ C1 ||C′1042

and the definition of a
 L we have C1 ||C2, P1 ∗ P2

a
 L C1 ||C′, P1 ∗ R, ok. Moreover, as1043

δ2=[L] ++ δ′, by definition we have δ1 || δ2=[L] ++ (δ1 || δ′). As such, since we have1044

reachi(R1∩R2,G1]G2, δ1 || δ′, P1∗R,C1 ||C′, ε, w1•w2), C1 ||C2, P1∗P2
a
 L C1 ||C′, P1∗R, ok1045

and δ1 || δ2=[L] ++ (δ1 || δ′), from the definition of reach we have reachi+1(R1 ∩R2,G1 ] G2,1046

δ1 || δ2, P1 ∗ P2,C1 ||C2, ε, w1 • w2), as required.1047

1048

Case n=1, ε ∈ ErExit, k=01049

This case does not arise as it simultaneously implies that ε ∈ ErExit and ε = ok which is1050

not possible.1051

1052

Case n=1, ε ∈ ErExit, k 6=01053

As n=1, dom(G1)∩dom(G2)=∅ (as otherwise G1 ] G2 would not be defined), R1 ⊆ G2 ∪R21054

and R2 ⊆ G1 ∪R1, we then know that there exist α, p, q, R,a,C′, j, δ′ such that either:1055

1056

i) k=1, δ1=δ2=[α], R1(α)=R2(α)=(p, ε, q), rely(p, r, P1, {w1}) and rely(p, r, P2, {w2}).1057

ii) k=1, δ1=δ2=[α], R1(α)=G2(α)=(p, ε, q), rely(p, r, P1, {w1}) and guar(p, r, P2, {w2},C2,C′,1058

a, ε).1059
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iii) k=1, δ1=δ2=[α], G1(α)=R2(α)=(p, ε, q), guar(p, r, P1, {w1},C1,C′,a, ε) and rely(p, r, P2,1060

{w2}).1061

iv) δ2=[L] ++ δ′, k=j+1 C2, P2
a
 L C′, R, ok, reachj(R2,G2, δ

′, R,C′, ε, w2).1062

1063

In case (i) we have (R1 ∩ R2)(α)=(p, ε, q). As w1 • w2 is defined we know there exist1064

l1, l2, g
′ such that w1=(l1, g′), w2=(l2, g′) and w1 •w2 = (l1 ◦ l2, g′). From rely(p, r, P1, {w1})1065

we then know there exists gq ∈ q such that wG
1 =gq ◦ − and thus since wG

1 =(w1 ◦ w2)G we1066

have (w1 ◦ w2)G=gq ◦ −.1067

Pick an arbitrary gq ∈ q and g such that g′ = gq ◦ g. As such, given the definitions1068

of w1 and w2, from rely(p, q, P1, {w1}) and rely(p, q, P2, {w2}) we know ∅ ⊂ P ′1 ⊆ P1 with1069

P ′1 =
{

(l1, gp ◦ g) gp∈p
}
and ∅ ⊂ P ′2 ⊆ P2 with P ′2 =

{
(l2, gp ◦ g) gp∈p

}
. Consequently, we1070

have P ⊆ P1 ∗ P2 with P =
{

(l1 ◦ l2, gp ◦ g) gp∈p
}
. We also know that ∅ ⊂ P as otherwise1071

we arrive at a contradiction as follows. Let us assume P = ∅. As (l1 ◦ l2, gq ◦ g) is a world by1072

definition we know that gq # l1 ◦ l2 ◦ g and thus since gq ∈ q we know q ∗ {l1 ◦ l2 ◦ g} 6= ∅.1073

As such, since R1(α)=(p, ε, q) and wf(R1,G1) from the definition of wf(.) we also know1074

p ∗ {l1 ◦ l2 ◦ g} 6= ∅. That is, there exists gp ∈ p such that gp # l1 ◦ l2 ◦ g, and thus1075

(l1 ◦ l2, gp ◦ g) ∈ P , leading to a contradiction since we assumed P = ∅.1076

Consequently, since we have ∅ ⊂ P =
{

(l, gp ◦ g) gp∈p
}
⊆ P1 ∗P2 for an arbitrary gq ∈ q1077

and (l1 ◦ l2, gq ◦ g) = w1 • w2, by definition we have rely(p, q, P1 ∗ P2, {w1 • w2}). Moreover,1078

since δ1=δ2=[α], by definition we have δ1 || δ2=[α] . As such, since we have δ1 || δ2=[α],1079

(R1 ∩R2)(α)=(p, ε, q) and rely(p, q, P1 ∗ P2, {w1 • w2}), from the definition of reach we have1080

reach1(R1 ∩R2,G1 ] G2, δ1 || δ2, P1 ∗ P2,C1 ||C2, ε, w1 • w2), as required.1081

1082

In case (ii) we have (G1 ] G2)(α)=(p, ε, q). Let w1=(l1, g), w2=(l2, g) and w=w1 • w2.1083

We then know w=(l1 ◦ l2, g). From guar(p, q, P2, {w2},C2,C′,a, ε) we then know there exist1084

gq ∈ q, gp ∈ p, w2
p ∈ P2, g′, l′2 such that w2

p = (l′2, gp ◦ g′), g=gq ◦ g′ and C2, w
2
p

a
 C′, (l2, g), ε.1085

From C2, w
2
p

a
 C′, (l2, g) we know C2

id−→∗ a−→ C′ and thus from the control flow transitions1086

we also have C1 ||C2
id−→ ∗ a−→ C1 ||C′. Let w′=(l1 ◦ l′2, gp ◦ g′). Pick an arbitrary l′ and1087

m ∈ bTwU◦l′c = bl1◦l2◦g◦l′c = b(l2◦g)◦l1◦l′c = bT(l2, g)U◦l1◦l′c. As such, from the definition1088

of C2, w
2
p

a
 C′, (l2, g) we know there exists m′ ∈ bTw2

pU◦l1◦l′c such that (m′,m) ∈ JaKε. That1089

is, m′ ∈ bl′2◦gp◦g′◦l1◦l′c = bl1◦l′2◦gp◦g′◦l′c = bTw′U◦l′c. As we have C1 ||C2
id−→∗ a−→ C1 ||C′1090

and for an arbitrary l′ and m ∈ bTwU ◦ l′c we showed there exists m′ ∈ bTw′U ◦ l′c such that1091

(m′,m) ∈ JaKε, from the definition of a
 we have C1 ||C2, w

′ a
 C1 ||C′, w, ε. Moreover, since1092

w1 = (l1, gq ◦ g′), gq ∈ q, gp ∈ p and w′=(l1 ◦ l′2, gp ◦ g′) is defined, from rely(p, q, P1, {w1}) we1093

have (l1, gp ◦ g′) ∈ P1. Consequently, since w′=(l1 ◦ l′2, gp ◦ g′) and w2
p = (l′2, gp ◦ g′) ∈ P2 we1094

have w′ ∈ P1 ∗ P2. As such, given w=w1 • w2, since we found w′ ∈ P1 ∗ P2, gp ∈ p, gq ∈ q, g′1095

such that w′G = gp ◦ g′, wG = gq ◦ g′ and C1 ||C2, w
′ a
 C1 ||C′, w, ε, by definition we have1096

guar(p, q, P1 ∗ P2, {w1 • w2},C1 ||C2,C1 ||C′,a, ε).1097

Finally, since δ1=δ2=[α], by definition we have δ1 || δ2=[α]. As such, since we have1098

δ1 || δ2=[α], (G1 ]G2)(α)=(p, ε, q) and guar(p, q, P1 ∗P2, {w1 •w2},C1 ||C2,C1 ||C′,a, ε), from1099

the definition of reach we have reach1(R1 ∩ R2,G1 ] G2, δ1 || δ2, P1 ∗ P2,C1 ||C2, ε, w1 ◦ w2),1100

as required.1101

1102

The proof of case (iii) is analogous to that of case (ii) and is omitted here.1103

1104

In case (iv) from the definitions of b.c, δ2 and since bδ1c=bδ2c we have bδ1c=bδ′c. Con-1105

sequently, from reachn(R1,G1, δ1, P1,C1, ε, w1), reachj(R2,G2, δ
′, R,C′, ε, w2), bδ1c=bδ2c and1106
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the inductive hypothesis we know there exists i such that reachi(R1 ∩ R2,G1 ] G2, δ1 || δ′,1107

P1 ∗R,C1 ||C′, ε, w1 •w2). From reachj(R2,G2, δ
′, R,C′, ε, w2) and Lemma 7 we know R 6= ∅1108

and thus from C2, P2
a
 L C′, R, ok we know that C2

id−→∗ a−→C′. As such, from control flow1109

transitions we have C1 ||C2
id−→∗ a−→ C1 ||C′.1110

Pick an arbitrary w ∈ P1∗R, l, m ∈ bTwU◦lc. We then know there exists w1
p = (lp, g′) ∈ P11111

and wr = (lr, g′) ∈ R such that w = (lp ◦ lr, g′) and m ∈ blp ◦ lr ◦ g′ ◦ lc = b(lr ◦ g′) ◦ lp ◦ lc =1112

bTwrU ◦ lp ◦ lc. As such, from the definition of C2, P2
a
 L C′, R, ok we know there exists1113

w2
p ∈ P2, m′ ∈ bTw2

pU◦ lp ◦ lc such that (m′,m) ∈ JaKok and (w2
p)G=wG

r=g′. Let w′ = w1
p •w2

p;1114

since w1
p = (lp, g′), we then have bTw2

pU ◦ lp ◦ lc = bTw1
p • w2

pU ◦ lc = bTw′U ◦ lc. As such, we1115

know m′ ∈ bTw′U ◦ lc. Moreover, we have (w′)G=wG=g′. On the other hand, as w1
p ∈ P1,1116

w2
p ∈ P2 and w′ = w1

p • w2
p, we know w′ ∈ P1 ∗ P2. Consequently, from the definition a

 L we1117

have C1 ||C2, P1 ∗ P2
a
 L C1 ||C′, P1 ∗R, ok.1118

As δ2=[L] ++ δ′, by definition we have δ1 || δ2=[L] ++ (δ1 || δ′). As such, since δ1 || δ2=[L] ++1119

(δ1 || δ′), C1 ||C2, P1 ∗ P2
a
 L C1 ||C′, P1 ∗ R, ok and reachi(R1 ∩ R2,G1 ] G2, δ1 || δ′, P1 ∗ R,1120

C1 ||C′, ε, w1 • w2), from the definition of reach we have reachi+1(R1 ∩ R2,G1 ] G2, δ1 || δ2,1121

P1 ∗ P2,C1 ||C2, ε, w1 • w2), as required.1122

1123

Case n=j+1, k=01124

This case is analogous to that of n=0 and k=j+1 proved above and is thus omitted here.1125

1126

Case n=j+1, ε ∈ ErExit, k=11127

This case is analogous to that of n=1, ε ∈ ErExit, k 6=0 proved above and is thus omitted here.1128

1129

Case n=i+1, k=j+11130

As G1 ∩ G2 = ∅, R1 ⊆ G2 ∪ R2, R2 ⊆ G1 ∪ R1 and bδ1c=bδ2c, we know there exist1131

δ′1, δ
′
2, δ
′, α, p, r, R1, R2, a,C′ such that one of the following cases hold:1132

i) δ1=[α] ++ δ′1, δ2=[α] ++ δ′2, bδ′1c=bδ′2c, R1(α)=R2(α)=(p, ok, r), rely(p, r, P1, R1), rely(p,1133

r, P2, R2), reachi(R1,G1, δ
′
1, R1,C1, ε, w1) and reachj(R2,G2, δ

′
2, R2,C2, ε, w2)1134

ii) δ1=[α] ++ δ′1, δ2=[α] ++ δ′2, bδ′1c=bδ′2c,R1(α)=G2(α)=(p, ok, r), rely(p, r, P1, R1), reachi(R1,1135

G1, δ
′
1, R1,C1, ε, w1), guar(p, r, P2, R2,C2,C′,a, ok), reachj(R2,G2, δ

′
2, R2,C′, ε, w2).1136

iii) δ1=[α] ++ δ′1, δ2=[α] ++ δ′2, bδ′1c=bδ′2c, G1(α)=R2(α)=(p, ok, r), guar(p, r, P1, R1,C1,C′,1137

a, ok), reachi(R1,G1, δ
′
1, R1,C′, ε, w1), rely(p, r, P2, R2) and reachj(R2,G2, δ

′
2, R2,C2, ε, w2).1138

iv) δ2=[L] ++ δ′, bδ1c=bδ′c, C2, P2
a
 L C′, R2, ok, reachj(R2,G2, δ

′, R2,C′, ε, w2).1139

v) δ1=[L] ++ δ′, bδ′c=bδ2c, C1, P1
a
 L C′, R1, ok, reachi(R1,G1, δ

′, R1,C′, ε, w1).1140

1141

In case (i) we have (R1∩R2)(α)=(p, ok, r). From reachi(R1,G1, δ
′
1, R1,C1, ε, w1), reachj(R2,1142

G2, δ
′
2, R2,C2, ε, w2), bδ′1c=bδ′2c, and the inductive hypothesis we then know there exists m1143

such that reachm(R1 ∩ R2,G1 ] G2, δ
′
1 || δ′2, R1 ∗ R2,C1 ||C2, ε, w1 ◦ w2). Pick an arbitrary1144

w ∈ R1 ∗ R2. We then know there exist w′1 ∈ R1, w
′
2 ∈ R2, l1, l2, g

′ such that w′1=(l1, g′),1145

w′2=(l2, g′) and w = (l1 ◦ l2, g′). From rely(p, r, P1, R1) we then know there exists gr ∈ r such1146

that (w′1)G=gr ◦ − and thus since (w′1)G=wG we have wG=gr ◦ −.1147

Pick an arbitrary gr ∈ r and (l, gr ◦ g) ∈ R1 ∗R2. We then know there exists l1, l2 such1148

that l = l1 ◦ l2, (l1, gr ◦ g) ∈ R1 and (l2, gr ◦ g) ∈ R2. As such, from rely(p, r, P1, R1) and1149

rely(p, r, P2, R2) we know ∅ ⊂ P ′1 ⊆ P1 with P ′1 =
{

(l1, gp ◦ g) gp∈p
}
and ∅ ⊂ P ′2 ⊆ P2 with1150

P ′2 =
{

(l2, gp ◦ g) gp∈p
}
. Consequently, we have P ⊆ P1 ∗ P2 with P =

{
(l, gp ◦ g) gp∈p

}
.1151

We also know that ∅ ⊂ P as otherwise we arrive at a contradiction as follows. Let us assume1152

P = ∅. As (l, gr ◦ g) is a world by definition we know that gr # l ◦ g and thus since gr ∈ r1153

we know r ∗ {l ◦ g} 6= ∅. As such, since R1(α)=(p, ε, r) and wf(R1,G1) from the definition of1154
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wf(.) we also know p ∗ {l ◦ g} 6= ∅. That is, there exists gp ∈ p such that gp # l ◦ g, and thus1155

(l, gp ◦ g) ∈ P , leading to a contradiction since we assumed P = ∅.1156

Consequently, since we have ∅ ⊂ P =
{

(l, gp ◦ g) gp∈p
}
⊆ P1 ∗ P2 for an arbit-1157

rary gr ∈ r and (l, gr ◦ g) ∈ R1 ∗ R2, by definition we have rely(p, q, P1 ∗ P2, R1 ∗ R2).1158

As δ1=[α] ++ δ′1 and δ2=[α] ++ δ′2, by definition we have δ1 || δ2=[α] ++ (δ′1 || δ′2). As1159

such, since δ1 || δ2=[α] ++ (δ′1 || δ′2), (R1 ∩ R2)(α)=(p, ok, r), rely(p, q, P1 ∗ P2, R1 ∗ R2) and1160

reachm(R1 ∩R2,G1 ] G2, δ
′
1 || δ′2, R1 ∗R2,C1 ||C2, ε, w1 ◦ w2), from the definition of reach we1161

have reachm(R1 ∩R2,G1 ] G2, δ1 || δ2, P1 ∗ P2,C1 ||C2, ε, w1 ◦ w2), as required.1162

1163

In case (ii) we have (G1]G2)(α)=(p, ok, r). From reachi(R1,G1, δ
′
1, R1,C1, ε, w1), reachj(R2,1164

G2, δ
′
2, R2,C′, ε, w2), bδ′1c=bδ′2c, and the inductive hypothesis we then know there exists m1165

such that reachm(R1 ∩R2,G1 ] G2, δ
′
1 || δ′2, R1 ∗R2,C1 ||C′, ε, w1 ◦ w2).1166

Pick an arbitrary w=(l, g) ∈ R1 ∗ R2. By definition we know there exists l1, l2 such1167

that l=l1 ◦ l2, (l1, g) ∈ R1 and (l2, g) ∈ R2. From guar(p, r, P2, R2,C2,C′,a, ok) we then1168

know there exist gr ∈ r, gp ∈ p, w2
p ∈ P2, g′, l′2 such that w2

p = (l′2, gp ◦ g′), g=gr ◦ g′ and1169

C2, w
2
p

a
 C′, (l2, g), ok. From C2, w

2
p

a
 C′, (l2, g) we know C2

id−→∗ a−→ C′ and thus from the1170

control flow transitions we also have C1 ||C2
id−→∗ a−→ C1 ||C′. Let w′=(l1 ◦ l′2, gp ◦ g′). Pick an1171

arbitrary l′ and m ∈ bTwU ◦ l′c = bl1 ◦ l2 ◦ g ◦ l′c = b(l2 ◦ g) ◦ l1 ◦ l′c = bT(l2, g)U ◦ l1 ◦ l′c. As1172

such, from the definition of C2, w
2
p

a
 C′, (l2, g), ok we know there exists m′ ∈ bTw2

pU ◦ l1 ◦ l′c1173

such that (m′,m) ∈ JaKok. That is, m′ ∈ bl′2 ◦gp ◦g′ ◦ l1 ◦ l′c = bl1 ◦ l′2 ◦gp ◦g′ ◦ l′c = bTw′U◦ l′c.1174

As we have C1 ||C2
id−→∗ a−→ C1 ||C′ and for an arbitrary l′ and m ∈ bTwU ◦ l′c we showed1175

there exists m′ ∈ bTw′U ◦ l′c such that (m′,m) ∈ JaKok, from the definition of a
 we1176

have C1 ||C2, w
′ a
 C1 ||C′, w, ok. Moreover, since (l1, g) = (l1, gr ◦ g′) ∈ R1, gp ∈ p and1177

w′=(l1 ◦ l′2, gp ◦ g′) is defined, from rely(p, r, P1, R1) we have (l1, gp ◦ g′) ∈ P1. Consequently,1178

since w′=(l1 ◦ l′2, gp ◦ g′) and w2
p = (l′2, gp ◦ g′) ∈ P2 we have w′ ∈ P1 ∗ P2. As such, since for1179

an arbitrary w ∈ R1 ∗ R2 we found w′ ∈ P1 ∗ P2, gp ∈ p, gr ∈ r, g′ such that w′G = gp ◦ g′,1180

wG = gq ◦ g′ and C1 ||C2, w
′ a
 C1 ||C′, w, ok, by definition we have guar(p, q, P1 ∗P2, R1 ∗R2,1181

C1 ||C2,C1 ||C′,a, ok).1182

As δ1=[α] ++ δ′1 and δ2=[α] ++ δ′2, by definition we have δ1 || δ2=[α] ++ (δ′1 || δ′2). As1183

such, since δ1 || δ2=[α] ++ (δ′1 || δ′2), (G1]G2)(α)=(p, ok, r), guar(p, q, P1 ∗P2, R1 ∗R2,C1 ||C2,1184

C1 ||C′,a, ok) and reachm(R1∩R2,G1]G2, δ
′
1 || δ′2, R1 ∗R2,C1 ||C′, ε, w1 ◦w2), from the defin-1185

ition of reach we have reachm(R1∩R2,G1]G2, δ1 || δ2, P1 ∗P2,C1 ||C2, ε, w1 ◦w2), as required.1186

1187

The proof of case (iii) is analogous to that of case (ii) and is omitted here.1188

1189

In case (iv) from reach1(R1,G1, δ1, P1,C1, ε, w1), reachj(R2,G2, δ
′, R2,C′, ε, w2), bδ1c=bδ′c1190

and the inductive hypothesis we know there exists i such that reachi(R1 ∩R2,G1 ]G2, δ1 || δ′,1191

P1 ∗ R2,C1 ||C′, ε, w1 • w2). From reachj(R2,G2, δ
′, R2,C′, ε, w2) and Lemma 7 we know1192

R2 6= ∅, thus from C2, P2
a
 L C′, R2, ok we know C2

id−→∗ a−→C′. As such, from control flow1193

transitions we have C1 ||C2
id−→∗ a−→ C1 ||C′.1194

Pick an arbitrary w ∈ P1 ∗ R2, l, m ∈ bTwU ◦ lc. We then know there exists w1
p =1195

(lp, g′) ∈ P1 and wr = (lr, g′) ∈ R2 such that w = (lp ◦ lr, g′) and m ∈ blp ◦ lr ◦ g′ ◦ lc =1196

b(lr ◦g′)◦ lp ◦ lc = bTwrU◦ lp ◦ lc. As such, from the definition of C2, P2
a
 L C′, R2, ok we know1197

there exists w2
p ∈ P2, m′ ∈ bTw2

pU ◦ lp ◦ lc such that (m′,m) ∈ JaKok and (w2
p)G=wG

r=g′. Let1198

w′ = w1
p •w2

p; since w1
p = (lp, g′), we then have bTw2

pU ◦ lp ◦ lc = bTw1
p •w2

pU ◦ lc = bTw′U ◦ lc.1199

As such, we know m′ ∈ bTw′U ◦ lc. Moreover, we have (w′)G=wG=g′. On the other hand,1200

as w1
p ∈ P1, w2

p ∈ P2 and w′ = w1
p • w2

p, we know w′ ∈ P1 ∗ P2. Consequently, from the1201
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definition a
 L we have C1 ||C2, P1 ∗ P2

a
 L C1 ||C′, P1 ∗R2, ok.1202

As δ2=[L] ++ δ′, by definition we have δ1 || δ2=[L] ++ (δ1 || δ′). As such, since δ1 || δ2=[L] ++1203

(δ1 || δ′), C1 ||C2, P1 ∗ P2
a
 L C1 ||C′, P1 ∗R2, ok and reachi(R1 ∩R2,G1 ] G2, δ1 || δ′, P1 ∗R2,1204

C1 ||C′, ε, w1 • w2), from the definition of reach we have reachi+1(R1 ∩ R2,G1 ] G2, δ1 || δ2,1205

P1 ∗ P2,C1 ||C2, ε, w1 • w2), as required.1206

1207

The proof of case (v) is analogous to that of case (iv) and is omitted here. J1208

I Lemma 21. For all n,R,G, δ, P, wq,C, ε, R,w, if wf(R,G), stable(R,R∪ G), reachn(R,G,1209

δ, P,C, ε, wq) and w ∈ {wq} ∗R, then reachn(R,G, δ, P ∗R,C, ε, w).1210

Proof. By induction on n.1211

1212

Case n=01213

Pick arbitrary R,G, δ, P,R,wq, w,C, ε such that wf(R,G), stable(R,R∪ G), reach0(R,G, δ,1214

P,C, ε, wq) and w ∈ {wq}∗R. From the definition of reach0(R,G, δ, P,C, ε, wq) we know δ=[ ],1215

ε=ok, C id−→∗skip and wq ∈ P . As such, since w ∈ {wq} ∗R and wq ∈ P , we have w ∈ P ∗R.1216

Consequently, as δ=[ ], ε=ok, C id−→∗skip and w ∈ P ∗R, from the definition of reach0 we have1217

reach0(R,G, δ, P ∗R,C, ε, w), as required.1218

1219

Case n=1, ε ∈ ErExit1220

Pick arbitrary R,G, δ, P,R,wq, w,C, ε such that wf(R,G), stable(R,R∪ G), reachn(R,G, δ,1221

P,C, ε, wq) and w ∈ {wq} ∗ R. As w ∈ {wq} ∗ R, we know there exists lq, g, lr such that1222

wq=(lq, g), (lr, g) ∈ R and w=(lq ◦ lr, g). From reachn(R,G, δ, P,C, ε, wq) we know that there1223

exists α, p, q,a,C′ such that either:1224

1) δ = [α], R(α) = (p, ε, q), rely(p, q, P, {wq}); or1225

2) δ = [α], G(α)=(p, ε, q), guar(p, q, P, {wq},C,C′,a, ε).1226

In case (1), from the definition of rely we know there exists gq ∈ q such that g=gq ◦ −.1227

That is, ∃gq ∈ q. wG=gq ◦ −.1228

Pick an arbitrary gq ∈ q, g′ such that g=gq ◦ g′. From rely(p, q, P, {wq}) and since1229

wq=(lq, g), we know ∅ ⊂
{

(lq, gp ◦ g′) gp ∈ p
}
⊆ P . As R(α) = (p, ε, q), wr=(lr, g), g=gq ◦g′,1230

from stable(R,R∪ G) we know
{

(lr, gp ◦ g′) gp ∈ p
}
⊆ R. Since

{
(lq, gp ◦ g′) gp ∈ p

}
⊆ P1231

and
{

(lr, gp ◦ g′) gp ∈ p
}
⊆ R, we also have S=

{
(lq ◦ lr, gp ◦ g′) gp ∈ p

}
⊆ P ∗R. We also1232

know that ∅ ⊂ S as otherwise we arrive at a contradiction as follows. Let us assume S = ∅.1233

As w=(lq ◦ lr, gq ◦ g′) is a world, by definition we know that gq # lq ◦ lr ◦ g′ and thus since1234

gq ∈ q we know q ∗ {lq ◦ lr ◦ g′} 6= ∅. As such, since R(α)=(p, ε, q) and wf(R,G) from the1235

definition of wf(.) we also know p ∗ {lq ◦ lr ◦ g′} 6= ∅. That is, there exists gp ∈ p such that1236

gp # lq ◦ lr ◦ g′, and thus (lq ◦ lr, gp ◦ g′) ∈ S, leading to a contradiction since we assumed1237

S = ∅.1238

Consequently, since ∃gq ∈ q. wG=gq ◦ −, and for an arbitrary gq ∈ q, g′ with g=gq ◦ g we1239

showed ∅ ⊂ S =
{

(lq ◦ lr, gp ◦ g′) gp∈p
}
⊆ P ∗R and since (lq ◦ lr, gq ◦ g′) = w, by definition1240

we have rely(p, q, P ∗R, {w}).1241

As such, since we have δ=[α], (R)(α)=(p, ε, q) and rely(p, q, P ∗R, {w}), from the defini-1242

tion of reach we have reach1(R,G, δ, P ∗R,C, ε, w), as required.1243

1244

In case (2), from guar(p, q, P, {wq},C,C′,a, ε) and since wq=(lq, g), we know C id−→∗ a−→ C′1245

and that there exist gq ∈ q, gp ∈ p, wp ∈ P , g′, lp such that wp = (lp, gp ◦ g′), g=gq ◦ g′ and1246

C, wp
a
 C′, wq, ε. Let w′=(lp ◦ lr, gp ◦g′). As G(α)=(p, ε, q), wr=(lr, g) ∈ R, g=gq ◦g′, gp ∈ p1247
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and gq ∈ q, from stable(R,R∪ G) we know (lr, gp◦g′) ∈ R. As such, since wp = (lp, gp◦g′) ∈ P1248

and (lr, gp ◦ g′) ∈ R, we also have w′=(lp ◦ lr, gp ◦ g′) ∈ P ∗R.1249

Pick an arbitrary l′ and m ∈ bTwU ◦ l′c = blq ◦ lr ◦ g ◦ l′c = b(lq ◦ g) ◦ lr ◦ l′c =1250

bT(lq, g)U ◦ lr ◦ l′c = bTwqU ◦ lr ◦ l′c. As such, from the definition of C, wp
a
 C′, wq we know1251

there exists m′ ∈ bTwpU◦ lr ◦ l′c such that (m′,m) ∈ JaKε. That is, m′ ∈ blp ◦gp ◦g′ ◦ lr ◦ l′c =1252

blp ◦ lr ◦ gp ◦ g′ ◦ l′c = bTw′U ◦ l′c. As such, since C id−→∗ a−→ C′ and for an arbitrary l′ and1253

m ∈ bTwU ◦ l′c we showed there exists m′ ∈ bTw′U ◦ l′c such that (m′,m) ∈ JaKε, from the1254

definition of a
 we have C, w′ a

 C, w, ε. As such, since we found w′ ∈ P ∗R, gp ∈ p, gq ∈ q, g′1255

such that w′G = gp ◦ g′, wG = gq ◦ g′ and C, w′ a
 C, w, ε, by definition we have guar(p, q,1256

P ∗R, {w},C,C′,a, ε).1257

Finally, since δ=[α], (G)(α)=(p, ε, q) and guar(p, q, P ∗R, {w},C,C′,a, ε), from the defini-1258

tion of reach we have reach1(R,G, δ, P ∗R,C, ε, w), as required.1259

1260

Case n=j+11261

1262

∀k,R,G, δ, P, wq,C, ε, R,w.
wf(R,G) ∧ stable(R,R∪ G) ∧ reachk(R,G, δ, P,C, ε, wq) ∧ w ∈ R ∗ {wq}
⇒ reachk(R,G, δ, P ∗R,C, ε, w)

(I.H)1263

1264

Pick arbitrary R,G, δ, P, wq,C, ε, R,w such that wf(R,G), stable(R,R∪ G), reachn(R,G, δ,1265

P,C, ε, wq) and w ∈ R ∗ {wq}. As w ∈ {wq} ∗ R, we know there exists lq, g, lr such that1266

wq=(lq, g), (lr, g) ∈ R and w=(lq ◦ lr, g). From reachn(R,G, δ, P,C, ε, wq) we know that there1267

exists α, δ′, p, r, S,a,C′ such that either:1268

1) δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r, P, S) and reachj(R,G, δ′, S,C, ok, wq); or1269

2) δ=[α] ++ δ′, G(α)=(p, ok, r), guar(p, r, P, S,C,C′,a, ok) and reachj(R,G, δ′, S,C′, ok, wq);1270

or1271

3) δ=[L] ++ δ′, reachj(R,G, δ′, S,C′, ok, wq) and C, P a
 L C′, S, ok.1272

In case (1), from I.H and reachj(R,G, δ′, S,C, ok, wq) we have reachj(R,G, δ′, S ∗R,C, ε,1273

w). Pick an arbitrary w′ ∈ S ∗R. We then know there exists ws ∈ S and wr ∈ R, ls, lr, gm1274

such that ws=(ls, gm), wr=(lr, gm) and w′=(ls ◦ lr, gm). From rely(p, r, P, S) we then know1275

there exists gr ∈ r such that (ws)G=gr ◦ − and thus since (ws)G=w′G we have w′G=gr ◦ −.1276

That is, for an arbitrary w′ ∈ S ∗R we have ∃gr ∈ r. w′G=gr ◦ −.1277

Pick an arbitrary gr ∈ r and (l, gr ◦ g′) ∈ S ∗ R. We then know there exists ls, lr such1278

that l = ls ◦ lr, (ls, gr ◦ g′) ∈ S and (lr, gr ◦ g′) ∈ R. As such, from rely(p, r, P, S) we know1279

∅ ⊂
{

(ls, gp ◦ g′) gp∈p
}
⊆ P . As R(α) = (p, ε, r), (lr, g) ∈ R, g=gr ◦ g′ and gr ∈ r, from1280

stable(R,R∪ G) we know
{

(lr, gp ◦ g′) gp ∈ p
}
⊆ R. Since

{
(ls, gp ◦ g′) gp∈p

}
⊆ P and1281 {

(lr, gp ◦ g′) gp ∈ p
}
⊆ R, we also have A=

{
(ls ◦ lr, gp ◦ g′) gp ∈ p

}
⊆ P ∗R.1282

We also know that ∅ ⊂ A as otherwise we arrive at a contradiction as follows. Let1283

us assume A = ∅. As (l, gr ◦ g′) = (ls ◦ lr, gr ◦ g′) is a world by definition we know that1284

gr # ls◦ lr ◦g′ and thus since gr ∈ r we know r∗{ls◦ lr ◦g′} 6= ∅. As such, since R(α)=(p, ε, r)1285

and wf(R1,G1) from the definition of wf(.) we also know p ∗ {ls ◦ lr ◦ g′} 6= ∅. That is, there1286

exists gp ∈ p such that gp # ls ◦ lr ◦g′, and thus (ls ◦ lr, gp ◦g′) ∈ A, leading to a contradiction1287

since we assumed A = ∅.1288

Consequently, since for an arbitrary w′ ∈ S ∗ R we have ∃gr ∈ r. w′G=gr ◦ − and for1289

arbitrary gr ∈ r and (l, gr ◦ g′) ∈ S ∗R we have ∅ ⊂ A =
{

(ls ◦ lr, gp ◦ g) gp∈p
}
⊆ P ∗R, by1290

definition we have rely(p, q, P ∗R,S∗R). As such, since we have δ=[α] ++ δ′, (R)(α)=(p, ok, r),1291

rely(p, q, P ∗R,S ∗R) and reachj(R,G, δ′, S ∗R,C, ε, w), from the definition of reach we have1292

reachn(R,G, δ, P ∗R,C, ε, w), as required.1293

1294
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In case (2), from I.H and reachj(R,G, δ′, S,C, ok, wq) we have reachj(R,G, δ′, S ∗R,C, ε,1295

w).1296

Pick an arbitrary w′=(l, gm) ∈ S ∗ R. By definition we know there exists ls, lr such1297

that l=ls ◦ lr, (ls, gm) ∈ S and (lr, gm) ∈ R. From guar(p, r, P, S,C,C′,a, ok) we then know1298

there exist gr ∈ r, gp ∈ p, wp ∈ P , g′, lp such that wp = (lp, gp ◦ g′), gm=gr ◦ g′ and1299

C, wp
a
 C′, (ls, gm), ok. Let w′′=(lp ◦ lr, gp ◦ g′). Pick an arbitrary l′ and m ∈ bTw′U ◦ l′c =1300

bls ◦ lr ◦ gm ◦ l′c = b(ls ◦ gm) ◦ lr ◦ l′c = bT(ls, gm)U ◦ l1 ◦ l′c. As such, from the definition1301

of C, wp
a
 C′, (ls, gm) we know there exists m′ ∈ bTwpU ◦ lr ◦ l′c such that (m′,m) ∈ JaKok.1302

That is, m′ ∈ blp ◦ gp ◦ g′ ◦ lr ◦ l′c = blp ◦ lr ◦ gp ◦ g′ ◦ l′c = bTw′′U ◦ l′c. As we have C id−→∗ a−→ C′1303

and for an arbitrary l′ and m ∈ bTw′U ◦ l′c we showed there exists m′ ∈ bTw′′U ◦ l′c such1304

that (m′,m) ∈ JaKok, from the definition of a
 we have C, w′′ a

 C′, w′, ok. Moreover, since1305

(lr, gm) = (lr, gr ◦ g′) ∈ R, G(α)=(p, ok, r), gr ∈ r and gp ∈ p, from stable(P,R∪ G) we know1306

(lr, gp ◦ g′) ∈ R. As such, since wp = (lp, gp ◦ g′) ∈ P , (lr, gp ◦ g′) ∈ R and w′′=(lp ◦ lr, gp ◦ g′),1307

we have w′′ ∈ P ∗ R. As such, since for an arbitrary w′ ∈ S ∗ R we found w′′ ∈ P ∗ R,1308

gp ∈ p, gr ∈ r, g′ such that w′′G = gp ◦ g′, w′G = gq ◦ g′ and C, w′′ a
 C′, w′, ok, by definition1309

we have guar(p, q, P ∗R,S ∗R,C,C′,a, ok).1310

Finally, since δ=[α] ++ δ′, (G)(α)=(p, ok, r), guar(p, q, P ∗ R,S ∗ R,C,C′,a, ok) and1311

reachj(R,G, δ′, S ∗R,C′, ε, w), from the definition of reach we have reachn(R,G, δ, P ∗R,C, ε,1312

w), as required.1313

1314

In case (3), from reachj(R,G, δ′, S,C′, ε, wq) and I.H we know reachn(R,G, δ′, S ∗ R,C′,1315

ε, w). From reachj(R,G, δ′, S,C′, ε, wq) and Lemma 7 we know S 6= ∅, thus from C, P a
 L1316

C′, S, ok we know C id−→∗ a−→C′.1317

Pick an arbitrary w′ ∈ S∗R, l, m ∈ bTw′U◦lc. We then know there exists ws = (ls, g′) ∈ S1318

and wr = (lr, g′) ∈ R such that w′ = (ls ◦ lr, g′) and m ∈ bls ◦ lr ◦ g′ ◦ lc = b(ls ◦ g′) ◦ lr ◦ lc =1319

bTwsU ◦ lr ◦ lc. As such, from the definition of C, P a
 L C′, S, ok we know there exists wp ∈ P ,1320

m′ ∈ bTwpU ◦ lr ◦ lc such that (m′,m) ∈ JaKok and (wp)G=wG
s=g′. Let wp = (lp, g′) and1321

w′′ = wp •wr = (lp ◦ lr, g′). We then have bTwpU ◦ lr ◦ lc = blp ◦ g′ ◦ lr ◦ lc = blp ◦ lr ◦ g′ ◦ lc =1322

bTwp • wrU ◦ lc = bTw′′U ◦ lc. As such, we know m′ ∈ bTw′′U ◦ lc. Moreover, we have1323

(w′′)G=w′G=g′. On the other hand, as wp ∈ P , wr ∈ R and w′′ = wp • wr, we know1324

w′′ ∈ P ∗ R. Consequently, from the definition a
 L we have C, P ∗ R a

 L C′, S ∗ R, ok. As1325

such, since we also have reachj(R,G, δ′, S ∗R,C′, ε, w) and δ=[L] ++ δ′, from the definition1326

of reach we have reachn(R,G, δ, P ∗R,C, ε, w), as required. J1327

I Lemma 22. For all n,R,R′,G,G′, δ, P, P ′, wq,C, ε, if R′ 4bδc R, G′ 4bδc G, P ′ ⊆ P and1328

reachn(R′,G′, δ, P ′,C, ε, wq), then reachn(R,G, δ, P,C, ε, wq).1329

Proof. By induction on n.1330

1331

Case n=01332

Pick arbitrary R,R′,G,G′, δ, P, P ′, wq,C, ε such that R′ 4bδc R, G′ 4bδc G, P ′ ⊆ P and1333

reach0(R′,G′, δ, P ′,C, ε, wq). As we have reach0(R′,G′, δ, P ′,C, ε, wq), we then know that1334

δ=[ ], C id−→∗skip, ε=ok and wq ∈ P ′, and thus (as P ′ ⊆ P ) wq ∈ P . Consequently, from the1335

definition of reach we have reach0(R,G, δ, P, skip, ε, wq), as required.1336

1337

Case n=1, ε ∈ ErExit1338

Pick arbitrary R,R′,G,G′, δ, P, P ′, wq,C, ε such that R′ 4bδc R, G′ 4bδc G, P ′ ⊆ P and1339

reach1(R′,G′, δ, P ′,C, ε, wq). Let wq = (l, g). From reach1(R′,G′, δ, P ′,C, ε, wq) we then know1340

that there exist α, p, q, f,a,C′ such that ε ∈ ErExit and either:1341
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1) δ = [α], R′(α) = (p, ε, q) and rely(p, q, P ′, {wq}); or1342

2) δ = [α], G′(α)=(p, ε, q) and guar(p, q, P ′, {wq},C,C′,a, ε).1343

In case (1) since α ∈ dom(R′) and α ∈ δ (and thus α ∈ bδc), from R′ 4bδc R we also1344

have R(α)=(p, ε, q). As wq = (l, g), from rely(p, q, P ′, {wq}) we know there exists gq ∈ q such1345

that g=gq ◦ −. Similarly, from rely(p, q, P ′, {wq}) we know that for all gq ∈ q, there exists g′1346

such that g=gq ◦ g′ and ∅ ⊂
{

(l, gp ◦ g′) gp ∈ p
}
⊆ P ′. As such, since P ′ ⊆ P , we also have1347

∅ ⊂
{

(l, gp ◦ g′) gp ∈ p
}
⊆ P . Consequently, from the definition of rely we have rely(p, q, P,1348

{wq}). As such, since ε ∈ ErExit, δ = [α], R(α)=(p, ε, q) and rely(p, q, P, {wq}), from the1349

definition of reach we have reach1(R,G, δ, P,C, ε, wq), as required.1350

In case (2) since α ∈ dom(G′) and α ∈ δ (and thus α ∈ bδc), from G′ 4bδc G we also have1351

G(α)=(p, ε, q). Moreover, from guar(p, q, P ′, {wq},C,C′,a, ε) we know there exists gq ∈ q,1352

gp ∈ p, wp ∈ P ′ and g such that wG
p=gp ◦ g, wG

q =gq ◦ g and C, wp
a
 C′, wq, ε. Consequently,1353

since P ′ ⊆ P and wp ∈ P ′, we also have wp ∈ P . As such, from the definition of guar we1354

have guar(p, q, P, {wq},C,C′,a, ε). Therefore, since ε ∈ ErExit, δ = [α], G(α)=(p, ε, q) and1355

guar(p, q, P, {wq},C,C′,a, ε), from the definition of reach we have reach1(R,G, δ, P,C, ε, wq),1356

as required.1357

1358

Case n=k+11359

Pick arbitrary R,R′,G,G′, δ, P, P ′, wq,C, ε such that R′ 4δ R, G′ 4δ G, P ′ ⊆ P and1360

reachn(R′,G′, δ, P ′,C, ε, wq). Let wq = (l, g). From reachn(R′,G′, δ, P ′,C, ε, wq) we then1361

know that there exist α, δ′, p, r,a,C′,a, R such that either:1362

1) δ=[α] ++ δ′, R′(α)=(p, ok, r), rely(p, r, P ′, R) and reachk(R′,G′, δ′, R,C, ε, wq); or1363

2) δ=[α] ++ δ′, G′(α)=(p, ok, r), guar(p, r, P ′, R,C,C′,a, ok) and reachk(R′,G′, δ′, R,C′, ε, wq).1364

3) δ=[L] ++ δ′, reachk(R′,G′, δ′, R,C′, ε, wq) and C, P ′ a
 L C′, R, ok.1365

In case (1) since α ∈ dom(R′) and α ∈ δ (and thus α ∈ bδc), from R′ 4bδc R we also1366

have R(α)=(p, ok, r). Pick an arbitrary wr ∈ R. From rely(p, q, P ′, R) we know there exists1367

gr ∈ r such that wG
r=gr ◦ −. Similarly, from rely(p, q, P ′, R) we know that for all gr ∈ r and1368

all (l, gr ◦ g) ∈ R we have ∅ ⊂
{

(l, gp ◦ g′) gp ∈ p
}
⊆ P ′. As such, since P ′ ⊆ P , we also1369

have ∅ ⊂
{

(l, gp ◦ g′) gp ∈ p
}
⊆ P . Consequently, from the definition of rely we have rely(p,1370

q, P,R). On the other hand, from reachk(R′,G′, δ′, R,C, ε, wq) and the inductive hypothesis1371

we have reachk(R,G, δ′, R,C, ε, wq). Consequently, as δ=[α] ++ δ′, R(α)=(p, ok, r), rely(p, r,1372

P,R) and reachk(R,G, δ′, R,C, ε, wq), from the definition of reach we have reachn(R,G, δ, P,1373

C, ε, wq), as required.1374

In case (2) since α ∈ dom(G′) and α ∈ δ (and thus α ∈ bδc), from G′ 4bδc G we also have1375

G(α)=(p, ok, r). Pick an arbitrary wr ∈ R. From guar(p, r, P ′, R,C,C′,a, ok) we know there1376

exists gr ∈ r, gp ∈ p, wp ∈ P ′ and g such that wG
p=gp ◦ g, wG

r=gq ◦ g and C, wp
a
 C′, wr, ok.1377

Consequently, since P ′ ⊆ P and wp ∈ P ′, we also have wp ∈ P . As such, from the definition1378

of guar we have guar(p, q, P,R,C,C′,a, ok). On the other hand, from reachk(R′,G′, δ′, R,1379

C′, ε, wq) and the inductive hypothesis we have reachk(R,G, δ′, R,C, ε, wq). Therefore, as1380

δ=[α] ++ δ′, G(α)=(p, ε, q), guar(p, q, P,R,C,C′,a, ok) and reachk(R,G, δ′, R,C, ε, wq), from1381

the definition of reach we have reachn(R,G, δ, P,C, ε, wq), as required.1382

In case (3), from reachk(R′,G′, δ′, R,C′, ε, wq) and the inductive hypothesis we have1383

reachk(R,G, δ′, R,C′, ε, wq). Pick an arbitrary wr ∈ R; from C, P ′ a
 L C′, R, ok we then1384

know there exists wp ∈ P ′ such that C, wp
a
 L C′, wr, ok. Since wp ∈ P ′ and P ′ ⊆ P , we1385

also have wp ∈ P . Therefore, from the definition of a
 L we have C, P a

 L C′, R, ok. As such,1386

since C, P a
 L C′, R, ok, δ=[L] ++ δ′ and reachk(R,G, δ′, R,C′, ε, wq), from the definition of1387

reach we have reachn(R,G, δ, P,C, ε, wq), as required. J1388
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I Theorem 23 (CASL soundness). For all R,G, δ, p,C, ε, q, if R,G, δ ` [p] C [ε :q] is derivable1389

using EndSkip, SkipEnv and the rules in Fig. 3, then R,G, δ |=[p] C [ε :q] holds.1390

Proof. We proceed by induction on the structure of CASL triples.1391

1392

Case EndSkip1393

Pick arbitrary R,G,Θ, P,C, Q such that R,G,Θ ` [P ] C [ε :Q]. Pick arbitrary θ ∈ Θ. From1394

R,G,Θ ` [P ] C [ε :Q] and the inductive hypothesis we know there exists δ such that bδc=θ1395

and ∀w ∈ Q. ∃n. reachn(R,G, δ, P,C, ε, w).1396

Pick an arbitrary w ∈ Q; as bδc=θ, it then suffices to show that ∃n. reachn(R,G, δ, P,1397

C; skip, ε, w). From ∀w ∈ Q. ∃n. reachn(R,G, δ, P,C, ε, w) and w ∈ Q we know there exists n1398

such that reachn(R,G, δ, P,C, ε, w). Consequently, since skip id−→∗skip, from reachn(R,G, δ, P,1399

C, ε, w) and Lemma 12 we also have reachn(R,G, δ, P,C; skip, ε, w), as required.1400

1401

Case SkipEnv1402

Pick arbitrary R,G, p, q, r, α, ε such that R(α) = (p, ε, q) and wf(R,G). It suffices to show1403

that for all w ∈ q ∗ f , we have reach1(R,G, [α], p ∗ f , skip, ε, w).1404

Pick an arbitrary w ∈ q ∗ f . We then know there exists lq ∈ q, lf ∈ f, l ∈ State0 such1405

that w=(l, lq◦lf ). Pick an arbitrary gq ∈ q, g such that w=(l, gq◦g). As w ∈ q ∗ f and gq ∈ q,1406

we then know g ∈ f . As such, since gq ∈ q, g ∈ f , we also have A=
{

(l, gp ◦ g) gp ∈ p
}
⊆1407

p ∗ f . We also know ∅ ⊂ A, as otherwise we would arrive at a contradiction as follows. As1408

w=(l, gq ◦ g) is a world, we know that gq # l ◦ g; i.e. as gq ∈ q, we have q ∗ {l ◦ g} 6= ∅. As1409

such, from wf(R,G) and since R(α)=(p, ε, q) we know p ∗ {l ◦ g} 6= ∅. That is, there exists1410

lp ∈ p such that lp # l ◦ g, and thus (l, lp ◦ g) ∈ A, arriving at a contradiction since we1411

assumed A=∅.1412

As such, since w=(l, lq ◦ lf ) with lq ∈ q, and for arbitrary gq ∈ q, g such that w=(l, gq ◦ g)1413

we have ∅ ⊂
{

(l, gp ◦ g) gp ∈ p
}
⊆ p ∗ f , from the definition of rely we have rely(p, q, p ∗ f ,1414

{w}).1415

There are now two cases to consider: i) ε ∈ ErExit; or ii) ε=ok. In case (i), since1416

R(α)=(p, ε, q) and rely(p, q, p ∗ f , {w}), from the definition of reach we have reach1(R,G,1417

[α], p ∗ f , skip, ε, w), as required. In case (ii), from Corollary 6 we have reach0(R,G, [ ], {w},1418

skip, ok, w). As such, since R(α)=(p, ε, q), rely(p, q, p ∗ f , {w}) and reach0(R,G, [ ], {w},1419

skip, ok, w), from the definition of reach we have reach1(R,G, [α] ++ [ ], p ∗ f , skip, ok, w), i.e.1420

reach1(R,G, [α], p ∗ f , skip, ok, w), as required.1421

1422

Case Skip1423

Pick arbitrary R,G, P such that R,G,Θ0 `
[
P
]

skip
[
ok : P

]
. It then suffices to show1424

that reach0(R,G, [ ], P, skip, ok, w) for an arbitrary w ∈ P , which follows immediately from1425

Corollary 6.1426

1427

Case SeqEr1428

Pick arbitrary R,G,Θ, P,Q,C1,C2, ε such that (1) ε∈ErExit and (2) R,G,Θ ` [P ] C11429

[er : Q]. Pick an arbitrary θ ∈ Θ. From (2) and the inductive hypothesis we then know1430

there exists δ such that (3) bδc=θ and (4) ∀w ∈ Q. ∃n. reachn(R,G, δ, P,C1, ε, w). Pick1431

an arbitrary w ∈ Q; from (3) it then suffices to show there exists n∈N such that reachn(R,1432

G, δ, P,C1; C2, ε, w). As w ∈ Q, from (4) we know there exists n such that (5) reachn(R,G,1433

δ, P,C1, ε, w). Consequently, from (1), (5) and Lemma 8 we have reachn(R,G, δ, P,C1; C2,1434

ε, w), as required.1435
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1436

Case EnvEr1437

Pick arbitrary R,G, α, p, q, f,C, ε such that (1) ε∈ErExit and (2) R(α)=(p, ε, q). Pick1438

an arbitrary (3) w∈ q ∗ f . It then suffices to show there exists n such that reach1(R,G,1439

[α], p ∗ f ,C, ε, w).1440

From (3) we know there is lq ∈ q, lf ∈ f, l0 ∈ State0 such that w=(l0, lq ◦ lf ). That is,1441

(4) ∃lq ∈ q. wG = lq ◦ −. Pick an arbitrary lq ∈ q, g such that w=(l0, lq ◦ g). From1442

(3) we know g ∈ f . Consequently, since l0 ∈ State0 and g ∈ f , by definition we have1443

(5) A=
{

(l0, lp ◦ g) lp ∈ p
}
⊆ p ∗ f . We also know that (6) ∅ ⊂ A , as otherwise we arrive1444

at a contradiction as follows. As w=(l0, lq ◦ g) is a world, we know that lq # l0 ◦ g; i.e. as1445

lq ∈ q, we have q ∗ {l0 ◦ g} 6= ∅. As such, as all rely/guarantee relations in proof rule contexts1446

are well-formed, i.e. wf(R,G) holds, and since q ∗ {l0 ◦ g} 6= ∅, from wf(R,G) we know1447

p ∗ {l0 ◦ g} 6= ∅. That is, there exists lp ∈ p such that lp # l0 ◦ g, and thus (l0, lp ◦ g) ∈ A,1448

arriving at a contradiction since we assumed A=∅. Consequently, from (4), (5), (6) and1449

the definition of rely we have (7) rely(p, q, p ∗ f , {w}). As such, from (1), (2), (7) and the1450

definition of reach we have reach1(R,G, [α], p ∗ f ,C, ε, w), as required.1451

1452

Case ParEr1453

Pick arbitrary R,G,Θ, P,Q,C1,C2, ε such that (1) ε∈ErExit, (2) R,G,Θ ` [P ] Ci [er : Q]1454

for some i ∈ {1, 2}. and (3) Θ v dom(G). Pick an arbitrary θ ∈ Θ. From (2) and the1455

inductive hypothesis we then know there exists i ∈ {1, 2} and δ such that (4) bδc=θ and1456

(5) ∀w ∈ Q. ∃n. reachn(R,G, δ, P,Ci, ε, w). Pick an arbitrary w ∈ Q; from (4) it then1457

suffices to show there exists n∈N such that reachn(R,G, δ, P,C1 ||C2, ε, w). As w ∈ Q, from1458

(5) we know there exists n such that (6) reachn(R,G, δ, P,Ci, ε, w). Consequently, from1459

(1), (3), (6), Lemma 9 and Lemma 10 we have reachn(R,G, δ, P,C1 ||C2, ε, w), as required.1460

1461

Case Seq1462

Pick arbitrary R,G,Θ1,Θ2, P,Q,R,C1,C2, ε such that (1) R,G,Θ1 `
[
P
]

C1
[
ok : R

]
and1463

(2) R,G,Θ2 ` [R] C2 [ε :Q]. Pick an arbitrary θ ∈ Θ1 ++ Θ2. We then know1464

there exists θ1, θ2 such that (3) θ1 ∈ Θ1, θ2 ∈ Θ2 and θ=θ1 ++ θ2. From (2), (3)1465

and the inductive hypothesis we then know there exists δ2 such that (4) bδ2c=θ2 and1466

(5) ∀w ∈ Q. ∃n. reachn(R,G, δ2, R,C2, ε, w). Similarly, from (1), (3) and the inductive1467

hypothesis we know there exists δ1 such that (6) bδ1c=θ1 and (7) ∀wr ∈ R. ∃i. reachi(R,1468

G, δ1, P,C1, ok, wr). Let (8) δ=δ1 ++ δ2. From (3), (4), (6) and (8) we then have1469

bδc=bδ1 ++ δ2c=bδ1c ++ bδ2c=θ1 ++ θ2=θ and thus (9) bδc=θ. Pick an arbitrary w ∈ Q;1470

from (9) it then suffices to show there exists n∈N such that reachn(R,G, δ, P,C1; C2, ε, w).1471

As w ∈ Q, from (5) we know there exists k such that (10) reachk(R,G, δ2, P,C2, ε, w).1472

Consequently, from (7), (10) and Lemma 17 we know ∃n. reachn(R,G, δ1 ++ δ2, P,C1; C2, ε,1473

wq), and thus from (8) we have ∃n. reachn(R,G, δ, P,C1; C2, ε, wq), as required.1474

1475

Case Atom1476

Pick arbitraryR,G, α, p, q, p′, q′, f,a, ε, w such that (1) (p′∗p,a, ε, q′∗q)∈Axiom, (2) G(α)=(p, ε, q)1477

and (3) w∈q′ ∗ q ∗ f . It then suffices to show reach1(R,G, [α], p′ ∗ p ∗ f ,a, ε, w).1478

From the control flow transitions we know a a−→ skip and thus (4) a id−→∗ a−→ skip. From (3)1479

we know (5) there exists l′q ∈ q′, lq ∈ q, lf ∈ f such that w=(l′q, lq ◦ lf ). Pick an arbitrary1480

state l and m ∈ bTwU ◦ lc. We then have m ∈ bTwU ◦ lc=bl′q ◦ lq ◦ lf ◦ lc. As l′q ◦ lq ∈ q′ ∗ q,1481

we then have m ∈ bq ∗ q′ ∗ {lf ◦ l}c. Consequently, from (1) and atomic soundness we know1482

there exists m′ ∈ bp′ ∗ p ∗ {lf ◦ l}c such that (m′,m) ∈ JaKε. In other words, there exists1483
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l′p ∈ p′, lp ∈ p such that m′ ∈ bl′p ◦ lp ◦ lf ◦ lc = bTw′U ◦ lc with (6) w′=(l′p, lp ◦ lf ). That1484

is, (7) ∀l. ∀m ∈ bTwU ◦ lc. ∃m′ ∈ bTw′U ◦ lc. (m′,m) ∈ JaKε. As such, from (4), (7) and1485

the definition of a
 we have (8) C, w′ a

 skip, w, ε . Moreover, since l′p ∈ p′, lp ∈ p, lf ∈ f1486

by definition we have (9) w′ ∈ p′ ∗ p ∗ f . Consequently, from (5), (6), (8), (9) and the1487

definition of guar we have (10) guar(p ∗ p′, q ∗ q′, p′ ∗ p ∗ f , {w},a, skip,a, ε).1488

There are now two cases: i) ε ∈ ErExit; or ii) ε=ok. In case (i), from (2), (10) and1489

the definition of reach we have reach1(R,G, [α], p′ ∗ p ∗ f ,a, ε, w), as required. In case (ii),1490

from Corollary 6 we have (11) reach0(R,G, [ ], {w}, skip, ε, w). As such, since ε=ok (case1491

assumption), from (2), (10), (11) and the definition of reach we have reach1(R,G, [α],1492

p′ ∗ p ∗ f ,a, ε, w), as required.1493

1494

Case AtomLocal1495

Pick arbitrary R,G, p, q,a, w=(lq, g) such that (1) (p,a, ok, q)∈Axiom, (2) lq ∈ q. Let1496

δ=[L], we then have bδc=[ ], and thus it suffices to show reach1(R,G, δ, p,a, ok, w).1497

From the control flow transitions we know a a−→ skip and thus (3) a id−→∗ a−→ skip. Pick1498

an arbitrary state l and m ∈ bTwU ◦ lc. We then have m ∈ bTwU ◦ lc=blq ◦ g ◦ lc. As1499

lq ∈ q, we then have m ∈ bq ∗ {g ◦ l}c. Consequently, from (1) and atomic soundness1500

we know there exists m′ ∈ bp ∗ {g ◦ l}c such that (m′,m) ∈ JaKok. That is, there exists1501

lp ∈ p such that m′ ∈ blp ◦ g ◦ lc = bTw′U ◦ lc with (4) w′=(lp, g). In other words,1502

(5) ∀l. ∀m ∈ bTwU ◦ lc. ∃m′ ∈ bTw′U ◦ lc. (m′,m) ∈ JaKok. As such, from (3), (5) and1503

the definition of a
 we have (6) C, w′ a

 skip, w, ok . Furthermore, from the definitions of1504

w,w′ we have (7) wG=w′G=g. Consequently, from (6), (7) and the definition of a
 L we1505

have (8) C, w′ a
 L skip, w, ok. Moreover, since lp ∈ p by definition we have (9) w′ ∈ p.1506

As such, from (8) and the definition of a
 L we also have (10) C, p a

 L skip, {w}, ok. From1507

Corollary 6 we have (11) reach0(R,G, [ ], {w}, skip, ok, w). As such, since δ=[L], from (10),1508

(11) and the definition of reach we have reach1(R,G, δ, p,a, ok, w), as required.1509

1510

Case EnvL1511

Pick arbitraryR,G, α,Θ, p, p′, f, r,Q,C, ε such that (1)R(α)=(p, ok, r) and (2)R,G,Θ `
[
p′∗ r ∗ f

]
1512

C [ε :Q]. Pick arbitrary (3) θ ∈ α :: Θ. We then know there exists θ′ such that (4) θ′ ∈ Θ1513

and θ=α :: θ′. From (2), (4) and the inductive hypothesis we then know there exists δ′ such1514

that (5) bδ′c=θ′ and (6) ∀w ∈ Q. ∃n. reachn(R,G, δ′, p′ ∗ r ∗ f ,C, ε, w). Let δ=α :: δ′.1515

We then have bδc=α :: bδ′c=α :: θ′=θ and thus (7) bδc=θ. Pick an arbitrary w∈Q, it then1516

suffices to show there exists n such that reachn(R,G, δ, p′ ∗ p ∗ f ,C, ε, w).1517

As w ∈ Q, from (6) and the inductive hypothesis we know there exists k such that1518

(8) reachk(R,G, δ′, p′ ∗ r ∗ f ,C, ε, w). Pick an arbitrary wr ∈ p′ ∗ r ∗ f . We then know1519

(9) there exists l′p ∈ p′, lr ∈ r, lf ∈ f such that w=(l′p, lr ◦ lf ).1520

Pick arbitrary lr ∈ r, (l, lr ◦ g) ∈ p′ ∗ r ∗ f . We then know l ∈ p′ and since lr ∈ r,1521

we also have g ∈ f . Consequently, since l ∈ p′ and g ∈ f , by definition we have1522

(10) A=
{

(l, lp ◦ g) lp ∈ p
}
⊆ p′ ∗ p ∗ f . We also know (11) ∅ ⊂ A , as otherwise we1523

arrive at a contradiction as follows. As (l, lr ◦ g) ∈ p′ ∗ r ∗ f is a world, we know lr # l ◦ g;1524

i.e. as lr ∈ r, we have r ∗ {l ◦ g} 6= ∅. As such, as all rely/guarantee relations in proof rule1525

contexts are well-formed, i.e. wf(R,G) holds, and since r ∗ {l ◦ g} 6= ∅, from wf(R,G) and1526

(1) we know p ∗ {l ◦ g} 6= ∅. That is, there exists lp ∈ p such that lp # l ◦ g, and thus1527

(l, lp ◦ g) ∈ A, arriving at a contradiction since we assumed A=∅. Consequently, from (9),1528

(10), (11) and the definition of rely we have (12) rely(p, q, p′ ∗ p ∗ f , p′ ∗ r ∗ f ). As such,1529

since δ=α :: δ′, from (1), (8), (12) and the definition of reach we have reachk+1(R,G, δ,1530

p′ ∗ p ∗ f ,C, ε, w), as required.1531
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1532

Case EnvR1533

The EnvR rule can be derived as follows and is thus sound.1534

R,G,Θ ` [P ] C
[
ε :r′∗ r ∗ f

]
R(α)=(r, ε, q) wf(R,G)

R,G, [α] `
[
r ∗ f

]
skip

[
ε : q ∗ f

] SkipEnv
stable(r′,R∪ G)

R,G, [α] `
[
r′∗ r ∗ f

]
skip

[
ε :r′∗ q ∗ f

] Frame

R,G,Θ ++ [α] ` [P ] C; skip
[
ε :r′∗ q ∗ f

] Seq

R,G,Θ ++ [α] ` [P ] C
[
ε :r′∗ q ∗ f

] EndSkip
1535

Case Loop11536

Pick arbitrary R,G, P,C and wp ∈ P . It then suffices to show reach0(R,G, [ ], P,C?, ε, wp).1537

This follows immediately from the definition of reach0 and since C? id−→∗skip and wp ∈ P .1538

1539

Case Loop21540

Pick arbitrary R,G,Θ, P,Q,C, ε such that (1) R,G,Θ ` [P ] C?; C [ε :Q]. Pick an arbitrary1541

θ ∈ Θ. From (1) and the inductive hypothesis we know there exists δ such that (2) bδc=θ1542

and (3) ∀w ∈ Q. ∃n. reachn(R,G, δ, P,C?; C, ε, w). Pick an arbitrary wq ∈Q; from (2) it1543

then suffices to show there exists n such that reachn(R,G, δ, P,C?, ε, wq).1544

As wq ∈ Q, from (3) we know there exists n such that (4) reachn(R,G, δ, P,C?; C, ε, wq).1545

On the other hand, from the control flow transitions (Fig. 6) we have C? id−→ C?; C and thus1546

(5) C? id−→∗C?; C. As such, from (4), (5) and Lemma 11 we also have reachn(R,G, δ, P,C?,1547

ε, wq), as required.1548

1549

Case BackwardsVariant1550

Pick arbitrary R,G,Θ, S,C such that (1) for all k: R,G,Θ `
[
S(k)

]
C
[
ok : S(k+1)

]
. Pick1551

an arbitrary n. We then proceed by induction on n.1552

1553

Base case (n=0)1554

From the proof of Loop1 we then simply have R,G, {[]} `
[
S(0)

]
C
[
ok : S(0)

]
, as required.1555

1556

Inductive case (n=i+1)1557

From (1) we then have R,G,Θ `
[
S(i)

]
C
[
ok : S(n)

]
. Moreover, from the inductive hypo-1558

thesis we have R,G,Θi `
[
S(0)

]
C?
[
ok : S(i)

]
. Consequently, from the proof of Seq above1559

we have R,G,Θn `
[
S(0)

]
C?; C

[
ok : S(n)

]
, and thus from the proof of Loop2 above we have1560

R,G,Θn `
[
S(0)

]
C?
[
ok : S(n)

]
, as required.1561

1562

Case Choice1563

Pick arbitrary R,G,Θ, P,Q,C1,C2, ε such that (1) R,G,Θ ` [P ] Ci [ε :Q] for some i ∈ {1, 2}.1564

Pick an arbitrary θ ∈ Θ. From (1) and the inductive hypothesis we know there exists δ such1565

that (2) bδc=θ and (3) ∀w ∈ Q. ∃n. reachn(R,G, δ, P,Ci, ε, w). Pick an arbitrary wq∈Q;1566

from (2) it then suffices to show there exists n such that reachn(R,G, δ, P,C1 + C2, ε, wq).1567

As wq ∈ Q, from (3) we know there exists n such that (4) reachn(R,G, δ, P,Ci, ε, wq). On1568

the other hand, from the control flow transitions (Fig. 6) we have C1 + C2
id−→ Ci and thus1569

(5) C1 + C2
id−→∗Ci. As such, from (4), (5) and Lemma 11 we also have reachn(R,G, δ, P,1570

C1 + C2, ε, wq), as required.1571

1572
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Case Cons1573

Pick arbitrary R,R′,G,G′,Θ,Θ′, P, P ′, Q,Q′,C, ε such that (1) P ′ ⊆ P ; (2) R′,G′,Θ′` [P ′]1574

C [ε :Q′]; (3) Q ⊆ Q′; (4) R′ 4Θ R; (5) G′ 4Θ G; and (6) Θ ⊆ Θ′. Pick an arbitrary1575

θ ∈ Θ. As θ ∈ Θ, from (6) we also have θ ∈ Θ′. As such, from (2) and the inductive1576

hypothesis we know there exists δ such that (7) bδc=θ and (8) ∀w ∈ Q′. ∃n. reachn(R′,G′,1577

δ, P ′,C, ε, w). Pick an arbitrary wq∈Q; from (7) it then suffices to show there exists n such1578

that reachn(R,G, δ, P,C, ε, wq).1579

As wq ∈ Q, from (3) we also have wq ∈ Q′. Consequently, from (8) we know there exists n1580

such that (9) reachn(R′,G′, δ, P ′,C, ε, wq). On the other hand, since θ ∈ Θ, from (4), (5)1581

and (7) we also have (10) R′ 4bδc R and G′ 4bδc G. Consequently, from (1), (9), (10)1582

and Lemma 22 we have reachn(R,G, δ, P,C, ε, wq), as required.1583

1584

Case Comb1585

Pick arbitraryR,G,Θ1,Θ2, P,Q,C, ε such that (1)R,G,Θ1 ` [P ] C [ε :Q]; and (2)R,G,Θ2 ` [P ]1586

C [ε :Q]. Pick an arbitraryθ ∈ Θ1 ∪Θ2. There are now two cases to consider: i) θ ∈ Θ1; or1587

ii) θ ∈ Θ2. In case (i) from (1) and the inductive hypothesis we know there exists δ such that1588

(3) bδc=θ and (4) ∀w ∈ Q. ∃n. reachn(R,G, δ, P,C, ε, w). Pick an arbitrary wq∈Q; from1589

(3) it then suffices to show there exists n such that reachn(R,G, δ, P,C, ε, wq). As wq ∈ Q,1590

from (4) we know there exists n such that reachn(R,G, δ, P,C, ε, wq), as required.1591

Similarly, in case (ii) from (2) and the inductive hypothesis we know there exists δ such that1592

(5) bδc=θ and (6) ∀w ∈ Q. ∃n. reachn(R,G, δ, P,C, ε, w). Pick an arbitrary wq∈Q; from1593

(5) it then suffices to show there exists n such that reachn(R,G, δ, P,C, ε, wq). As wq ∈ Q,1594

from (6) we know there exists n such that reachn(R,G, δ, P,C, ε, wq), as required.1595

1596

Case Par1597

Pick arbitrary R1,R2,G1,G2,Θ1,Θ2, P1, P2, Q1, Q2,C1,C2, ε such that (1) R1,G1,Θ1 ` [P1]1598

C1 [ε :Q1]; (2) R2,G2,Θ2 ` [P2] C2 [ε :Q]2; (3) R1 ⊆ G2 ∪ R2; (4) R2 ⊆ G1 ∪ R1; and1599

(5) dsj(G1,G2). Pick an arbitrary θ ∈ Θ1 ∩ Θ2. As θ ∈ Θ1 ∩ Θ2, we also have θ ∈ Θ1.1600

Consequently, from (1) and the inductive hypothesis we know there exists δ1 such that1601

(6) bδ1c=θ and (7) ∀w ∈ Q1. ∃i. reachi(R,G, δ1, P1,C, ε, w). Similarly, as θ ∈ Θ1 ∩ Θ2,1602

we also have θ ∈ Θ2. Consequently, from (2) and the inductive hypothesis we know there1603

exists δ2 such that (8) bδ2c=θ and (9) ∀w ∈ Q2. ∃j. reachj(R,G, δ2, P2,C, ε, w). From (6),1604

(8) and Prop. 19 we then know bδ1 || δ2c=bδ1c=bδ2c=θ and thus (10) bδ1 || δ2c=θ. Pick1605

an arbitrary wq ∈ Q1 ∗ Q2. From (10) it then suffices to show there exists n such that1606

reachn(R1 ∩R2,G1 ] G2, δ1 || δ2, P1 ∗ P2,C1 ||C2, ε, w1 • w2).1607

As wq ∈ Q1 ∗Q2, we know there exists w1 ∈ Q1, w2 ∈ Q2 such that wq=w1 •w2. It then suf-1608

fices to show there exists n∈N such that reachn(R1∩R2,G1]G2, δ, P1∗P2,C1 ||C2, ε, w1•w2).1609

As w1 ∈ Q1, from (7) we know there exists i such that (11) reachi(R1,G1, δ1, P1,C1, ε, w1).1610

Similarly, as w2 ∈ Q2, from (9) we know there exists j such that (12) reachj(R2,G2, δ2,1611

P2,C2, ε, w2). Consequently, from (3)–(5), (6), (8), (11), (12), the well-formedness of all1612

rely/guarantee contexts and Lemma 20 we know there exists n such that reachn(R1 ∩R2,1613

G1 ] G2, δ1 || δ2, P1 ∗ P2,C1 ||C2, ε, w1 • w2), as required.1614

1615

Case Frame1616

Pick arbitraryR,G,Θ, P,Q,R,C, ε such that (1)R,G,Θ ` [P ] C [ε :Q] and (2) stable(R,R∪ G).1617

Pick an arbitrary θ ∈ Θ. From (1) and the inductive hypothesis we know there exists δ such1618

that (3) bδc=θ and (4) ∀w ∈ Q. ∃n. reachn(R,G, δ, P,C, ε, w). Pick an arbitrary w∈Q ∗R;1619

from (3) it then suffices to show there exists n such that reachn(R,G, δ, P ∗R,C, ε, w).1620



A.Raad, J. Vanegue, J. Berdine and P.O’Hearn 25:41

As w∈Q ∗R, we know there exists wq∈Q,wr∈R such that w=wq • wr. Consequently, as1621

wq∈Q from (4) we know there exists n such that (5) reachn(R,G, δ, P,C, ε, wq). Moreover,1622

as w=wq • wr and wr ∈R, we also have (6) w ∈ {wq} ∗ R. Consequently, from the well-1623

formedness of the rely/guarantee contexts, (2), (5), (6) and Lemma 21 we know reachn(R,1624

G, δ, P ∗R,C, ε, w), as required. J1625
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HID-Alloc
t = {f1 : t1, · · · , fn : tn}[

x Z⇒−
]

l: t x :=τ alloc()
[

ok : ∃l. x Z⇒ l ∗∗size(t1)+···+size(tn)−1
i=0 l+i 7→(0, τ, 0)

∗ x.f1=x ∗ x.f2=x+size (t1) ∗ · · · ∗ x.fn=x+size (tn−1)

]
HID-Read[
y Z⇒− ∗ x.f=x+i ∗ x Z⇒(l, τl) ∗ l+i 7→V

]
l: y :=τ [x.f ]

[
ok : y Z⇒V ∗ x.f=x+i ∗ x Z⇒(l, τl) ∗ l+i 7→V

]
HID-ReadArray[
x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ z Z⇒(j, τj , ιj)
∗ l+i+j 7→V ∗ y Z⇒−

]
l: y :=τ [x.f [z]]

[
ok : x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ z Z⇒(j, τj , ιj)
∗ l+i+j 7→V ∗ y Z⇒V

]
HID-Write[
x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ l+i 7→− ∗ y Z⇒V

]
l: [x.f ] :=τ y

[
ok : x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ l+i 7→V ∗ y Z⇒V

]
HID-WriteSecret[
x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ l+i 7→−

]
l: [x.f ] :=τ ∗

[
ok : x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ l+i 7→(v, τ, 1)

]
HID-WriteArray[
x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ z Z⇒(j, τj , ιj)
∗ l+i+j 7→− ∗ y Z⇒V

]
l: [x.f [z]] :=τ y

[
ok : x Z⇒(l, τl, ιl) ∗ x.f=x+i ∗ z Z⇒(j, τj , ιj)
∗ l+i+j 7→V ∗ y Z⇒V

]
HID-SendVal[
c 7→L

]
l: send(c, v)τ

[
ok : c 7→L ++ [(v, τ, 0)]

] HID-Send[
c 7→L ∗ x Z⇒V

]
l: send(c, x)τ

[
ok : c 7→L ++ [V ]

]
HID-Recv[
c 7→ [(v, τt, ι)] ++ L ∗ x Z⇒− ∗ (ι=0 ∨ τ ∈Trust)

]
l: recv(c, x)τ

[
ok : c 7→L ∗ x Z⇒(v, τt, ι) ∗ (ι=0 ∨ τ ∈Trust)

]
HID-RecvEr
[c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust] l: recv(c, x)τ [er : c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust]

Figure 7 The CASLHID axioms (excerpt), where V and its variants (e.g. Vy) range over triples of
values, thread identifiers and secret attribute (0 for non-secret and 1 for secret)

C CASLHID: Detecting Information Disclosure Attacks on the Heap1626

We present CASLHID, an instance of CASL for detecting heap-based information disclosure1627

exploits. As in CASLID, we assume disjoint thread memory spaces, whereby the adversary1628

and the vulnerable programs communicate by transmitting data over a shared channel.1629

The CASLHID atomics, AtomHID, are defined below; as before, when variable x stores heap1630

location l, then [x] denotes dereferencing l. AtomHID include primitives for memory allocation,1631

t x := alloc(), allocating n memory units in the heap when n is the size of the record type1632

t; heap lookup, y := [x.f ], reading from the heap location given by x.f ; heap array lookup,1633

y := [x.f [z]]; heap update, [x.f ] := y, writing to the heap location given by x.f ; heap array1634

update, [x.f [z]] := y; secret generation, [x.f ] := ∗, generating a random (∗) value and writing1635

it to the heap location given by x.f ; sending over channel c (send(c, v) and send(c, x)); and1636

receiving over channel c (recv(c, x)).1637

AtomHID 3 a ::= l: t x :=τ alloc() | l: y :=τ [x.f ] | l: y :=τ [x.f [z]] | l: [x.f ] :=τ y

| l: [x.f [z]] :=τ y | l: [x.f ] :=τ ∗
| l: send(c, v)τ | l: send(c, x)τ | l: recv(c, x)τ

1638

CASLHID States and Axioms. The CASLHID states are those of CASLSO (in §4) . We1639
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present the CASLHID axioms in Fig. 7. The HID-Alloc, HID-Read, HID-Write, HID-1640

WriteArray, HID-SendVal and HID-Send rules are analogous to their counterparts in1641

CASLHO. The HID-WriteSecret generates a secret value v (with secret attribute 1) and1642

stores it at the heap location given by x.f (i.e. l+i when x stores value l and x.f=x+i). The1643

HID-Recv and HID-RecvEr rules are analogous to ID-Recv and ID-RecvEr. Specifically,1644

HID-Recv describes when receiving data does not constitute information disclosure, i.e. when1645

the value received is not secret (ι= 0) or the recipient is trusted (τ ∈Trust). By contrast,1646

HID-RecvEr describes when receiving data leads to information disclosure, i.e. when the1647

value received is secret and the recipient is untrusted (τ 6∈Trust), in which case the underlying1648

state is unchanged.1649

I Example 24. Consider the example in Fig. 8a, where the type session contains an array1650

buf of size 2 and an integer sec to store a secret value. The τv (the right thread) allocates 31651

(the size of session) contiguous heap locations starting at some address l (where x.buf =x1652

and x.sec=x+2) and returns l in x. It then generates a secret value and stores it at [x.sec],1653

namely at l+2 and proceeds to receive a value from τa, stores it in i and uses it to index x.buf .1654

As such, since x.buf =x, x.sec=x+2 and x stores l, when τa sends i=2, then τv retrieves1655

[x.buf [i]], i.e. the secret value stored at heap location l+2! That is, τa exploits τv to leak a1656

secret value. We present proof sketches of τa and τv in Fig. 8b and Fig. 8c, respectively. As1657

before, the // annotations at each proof step describe the CASL proof rules applied.1658
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R(α′1) , (c 7→ [], ok, c 7→ [(2, τa, 0)]) R(α′2) , (c 7→ [(v, τv, 1)], ok, c 7→ []) Ra , Gv Ga , R
G(α1) , (c 7→ [(2, τa, 0)], ok, c 7→ []) G(α2) , (c 7→ [], ok, c 7→(v, τv, 1)) Θ , {[α′1, α1, α2, α

′
2]}

struct session = {buf : int[2], sec : int}

∅,Ga ∪ Gv,Θ0 ` [Pa ∗ Pv] //Par

Ra,Ga,Θ0 ` [Pa]
send(c, 2)τa ;
recv(c, y)τa ;
Ra,Ga,Θ ` [er : Qa]

Rv,Gv,Θ0 ` [er : Pv]
struct session x :=τv alloc();
[x.sec] :=τv ∗;
recv(c, i)τv ;
z :=τv [x.buf [i]];
send(c, z)τv ;
Rv,Gv,Θ ` [er : Qv]

∅,Ga ∪ Gv,Θ ` [er : Qa ∗Qv]
(a)

Ra,Ga,Θ0 `
[
Pa , c 7→ [] ∗ τa 6∈Trust

]
send(c, 2)τa //Atom + HID-SendVal
Ra,Ga, {[α′1]} `

[
ok: c 7→ [(2, τa, 0)] ∗ τa 6∈Trust

]
//EnvL× 2
Ra,Ga,{[α′1,α1,α2]}`

[
ok: c 7→[(0, τv, 1)] ∗ τa 6∈Trust

]
recv(c, y)τa //Atom + HID-RecvEr
Ra,Ga,Θ `

[
er : Qa , c 7→[(0, τv, 1)] ∗ τa 6∈Trust

]
(b)

Rv,Gv,
Θ0`

[
Pv , x Z⇒− ∗ i Z⇒− ∗ z Z⇒− ∗ c 7→ []

]
struct session x :=τv alloc() //HID-Alloc + AtomLocal

Θ0`
[
ok: i Z⇒− ∗ z Z⇒− ∗ c 7→ [] ∗ ∃l. x Z⇒ l ∗∗2

j=0 l+j 7→(0, τv, 0) ∗ x.buf =x ∗ x.sec =x+2
]

[x.sec] :=τv ∗; //AtomLocal+HID-Read
Θ0`

[
ok: i Z⇒− ∗ z Z⇒− ∗ c 7→ [] ∗ ∃l. x Z⇒ l ∗∗1

j=0 l+j 7→(0, τv, 0) ∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2
]

//EnvL

{[α′1]}`

[
ok: i Z⇒− ∗ z Z⇒− ∗ c 7→ [(2, τa, 0)] ∗ ∃l. x Z⇒ l ∗∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
recv(c, i)τv ; //Atom + HID-Recv

{[α′1, α1]}`

[
ok: i Z⇒(2, τa, 0) ∗ z Z⇒− ∗ c 7→ [] ∗ ∃l. x Z⇒ l ∗∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
z := [x.buf [i]]; //AtomLocal+HID-ReadArray

{[α′1, α1]}`

[
ok: i Z⇒(2, τa, 0) ∗ z Z⇒(v, τv, 1) ∗ c 7→ [] ∗ ∃l. x Z⇒ l ∗∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
send(c, z)τv ; // (Atom + HID-Send)

{[α′1, α1, α2]}`

[
ok: i Z⇒(2, τa, 0) ∗ z Z⇒(v, τv, 1) ∗ c 7→ [(v, τv, 1)] ∗ ∃l. x Z⇒ l ∗∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
//EnvEr

Θ`

[
er :Qv, i Z⇒(2, τa, 0) ∗ z Z⇒(v, τv, 1) ∗ c 7→ [(v, τv, 1)] ∗ ∃l. x Z⇒ l ∗∗1

j=0l+j 7→(0, τv, 0)
∗ l+2 7→(v, τv, 1) ∗ x.buf =x ∗ x.sec =x+2

]
(c)

Figure 8 CASLHID proof outlines of Example 24 (a), its adversary program (b) and vulnerable
program (c)



A.Raad, J. Vanegue, J. Berdine and P.O’Hearn 25:45

send(c,maxInt);

recv(c, s);
if (s≤maxInt)
y := s+1;
x := alloc(y);
l: [x+s] := 0;

Figure 9 A memory safety vulnerability on the heap at l (zero allocation)

D CASL for Exploit Detection: Memory Safety Attacks1659

Memory Safety Attacks. Consider the example in Fig. 9 illustrating an instance of the1660

zero allocation vulnerability [21]. Specifically, τv receives a size value in s and allocates s+11661

units on the heap. As such, when τa sends maxInt and τv receives s=maxInt, then s+11662

triggers an integer overflow and wraps to 0, i.e. results in storing 0 in y and calling alloc(0),1663

namely a zero allocation. As per the common behaviour of alloc, calling alloc(0) leads to1664

allocating a pre-defined minimum number, 0 < min� maxInt, of units (i.e. the minimum1665

chunk size, typically 8 or 16 bytes) on the heap. Thus, the subsequent heap access [x+s] := 01666

(dereferencing the heap location at x+s and writing 0 to it) is out of bounds and accesses1667

adjacent memory, thus causing a memory safety error (e.g. a segmentation fault, or a more1668

subtle corruption). Such undefined behaviours are what exploits leverage to induce the target1669

program generate incorrect results without always crashing.1670

We present CASLMS for detecting memory safety bugs and exploits. The CASLMS1671

atomics, AtomMS, are defined below and include assignment, heap lookup, heap update,1672

heap allocation and disposal, as well as constructs for transmitting messages over a shared1673

channel. Additionally, AtomMS include constructs for heap lookup and update on a location1674

offset o (x := [y+o] and [x+o] := y).1675

AtomMS 3 a ::= x := y | x := v | x := [y] | [x] := y | x := alloc(n) | free(x)
| x := [y+o] | [x+o] := y | send(c, v) | send(c, x) | recv(c, x)1676

CASLMS States and Axioms. The CASLMS states are pairs comprising variable stacks1677

and heaps: StateMS , Stack × Heap with Stack , Var ⇀ (Val ∪ (Loc × N)) and1678

Heap , Loc ⇀ Val ] {⊥}. Specifically, a variable x may either hold a value v, or a pair1679

(l, b) where l∈Loc denotes a location and b denotes its bound, namely the size of the block of1680

addresses allocated at l. For instance, given a stack s with s(x)=(l, n), the address given by1681

x+i is valid (within bounds) when 0≤ i<n, and is out of bounds otherwise. Moreover, given1682

a location l and a heap h, h(l) = v denotes that location l is allocated and stores value v;1683

and h(l) = ⊥ denotes that location l is deallocated. Note that as we are only concerned with1684

memory safety errors here, we no longer record the provenance of values (unlike in CASLSO1685

and CASLHO) or their secret attribute (unlike in CASLID). Composition over StateMS is1686

defined component-wise as (],]). The StateMS unit set is {(∅, ∅)}. We write x Z⇒v for the1687

set {([x 7→ v], ∅)}, i.e. states where the stack contains a single variable x with value v and1688

the heap is empty. Similarly, we write x Z⇒ (l, b) for {([x 7→ (l, b)], ∅)} and write x Z⇒ l for1689

x Z⇒(l,−), i.e. ∃b. x Z⇒(l, b). Analogously, we write l 7→v for {(∅, [l 7→ v])}, and write l 67→ for1690

l 7→⊥.1691

The CASLMS axioms are given in Fig. 10. The MS-Assign, MS-AssignVal, MS-Read,1692

MS-Write, MS-SendVal and MS-Recv are analogous to those of CASLSO and CASLHO.1693
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MS-Assign[
x Z⇒−∗y Z⇒v

]
x := y

[
ok : x Z⇒v∗y Z⇒v

] MS-AssignVal[
x Z⇒−

]
x := v

[
ok : x Z⇒v

] MS-FreeUAF
[x Z⇒ l∗l 67→] free(x) [er : x Z⇒ l∗l 67→]

MS-AllocZero[
x Z⇒−∗y Z⇒0

]
x := alloc(y)

[
ok :∃l. x Z⇒(l,1)∗y Z⇒0∗l 7→v

] MS-Free[
x Z⇒ l ∗ l 7→−

]
free(x)

[
ok : x Z⇒ l ∗ l 67→

]
MS-Alloc[
x Z⇒− ∗ y Z⇒n ∗ n>0

]
x := alloc(y)

[
ok : ∃l. x Z⇒(l, n) ∗ y Z⇒n ∗ n>0 ∗∗n−1

i=0 l+i 7→v

]
MS-Read[
x Z⇒− ∗ y Z⇒ l ∗ l 7→v

]
x := [y]

[
ok : x Z⇒v ∗ y Z⇒ l ∗ l 7→v

] MS-ReadUAF
[y Z⇒ l ∗ l 67→] x := [y] [er : y Z⇒ l ∗ l 67→]

MS-Write[
x Z⇒ l ∗ y Z⇒v ∗ l 7→−

]
[x] := y

[
ok : x Z⇒ l ∗ y Z⇒v ∗ l 7→v

] MS-WriteUAF
[x Z⇒ l ∗ l 67→] [x] := y [er : x Z⇒ l ∗ l 67→]

MS-SendVal[
c 7→L

]
send(c, v)

[
ok : c 7→L++[v]

] MS-Recv[
c 7→ [v] ++ L ∗ x Z⇒−

]
recv(c, x)

[
ok : c 7→L ∗ x Z⇒v

]
MS-ReadOffset[
x Z⇒− ∗ y Z⇒(l, b) ∗ o Z⇒n ∗ n < b ∗ l+n 7→v

]
x := [y+o]

[
ok : x Z⇒v ∗ y Z⇒(l, b) ∗ o Z⇒n ∗ n < b ∗ l+n 7→v

]
MS-WriteOffset[
x Z⇒(l, b) ∗ y Z⇒v ∗ o Z⇒n ∗ n < b ∗ l+n 7→−

]
[x+o] := y

[
ok : x Z⇒(l, b) ∗ y Z⇒v ∗ o Z⇒n ∗ n < b ∗ l+n 7→v

]
MS-ReadOffsetOOB[
y Z⇒(l, b)
∗ o Z⇒n ∗ n≥b

]
x := [y+o]

[
er : y Z⇒(l, b)
∗ o Z⇒n ∗ n≥b

]
MS-WriteOffsetOOB[
x Z⇒(l, b)
∗ o Z⇒n ∗ n≥b

]
[x+o] := y

[
er : x Z⇒(l, b)
∗ o Z⇒n ∗ n≥b

]
Figure 10 The CASLMS axioms (excerpt)

The MS-Free rule describes deallocating a heap location: when x records location l (x Z⇒ l)1694

and l is allocated (l 7→ −), then free(x) deallocates l, replacing l 7→ − with l 67→. On the1695

other hand, when l is already deallocated, then free(x) leads to a use-after-free error, as1696

captured by MS-FreeUAF. The MS-ReadUAF and MS-WriteUAF rules are analogous. The1697

MS-Alloc rule allocates n (non-zero) adjacent heap units and returns the address of the1698

first unit in x. Dually, MS-AllocZero describes zero allocation (with y Z⇒0). As discussed1699

in §2.2, in such cases a pre-defined minimum number of units, min, are allocated; here we1700

assume min=1 and allocate one unit in the case of zero allocation. When y stores (l, b) and1701

o stores n, MS-ReadOffset describes reading from the location at offset n from l (i.e. l+n)1702

provided that the offset is valid (n<b). On the other hand, MS-ReadOffsetOOB describes1703

the out-of-bounds read access when n≥b. The MS-WriteOffset and MS-WriteOffsetOOB1704

rules are analogous.1705

I Example 25. In Fig. 11 we present a CASLMS proof sketch of (out-of-bounds) memory1706

safety exploit in Fig. 9. Note that we use Cons to rewrite y Z⇒maxInt+1 ∗ maxInt+1=01707

as y Z⇒0 ∗maxInt+1=0 and additionally infer maxInt ≥ 1 (holds trivially). This allows us1708

to apply MS-AllocZero to allocate one heap unit, which subsequently leads to an out of1709

bounds access detected by MS-WriteOffsetOOB.1710
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∅,Ga ∪ Gv,Θ0 ` [Pa ∗ Pv] //Par

Ra,Ga,Θ0 `
[
Pa , c 7→ []

]
send(c,maxInt) //MS-SendVal
Ra,Ga, {[α′1]} `

[
er : c 7→ [maxInt]

]
//EnvL× 2
Ra,Ga,Θ `

[
er : Qa, c 7→ []

]

Rv,Gv,Θ0 ` [Pv]
recv(c, s);
if (s≤maxInt)
y := s+1;
x := alloc(y);
l: [x+s] := 0;

Rv,Gv,Θ ` [er : Qv]
∅,Ga ∪ Gv,Θ ` [er : Qa ∗Qv]

(a)

Rv(α′1), (c 7→ [], ok, c 7→ [maxInt])
Gv(α1), (c 7→ [maxInt], ok, c 7→ [])
Gv(α), (c 7→ [], er , c 7→ [])
Ra, Gv
Ga,Rv
Θ, {[α′1, α,α]}

Rv,Gv,Θ0 `
[
Pv , x Z⇒− ∗ y Z⇒− ∗ s Z⇒− ∗ c 7→ [] ∗maxInt+1=0

]
//EnvL

Rv,Gv, {[α′1]} `
[
ok:x Z⇒− ∗ y Z⇒− ∗ s Z⇒− ∗ c 7→ [maxInt] ∗maxInt+1=0

]
recv(c, s); //Atom + MS-Recv
Rv,Gv, {[α′1,α1]}`

[
ok:x Z⇒− ∗ y Z⇒− ∗ s Z⇒maxInt ∗ c 7→ [] ∗maxInt+1=0

]
if (s ≤ maxInt) y := s+1 //AtomLocal + MS-AssignVal
Rv,Gv, {[α′1,α1]}`

[
ok:x Z⇒− ∗ y Z⇒maxInt+1 ∗ s Z⇒maxInt ∗ c 7→ [] ∗maxInt+1=0

]
//Cons

Rv,Gv, {[α′1,α1]}`
[
ok:x Z⇒− ∗ y Z⇒0 ∗ s Z⇒maxInt ∗ c 7→ [] ∗maxInt+1=0 ∗maxInt ≥ 1

]
x := alloc(y); //AtomLocal + MS-AllocZero

Rv,Gv, {[α′1,α1]}`
[
ok: ∃l. x Z⇒(l, 1) ∗ l 7→v ∗ y Z⇒0 ∗ s Z⇒maxInt ∗ c 7→ [] ∗maxInt+1=0 ∗maxInt ≥ 1

]
[x+s] := 0 //Atom + MS-WriteOffsetOOB

Rv,Gv, {[α′1,α1, α]}`
[
er :Qv,∃l.x Z⇒(l, 1)∗l 7→v∗y Z⇒0∗s Z⇒maxInt∗ c 7→ [] ∗maxInt+1=0∗maxInt ≥ 1

]
(b)

Figure 11 CASLID proof outlines of Fig. 9, its adversary program (a), and its vulnerable program
(b)
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E IRG: Incorrectness Rely-Guarantee Reasoning1711

IRG Parameters. As with IRG, IRG is a parametric and can be instantiated for a1712

multitude of concurrency scenarios. The IRG structure is analogous to that of IRG.1713

More concretely, 1) the IRG programming language is that of CASL, parametrised with1714

a set of atomics (Atom) and error exit conditions (ErExit); the IRG exit conditions are1715

Exit , {ok} ]ErExit. 2) We assume a set of abstract states (State), over which atomics1716

are axiomatised: Axiom ⊆ P(State) × Atom × Exit × P(State). 3) We assume a set1717

of (low-level) machine states (MState), over which the semantics of atomics is defined:1718

J.KA : Atom→ Exit→ P(MState×MState). 4) Finally, to ensure soundness, we assume1719

an erasure function, b.c : State→ P(MState); we further assume that Axiom are sound,1720

i.e. for all (p,a, ε, q) ∈ Axiom, we have: ∀mq ∈ bqc. ∃mp ∈ bpc. (mp,mq) ∈ JaKAε. Note1721

that unlike in CASL where a high-level program state is a world that comprises a pair of1722

local and shared states, in IRG a high-level program state is simply a single state that is1723

shared amongst all threads. That is, program states are completely shared and there is no1724

thread-local component.1725

IRG Triples. As with CASL, an IRG triple is of the form, R,G,Θ ` [p] C [ε :q], stating1726

that every state in q can be reached under ε for every witness trace θ∈Θ by executing C1727

on some state in p. Note that triples are expressed through sets of states (p, q ∈ P(State))1728

unlike in CASL where they are expressed through sets of worlds (P,Q ∈ P(World)).1729

IRG Proof Rules. We present the IRG proof rules in Fig. 12, where we assume that the1730

rely and guarantee relations in triple contexts are disjoint. Note that the IRG rules are very1731

similar to those of CASL, except that IRG does not include the AtomLocal and Frame1732

rules. This means that atomic instructions can modify the (shared) state only through the1733

Atom rule and thus all atomic instructions must be accounted for through actions in R/G1734

and recorded in the traces generated.1735

IRG Semantics and Soundness. The IRG operational semantics is that of CISL (Fig. 6)1736

and is analogously parametrised by the semantics of atomic commands defined as (machine)1737

state transformers.1738

Semantic IRG Triples. We next present the formal interpretation of IRG triples. Recall1739

that an IRG triple R,G, θ |= [p] C [ε :q] states that every state in q can be reached in n steps1740

(for some n) under ε for every trace θ∈Θ by executing C on some state in p, with the actions1741

of the current thread (executing C) and its environment adhering to G and R, respectively.1742

Put formally, R,G,Θ |= [p] C [ε :q] def⇐⇒ Θ 6= ∅ ∧ ∀mq ∈bqc, θ ∈ Θ. ∃n. reachn(R,G, θ, bpc,1743

C, ε,m), with:1744

reachn(R,G, θ,Mp,C, ε,mq)
def⇐⇒ Mp 6= ∅∧

n=0 ∧ θ=[ ] ∧ ε=ok ∧ C id−→∗skip ∧mq ∈Mp

∨n=1 ∧ ε∈ErExit ∧ ∃α, p, q. θ=[α] ∧R(α)=(p, ε, q) ∧ bpc ⊆Mp ∧mq ∈ bqc
∨n=1 ∧ ε∈ErExit ∧ ∃α, p, q,a,C′. θ=[α] ∧ G(α)=(p, ε, q) ∧ bpc ⊆Mp ∧mq∈bqc

∧ C id−→∗C′∧ C′, p a
 −, q, ε

∨∃k, θ′, α, p, r. n=k+1 ∧ θ=[α] ++ θ′∧R(α)=(p, ok, r)∧bpc ⊆Mp ∧ reachk(R,G, θ′, brc,C, ε,mq)
∨∃k, θ′, α, p, r,a,C′,C′′. n=k+1 ∧ θ=[α] ++ θ′∧ G(α)=(p, ok, r) ∧ bpc ⊆Mp

∧ C id−→∗C′′ ∧ C′′, p a
 C′, r, ok ∧ reachk(R,G, θ′, brc,C′, ε,mq)

1745

and1746

C, p a
 C′, q, ε def⇐⇒ C a−→ C′ ∧ ∀mq ∈ bqc. ∃mp ∈ bpc. (mp,mq) ∈ JaKε1747
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IRGSkip
R,G,Θ0 `

[
p
]

skip
[
ok : p

] IRGSeqEr
R,G,Θ ` [p] C1 [er : q] ε ∈ ErExit

R,G,Θ ` [p] C1; C2 [er : q]

IRGEnvEr
R(α) = (p, ε, q) ε ∈ ErExit
R,G, {[α]} ` [p] C [er : q]

IRGSeq
R,G,Θ1 `

[
p
]

C1
[
ok : r

]
R,G,Θ2 ` [r] C2 [ε :q]

R,G,Θ1 ++ Θ2 ` [p] C1; C2 [ε :q]

IRGAtom
G(α) = (p, ε, q) (p,a, ε, q) ∈ Axiom

R,G, {[α]} ` [p] a [ε :q]

IRGEnvL
R(α)=(p, ok, r) R,G,Θ ` [r] C [ε :q]

R,G, α :: Θ ` [p] C [ε :q]

IRGEnvR
R,G,Θ `

[
p
]

C
[
ok : r

]
R(α)=(r, ε, q)

R,G,Θ ++ [α] ` [p] C [ε :q]
R,G,Θ0

IRGLoop1
`
[
p
]

C?
[
ok : p

]
IRGLoop2
R,G,Θ ` [p] C?; C [ε :q]
R,G,Θ ` [p] C? [ε :q]

IRGChoice
R,G,Θ ` [p] Ci [ε :q] for some i∈{1, 2}

R,G,Θ ` [p] C1 + C2 [ε :q]

IRGParEr
R,G,Θ ` [p] Ci [er : q] for some i∈{1, 2} er ∈ ErExit Θ v G

R,G,Θ ` [p] C1 ||C2 [er : q]

IRGComb
R,G,Θ1 ` [p] C [ε :q] R,G,Θ2 ` [p] C [ε :q]

R,G,Θ1 ∪Θ2 ` [p] C [ε :q]

IRGCons
p′ ⊆ p R′,G′,Θ′ `

[
p′
]

C
[
ε :q′

]
q ⊆ q′ R 4Θ R′ G 4Θ G′ Θ ⊆ Θ′

R,G,Θ ` [p] C [ε :q]

IRGPar
R1,G1,Θ1` [p] C1 [ε :q] R2,G2,Θ2` [p] C2 [ε :q] R1⊆G2∪R2 R2⊆G1∪R1 dsj(G1,G2) Θ1∩Θ2 6=∅

R1 ∩R2,G1 ] G2,Θ1 ∩Θ2 ` [p] C1 ||C2 [ε :q]

Figure 12 The IRG proof rules, where the rely and guarantee relations in the triple contexts are
disjoint.

The first disjunct in reach simply states that any state mq∈Mp can be simply reached under1748

ok in zero steps with an empty trace [ ], provided that C simply reduces to skip silently,1749

i.e. without executing any atomic steps (C id−→∗skip). The next two disjuncts capture the1750

short-circuit semantics of errors (ε∈ErExit). Specifically, the second disjunct states that1751

mq can be reached in one step under error ε when the environment executes a corresponding1752

action α, i.e. when R(α)=(p, ε, q), mq∈bqc and bpc ⊆Mp; the trace of such execution is then1753

given by [α]. Similarly, the third disjunct states that mq can be reached in one step under ε1754

when the current thread executes a corresponding action α (G(α)=(p, ε, q)). Moreover, the1755

current thread must fulfil the specification (p, ε, q) of α by executing an atomic instruction1756

a: C may take several silent steps reducing C to C′ (C id−→∗C′) and subsequently execute1757

a, reducing p to q under ε (C′, p a
 −, q, ε). The latter ensures that C′ can be reduced by1758

executing a (C′ a−→ −) and all states in q are reachable under ε from some state in p by1759

CONCUR 2023



25:50 A General Approach to Under-approximate Reasoning about Concurrent Programs

executing a: ∀mq ∈ bqc. ∃mp ∈ bpc. (mp,mq) ∈ JaKε. Analogously, the last two disjuncts1760

capture the inductive cases (n=k+1) where either the environment (penultimate disjunct) or1761

the current thread (last disjunct) take an ok step, and mq is subsequently reached in k steps1762

under ε.1763

I Theorem 26 (Soundness, §F). For all R,G,Θ, p,C, ε, q, if R,G,Θ ` [p] C [ε :q] is derivable1764

using the rules in Fig. 12, then R,G,Θ |=[p] C [ε :q] holds.1765

Proof. The full proof is given in §F.1766
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F IRG Soundness1767

In the following, whenever we write reach(.)(R,G, ., ., ., ., .), we assume dsj(R,G) holds.1768

I Lemma 27. For all R,G,m,M , if m ∈M , then reach0(R,G, [ ],M, skip, ok,m) holds.1769

Proof. Follows immediately from the definition of reach0 and since skip id−→∗skip. J1770

I Lemma 28. For all n,R,G, θ,Mp,C1,C2, ε,mq, if ε ∈ ErExit and reachn(R,G, θ,Mp,C1,1771

ε,mq), then reachn(R,G, θ,Mp,C1; C2, ε,mq).1772

Proof. We proceed by induction on n.1773

1774

Case n = 11775

We then know that there exists α, p, q,a,C′1,C′′1 such that bpc ⊆Mp, mq∈bqc, θ = [α] and1776

either 1) R(α) = (p, ε, q); or 2) G(α) = (p, ε, q), C1
id−→∗C′′1 and C′′1 , p

a
 C′1, q, ε.1777

In case (1), from the definition of reach we also have reach1(R,G, [α],Mp,C1; C2, ε,1778

mq), as required. In case (2), from the control flow transitions (Fig. 6) we know that1779

whenever C′′1
a−→ C′1 then C′′1 ; C2

a−→ C′1; C2. As such, from C′′1 , p
a
 C′1, q, ε we also have1780

C′′1 ; C2, p
a
 C′1; C2, q, ε. Similarly, as C1

id−→∗C′′1 , from the control flow transitions we also have1781

C1; C2
id−→∗C′′1 ; C2 Consequently, from the definition of reach we also have reach1(R,G, [α],Mp,1782

C1; C2, ε,mq), as required.1783

1784

Case n = k+11785

∀R,G, θ,Mp,C1,C2, ε,mq.

ε ∈ ErExit ∧ reachk(R,G, θ,Mp,C1, ε,mq)⇒ reachk(R,G, θ,Mp,C1; C2, ε,mq)
(I.H)1786

1787

We then know that either 1) there exist α, θ′, p, r such that θ=[α] ++ θ′, R(α)=(p, ok, r),1788

reachk(R,G, θ′, brc,C1, ε,mq) and bpc ⊆ Mp; or 2) there exist α, θ′, p, r,C′1,C′′1 ,a such that1789

θ=[α] ++ θ′, G(α)=(p, ok, r), bpc ⊆Mp, reachk(R,G, θ′, brc,C′1, ε,mq), C1
id−→∗C′′1 and C′′1 , p

a
 1790

C′1, r, ok.1791

In case (1), from reachk(R,G, θ′, brc,C1, ε,mq) and (I.H) we have reachk(R,G, θ′, brc,1792

C1; C2, ε,mq). Consequently, as R(α)=(p, ok, r) and bpc ⊆Mp, by definition of reach we also1793

have reachn(R,G, θ,Mp,C1; C2, ε,mq), as required.1794

In case (2), from reachk(R,G, θ′, brc,C′1, ε,mq) and (I.H) we have reachk(R,G, θ′, brc,1795

C′1; C2, ε,mq). Moreover, as C′′1 , p
a
 C′1, r, ok, we know C′′1

a−→ C′1 and thus from the control1796

flow transitions (Fig. 6) we know C′′1 ; C2
a−→ C′1; C2. As such, from C′′1 , p

a
 C′1, r, ok we also1797

have C′′1 ; C2, p
a
 C′1; C2, r, ok. Similarly, as C1

id−→∗C′′1 , from the control flow transitions we also1798

have C1; C2
id−→∗C′′1 ; C2. Consequently, as G(α)=(p, ok, r) and bpc ⊆Mp, from the definition1799

of reach we also have reachn(R,G, θ,Mp,C1; C2, ε,mq), as required. J1800

I Lemma 29. For all n,R,G, θ,Mp,mq,C1,C2, ε, if reachn(R,G, θ,Mp,C2, ε,mq) and C1
id−→1801

∗C2, then reachn(R,G, θ,Mp,C1, ε,mq).1802

Proof. By induction on n.1803

1804

Case n=01805

Pick arbitrary R,G, θ,Mp,mq,C1,C2, ε such that reach0(R,G, θ,Mp,C2, ε,mq) and C1
id−→∗C2.1806

From the definition of reach0 we then know θ=[ ], ε=ok, C2
id−→∗skip and mq ∈Mp. We thus1807
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have C1
id−→∗C2

id−→∗skip, i.e. C1
id−→∗skip. Consequently, as θ=[ ], ε=ok and mq ∈Mp, we also1808

have reach0(R,G, θ,Mp,C1, ε,mq), as required.1809

1810

Case n=11811

Pick arbitrary R,G, θ,Mp,mq,C1,C2, ε such that reachn(R,G, θ,Mp,C2, ε,mq) and C1
id−→∗C2.1812

We then know that there exists α, p, q,a,C′2,C′′2 such that bpc ⊆Mp, mq∈bqc, θ = [α] and1813

either 1) R(α) = (p, ε, q); or 2) G(α) = (p, ε, q), C2
id−→∗C′′2 and C′′2 , p

a
 C′2, q, ε.1814

In case (1), from the definition of reach we also have reach1(R,G, [α],Mp,C1; C2, ε,mq),1815

as required. In case (2), we have C1
id−→∗C2

id−→∗C′′2 , i.e. C1
id−→∗C′′2 . Consequently, from the1816

definition of reach we also have reach1(R,G, [α],Mp,C1, ε,mq), as required.1817

1818

Case n=k+11819

∀R,G, θ,Mp,mq,C1,C2, ε. reachk(R,G, θ,Mp,C2, ε,mq) ∧ C1
id−→∗C2 ⇒ reachk(R,G, θ,Mp,C1, ε,mq)

(I.H)
1820

1821

Pick arbitrary R,G, θ,Mp,mq,C1,C2, ε such that reachn(R,G, θ,Mp,C2, ε,mq) and C1
id−→∗C2.1822

We then know that there exists α, θ′, p, r,a,C′2,C′′2 such that bpc ⊆ Mp, θ = [α] ++ θ′ and1823

either 1) R(α) = (p, ε, r) and reachk(R,G, θ′, brc,C2, ε,mq) ; or 2) G(α) = (p, ε, r), C2
id−→∗C′′2 ,1824

C′′2 , p
a
 C′2, r, ε and reachk(R,G, θ′, brc,C′2, ε,mq).1825

In case (1), from reachk(R,G, θ′, brc,C2, ε,mq) and I.H we have reachk(R,G, θ′, brc,C1, ε,1826

mq). Consequently, from the givens and the definition of reach we also have reachn(R,G, θ,1827

Mp,C1, ε,mq), as required. In case (2), we have C1
id−→∗C2

id−→∗C′′2 , i.e. C1
id−→∗C′′2 . Consequently,1828

from the givens and the definition of reach we also have reachn(R,G, θ,Mp,C1, ε,mq), as1829

required. J1830

I Lemma 30. For all n, k,R,G, θ1, θ2,Mp,Mr,mq,mr,C1,C2, ε, if reachk(R,G, θ2,Mr,C2,1831

ε,mq) and ∀mr ∈ Mr. reachn(R,G, θ1,Mp,C1, ok,mr), then reachn+k(R,G, θ1 ++ θ2,Mp,1832

C1; C2, ε,mq).1833

Proof. By induction on n.1834

1835

Case n=01836

Pick arbitrary k,R,G, θ1, θ2,Mp,Mr,mq,mr,C1,C2, ε such that reachk(R,G, θ2,Mr,C2, ε,1837

mq) and ∀mr ∈Mr. reach0(R,G, θ1,Mp,C1, ok,mr).1838

From reachk(R,G, θ2,Mr,C2, ε,mq) we know Mr 6= ∅. Pick an arbitrary mr ∈ Mr; we1839

then have reach0(R,G, θ1,Mp,C1, ok,mr). Consequently, from the definition of reach0 we1840

know that θ1=[ ], C1
id−→∗skip and mr ∈ Mp. Moreover, since for an arbitrary mr ∈ Mr we1841

also have mr ∈Mp we can conclude that Mr ⊆Mp. On the other hand, as C1
id−→∗skip, from1842

the control from transitions we have C1; C2
id−→∗skip; C2

id−→∗C2. As such, from Lemma 291843

and reachk(R,G, θ2,Mr,C2, ε,mq) we have reachk(R,G, θ2,Mr,C1; C2, ε,mq). That is, as1844

θ1 ++ θ2=[ ] ++ θ2=θ2, we also have reachk(R,G, θ1 ++ θ2,Mr,C1; C2, ε,mq). Consequently,1845

as Mr ⊆Mp, from Lemma 34 we have reachk(R,G, θ1 ++ θ2,Mp,C1; C2, ε,mq), as required.1846

1847

Case n=j+11848

1849

∀k,R,G, θ1, θ2,Mp,Mr,mq,mr,C1,C2, ε.

reachk(R,G, θ2,Mr,C2, ε,mq) ∧ ∀mr ∈Mr. reachj(R,G, θ1,Mp,C1, ok,mr)
⇒ reachj+k(R,G, θ1 ++ θ2,Mp,C1; C2, ε,mq)

(I.H)1850

1851
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Pick arbitrary k,R,G, θ1, θ2,Mp,Mr,mq,mr,C1,C2, ε such that reachk(R,G, θ2,Mr,C2, ε,1852

mq) and ∀mr ∈Mr. reachn(R,G, θ1,Mp,C1, ok,mr).1853

As ∀mr ∈ Mr. reachn(R,G, θ1,Mp,C1, ok,mr) and dsj(R,G) holds (i.e. dom(R) ∩1854

dom(G)=∅), from the definition of reachn we then know that for all mr ∈ Mr, there exist1855

α, θ′1, p, r,C′1,C′′1 ,a such that either:1856

i) θ1=[α] ++ θ′1, bpc ⊆Mp, R(α)=(p, ok, r) and reachj(R,G, θ′1, brc,C1, ok,mr); or1857

ii) θ1=[α] ++ θ′1, bpc ⊆ Mp, G(α)=(p, ok, r), reachj(R,G, θ′1, brc,C′1, ok,mr), C1
id−→∗C′′1 and1858

C′′1 , p
a
 C′1, r, ok.1859

In case (i), from I.H, reachj(R,G, θ′1, brc,C1, ok,mr) and reachk(R,G, θ2,Mr,C2, ε,mq) we1860

have reachj+k(R,G, θ′1 ++ θ2, brc,C1; C2, ε,mq). Consequently, as θ1 ++ θ2=[α] ++ θ′1 ++ θ2,1861

bpc ⊆Mp and R(α)=(p, ε, r), from the definition of reach we have reachn+k(R,G, θ1 ++ θ2,1862

Mp,C1; C2, ε,mq), as required.1863

In case (ii), from I.H, reachj(R,G, θ′1, brc,C′1, ok,mr) and reachk(R,G, θ2,Mr,C2, ε,mq)1864

we have reachj+k(R,G, θ′1 ++ θ2, brc,C′1; C2, ε,mq). On the other hand, as C′′1 , p
a
 C′1, r, ok,1865

we know C′′1
a−→ C′1 and thus from the control flow transitions (Fig. 6) we know C′′1 ; C2

a−→ C′1; C2.1866

As such, from C′′1 , p
a
 C′1, r, ok we also have C′′1 ; C2, p

a
 C′1; C2, r, ok. Similarly, as C1

id−→∗C′′1 ,1867

from the control flow transitions we also have C1; C2
id−→∗C′′1 ; C2. Consequently, as θ1 ++1868

θ2=[α] ++ θ′1 ++ θ2, bpc ⊆Mp, G(α)=(p, ε, r), C1; C2
id−→∗C′′1 ; C2, C′′1 ; C2, p

a
 C′1; C2, r, ok and1869

reachj+k(R,G, θ′1 ++ θ2, brc,C′1; C2, ε,mq), from the definition of reach we have reachn+k(R,1870

G, θ1 ++ θ2,Mp,C1; C2, ε,mq), as required. J1871

I Lemma 31. For all n,R,G, θ,Mp,C1,C2, ε,mq, if ε ∈ ErExit and reachn(R,G, δ,Mp,C1,1872

ε,mq), then reachn(R,G, δ,Mp,C1 ||C2, ε,mq).1873

Proof. We proceed by induction on n.1874

1875

Case n = 11876

We then know that there exists α, p, q,a,C′1,C′′1 such that bpc ⊆Mp, mq∈bqc, θ = [α] and1877

either 1) R(α) = (p, ε, q); or 2) G(α) = (p, ε, q), C1
id−→∗C′′1 and C′′1 , p

a
 C′1, q, ε.1878

In case (1), from the definition of reach we also have reach1(R,G, [α],Mp,C1 ||C2, ε,1879

mq), as required. In case (2), from the control flow transitions (Fig. 6) we know that1880

whenever C′′1
a−→ C′1 then C′′1 ||C2

a−→ C′1 ||C2. As such, from C′′1 , p
a
 C′1, q, ε we also have1881

C′′1 ||C2, p
a
 C′1 ||C2, q, ε. Similarly, as C1

id−→∗C′′1 , from the control flow transitions we also1882

have C1 ||C2
id−→∗C′′1 ||C2 Consequently, from the definition of reach we also have reach1(R,G,1883

[α],Mp,C1 ||C2, ε,mq), as required.1884

1885

Case n = k+11886

∀R,G, θ,Mp,C1,C2, ε,mq.

ε ∈ ErExit ∧ reachk(R,G, θ,Mp,C1, ε,mq)⇒ reachk(R,G, θ,Mp,C1 ||C2, ε,mq)
(I.H)1887

1888

We then know that either 1) there exist α, θ′, p, r such that θ=[α] ++ θ′, R(α)=(p, ok, r),1889

reachk(R,G, θ′, brc,C1, ε,mq) and bpc ⊆ Mp; or 2) there exist α, θ′, p, r,C′1,C′′1 ,a such that1890

θ=[α] ++ θ′, G(α)=(p, ok, r), bpc ⊆Mp, reachk(R,G, θ′, brc,C′1, ε,mq), C1
id−→∗C′′1 and C′′1 , p

a
 1891

C′1, r, ok.1892

In case (1), from reachk(R,G, θ′, brc,C1, ε,mq) and (I.H) we have reachk(R,G, θ′, brc,1893

C1 ||C2, ε,mq). Consequently, as R(α)=(p, ok, r) and bpc ⊆ Mp, by definition of reach we1894

also have reachn(R,G, θ,Mp,C1 ||C2, ε,mq), as required.1895
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In case (2), from reachk(R,G, θ′, brc,C′1, ε,mq) and (I.H) we have reachk(R,G, θ′, brc,1896

C′1 ||C2, ε,mq). Moreover, as C′′1 , p
a
 C′1, r, ok, we know C′′1

a−→ C′1 and thus from the control1897

flow transitions (Fig. 6) we know C′′1 ||C2
a−→ C′1 ||C2. As such, from C′′1 , p

a
 C′1, r, ok we also1898

have C′′1 ||C2, p
a
 C′1 ||C2, r, ok. Similarly, as C1

id−→∗C′′1 , from the control flow transitions1899

we also have C1 ||C2
id−→∗C′′1 ||C2. Consequently, as G(α)=(p, ok, r) and bpc ⊆Mp, from the1900

definition of reach we also have reachn(R,G, θ,Mp,C1 ||C2, ε,mq), as required. J1901

I Lemma 32. For all n,R,G, θ,Mp,C1,C2, ε,mq, if ε ∈ ErExit and reachn(R,G, δ,Mp,C2,1902

ε,mq), then reachn(R,G, δ,Mp,C1 ||C2, ε,mq).1903

Proof. The proof is analogous to the proof of Lemma 31 and is omitted. J1904

I Lemma 33. For all n, k,R1,R2,G1,G2, θ,Mp,mq,C1,C2, ε, if R1 ⊆ G2∪R2, R2 ⊆ G1∪R1,1905

G1 ∩ G2=∅, reachn(R1,G1, θ,Mp,C1, ε,mq), and reachk(R2,G2, θ,Mp,C2, ε,mq), then there1906

exists i such that reachi(R1 ∩R2,G1 ] G2, θ,Mp,C1 ||C2, ε,mq).1907

Proof. By double induction on n and k.1908

1909

Case n=0, k=01910

As we have reach0(R1,G1, θ,Mp,C1, ε,mq) and reachk(R2,G2, θ,Mp,C2, ε,mq), we then know1911

that θ=[ ], C1
id−→∗skip, C2

id−→∗skip, ε=ok and mq ∈ Mp. On the other hand, as C1
id−→∗skip1912

and C2
id−→∗skip, from the control flow transitions we have C1 ||C2

id−→∗skip. As such, since1913

θ=[ ], ε=ok and mq ∈ Mp, from the definition of reach we have reach0(R1 ∩ R2,G1 ] G2, θ,1914

Mp,C1 ||C2, ε,mq), as required.1915

1916

Case n=0, k 6=01917

This case does not arise as it simultaneously implies that θ = [ ] and θ = [α] ++ θ′ for some1918

α, θ′ which is not possible.1919

1920

Case n=1, k=01921

This case does not arise as it simultaneously implies that θ = [ ] and θ = [α] for some α1922

which is not possible.1923

1924

Case n=1, k=11925

As n=k=1, G1 ∩ G2 = ∅, R1 ⊆ G2 ∪ R2 and R2 ⊆ G1 ∪ R1, we then know that there1926

exist α, p, q,a,C′,C′′ such that ε ∈ ErExit, θ = [α], bpc ⊆ Mp, mq ∈ bqc, and either: i)1927

R1(α)=R2(α)=(p, ε, q); or ii) R1(α)=G2(α)=(p, ε, q), C2
id−→∗C′′ and C′′, p a

 C′, q, ε; or iii)1928

R2(α) = G1(α)=(p, ε, q), C1
id−→∗C′′ and C′′, p a

 C′, q, ε.1929

In case (i) we have (R1 ∩ R2)(α)=(p, ε, q); thus as ε ∈ ErExit, θ=[α], bpc ⊆ Mp and1930

mq ∈ bqc, from the definition of reach we have reach1(R1 ∩R2,G1 ] G2, θ,Mp,C1 ||C2, ε,mq),1931

as required.1932

In case (ii) we have (G1 ] G2)(α)=(p, ε, q). On the other hand, from C′′, p a
 C′, q, ε we1933

know that C′′ a−→ C′ and thus from the control flow transitions we have C1 ||C′′
a−→ C1 ||C′.1934

Consequently, from C2, p
a
 C′, q, ε we also have C1 ||C2, p

a
 C1 ||C′, q, ε. Similarly, as1935

C2
id−→∗C′′, from the control flow transitions we also have C1 ||C2

id−→∗C1 ||C′′. As such, since1936

ε ∈ ErExit, θ = [α], Mp ∈ bpc, mq ∈ bqc, (G1 ] G2)(α) = (p, ε, q), C1 ||C2
id−→∗C1 ||C′′ and1937

C1 ||C′′, p
a
 C1 ||C′, q, ε, from the definition of reach we have reach1(R1 ∩R2,G1 ∪G2, θ,Mp,1938

C1 ||C2, ε,mq), as required.1939



A.Raad, J. Vanegue, J. Berdine and P.O’Hearn 25:55

The proof of case (iii) is analogous to that of case (ii) and is omitted here.1940

1941

Case n=1, k=j+11942

As we demonstrate below, this case leads to a contradiction. As n=1, we then know that1943

there exist α such that ε ∈ ErExit, θ = [α], and either R1(α)=(p, ε, q) or G1(α)=(p, ε, q).1944

Moreover, as k=j+1, we know that there exist p′, r such that either R2(α)=(p′, ok, r) or1945

G2(α)=(p′, ok, r). This however leads to a contradiction as G1 ∩ G2 = ∅, R1 ⊆ G2 ∪ R2,1946

R2 ⊆ G1 ∪R1, ε ∈ ErExit and thus ok 6= ε.1947

1948

Case n 6=0, k=01949

This case does not arise as it simultaneously implies that θ = [ ] and θ = [α] ++ θ′ for some1950

α, θ′ which is not possible.1951

1952

Case n=i+1, k=j+11953

As G1 ∩ G2 = ∅, R1 ⊆ G2 ∪R2 and R2 ⊆ G1 ∪R1, there are now three cases to consider:1954

i) there exist α, θ′, p, r such that θ=[α] ++ θ′, R1(α)=R2(α)=(p, ok, r), bpc ⊆Mp, reachi(R1,1955

G1, θ
′, brc,C1, ε,mq) and reachj(R2,G2, θ

′, brc,C2, ε,mq);1956

ii) there exist α, θ′, p, r,a,C′1,C′′1 such that θ=[α] ++ θ′, G1(α)=R2(α)=(p, ok, r), bpc ⊆1957

Mp, reachi(R1,G1, θ
′, brc,C′1, ε,mq), reachj(R2,G2, θ

′, brc,C2, ε,mq), C1
id−→∗C′′1 and C′′1 , p

a
 1958

C′1, r, ok;1959

iii) there exist α, θ′, p, r,a,C′2,C′′2 such that θ=[α] ++ θ′, G2(α)=R1(α)=(p, ok, r), bpc ⊆1960

Mp, reachi(R1,G1, θ
′, brc,C1, ε,mq), reachj(R2,G2, θ

′, brc,C′2, ε,mq), C2
id−→∗C′′2 and C′′2 , p

a
 1961

C′2, r, ok.1962

In case (i), we have (R1 ∩R2)(α)=(p, ε, r). Moreover, as reachi(R1,G1, θ
′, brc,C1, ε,mq)1963

and reachj(R2,G2, θ
′, brc,C2, ε,mq), from the inductive hypothesis we know there exists t such1964

that reacht(R1 ∩R2,G1 ] G2, θ
′, brc,C1 ||C2, ε,mq). Consequently, as (R1 ∩R2)(α)=(p, ε, r)1965

and bpc ⊆Mp, from the definition of reach we have reacht+1(R1 ∩R2,G1 ]G2, θ,Mp,C1 ||C2,1966

ε,mq), as required.1967

In case (ii) we have (G1 ] G2)(α)=(p, ε, r). On the other hand, from C′′1 , p
a
 C′1, r, ε we1968

know that C′′1
a−→ C′1 and thus from the control flow transitions we have C′′1 ||C2

a−→ C′1 ||C2.1969

Consequently, from C′′1 , p
a
 C′1, r, ε we also have C′′1 ||C2, p

a
 C′1 ||C2, r, ε. Similarly, as C1

id−→1970

∗C′′1 , from the control flow transitions we also have C1 ||C2
id−→∗C′′1 ||C2. Moreover, as reachi(R1,1971

G1, θ
′, brc,C′1, ε,mq) and reachj(R2,G2, θ

′, brc,C2, ε,mq), from the inductive hypothesis we1972

know there exists t such that reacht(R1 ∩R2,G1 ] G2, θ
′, brc,C′1 ||C2, ε,mq). As such, since1973

(G1 ] G2)(α)=(p, ε, r), bpc ⊆ Mp, C1 ||C2
id−→∗C′′1 ||C2 and C′′1 ||C2, p

a
 C′1 ||C2, r, ε, from the1974

definition of reach we have reacht+1(R1 ∩R2,G1 ] G2, θ,Mp,C1 ||C2, ε,mq), as required.1975

The proof of case (iii) is analogous to that of case (ii) and is omitted here. J1976

I Lemma 34. For all n,R,R′,G,G′, θ,Mp,M
′
p,mq,C, ε, if R′ 4θ R, G′ 4θ G M ′p ⊆Mp and1977

reachn(R′,G′, θ,M ′p,C, ε,mq), then reachn(R,G, θ,Mp,C, ε,mq).1978

Proof. By induction on n.1979

1980

Case n=01981

Pick arbitrary R,R′,G,G′, θ,Mp,M
′
p,mq,C, ε such that R′ 4θ R, G′ 4θ G, M ′p ⊆ Mp and1982

reach0(R′,G′, θ,M ′p,C, ε,mq). As we have reach0(R′,G′, θ,M ′p,C, ε,mq), we then know that1983

θ=[ ], C id−→∗skip, ε=ok and mq ∈M ′p, and thus (as M ′p ⊆Mp) mq ∈Mp. Consequently, from1984
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the definition of reach we have reach0(R,G, θ,Mp, skip, ε,mq), as required.1985

1986

Case n=11987

Pick arbitrary R,R′,G,G′, θ,Mp,M
′
p,mq,C, ε such that R′ 4θ R, G′ 4θ G, M ′p ⊆ Mp and1988

reach1(R′,G′, θ,M ′p,C, ε,mq). From reach1(R′,G′, θ,M ′p,C, ε,mq) we then know that there1989

exist α, p, q,a,C′,C′′ such that ε ∈ ErExit, θ = [α], bpc ⊆ M ′p, mq ∈ bqc, and either: i)1990

R′(α)=(p, ε, q); or ii) G′(α)=(p, ε, q), C id−→∗C′′ and C′′, p a
 C′, q, ε.1991

In case (i) since α ∈ dom(R′) and α ∈ θ, from R′ 4θ R we also have R(α)=(p, ε, q).1992

Moreover, since bpc ⊆M ′p and M ′p ⊆Mp we also have bpc ⊆Mp. As such, since ε ∈ ErExit,1993

θ = [α] and mq ∈ bqc from the definition of reach we have reach1(R,G, θ,Mp,C, ε,mq), as1994

required.1995

Similarly, in case (ii) since α ∈ dom(G′) and α ∈ θ, from G′ 4θ G we also have1996

G(α)=(p, ε, q). Moreover, since bpc ⊆ M ′p and M ′p ⊆ Mp we also have bpc ⊆ Mp. As1997

such, since ε ∈ ErExit, θ = [α], mq ∈ bqc, C id−→∗C′′ and C′′, p a
 C′, q, ε, from the definition1998

of reach we have reach1(R,G, θ,Mp,C, ε,mq), as required.1999

2000

Case n=i+12001

Pick arbitrary R,R′,G,G′, θ,Mp,M
′
p,mq,C, ε such that R′ 4θ R, G′ 4θ G, M ′p ⊆ Mp and2002

reachn(R′,G′, θ,M ′p,C, ε,mq). From reachn(R′,G′, θ,M ′p,C, ε,mq) we then know that there2003

exist α, θ′, p, r,a,C′,C′′ such that θ=[α] ++ θ′, bpc ⊆M ′p and either:2004

i) R′(α)=(p, ok, r), and reachi(R′,G′, θ′, brc,C, ε,mq); or2005

ii) G′(α)=(p, ok, r), reachi(R′,G′, θ′, brc,C′, ε,mq), C id−→∗C′′ and C′′, p a
 C′, r, ok.2006

In case (i) since α ∈ dom(R′) and α ∈ θ, from R′ 4θ R we also have R(α)=(p, ok, r).2007

Moreover, since bpc ⊆ M ′p and M ′p ⊆ Mp we also have bpc ⊆ Mp. On the other hand,2008

from reachi(R′,G′, θ′, brc,C, ε,mq) and the inductive hypothesis we have reachi(R,G, θ′, brc,2009

C, ε,mq). Consequently, from the definition of reach we have reachn(R,G, θ,M ′p,C, ε,mq), as2010

required.2011

Similarly, in case (ii) since α ∈ dom(G′) and α ∈ θ, from G′ 4θ G we also have2012

G(α)=(p, ok, r). Moreover, since bpc ⊆ M ′p and M ′p ⊆ Mp we also have bpc ⊆ Mp. On2013

the other hand, from reachi(R′,G′, θ′, brc,C′, ε,mq) and the inductive hypothesis we have2014

reachi(R,G, θ′, brc,C′, ε,mq). As such, from the definition of reach we have reachn(R,G, θ,2015

Mp,C, ε,mq), as required. J2016

I Theorem 35 (IRG soundness). For all R,G, θ, p,C, ε, q, if R,G, θ ` [p] C [ε :q] is derivable2017

using the rules in Fig. 12, then R,G, θ |=[p] C [ε :q] holds.2018

Proof. We proceed by induction on the structure of IRG triples.2019

2020

Case IRGSkip2021

Pick arbitrary R,G, p such that R,G,Θ0 `
[
p
]

skip
[
ok : p

]
. It then suffices to show that2022

reach0(R,G, [ ], bpc, skip, ok,mp) for an arbitrary mp ∈ bpc, which follows immediately from2023

Lemma 27.2024

2025

Case IRGAtom2026

Pick arbitrary R,G, α, p, q,a, ε,mq such that (1) (p,a, ε, q)∈Axiom, (2) G(α)=(p, ε, q) and2027

(3) mq∈bqc. From (1) and atomic soundness we know (4) ∀m∈bqc. ∃mp∈bpc. (mp,mq)∈JaKε.2028

Moreover, from the control flow transitions (Fig. 6) we have (5) a id−→∗a and a a−→ skip.2029

That is, from (4) and (5) we have (6) a id−→∗a and a, p a
 skip, q, ε. There are now two2030
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cases to consider: i) ε∈ErExit; or ii) ε=ok. In case (i), since bpc ⊆ bpc, from (2), (3), (6),2031

the assumption of case (i) and the definition of reach we have reach1(R,G, [α], bpc,a, ε,mq),2032

as required. In case (ii), from (3) and Lemma 27 we have (7) reach0(R,G, [ ], bqc, skip, ok,2033

mq). As such, since bpc ⊆ bpc, from (2), (3), (6), (7), the assumption of case (ii) and the2034

definition of reach we have reach1(R,G, [α], bpc,a, ε,mq), as required.2035

2036

Case IRGSeqEr2037

Pick arbitrary R,G,Θ, p, q,C1,C2, ε such that (1) ε ∈ErExit and (2) R,G,Θ ` [p] C12038

[er : q]. Pick an arbitrary θ ∈ Θ and mq ∈ bqc; it then suffices to show there exists n∈N2039

such that reachn(R,G, θ, bpc,C1; C2, ε,mq). From (2) and the inductive hypothesis we know2040

there exists n∈N such that (3) reachn(R,G, θ, bpc,C1, ε,mq). Consequently, from (1), (3)2041

and Lemma 28 we have reachn(R,G, θ, bpc,C1; C2, ε,mq), as required.2042

2043

Case IRGSeq2044

Pick arbitrary R,G,Θ1,Θ2, p, q, r,C1,C2, ε such that (1) R,G,Θ1 `
[
p
]

C1
[
ok : r

]
and2045

(2) R,G,Θ2 ` [r] C2 [ε :q]. Pick an arbitrary mq ∈ bqc, θ1 ∈ Θ1 and θ2 ∈ Θ2; it then2046

suffices to show there exists n∈N such that reachn(R,G, θ1 ++ θ2, bpc,C1; C2, ε,mq). From2047

(2) and the inductive hypothesis we know there exists j∈N such that (3) reachj(R,G, θ2,2048

brc,C2, ε,mq). Similarly, from (1) and the inductive hypothesis we know there exists i∈N2049

such that (4) ∀mr ∈ brc. reachi(R,G, θ1, bpc,C1, ok,mr). Consequently, from (3), (4) and2050

Lemma 30 we have reachi+j(R,G, θ1 ++ θ2, bpc,C1; C2, ε,mq), as required.2051

2052

Case IRGLoop12053

Pick arbitrary R,G, p,C and mp ∈ bpc. It then suffices to show reach0(R,G, [ ], bpc,C?, ε,2054

mp). This follows immediately from the definition of reach0 and since C? id−→∗skip and mp ∈ bpc.2055

2056

Case IRGLoop22057

Pick arbitrary R,G,Θ, p, q,C, ε such that (1) R,G,Θ ` [p] C?; C [ε :q]. Pick an arbitrary2058

mq∈q and θ ∈ Θ. It then suffices to show there exists n ∈ N such that reachn(R,G, θ, bpc,2059

C?, ε,mq). From (1) and the inductive hypothesis we know there exists n ∈ N such that2060

reachn(R,G, θ, bpc,C?; C, ε,mq). On the other hand, from the control flow transitions (Fig. 6)2061

we have C? id−→ C?; C and thus C? id−→∗C?; C. As such, since reachn(R,G, θ, bpc,C?; C, ε,mq),2062

from Lemma 29 we also have reachn(R,G, θ, bpc,C?, ε,mq), as required.2063

2064

Case IRGChoice2065

Pick arbitrary R,G,Θ, p, q,C1,C2, ε such that (1) R,G,Θ ` [p] Ci [ε :q] for some i ∈ {1, 2}.2066

Pick an arbitrary mq ∈ q and θ ∈ Θ. It then suffices to show there exists n ∈ N such that2067

reachn(R,G, θ, bpc,C1 + C2, ε,mq). From (1) and the inductive hypothesis we know there2068

exists n ∈ N such that reachn(R,G, θ, bpc,Ci, ε,mq). On the other hand, from the control2069

flow transitions (Fig. 6) we have C1 + C2
id−→ Ci and thus C1 + C2

id−→∗Ci. As such, since2070

reachn(R,G, θ, bpc,Ci, ε,mq), from Lemma 29 we also have reachn(R,G, θ, bpc,C1 +C2, ε,mq),2071

as required.2072

2073

Case IRGCons2074

Pick arbitrary R,R′,G,G′,Θ,Θ′, p, p′, q, q′,C, ε such that (1) p′ ⊆ p; (2) R′,G′,Θ′ ` [p′] C2075

[ε :q′]; (3) q ⊆ q′; (4) R′ 4Θ R; (5) G′ 4Θ G; and (6) Θ ⊆ Θ′. Pick an arbitrary2076

mq ∈ bqc and θ ∈ Θ. It then suffices to show there exists n∈N such that reachn(R,G, θ,2077

bpc,C, ε,mq). As mq ∈ bqc, from (3) we also have mq ∈ bq′c. Moreover, as θ ∈ Θ, from (6)2078
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we also have θ ∈ Θ′. As such, from (2) and the inductive hypothesis we know there exists2079

n∈N such that reachn(R′,G′, θ, bp′c,C, ε,mq). Moreover, from (1) and the definition of b.c2080

we have (7) bp′c ⊆ bpc. On the other hand, since θ ∈ Θ, from (4) and (5) we also have2081

(8) R′ 4θ R and G′ 4θ G. Consequently, from (7), (8) and Lemma 34 we have reachn(R,2082

G, θ, bpc,C, ε,mq), as required.2083

2084

Case IRGComb2085

Pick arbitraryR,G,Θ1,Θ2, p, q,C, ε such that (1)R,G,Θ1 ` [p] C [ε :q]; and (2)R,G,Θ2 ` [p]2086

C [ε :q]. Pick an arbitrary mq ∈ bqc and θ ∈ Θ1 ∪Θ2. It then suffices to show there exists2087

n∈N such that reachn(R,G, θ, bpc,C, ε,mq). There are now two cases to consider: 1) θ ∈ Θ1;2088

or 2) θ ∈ Θ2.2089

In case (1), from (1) and the inductive hypothesis we know there exists n∈N such that2090

reachn(R,G, θ, bpc,C, ε,mq), as required. Similarly, in case (2), from (2) and the inductive2091

hypothesis we know there exists n∈N such that reachn(R,G, θ, bpc,C, ε,mq), as required.2092

2093

Case IRGParEr2094

Pick arbitrary R,G,Θ, p, q,C1,C2, ε such that (1) ε∈ErExit, (2) R,G,Θ ` [p] Ci [er : q] for2095

some i ∈ {1, 2}. and (3) Θ v dom(G). Pick an arbitrary θ ∈ Θ. From (2) and the inductive2096

hypothesis we then know there exists i ∈ {1, 2} such that (4) ∀mq ∈ bqc. ∃n. reachn(R,G, θ,2097

bpc,Ci, ε,mq). Pick an arbitrary mq ∈ bqc; it then suffices to show there exists n∈N such2098

that reachn(R,G, θ, bpc,C1 ||C2, ε,mq). As mq ∈ q, from (4) we know there exists n such2099

that (5) reachn(R,G, θ, bpc,Ci, ε,mq). Consequently, from (1), (3), (5), Lemma 31 and2100

Lemma 32 we have reachn(R,G, θ, bpc,C1 ||C2, ε,mq), as required.2101

2102

Case IRGPar2103

Pick arbitrary R1,R2,G1,G2,Θ1,Θ2, p, q,C1,C2, ε such that (1) R1,G1,Θ1 ` [p] C1 [ε :q];2104

(2) R2,G2,Θ2 ` [p] C2 [ε :q]; (3) R1 ⊆ G2∪R2; (4) R2 ⊆ G1∪R1; and (5) dsj(G1,G2) = ∅.2105

Pick an arbitrary mq ∈ bqc and θ ∈ Θ1 ∩Θ2. It then suffices to show there exists n∈N such2106

that reachn(R1 ∩R2,G1 ]G2, θ, bpc,C1 ||C2, ε,mq). As θ ∈ Θ1 ∩Θ2, we also have θ ∈ Θ1 and2107

θ ∈ Θ2. Consequently, from (1) and the inductive hypothesis we know there exists i∈N such2108

that (6) reachi(R1,G1, θ, bpc,C1, ε,mq). Similarly, from (2) and the inductive hypothesis2109

we know there exists j∈N such that (7) reachj(R2,G2, θ, bpc,C2, ε,mq). Consequently, from2110

(3)–(7) and Lemma 33 we know there exists n∈N such that reachn(R1 ∩R2,G1 ] G2, θ, bpc,2111

C1 ||C2, ε,mq), as required. J2112
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