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—— Abstract

This paper presents ISABIL, a binary analysis framework in Isabelle/HOL that is based on the widely
used Binary Analysis Platform (BAP). Specifically, in ISABIL, we formalise BAP’s intermediate
language, called BIL and integrate it with Hoare logic (to enable proofs of correctness) as well as
incorrectness logic (to enable proofs of incorrectness). ISABIL inherits the full flexibility of BAP,
allowing us to verify binaries for a wide range of languages (C, C++, Rust), toolchains (LLVM,
Ghidra) and target architectures (x86, RISC-V), and can also be used when the source code for a
binary is unavailable.

To make verification tractable, we develop a number of big-step rules that combine BIL’s
existing small-step rules at different levels of abstraction to support reuse. We develop high-level
reasoning rules for RISC-V instructions (our main target architecture) to further optimise verification.
Additionally, we develop Isabelle proof tactics that exploit common patterns in C binaries for RISC-V
to discharge large numbers of proof goals (often in the 100s) automatically. ISABIL includes an
Isabelle/ML based parser for BIL programs, allowing one to automatically generate the associated
Isabelle/HOL program locale from a BAP output. Taken together, ISABIL provides a highly flexible
proof environment for program binaries. As examples, we prove correctness of key examples from
the Joint Strike Fighter coding standards and the MITRE database.
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1 Introduction

Analysing binary code is highly challenging and is essential for decompilation and verification
when one does not have access to the source code (e.g., proprietary code). It is also a key
tool for finding security vulnerabilities and exploits and is often the only way to (dis)prove
properties about programs [46]. Many tools for binary analysis such as angr [52], LIEF [49]
and Manticore [36] lift machine code to higher-level, human-readable representations. These
tools have been developed for different goals covering different languages (Rust, C++),
hardware architectures (e.g., x86, RISC-V), types of binaries (ELF, smart contracts) and
security analysis (malware analysis, reverse engineering).
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The Binary Analysis Platform (BAP) [8] provides a generic approach to binary analysis.
BAP natively supports several languages (C, Python and Rust) and hardware architectures
(x86, Arm, RISC-V, MIPS) and additionally can be integrated with toolchains such as
LLVM and Ghidra to analyse programs on less common architectures such as Atmel AVR [2].
BAP is well-supported and widely used with an active user community. The platform
can analyse binaries derived from a particular source language such as C/C++ and Rust,
as well as closed-source functions. BAP provides a disassembler that lifts binaries into
a unified intermediate language called BIL (Binary Instruction Language), thus enabling
architecture-agnostic analysis. While BAP also provides a set of static analysis tools, they
do not provide mechanisms for formal verification, e.g., logics for (dis)proving correctness of
programs. Recent works have covered subsets of BAP (called AIR) in UCLID5 [10] and use
an extended semantics to enable reasoning about an information flow hyper-property known
as trace-property observational determinism [10].

We present ISABIL, a verification framework for low-level binaries encoded using the
Isabelle/HOL theorem prover. ISABIL provides a deep embedding of BIL programs into
Isabelle/HOL, providing a direct interface between BAP and Isabelle/HOL without using
any additional tools. We leverage the fact that BAP can generate BIL programs as abstract
data types, providing a convenient hook for ISABIL’s ML-based parser.! Since BAP can lift
binaries into BIL both with and without the source code being available, so can ISABIL.
Moreover, ISABIL allows the generated BIL program to be connected to any operational
semantics. We build on the semantics described by [8] (see § 3) to enable bit-precise analysis.
Our approach generates an Isabelle locale [27], which provides an extensible interface that can
be instantiated to different scenarios (see Figure 2). We demonstrate this by both proving
(using Hoare logic [23]) and disproving (using Incorrectness logic [42]) properties for a number
of key examples (see Table 1).

Table 1 IsABIL examples and their sizes.

Test Size (LoC)
C |RISC-V | BIL |Isabelle
AV Rule 17 13 34 80 94
AV Rule 19 10 16 36 64
AV Rule 20 18 52 118 393
AV Rule 21 16 45 105 210
AV Rule 23 11 35 81 90
AV Rule 24 15 40 107 74
AV Rule 25 24 99 233 578
DF (good) 27 19 44 366
DF (bad) 27 19 43 | 1M
read__data (bad) | 74 131 296 474
sec_recv (bad) | 38 122 272 752
Total 273 612 1415| 3266

Scalability. Our approach is compositional in that we can analyse and (dis)prove properties
about a code fragment, say a function f, in isolation and then reuse these properties (without
reproving them) in bigger contexts where f is used. To show this, we use our technique
to detect (using incorrectness logic) a double-free vulnerability in the cURL library (used
primarily for transferring data over the internet). As we demonstrate in § 7, although this

1 Note that this is a significant advancement over the encoding by Griffin and Dongol [19], which used an
external Python tool to translate BAP outputs to Isabelle/HOL.
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Listing 1 Double Free (Bad). Listing 2 Double Free (Good).
1 void bad() { 1 void good() {
2 int *p = malloc (42); 2 int *p = malloc(42);
3 if (MyTrue) { 3 if (MyTrue) {
4 free(p); 4 free(p);
5 // ... 5 return;
6 ¥ 6 3
7 free(p); 7 free(p);
s } s }

vulnerability is “hidden” in an internal function (not exposed in a header file) and is not visible
to client applications, it is accessible by a call chain (comprising four separate functions)
that can be triggered from an external function, i.e. it is accessible from within a client
application and thus this vulnerability can be easily exploited. Indeed, this vulnerability has
been previously documented as CVE-2016-8619.

Contributions. Our main contributions are as follows. (1) We develop ISABIL, a flexible,
semi-automated tool for verifying binaries (lifted to BIL) within the Isabelle/HOL theorem
prover. Our mechanisation is complete with respect to the BIL language and semantics.
During the mechanisation, we uncovered and fixed several inconsistencies in the official BAP
documentation (see §3). (2) We developed IsABIL as a highly flexible and extensible system
(see Figure 2) using Isabelle locales [3, 27]. We incorporate logics for (in)correctness, thus
obtain methods for both proving and disproving properties. To the best of our knowledge,
this is the first application of Incorrectness logic [42] in the analysis of low-level binaries.
(3) We extend ISABIL with a number of automation techniques, including reusable high-level
big-step theorems, proof tactics that automatically discharge large numbers of proof goals,
and architecture-specific proof optimisations. We also include a native parser for BILapT
programs, written in Isabelle/ML, to automatically transpile BAP outputs to an Isabelle/HOL
locale suitable for verification. (4) We apply our methods to a number of examples (see
Table 1), including key tests from the Joint Strike Fighter (JSF) C++ Coding Standards [32].
(5) We show the scalability of ISABIL by detecting a double-free vulnerability in a large
example (253 assembly LoC) in the cURL library.

2 Motivation and Workflow

In this section, we motivate our work and provide an overview of our overall approach using
two running examples. We give the C program and their equivalent BIL in §2.1. We present
our workflow and an overview of the Isabelle/HOL mechanisation in §2.2.

2.1 Two C programs and their BIL representations

We motivate our analysis using two variations of a double-free vulnerability (listed as CWE-
415 in the MITRE database?). A double-free error occurs when a program calls free twice
with the same argument. This may cause two later calls to malloc to return the same
pointer, potentially giving an attacker control over the data written to memory.

The occurrence of the double-free vulnerability is straightforward to see in Listing 1,
but of course, in a real program, the vulnerability may be much more difficult to identify.
Listing 2 presents an alternative program that contains two occurrences of free(p) with no
intervening malloc. However, Listing 2 does not contain a double-free vulnerability since
the true branch returns from the method call before the second free(p) is executed.

2 https://cwe.mitre.org/data/definitions/415.html
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Listing 3 Pretty printed BIL of Listing 1. Listing 4 Pretty printed BIL of Listing 2.
sub bad(bad_result) I sub good(good_result)
2
X10 := 0x2A 3 X10 := 0x2A
call @malloc with return 5 1 call @malloc with return 5
mem := mem with [X8 - 0x18, el]:u64 <- X10 5 mem := mem with [X8 - 0x18, el]:u64 <- X10
X15 := mem[X3 - 0x7C8, el]l:u32 6 X15 := mem[X3 - 0x7C8, el]:u32
when (X15 = 0) goto 13 7 when (X15 = 0) goto 13
goto 10 8 goto 10
9
X10 := mem[X8 - 0x18, el]:u64 10 X10 := mem[X8 - 0x18, el]l:u64
call @free with return 13 11 call @free with return 16
12
X10 := mem[X8 - 0x18, el]:u64 13 X10 := mem[X8 - 0x18, el]l:u64
call @free with return 16 14 call @free with return 16
15
call X1 with noreturn 16 call X1 with noreturn

incorrectness proof [42]}

() i T
i (double free * * sublocale~" sublocale @

[ allocation ] [find_symbol]

[Curl_sec_login_badj

[llb_curl

comp.

choose_mech_bad

comp.

sublocale ~'Inheritance

subl(vt;ll('l >|1|vlm‘;\l('1

= . ‘y
3 ‘[double_free_*_proof] [Av_rule_*_proof]'

Figure 2 Structure of ISABIL locales: theories indicated by * are auto-generated from a given
*.bil file following the translation in Figure 1.

The focus of our work is to analyse such programs without relying on any high-level
language semantics. Instead, we aim to develop a technique for reasoning about programs
(e.g., those in Listings 1 and 2) at a lower level of abstraction by first compiling the programs
then, lifting the resulting binaries to an intermediate representation (BIL). Although such
analysis contains more detail, the analysis reflects the behaviour of the actual executable, thus
is more accurate (e.g., does not require any additional compiler correctness assumptions).

2.2 Workflow and Mechanisation

Our overall workflow is given in Figure 1, where the dashed steps represent existing work.
The first step to proving properties about our example program is to use BAP to generate
a BIL representation of a binary executable (see Figure 1). For our example program in
Listings 1 and 2, the BIL equivalent (expressed in BIR format) are given in Listings 3
and 4, respectively. BIR (Binary Intermediate Representation) is a structured refinement
of BIL that significantly enhances human readability by presenting sequences of BIL as a
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single instruction. Take for example the BIR instruction call @free with return 18 on
line 16 in Listings 3 and 4. This represents two BIL statements, a jump to the address of
the symbol “free”, and the assignment of the return value 18 to the return pointer. Note
that ISABIL takes as input BAP’s abstract data type format (see §4), which we refer to as
BILapT, as opposed to the human-readable forms shown in Listings 3 and 4. This makes the
BIL instructions simpler to parse when generating the corresponding Isabelle/HOL object
(discussed in more detail below).

Extensions to Isabelle/HOL’s logic [15, 5, 26, 18] often make use of Isabelle/HOL’s locale
system [27, 3], which provides convenient modules for building parametric theories. Locales
are aimed at supporting the use of local assumptions and definitions for collections of similar
theories, defined in terms of fixed variables and definitions. We refer to the fixed variables as
parameters which must satisfy the local assumptions. For a locale £, we give its definition as
L = (p1,p2,...) where p1, ps are the parameters of the locale. Each parameter may be any
type derived from a set or a relation. From these variables, assumptions and definitions we
can derive general theorems within the context of a locale. These theorems can be exported
to the current proof context by instantiation, in which we provide values to one or all of the
parameters and verify the fixed assumptions of these parameters. This effectively gives us the
general theorems contained within each locale for free for a specific instantiation. Locales can
be extended through inheritance or interpretation, enabling reusability and specialisation by
introducing and refining a locale’s parameters. Inheritance operates hierarchically, directly
propagating the context of a parent locale to a child locale. This transfer includes general
theorems, assumptions, definitions and fixed variables. Interpretation is compositional,
associating a locale or definition with another locale. During interpretation, the assumptions
of the parent locale must be satisfied as part of the mapping process. A locale that interprets
another locale is referred to as a sublocale, denoted £ C £, where locale £’ is the parent of
L. For IsABIL, they provide a uniform system for representing both the program, and the
underlying reasoning framework.

The overall structure of the ISABIL development is given in Figure 2, and comprises
four main parts (which highlight our four main contributions). Overall, we have: (1) a
locale (see §4), representing a complete formalisation of the BIL specification from §3, (2) a
set of locales (see § 5) that encode Hoare Logic (to verify correctness) and Incorrectness
Logic (as developed by O’Hearn), (3) a locale (see §6.1) that combines formalisation of
the BIL specification with (in)correctness logics, (4) a set of locales (see §6.4) that apply
the resulting verification framework to prove correctness of a number of examples from the
literature and (5) a set of locales (see § 7.2 and 7.3) that demonstrate scalability of the
approach. In particular, § 7.2 demonstrates the use of subroutines to enable one to focus on
key functions of interest, even when starting with large BIL files (> 100k LoC). Then §7.3
describes how verified subroutines can be used as subcomponents to prove (in)correctness of
a larger system.

Our framework is highly flexible and extensible. For instance, the BIL_inference locale
combines the BIL_specification and inference_rules locales. In case one wishes to
change the specification (for a different operational semantics), or use a different set of
inference rules (to perform a type of analysis), one can simply change the specification and/or
inference rule locales. Similarly, a locale can be extended with additional semantic features:
our proofs extend the BIL_inference locale with an allocation locale (that models memory
allocation) and a find_symbol locale (that tracks a symbol table) to enable reasoning about
different program features.
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Our encoding of BIL (§4) is the first full mechanisation of BIL in Isabelle/HOL. This
mechanisation is a standalone contribution and can be used by others outside of our reasoning
framework. Our encoding uncovers some inconsistencies in the official specification, which
are addressed by the mechanisation (see § 3). Moreover, given that BIL is an intermediate
language for many different architectures, future versions could be further optimised to a
particular architecture. As an example, we present optimisations for RISC-V (see §6.2.3),
which is the architecture that we focus on.

To maximise flexibility, we provide an encoding of the inference rules parameterised by
an operational semantics, i.e., an instance of the correctness and incorrectness rules can
be generated for any operational semantics. This instance automatically inherits all of the
rules of Hoare and Incorrectness logic that we prove generically in the correctness and
incorrectness locales (§5).

The BIL semantics from §4 and the inference rules from §5 are combined to form a new
locale, BIL_inference, which provides facilities to verify BIL programs. Then, as discussed
above, to verify particular types of examples, we extend the locales with models of allocation
and symbols to verify particular sets of examples. These proofs represent the first proofs
of both correctness and incorrectness for BIL programs in Isabelle/HOL. As we shall see
in §3, the BIL semantics is highly detailed, with the reductions related to even single load
command potentially splitting into a large number of small-step transitions. This has the
potential to increase the verification complexity making the proofs of even small programs
intractable. To address this, we use BIL’s big-step semantics (§6.1) and introduce a number
of high-level lemmas that allow one to discharge such proofs generically. These lemmas are
reusable across all of the examples that we verify.

Our proofs cover key examples from the JSF coding standards [32] and the CWE
database?. This task is greatly simplified using ISABIL’s parser, written in Isabelle/ML [50],
that automatically generates a locale corresponding to a BIL program written in BILapt
format. Note that Isabelle isolates Isabelle/ML programming, and hence our parser cannot
interfere with soundness of Isabelle’s core logic engine. The generated locale is then combined
with BIL_inference to provide a context in which (in)correctness proofs can be carried out.

3 BIL Syntax and Semantics

Before proceeding with the presentation of our proofs, it is essential to acquire a basic
understanding of BIL. This section serves as a succinct introduction to BIL, emphasizing
its type system, memory model and operational semantics. We encourage interested readers
to explore the BIL manual [8].

3.1 Syntax

The basic syntax of BIL programs is given in Figure 3.

Statements. A BIL statement may assign an expression e to a variable var, transfer control
to a given address e, interrupt the CPU with a given interrupt num, be an instruction with
unknown semantics, a while loop, or an if-then-else conditional (with an optional else clause).
Note that each BIL statement (including a compound statement) corresponds to a single
machine instruction, thus side effects such as setting a status register must be captured in
the statement definition (see §3.4).
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Statements, where str denotes a string (of type string) and i € Z

stmt 3 s ::=var := e | jmp e | cpuexn(i) | special(str) | while (e) seq
| if (e) seq | if (e) seqq else seqo
bil > seq ::= stmt”

Ezxpressions, where id denotes a variable name literal (of type string)

erpde = v |var|eiles, ed] : sz | er with [e2,ed] : sz < e3 | e1 bop ez | uop e
| cast : sz[e] | let var = e1 in ez | ite e1 ez e3 | e1 @ ea | extract: sz1: szale]
bop ::=aop | lop  war :=id:type endian 3 ed ::= el|be
cast ::= low| high |signed | unsigned

Types and Values, where sz,nat € N
type > t = imm(sz) | mem(szeddr, SZval) word D w 1= nat :: sz
value 3 v = w | v[w < v', sza] | unknown][str] : ¢

Figure 3 BIL syntax and types.

Expressions. Memory loads and stores are represented at the expression level as eq [es, ed] : sz
for loads, and e; with [eq, ed] : sz + e3 for stores. In these expressions, the evaluation of e;

represents the target storage being accessed, while the evaluation of es specifies the address.

Since a memory operation can span multiple addresses, both the endianess (ed) and the size
(sz) of the operation are provided. For stores, the evaluated value of e3 is written to memory
at the given address. Binary operations now differentiate arithmetic (aop) and logical (lop)
operations. Expressions in BIL also include casts, let bindings, if-then-else expressions,
concatenations and extractions. The extraction operation, denoted as extract: sz;: szale],
first evaluates the expression e to a word w and then extracts a slice from w using BIL’s
existing extraction mechanism. Specifically, ext w « hi : sz; « lo : sz represents the
bits of w from bit sz; to bit szs. Thus, for example, ext 01001011 «~ hi : 5 v~ lo : 2 is
0010. Expressions are side-effect free and are evaluated wrt a state A : var — val mapping
variables to values.

Types and Values. The highly expressible nature of BIL is due to its type system, which
defines two distinct types for its values, the irreducible subset of a BIL expression. These types
are imm(sz) (describing an immediate type of size sz) and mem(sz,44r, SZpai) (describing a
storage type with address size $zqqqr and value size $z,4;). A value can be bound to one of the
three possibilities. (1) A machine word (w). (2) An abstract storage (v[w < v, $zyq]), which
allows us to define a memory as a chain of mappings, where [w < v', 52,4 defines a single
mapping from an address (w) to a value (v) of size sz,q;. Here, v could either be the root of
the chain (in which case it is unknown/[str] : t) or another storage. Technically, v could also
be a word, but we disallow this by introducing a typing context (see below). Similarly, v’
could be a storage according to the grammar, but this possibility is also eliminated by the
typing context. When v or v’ is an unknown value, we require that type of v is mem and
the type of v’ is imm. (3) An “unknown” value (unknown/|str] : t), which is obtained from
the evaluation of a BIL expression holding some string information str of some type t.
The type of a value can be obtained using the function type, which is define as follows:

type(nat :: sz) = imm(sz)
type(v[(nat :: $zeqar) < V', S2val)) = mem(Szaddr, SZval)

type(unknownl|str] : t) = ¢

14:7
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In [21] we show the lifted BIL equivalent of a RISC-V program using the syntax presented in
this section.

3.2 Typing Rules and Typing Context

BIL’s type system facilitates the need for typing rules to ensure type correctness. At the
lowest level, the rules ensure that types are correctly defined with the predicate ¢ is ok.
The type of variables must be tracked during symbolic execution to ensure that they do not
change and only values of the correct type can be assigned. This is achieved via a typing
context, defined as I' ::= var*, where type correctness of I' is expressed by overloading the
predicate I' is ok. The rules for ¢ is ok and I' is ok are given below:

(TWF__IMM) (TWF__MEM)
sz >0 SZaddr > 0 SZyar > 0 (TG_NIL)
imm(sz) is ok mem(S2,qdr, SZpai) is Ok [] is ok
(TG__CONS)

str ¢ dom(T") t is ok I is ok
(str:t) # I'is ok

These are extended to expressions, then to the level of statements (see [8] for details). As
part of our formalisation, we discover a missing typing rule for empty sequences, which
would otherwise be needed to ensure the sequencing rules are type correct. We have
created a pull request in the BAP repositories for this issue (see https://github.com/
BinaryAnalysisPlatform/bap/pull/1588), which has now been merged.

3.3 Expression Semantics

Expression evaluation requires the repeated application of small-step semantics rules until
the expression is reduced to a value. An expression step in BIL is formally expressed with
the A e~ ¢/, where multiple steps can be reduced using the reflexive transitive closure
At e~* €/, Recall that loads and stores occur at the expression level, and are sensitive to
endian orderings. We provide the load rules here, and refer the interested reader to the BIL
manual [8] for further details.

A store instruction (semantics not shown) targets a single unit of addressable memory,
typically 8-bits in size. When a storage operation exceeds this size, it is converted into
a sequence of 8-bit stores, organised in big-endian order. The reduction rules for load
operations is given in Figure 4. First, all sub-expressions of a memory object are reduced
to values using the rules LOAD__STEP_ ADDR and LOAD__STEP_ MEM. Then, the resulting
object is recursively deconstructed using the LOAD_ WORD__EL and LOAD_ WORD__BE rules,
depending on the endian. This process continues until one of LOAD_BYTE, LOAD_ UN_ MEM
or LOAD_UN__ADDR is used. LOAD_BYTE reduces the expression to the value, v/, when
the memory object is a storage of an immediate (known) value, w. LOAD_UN_ MEM and
LOAD__UN__ADDR both reduce the expression to an unknown value when the memory or
address being loaded is unknown, respectively.

» Example 1. Consider the instruction, X10 := mem[X8-0x18, el]:u64, from line 12
in Listing 3, which performs a little-endian load of a 64-bit word from address X8-0x18
in the variable mem. We first reduce the address expression, X8-0x18, to a value using
LOAD__ STEP__ADDR, next we apply LOAD_ STEP__MEM to read the value stored in mem. Next,
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(VAR__IN) (LOAD__STEP__ADDR) (LOAD__STEP__MEM)
(var,v) € A AF ey~ eh Al e~ e
AFvar~ v AF erles,ed] : sz~ e1]eh, ed] : sz AF erfve,ed] : sz~ el[va,ed] : sz

(LOAD__ BYTE__ FROM__NEXT)
(LOAD_ BYTE)

w1 75 w2
AFofw v, s2][w,ed] : 52~ v’ A vwr v, sz][we,ed] : sz~ v[wa,ed] : sz

(LOAD__UN__MEM) (LOAD__UN__ADDR)
A+ (unknown/[str] : t)[v,ed] : sz ~ A F vfwr < ', s2'][unknown|[str] : t,ed] : sz ~

unknown|[str] : imm(sz) unknown|[str] : imm(sz)
(LOAD__WORD__BE) (LOAD__WORD__EL)

SZ > SZmem succ(w) = w' SZ > S$Zmem succ(w) = w’
type(v) = mem(Szqddr, SZmem) type(v) = mem(Szaddr, SZmem)
At vjw,be] : sz~ At vw,el]: sz~

v[w, be] : szmem @ v[w/,be] : (82 — $Zmem) v[w/,el] 1 (82 — $Zmem) @ v[w, €l] : Szmem

Figure 4 Reduction rules for Load.

we look up the value of mem in A in VAR_ IN, which reduces mem to the corresponding storage.
Next, we apply LOAD_ WORD__EL to break down the 64-bit load into 8 separate loads in
little-endian format. Each of the 8 byte-sized loads are individually read from memory using
LOAD_ BYTE and LOAD_ BYTE__FROM_ NEXT. Finally, we apply BIL’s concatenation rule
(not shown) to join each byte into a single 64-bit word.

IsaBIL Extensions. The previous sections present a summary of BIL’s semantics from
the BIL manual [8] with some minor corrections. In this section, we present extensions to
BIL’s big-step expression evaluation semantics. The reduction of expressions, e.g., in load
and store instructions, results in a significant proof burden. To make verification tractable,
IsABIL defines additional big-step expression evaluation rules which are derived from a
combination of BIL’s existing small-step and big-step expression semantics. For example,
the load expression in Example 1 requires the repeated application of over 150 small-step
rules. Splitting the 64-bit read into individual reads in Example 1 (from LOAD_ WORD__EL
onwards) and the concatenation of the result can be combined into a single big-step rule.
We first provide some syntactic sugar for a storage whose size is a multiple of 8.

The definition uses the function succ(w), which retrieves the successor of the word w such
that succ(w) ::= w+ 1. Furthermore, we use storage,,, (v, w, v, N) to refer to a contiguous
storage of the value v’ of size N € {8i | i € N} (i.e., N is a multiple of 8) at address w on
the storage v:

vfw < ext v’ ~hi:7-1o:0, §,

succ(w),ext v/ ~hi: N—1-1o:8 N —8
v[w ', §] otherwise
vfwext v  ~hi:N—-1-lo: N -8, 8,
succ(w),ext v/ ~hi: N -9« 1lo:0,N —8

v[w ', §] otherwise

storageg; ( ) if N > 8

storage, (v,w,v’, N) =

storagey, ( ) if N > 8

storagey, (v,w,v,N) =

For example, suppose By and Bs are two 8-bit words. We have:

storage, (v, w, BB, 16) = v[w < By, 8][succ(w) < By, 8]
storagey, (v, w, B1 B, 16) = v[w < By, 8][succ(w) < B, 8]
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We give a subset of these rules for little endian 64-bit load and store operations below.

(REFL__LOAD_EL_WORDG64) (REFL__STORE__EL _WORDG64)

A F storage, (v,wg, wy, 64) [wa, 64] : el ~™ w;y A F v with [we,el] : 64 + wy ~"
storageg, (v, Wo, W1, 64)

» Example 2. Consider the load from Example 1. The first few steps proceed as before. How-
ever, instead of applying LOAD_ WORD__EL, we can directly apply REFL_ LOAD__EL_ WORDG64
to obtain the corresponding value A b (storageg, (v, w,v’,64))[w,el] : u64 ~* v/

All big-step rules from this section, such as REFL__ LOAD__EL__ WORDG64 have been verified
in Isabelle wrt to the small step semantics.

3.4 Statement semantics

In this section, we describe the operational semantics for evaluating statements. We also
provide a correction to the sequencing rule from the manual [4]. Although each statement
induces local control flow, in BIL, they are assumed to execute to completion in a single step.

The semantics of a statement is defined by (A, pe) b seq ~ (A’, pc’), which executes
the bil statement seq from the variable store A to generate a new variable store A’ and
program counter pc’. The MOVE statement (see below) modifies A by generating a new
variable binding, and JMP (not shown) affects program counter.

Example rules for MOVE (aka assignment) and 1IF__TRUE (for branching on a true guard
are given below). In the move rule, the given expression e is evaluated to a value using
the big-step semantics, and the value for the given variable var is updated in the variable
state. In the IF__TRUE rule, the guard is evaluated (to true) then the statement seq; is
executed. The sequencing rules describe execution of a list of statements to completion. The
sequencing rules in manual [4] do not provide a means to reduce multiple statements in a
single transition®.

(MOVE) (IF_TRUE)

AbFe~*"v AFe~" true (A, pe) - seqr ~ (A, pc)
(A, pe) Foar := e~ (A(var — v), pc) (A, pc) Fif (e) seq; else seqa ~ (A', pc’)
(SEQ_ REC)
(A1, pe) Fsi~ (A, pea)  (Apea)F s s~ (Dgupey) PO

(A17pcl) F §182...85p (A37pc3) (Aapc) Fe~ (Aapc)

» Example 3. Consider the load expression from Example 1, which appears on the right-hand
side of the assignment statement given below:

(A, (12 ::64)+ (1 :: 64)) F {X10 := mem[X8-0x18, el]:ub4}~ (A(X10~ v'), (13 :: 64))

To apply the statement semantics, we start by deconstructing it using SEQ_ REC, which results
in two sub-steps. For the first, we apply MOVE and the steps in Example 1 to reduce the
expression mem [X8-0x18,el1] :u64 to a value, v’. Since the original sequence only contained
a single statement, our recursive sequence (i.e., the second premise of SEQ_ REC) is empty,
which can be trivially reduced using SEQ_ NIL.

3 We have created a Git pull request in the BAP repositories for this issue (https://github.com/
BinaryAnalysisPlatform/bil/pull/12.
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3.5 BIL Step Relation

A machine instruction in BIL is represented by a named tuple, insn = ( addr, size, code )
(implemented later as an Isabelle record). Here addr, refers to the instruction’s address in
memory; size, the size of the instruction; and code, the semantics of the program represented
by BIL statements. Instructions operate over the BIL machine state, (A, pc, mem), where
A is the variable store, pc is the program counter and mem is a variable that denotes
the memory. To decode the current instruction from a machine state, we assume an
uninterpreted — function, referred to as the decode predicate, which maps a machine state,
(A, pc, mem), to the corresponding instruction, ( addr, size, code ). The BIL step relation
(A, pc, mem) ~ (A, pc’, mem’) defines the execution of a single BIL statement:

(STEP__PROG)
(A, pc,mem) — (| addr = pc, size = z, code = bil ) (A, pc+ 2) F bil ~ (A, pc)

(A, pe,mem) ~ (A', pc’, mem)

» Example 4. Consider the move statement from Example 3, which resides at the program
address 12 and being of one-byte size. This is expressed as the BIL instruction below:

( addr = 12 :: 64, size = 1 :: 64, code = {X10 := mem[X8-0x18, ell:u64} )

The instruction is obtained by decoding (—) a machine state of the form (A, 12 :: 64, mem)
where X8, mem € dom(A). By using decode we can structure a step proof for the machine
state as follows:

(A, 12 :: 64, mem) ~ (A(X10 ~ v"),13 :: 64, mem)

By applying the STEP_ PROG rule for programs, we are left with a reduction (A, (12 :
64) + (1::64)) F {X10 := mem[X8-0x18, el]l:u64} ~ (A(X10+— v’), (13 :: 64)), which we
derived in Example 3.

4 Mechanisation

In this section, we describe the ISABIL mechanisation, which utilises extensible locales
to maximize reusability. In §4.1, we describe the generic BIL_specification locale that
formalises BIL’s syntax and semantics, and in §4.2 we describe the ISABIL translation tool
that automatically generates locales from BIL programs.

4.1 The BIL_specification Locale

IsaBIL’s BIL_specification locale (see Figure 2) provides a complete mechanisation of
BIL’s syntax and semantics*. We encode BIL’s operational rules (§3.5) as Isabelle’s built-in

inductive predicates, which allow one to formalise the structure of the syntax from Figure 3.

The BIL_specification = (—) locale provides a single parameter: the decode predicate
(—), which will be uniquely instantiated for each binary that we wish to verify.

We provide rules for both introduction (which are used to introduce compound statements
such as if-then-else to the proof goal) as well as elimination (which are used to eliminate
compound statements from the proof assumptions) directly within the BIL_specification
locale. For example, introduction and elimination rules for the STEP_ PROG rule in § 3.5
which formalises a single step of the program are given below:

4 As outlined in §3 and provided in full in [21].
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lemma step_progl[intro]: lemma step_progE[elim]:
assumes <(A, pc, mem) > assumes <(A, pc, mem) ~ (A’, pc’, mem)>
(]addr = pc, size = sz, code = and <(A, pc, mem) +—>
seq))> (addr = pc, size = sz, code =
and <(A, pc + sz) F seq ~ (A', pc')> seq))>
shows <(A, pc, mem) ~ (A’, pc’, mem)> obtains <(A, pc + sz) F seq ~ (A', pc')>
proof ... proof ...

We prove introduction and elimination lemmas in this way for all of the rules in the official
BIL specification [6] with respect to our changes (§3). In total, the BIL_specification
locale consists of over 500 lemmas and rules.

4.2 The Program Locale

Recall that our workflow (Figure 1) proceeds by Step I: compiling the given program; Step 2:
feeding the resulting assembly into BAP to generate the corresponding BILapT; and Step
using ISABIL to automatically generate an Isabelle/HOL locale for the given BILapT input.
Note that if a binary is distributed without source code, then Step 1 could be skipped and
the given assembly could be fed directly into BAP to generate the BILapT.

The locale for a program prog is generated using ISABIL’s translation tool, which is
written in Isabelle/ML and is invoked using the custom Isabelle/HOL commands BIL or
BIL_file for inline or external BIL in BILapT format, respectively. Both commands take as
an input, a name for the locale and either a BIL string (for BIL) or a filename (for BIL_file).
Within this locale, we automatically generate a decode predicate, +—prog, that maps each
machine state (A, pe, mem) to an instruction.

Note that, internally, Isabelle maintains the BILapt format, however, we choose to
represent it using class locales [50, 3, 41] to maintain human-readable syntax. For instance,
without these syntax classes, expressing a direct jump to the fixed program address 3076
would require writing RAX := Val(Imm(Word(3076,64))). By instantiating the word syntax
(nat :: sz, see Figure 3), we can simplify the expression to the syntax RAX := (3076 :: 64).

In addition to — prog, & program’s locale defines Step 1: an address set, addr _set : P(word)
(defining the set of addresses that have corresponding instructions) and Step 2: a symbol
table, sym_table : string — word (mapping the binary’s symbols, e.g. main, memcpy, free,
as string literals to raw addresses).

Both addr_ set and sym_ table capture additional information about a binary that can
be used later in a proof. For example, the addr set is useful for determining whether
the program counter points to a valid address and is particularly important for validating
the correctness of indirect jumps. Many binary proofs verify that execution from some
entry point, such as the main function, is either correct or incorrect with respect to some
property. Symbols typically represent entry points to functions and although the address of
an entrypoint may differ between binaries, the symbol will remain constant. Hence, referring
to positions within the binary using symbol names, stored in the sym_table rather than
program addresses, is often more convenient. Further details regarding the extraction of the
addr_set and sym_ table from a binary can be found in §6.3.

» Example 5. Consider the Binary_A program below, written in BILapT, which corresponds
to the BIL instruction X8 := X2 + 32. We assume the program has been compiled for
RISC-V; for readability, BILapT provides the original assembly at Example 5. The program
locale corresponding to Example 5 starts on Example 5, which fixes the corresponding decode
predicate.
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BIL <

> 105dc: <test>

3 105dc: addi sO, sp, 32

(Move (Var ("X8",Imm(64)) ,PLUS(Var ("X2",Imm(64)),Int (32,64))))
5 > defining Binary_A

7 locale Binary_A

fixes decode :: <(var = val option) X word X var = insn = bool>
assumes decode_105dc: <(A, 0x105dc :: 64, mem) Iprog
( addr = 0x105dc :: 64, size = 4, bil = [X8 := X2 + (32
64)]1 >
begin
definition addr_set :: <word set> where <addr_set = {(0x105dc :: 64)}>
3 definition sym_table :: <str — word> where <sym_table = ["test" +— (0x105dc
64)1>

end

Externally linked binaries. Binaries often include links to external code, typically in the
form of function calls. Accurately modeling these external calls is crucial for understanding
the behavior of the original binary. ISABIL provides two methods for handling externally
linked code, depending on the availability of that external code. If the external binary is
available, an Isabelle/HOL locale can be generated for the external binary, which is then
combined with the existing binary locale through inheritance. If the external binary is
not available, we can make assumptions about its behavior and define an approximate
implementation using locale assumptions. We give an example for both cases in [21].

5 (In)correctness

In this section, we present the ISABIL encoding of Hoare and Incorrectness logic (see Figure 2).
Our locale-based encoding combines both into a single proof system inference_rules locale,
where we verify the AGREEMENT and DENIAL lemmas (see [42]).

Hoare and O’Hearn triples define (in)correctness of a command ¢ over a pre-state o
satisfying the predicate P, resulting in a post-state 7 satisfying the predicate Q). In the locale,
we assume the existence of a big-step transition relation (¢, o) = 7 defining the execution of
¢ from state o to termination, resulting in state 7. Thus, we have the well-known under- and
over-approximating rules:

(HOARE) (OHEARN)
Vo,7. ((¢,0)=71) = (P(0) = Q(7)) V7. Q(t) = Jo. P(o) A ((¢,0)=7)

{P}c{@} [P]e[Q]

Note that our definition of correctness follows partial correctness, meaning termination is

not guaranteed. We encode Hoare and Incorrectness triples as locales correctness = (=)
and incorrectness = (=), respectively, both of which are parameterised by =. Within the
correctness locale, we verify standard Hoare logic rules, e.g.,

(POST__CONJ__CORR) (PRE__DISJ__CORR) (STRENGTHEN__WEAKEN__CORR)
{Pye{@}  {P}e{@2} {P}c{Q} {P}efQ} P = P {P}{Q} Q= Q
{P}e{@Q1 A Q2} {Pv Pie{Q} {P'}e{Q'}

Similarly, within the incorrectness locale, we verify rules for Incorrectness logic, e.g.,
(POST__DISJ__INCORR) (PRE__DISJ__INCORR) (STRENGTHEN__WEAKEN__INCORR)
[Plcl@]  [Plcl@] [P]cl@Q  [P]c[Q P = P [PlclQ] Q = @

[Ple(Q1V Q2] [PLV Ps]c[Q] [P]el@]
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We then combine these to form a locale inference_rules = (=), again parameterised by
=. Within this combined locale, we are able to prove the AGREEMENT and DENIAL rules [42]:

(AGREEMENT) (DENIAL)
[U]clU] U= 0O {0}c{O'} [U]clU] U= 0O -(U = 0
U = 0O ~({0}c{0'})

For proofs of incorrectness, it is typically not enough to simply state that if [P] ¢ [Q] holds for
an error state ) then the program c is incorrect. A program cannot be incorrect if there is no
valid state that satisfies @) and as such, we must ensure that @ is non-trivial, i.e., Jo. Q(0).
Proving that @ is non-trivial can be difficult, as @ is often an over-approximation of the
actual set of post-states (defined by some predicate Q') reachable from P. Therefore, proofs
of incorrectness usually take the form 3Q’. [P]c[Q'] A (Vo. Q'(c) = Q(0)) A (Fo. Q'(0)).
Note that this does not necessarily imply that [P]c[Q] A (Jo. Q(o)) since the implication is
in the wrong direction to apply the STRENGTHEN__WEAKEN__INCORR rule.

6 Automation and Examples

In this section, we bring together the BIL_specification and the inference_rules locales
to create a new locale, BIL_inference (see §6.1), providing a proof environment for BIL
programs. This in turn enables us to develop a large number of highly reusable proof
automation procedures for verifying both correctness and incorrectness of BIL programs
(see §6.2). The final major component of ISABIL automation is the BILapT parser that
automatically generates Isabelle/HOL locales for BIL programs (§6.3), providing a smooth
and seamless pipeline from BAP to Isabelle/HOL proofs. We offer an overview of IsABIL,
discussing correctness and incorrectness proofs for a handful of examples.

6.1 The BIL_inference locale

BIL_inference interfaces with the BIL_specification and inference_rules locales (see
Figure 2) and is later extended with instances of state models (e.g., allocation and
find_symbol) to enable verification of generated BIL programs. Therefore, it is one of
IsaBIL’s most complex components.

Our first task is to define a big-step relation, B—7>, required by inference_rules, using

the BIL step relation, (A,pc,mem) ~ (A’ pc’, mem’), defined in § 3.5. One option for

defining ﬁ is to simply take the transitive closure of ~». However, this would mean

that the pre/postconditions that we define in our example would be predicates over the full
variable store A, which is heavy-handed.

An alternative (which is the approach we take) is to define another transition relation
W that abstracts ~, and define ﬁ as the transitive closure of E)' As we shall see,

this vastly increases the flexibility of our approach, which becomes (1) extensible, since W

can be used to cover additional program features such as memory allocation (see §6.4.1),
and (2) more efficient since the components of A that are not needed for the proof can be
ignored.Thus, assuming C = (A, pc, mem), we have:

(PROGRAM__BIG__STEP__LAST)

(PROGRAM__BIG__STEP) C=(_,pc,_) C'=(,pc, )
C=(_pc_) pc € addr_set pc € addr_set pc’ ¢ addr_set
C~C (C,0) — o C oY= C~C (C,o0) — 7
BIL BIL” () BIL (=)
(C,o) =T (Co)==r1

BIL BIL
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Here, we assume addr_set is the set of addresses that contain program instructions (see
§4.2), which will be later instantiated by a program’s locale. A program may take a step as
long as the current program counter corresponds to a program instruction. Note that the
precise state model (i.e., type of o, ¢’ and 7) that one uses in PROGRAM__BIG__STEP and
PROGRAM_ BIG__STEP__LAST will depend on the verification task at hand. If required, one
could also take o = A allowing the proofs to inspect the full variable state (at a low level of
abstraction).

Overall, we obtain a locale BIL_inference = (—, W’ addr_set). This locale extends

the BIL_specification (from §4) from which we inherit the decode predicate, —. Then,
we use W and addr set to define B—T> as above. This allows us to interpret the

inference_rules as sublocale, instantiating the parameter = to ﬁ.

Within BIL_inference, we can prove several rules of Hoare and Incorrectness logic in
terms of the BIL semantics. These proofs are trivial at this level, but are nevertheless critical
for proof automation since they can be used by all of our examples [21].

Stuckness and Undefined Behaviour. A BIL program is considered stuck if it reaches a
state where no transition rules apply. Programs that become stuck are deemed correct, as
they do not terminate.

The most common cause of stuckness in BIL is an attempt to decode an instruction at
an address that does not exist within the program (see §3.5). This typically occurs when
a jump targets a non-existent address, resulting in a post-state with no valid instruction
to execute. However, the big step semantics treat this as valid program termination rather
than an explicit error. If the prover wishes to ensure that the program terminates with an
expected PC they may assert its value in an (in)correctness triple’s post-state Q.

Stuckness may also arise due to type errors, such as assigning a variable a value of an
incompatible type. These types of stuckness are prevented by ensuring BIL statements are
type correct, which can be achieved using IsaBIL’s automated type checker (see [21]). In our
proofs, we verify type correctness when necessary to prevent stuckness. More details, along
with an example, can be found in the BIL manual [6].

Many traditional sources of stuckness in program semantics, such as dereferencing invalid

memory or reading from uninitialized registers, result in undefined behaviour (UB) for BIL.

In BIL, UB is represented using the unknown][str] : t value. For example, if an uninitialized
register is used:

1 mv a6, ab # UB if ab was never initialized

Since the value of ab (a 64 bit register) is unspecified, unknown[str| : imm(64) will
be set to a6. Evaluating BIL semantics that contain unknown values (such as a6 + 5) will

propagate further unknowns unless avoided by control flow structures such as if-then-else.

However, this does not necessarily lead to stuckness, except in cases where the target of a
dynamic jump is unknown (i.e. jmp unknown[str] : imm(64)). In such cases, the program
cannot take a step as it does not know which program address to jump to. In (in)correctness
logic, unknowns that do not lead to stuckness may still prevent the discharge of the post-state
(Q). Unknown values in BIL can be resolved by explicitly specifying constraints on the
program and pre-state as required.

6.2 Proof Automation

Instruction set architectures (ISAs), despite their large scale, are inherently finite, and
compilers employ common patterns for optimization. Additionally, developers leverage
reusable components such as functions and gadgets to perform common tasks. Consequently,
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binaries often exhibit a significant degree of repetition. Once identified, this repetition can
be verified without the need for human input. ISABIL exploits this repetition to alleviate
the burden associated with proof construction and verification. In this section, we outline
the proof automation techniques employed by ISABIL.

6.2.1 Eisbach

ISABIL heavily leverages Eisbach [33], an Isabelle tactic framework for proof automation,
to discharge proof goals automatically. We create Eisbach methods for symbolic execution
(sexc) and type checking (typec) which utilise ISABIL’s introduction and elimination rules
to solve both big- and small-step BIL statements, expressions and variables as well as proving
type correctness. These methods employ a best-effort approach. If a case that cannot be
solved automatically occurs, the methods will backtrack to a safe state and the partially
completed proof context will be handed back to the human prover, whereby corrections or
manual inputs can be made before resuming the automation (see [21] for details).

6.2.2 Human Readability

In assembly languages, registers are typically assigned specific names and types. However,
in BIL, registers are represented as generic variables of type var. These variables are para-
meterised with names and types. For example, the RISC-V registers R0-31 are represented
by the variables ("R0-31" : imm(64)). While this representation offers flexibility, it can be
verbose. It is common knowledge for RISC-V developers that R0O-31 are registers capable
of storing 64-bit words. To enhance program readability, we define the set of registers for
riscv64 [55] as the 64bit registers R0-31 : imm(64). Additionally, we introduce syntax
abbreviations for the 64-bit x86 architecture.

6.2.3 Architecture-Specific Proof Optimisations (for RISC-V)

Whilst ISABIL provides sufficient granularity to handle many architectures out of the box, the
speed and efficiency of proofs can be improved by tailoring optimizations to specific hardware
architectures. This section describes the proof optimizations undertaken for RISC-V.

Instructions. Modern architectures comprise of large instruction sets. Proofs of programs
can be optimised by verifying high-level lemmas corresponding to program steps of the most
commonly used instructions directly in the BIL_inference locale. For example, ISABIL
provides step rules for the 32-bit (4-byte) RISC-V instructions auipc, jalr and 1d.

auipc rd, imm = ( addr = pc,size = 4 :: 64, code = {rd := pc +imm} )

The auipc (Add Upper Immediate to Program Counter) instruction facilitates the compu-
tation of an absolute address. It achieves this by adding the immediate value imm to pc,
storing the result in the destination register rd. auipc is commonly used to create jump
targets, such as those for external functions.

jalr rd, rsl, offset = ( addr = pc,size = 4 :: 64,code = {rd := pc + 4; jmp rsl + offset} |

The jalr (Jump And Link Register) instruction performs an unconditional jump. It sets
pc to the address stored in the source register rs1 with an optional immediate value offset.
The address of the subsequent instruction is then stored in the destination register rd. This
instruction is used for function calls, where it is important to preserve the return address.

1d rd, offset(rsl) = ( addr = pc, size = 4 :: 64, code = {rd := mem|[rsl + offset,el] : 64} )
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00000000000104a0 <malloc@plt>:

104a0: 00002e1l7 auipc t3,0x2
104a4: b78e3e03 1d t3,-1160(t3) # 12018 <malloc@GLIBC_2
L27>
104a8: 000e0367 jalr t1,t3
104ac: 00000013 nop
00000000000104b0 <free@plt>:
104b0: 00002e17 auipc t3,0x2
104b4: b70e3e03 1d t3,-1168(t3) # 12020 <free@GLIBC_2
L27>
104b8: 000e0367 jalr t1,t3
104bc: 00000013 nop

Figure 5 PLT stubs for free and malloc.

The 1d (Load Double) instruction is used to load a 64-bit word, referred to as a double word,
from memory. First, 1d computes an address by adding the contents of the source register
rsl to the immediate offset. The value at this address in memory is then stored in the

destination register rd. 1d is the primary means of retrieving data of this size from memory.

Representing the instructions auipc, jalr and 1d as the high-level program step lemmas

(given below) allows the prover to otherwise skip the lengthy reduction for a program step.

The rules for these instructions are provided below:

(AUIPC__LEMMA) (JALR__LEMMA)
(A, pc,mem) +— auipc rd, imm (A, pc,mem) — jalr rd, rsl, offset (rsl,addr)e A

(A, pc,mem) ~ (A(rd — pc+ imm),pc+ 4),mem) (A, pc,mem) ~ (A(rd — pc+ 4), addr + offset, mem)

(LD__LEMMA)
(A, pc, mem) — 1d rd, offset(rsl) (mem,v) € A (rsl,addr) € A At vladdr + offset,el] : 64 ~" w
(A, pe,mem) ~ (A(rd — w),pc + 4), mem)

Further semantics for addi, sd and ret RISC-V instructions are provided in [21].

Execution. We also prove high-level big-step semantics rules for common gadgets in binary
executables. For example, the procedure linkage table (PLT) acts as an intermediary between
the current program and shared libraries, including C’s standard library. The PLT facilitates
indirect calls to external functions, whose locations are unknown until runtime when they
are resolved by the dynamic loader. In the dump of the RISC-V binary for Listing 1 given in
§6.2.3, we can observe the presence of stubs within the PLT, representing entries for each
external call. Specifically, in §6.2.3, the stubs correspond to the functions free and malloc
that are called by the program.

By leveraging the consistent pattern observed in PLT entries, we can construct universal
big-step rules for PLT stubs, as demonstrated below.

(PLT_STUB__LEMMA)
(A1, pc, mem) — auipc t3, 0x2 (Ag, pc+ 4,mem) — 1d 3, offset(t3)
(A3, pc+ 8, mem) — jalr t1, t3, 0 {pc,pc+4,pc+ 8} C addr_ set
Ay = Aq(t3 — pc+ 022) Az = Ay(t3 — w) Ay = Az(tl — pc+12)
((A1, pc,mem), o1) YL ((Ag,pc+ 4, mem), o3) YL ((Az,pc+ 8, mem), o3) YL

((Ag,w,mem), 04) =T (mem,v) € Aq A F v[pe + 0x2 + offset, el] : 64 ~* w

(A1, pe,mem), 01) ==
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Now, if we encounter a PLT stub in a proof at a lower level, we can discharge the proof
obligation efficiently using PLT _STUB_ LEMMA. This lemma significantly reduces the proof
effort required. Without PLT__STUB_ LEMMA, one must apply over 150 rules to achieve the
same result. Furthermore, by applying this approach to stack allocations and deallocations,
we eliminate the need for approximately 50 rules in the case of allocation and 250 rules in
the case of deallocation. Further details on this are provided in [21].

6.3 BIL to IsABIL transpiler

A key component of our ISABIL framework is a verified BIL parser that transpiles BILapT
programs into an Isabelle/HOL locale to enable verification.

Parsing occurs in two distinct phases. The first phase involves the translation of BILapT
into BILyp,, a format suitable for manipulation within Isabelle/ML. This intermediate step
enables analysis tasks in Isabelle/ML, such as calculating the size of instructions. The second
phase involves translating BILyy, into an Isabelle/HOL representation, which is the starting
point for verification. Parsing can be invoked directly on a BILapT string with BIL or
alternately on a file containing BILapT with BIL_file. An overview of the parsing process
is given in Figure 6.

During the first phase, the parser iterates over the instructions in a BILapT input. It
captures and stores all program addresses in addr set. Moreover, the parser associates
symbols with a program address in sym_ table. Since the syntax of BILapt resembles a tree
structure, it is intuitive to convert it into an Abstract Syntax Tree (AST) using a lexer. This
AST is processed by a Recursive Descent Parser (RDP), which traverses each node in the
tree depth-first, matching the node’s value to a corresponding parsing function. For example,
if the parser encounters a Var node, it will attempt to parse the first child as a string and
the second child as a BIL type. This process transforms the input into BILyr,, a structured
data type closely resembling BILapt which can be manipulated within Isabelle/ML.

The second phase defines a locale within the current proof context with a fixed decode
predicate. For each BILy, instruction, an assumption is added to the locale, stating
how a program with any variable state and memory, but with the instructions program
address, decodes to an Isabelle/HOL representation of said instruction. To obtain the
Isabelle/HOL representation, an RDP translator recursively converts each BILyy, instruction
to Isabelle/HOL terms defined in the BIL_specification locale (see §4).

The first phase of the parser harnesses Isabelle/HOL’s code generation, where specifications
for both the lexer and parser were defined within Isabelle/HOL and subsequently translated
into ML. BILyy, for example, is a direct ML representation of the BIL specification from
the ISABIL framework. Using code reflection, we import the generated ML code back into
Isabelle/HOL as a plugin. Consequently, the lexer and parser are formally verified under the
Isabelle/HOL framework. In contrast, the second phase employs non-code-generated ML.
This decision stems from its necessity to interface with Isabelle/HOL’s core ML library, which
cannot be achieved via code-generated ML. To bridge this gap, we introduce a minimal layer
of unverified ML code that lifts the BIL representation obtained from the verified parser into
Isabelle/HOL’s proof system. Below, as an example, we present a snippet of the translation
code responsible for converting BILy1,’s binary operations to IsaBIL’s binary operations:

mk_exp (AstParser.BinOp (el,bop,e2)) = @{term "BinOp"} $ mk_exp el $
mk_bop bop $ mk_exp e2

Note that Isabelle isolates Isabelle/ML programming, and hence our parser cannot interfere
with the soundness of Isabelle’s core logic engine.
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"""" Isabelle/HOL ‘ b Isabelle/ML’ :
Figure 6 Overview of the BIL parser, entry- Figure 7 AST representation of the
points via the BIL or BIL_file commands. BILapT statement Move(Var("X8", Imm(64)),
PLUS(Var ("X2", Imm(64)), Int(32, 64))).
Table 2 Overview of theories and lemma Table 3 AV rules with description.

for each of IsABIL’s components.

AVR | Description (the following shall not be used)
Component Lemmas 17 The error indicator errno
Correctness 13 19 <locale.h> and the setlocale function®
Tncorrectness 3 20 The setjmp macro and the longjmp functions
Inference Rules 2 21 The signal handling facilities of <signal.h>
BIL Specification (including syntax) 504 23 The library functions atof, atoi and atol from lib-
BIL Inference 13 rary .<Stdlib~h>'
RISC-V optimisations I 24 The lll?rary functions abort, exit, getenv and system
Alloc Model G from library <stdlib.h>
Find Symbol 0 25 The time handling functions of library <time.h>
Double Free (total for both examples) |77
AV Rules (total for all seven examples) [ 187

6.4 Example Proofs

The majority of the development consists of general tactics and lemmas which can be reused
across multiple developments. We give the number of lemmas for each component in Table 2.

All of the sublocales and inherited locales can reuse the proofs of the higher-level (more
abstract) locales. Thus, for instance, the 594 lemmas of the BIL_specification locale are
applicable to BIL_inference and all of the examples, which improves re-usability. The
RISC-V optimisations help improve performance and are reusable across all examples. The
theories for double_free_* and find_symbol are general and apply to all corresponding
examples. Finally, each example comprises a step lemma for each line of code. Using the

earlier optimisations, solving them is trivial and only requires running the automated tactics.

To motivate ISABIL, we employ a combination of correctness and incorrectness proofs,
focusing on illustrative examples frequently referenced in BAP literature [8]. These examples
represent patterns commonly found within much larger programs/libraries.

6.4.1 Double Free

We detail the (in)correctness proofs for CWE-415: Double Free outlined in §2. To classify this
vulnerability, we require a memory allocation model, which is not part of the BIL semantics
(§3). Memory allocation in C is reflected as a PLT stub in the binary. In particular, we are
only required to track the pointer (memory address) that is allocated (and later freed). To
this end, we develop a locale, allocation, that extends the BIL semantics (see Figure 2)
with an abstract allocation model inspired by earlier works [34, 31].
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(ALLOC)
is_alloc(C) w = next_ptr(wa) (FREE) (SKIP)
sz = get_sz(C) is_free(C) w = get_ptr(C) —is_free(C)
W4 = wa.[alloc(w, 52)] Wih = wa.[free(w)] —is_alloc(C)
(Cowa) > (Cowa) —> (Cwa) > wa

Figure 8 Allocation semantics.

The allocation locale. We define allocation by instantiating the small-step transition
relation W of BIL_specification (see §6.1). We start by defining two memory operations:

memop ::= alloc(w, sz) | free(w)

where w is the memory being allocated or freed and sz is the size. Additionally, we assume
an abstract allocation function next_ptr : memop* — word that serves the purpose of
selecting suitable memory addresses for allocation and retrieves the next address from the
allocator based on the given history (sequence) of allocations and deallocations. For each
allocation, we use next_ptr to obtain the next available memory address. Consequently, in
the state of allocation, we must track the sequence of memop operations, which is provided
to next_ptr as an input whenever an allocation occurs. For the Double Free example, no
other variables need to be tracked, hence we simply assume the state to be this sequence,
which we denote w4 : memop*.

Recall that by using the — predicate (§ 3.5), the BIL instruction corresponding to
C = (A, pc,mem) can be uniquely identified. We use predicates is_free : prog — bool and
is_alloc : prog — bool, which hold when the next instruction to be executed in the given
C € prog corresponds to a free and allocation instruction, respectively. We assume that an
instruction that frees memory cannot simultaneously perform an allocation and vice versa,
i.e.,, ~is_free(C) V —is_alloc(C). When the instruction for C is an allocation, we utilise
the function get_sz : prog — sz to obtain the size allocated and when the instruction for
C is a deallocation, we utilise the function get_ptr : prog — word to obtain the address
that is freed. The size and location can be determined using the — function on the given C.
Thus, we define a small-step transition relation, 7, over allocations in Figure 8.

We encode this allocation model as the locale allocation, fixing the functions next_ptr,
is_free, is_alloc, get_sz and get_ptr. This locale is derived as an interpretation of
the locale BIL_inference retaining the decode predicate — and address set addr_set
as abstract, but overriding Eﬁ = 7. Thus, we have the signature allocation = (+,

addr_set,next_ptr, is_free,is_alloc,get_sz,get_ptr), where parameters next_ptr,
is_free, is_alloc, get_sz and get_ptr are used to derive 7 within the locale.

The double_free_bad and double_free_good locales. These locales correspond to the
double free program and are auto-generated from the corresponding BIL programs (shown in
Listings 3 and 4). This step is trivial when using ISABIL’s BIL_file command, which we
have developed using Isabelle/ML. In particular, we invoke the Isabelle/HOL commands:

BIL_file <double-free-bad.bil.adt> defining double_free_bad
BIL_file <double-free-good.bil.adt> defining double_free_good

where double-free-bad.bil.adt is a file containing the BIL for Listing 1 in BILapT format
and double_free_bad is the name of the locale to be generated. The good version is similar.
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The double_free_*_proof locales. We combine the locales generated from the
BIL programs with our allocator locale (allocation) to produce new locales
double_free_bad_proof and double_free_good_proof. Recall from § 4.2 that for each
locale generated from a BILapTt program, we have access to a symbol table sym_table
mapping strings (i.e., external function calls) to the program address at which the symbol
appears. Note that when a BIL program calls a function, it typically stores the return
address, then jumps to the function. The symbol corresponding to the program counter after
the jump contains the name of the external function, which is stored in the symbol table. In
RISC-V convention, the first argument of a function call is stored in the register X10. To
allocate memory, function malloc is called with the size as the first argument whereas to
deallocate a pointer, function free is called with the pointer as the first argument. Therefore,
we can obtain the size allocated by a call to malloc and pointer freed by a call to free by
retrieving the value stored in register X10.

We therefore instantiate the predicates is_free, is_alloc, get_sz and get_ptr from
the allocation locale as follows:

is_free((_,pc, )) = (pc = sym_table(“free”)) get_ptr((A,_,_ )) = A(X10)

A(X10)

is_alloc((_,pc, )) = (pc = sym_table(“malloc”)) get_sz((A,_,_))

The exact implementation of next_free occurs at a lower level of abstraction, and depends
on the allocation model. At this level, we provide the main requirement axiomatically, i.e.,
we require

w = next_ptr(wys) = (Vi. wa(i) = alloc(w,sz) = Jj. j > i Awa(i) = free(w))

This presents us with all the components necessary to prove (in)correctness of our examples.

The following predicate captures the double-free over the memory state defined above:

double_free_vuln = Aw4. 3i,j,w. i < j Awali] = free(w) A wa[j] = free(w) A
(Vk. i<k <j = walk] # alloc(w, s2))

Note that the predicate captures only the double-free vulnerability and does not formalise
other pointer misuse vulnerabilities, e.g., use-after-free or free-before-alloc.

» Theorem 6. Let Cpoq and Cyooa be the programs corresponding to double_free_bad and
double_free_good, respectively. Both of the following hold

1. 3Q. [~double_free vuln|Cpuq [@] A (Vo.Q(c)=>double_free_vuln(o)) A (Jo.Q(0))
2. {~double free vuln} Cyooq {—double free vuln}

Note that in Cpeq, the memory error does not lead to early termination via the allocation
semantics in Figure 8. The program continues executing as normal, but generates a history
that can be shown to contain a double-free vulnerability at termination.

6.4.2 AV rules

In a similar manner, we prove incorrectness of the AV rules from Table 3. Details of these
proofs are provided in [21].

7 Case Study: Double-Free Vulnerability in cURL (CVE-2016-8619)

cURL is an open-source library primarily used for transferring data over the internet using
various protocols, including TLS. It has a large user base, supporting multiple operating
systems and architectures (including RISC-V), and thus ensuring the security of cURL is
critically important.
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I static __attribute__ ((noinline)) CURLcode read_data(struct connectdata *conn,
2 curl_socket_t fd,
3 struct krb5buffer xbuf)
1 {
int len;

6 void* tmp = NULL;
7 CURLcode result;

9 result = socket_read(fd, &len, sizeof(len)); // result = 0 iff socket_read successful
10 if (result)
11 return result;

12 if (lemn) {

13 len = ntohl(len); len = ntohl(len);

14 tmp = realloc(buf->data, len); tmp = realloc(buf->data, len);
15

16 if (tmp == NULL)

17 return CURLE_OUT_OF_MEMORY;

19 buf ->data = tmp;
20 result = socket_read(fd, buf->data, len);
1 if (result)
22 return result;
3 buf ->size = conn->mech->decode (conn->app_data, buf->data, len,
24 conn->data_prot, conn);
25 buf->index = 0;
26 return CURLE_OK;

Figure 9 The read_data function of the cURL library in security.c. The snippet highlighted in
red shows the vulnerable code in version 7.50.3, and that in green shows the corrected vulnerability
in version 7.51.0.

Unfortunately, however, cURL has been known to contain vulnerabilities. Consider the
function read_data in Figure 9, which underpins the Kerberos authentication protocol in
cURL (prior to version 7.51.0), where § 7 reads the length of an incoming data packet from
a socket. If this succeeds, socket_read will return a 0, causing the if statement on §7 to
fall through. Then, on § 7 the call to ntohl converts the data length (len) from network
byte order (big-endian) to host byte order (big- or little-endian). Note that this method
does not sanitise its input. Next, realloc on §7 resizes the data buffer in krb5buffer, and
returns either a new pointer to the resized memory, or NULL if an error occurs. The rest of
the method then reads and decodes the remaining data from the socket.

The caller is responsible for managing the krbSbuffer pointer by allocating it before
and freeing it after calling read_data. Here we assume malloc is called directly before
read_data and free is called directly after, as follows: malloc(buf, sz); read_data(conn, fd,

buf); free(buf);

If receiving data from the socket on §7 yields a length of 0 (1en = 0), the call to realloc
with len = 0 results in zero reallocation, leading to undefined behaviourS. Most implement-
ations of realloc will return NULL and free the pointer following a zero reallocation. As
such, since the krb5buffer buffer is already freed before realloc returns and the caller is
expected to free it after the function returns, this will lead to a double-free vulnerability,
identified by the vulnerability enumeration CVE-2016-8619.

5 https://www.open-std.org/jtcl/sc22/ugl4/www/docs/n2464 . pdf
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(REALLOC) (ZERO__REALLOC) (sKIP)
is_realloc(C) w = get_ptr(C) is_realloc(C) w = get_ptr(C) —is_free(C)
sz = get_sz(C) sz = get_sz(C) sz2=0 —is_alloc(C)
W'y = wa.[alloc(w, sz)] Wy = wa.[free(w)] —is_realloc(C)
C —w C —w C,wa) —w
(Cwa) —wa (C,wa) —> wa (C,wa) —>wa

Figure 10 Reallocation semantics.

This vulnerability is resolved in version 7.51.0 of cURL by preempting the zero-allocation
that leads to it: as highlighted in green in Figure 9, placing a guard around the call to
realloc” ensures that it is not called with a zero length. As such, if 1en = 0, then the call
to realloc is skipped, TMP remains NULL and returns 0. This ensures consistent behaviour
across all C implementations.

7.1 Scalability of the Parser

We cross compile cURL 7.50.3 for RISC-V on Linux using the GNU RISC-V compiler with
the default options. We modify the source code for read_data by adding the noinline
attribute, which ensures the function is not inlined. Note that noinline is not a requirement
for verification, but facilitates compositional reasoning (see §7.3).

Using the generated BIL directly creates a scalability challenge. The assembly corres-
ponding to version 7.50.3 contains 63,592 RISC-V instructions, which equates to 127,023
LoC in BIL with 63,592 BIL instructions. Naively generating the corresponding ISABIL
locales (see §6.3) takes approximately 14 minutes, which is impractical for verification. Of
this, the lexer takes 4s, the parser takes 2s and the translator takes approximately 13 minutes.
The wait time in the translator arises from instantiating the Isabelle/HOL locale in the proof
context, an operation which cannot be avoided.

To address this, we extend the BIL_file command with a new option, with_subroutines,
to focus only on the subroutines of interest (and their dependencies). For example, to generate
the ISABIL locale for read_data in version 7.50.3, we use the following command:

BIL_file <1libcurl.7.50.3.bil.adt> defining read_data_7_50_3

with_subroutines read_data and

where “...” contains functions that read_data calls (e.g., ntohl). Running BIL_file now
takes only 6s, with 131 instructions to verify. We next show how we detect this vulnerability
in version 7.50.3 using an incorrectness proof.

7.2 Incorrectness of the read data Subroutine

read_data contains a double-free vulnerability. However, unlike our prior example (§6.4.1),
the vulnerability arises from a reallocation of memory. Thus, we first describe the construction
of a reallocation locale, which reuses components from the allocation locale. Then, we
prove the incorrectness of the read_data function in version 7.50.3.

The reallocation locale. We define reallocation by instantiating the small-step trans-
ition relation M of BIL_specification (see §6.1). Whilst we do not extend allocation

from §6.4.1 directly, as it already defines small step semantics ( 7) that are incompatible

7 https://github.com/curl/curl/commit/3d6460edeee21d7d790ec570d0887bed1£4366dd
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with reallocation, we can borrow: (1) the definition of memop, (2) our abstract allocator
next_ptr, (3) our memory trace wy, (4) the getter for the size get_sz, (5) the getter for
the pointer to free get_ptr, (6) the predicate that denotes a program is freeing memory
is_free and (7) the predicate that denotes a program is allocating memory is_alloc. These
concepts are explained in detail in §6.4.1.

We use the predicate is_realloc to determine whether the next instruction to be
executed in the given C corresponds to a realloc instruction. We assume that an instruction
that frees or allocates memory cannot simultaneously perform an reallocation and vice versa,
i.e., ~is_free(C) V —is_alloc(C) V —is_realloc(C).

When a program reallocates memory it has two parameters, a pointer to the memory to
be resized, and the new size of that memory. We utilise the existing functions get_sz to
obtain the size reallocated and get_ptr to obtain the address that is reallocated. The size
and location can be determined using the — function on the given C. The size and location
are then used to add an alloc(w, sz) to the w 4. However, if the size of a reallocation is 0,
this represents a zero-reallocation, and hence a free(w) is added to the w4. This results
in a small-step transition relation, ?, over reallocations as given in Figure 10. Note that

we retain the ALLOC and FREE rules from Figure 8, and adapt the SKIP to encompass is
reallocations. Finally, we obtain the signature

reallocation = (—,addr_set,next_ptr,is_free,is_alloc,is_realloc,get_sz,get_ptr)

where the parameters next_ptr, is_free, is_realloc, is_alloc, get_sz and get_ptr are
used to derive ? within the locale.

The read_data proof locale. We combine the locale generated for cURL binaries to produce
a new locale read_data_7_50_3_proof. Reallocations are handled by calls to a PLT stub
for realloc so we can proceed in the same way as malloc/free. In §6.4.1, we discussed
how the first argument of a subroutine call is stored in the register X10. Reallocations take
two arguments: (1) a pointer to memory, and (2) a size. The second argument (2) is stored
in the return register (X11), thus we instantiate the parameters of reallocation as follows
for both locales:

is_realloc(_,pe, ) = (pc = sym_table(“realloc”))

A(X11) if pc = sym__table(“realloc”)
get_sz(A,pe, ) = ]
A(X10) otherwise
The remaining definitions of get_ptr, is_free and is_alloc match allocation (see §6.4.1).

» Theorem 7. Let RD750.3 be the program corresponding to read_data_7_50_3. Then

3Q. [~double_free_vuln] RD750.3 [Q]A(Vo. Q(c) = double_free_vuln(o))A (Jo. Q(0)).

7.3 Compositionality

The proof in Figure 9 covers the read_data subroutine in the cURL library. However, this
subroutine is an internal function (i.e. not defined in a header file), making the vulnerability
difficult to exploit directly in practice. Nevertheless, as shown in the call graph in Figure 11,
there is a path from an external function (defined in a header file), namely Curl_sec_login,
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’ read_data H sec_recv H choose_mech H Curl_sec_login

Figure 11 A partial call graph in cURL demonstrating a path from an external function
(‘highlighted ), Curl_sec_login, to the internal function read_data.

to read_data. That is, a call to Curl_sec_login includes a call to choose_mech, which in
turn includes a call to sec_recv, which itself calls read_data. As such, the vulnerability in
read_data could potentially be exploited by a call to Curl_sec_login.

Note that this may not always be the case, as freeing the data buffer pointer is left up to
the caller, not the callee, and thus further incorrect behaviour to by caller (in this case a
function above read_data in the call graph) could rectify this vulnerability by forgetting to
call free, or perhaps reallocating the pointer again before freeing it. Thus, we should aim to
establish that each of these methods are (in)correct formally.

We do this in a compositional fashion through proof reuse: we reuse the (in)correctness
specifications we prove at lower levels of the call graph in higher levels. For instance, when
proving that sec_recv is (in)correct, we reuse the specification of read_data in Theorem 7
as a lemma. Indeed, this is precisely why we used the noinline attribute when compiling
read_data: this allows us to reuse its specification; otherwise each call to read_data would
be inlined, preventing us from proof reuse.

In Theorem 8 below, we prove incorrectness specifications for the SR7.50.3, CM7.50.3 and
CSL7 50.3 functions, showing that each of these functions do indeed exhibit a double-free
vulnerability. Our proof is compositional in that the proof for each function reuses the
specification of the function below it, as discussed above (e.g. the proof of SR7 503 reuses
the incorrectness specification of read_data in Theorem 7 as a lemma).

» Theorem 8. Let C € {SR7 503, CM~7.50.3, CSL7.50.3}, be a program corresponding to the
7.50.8 versions of sec_recv, choose_mech and Curl_sec_login. Then:

3Q. [~double_free vuln] C [Q]A(Vo. Q(c) = double_free vuln(c))A(Jo. Q(0)).

Theorem 8 demonstrates a scalable proof for the incorrectness specifications of the
functions in Figure 11. We can apply similar techniques to verify their corresponding
correctness specifications for version 7.51.0; we have elided these proofs as they are similar.

8 Conclusions and Related Work

Program analysis in the absence of source code techniques typically focus on a combination of
hardware (e.g., x86, ARM), intermediary representations, e.g., LLVM-IR, high-level language
models (e.g., C/C++). Our work adds to the growing literature on low-level verification
using Hoare logic, and is the first to also apply incorrectness logic to verify the absence
and presence of bugs in binaries. While many works in the literature focus on particular
architectures, e.g., RISC-V, x86 or ARM, our work is on the generic BAP platform, and
hence inherits its generality. BAP is a production ready system with 1000s of users but lack
a verification component that IsaBIL provides. We have developed a complete formalisation
of BIL, and developed the first (in)correctness logics for BIL. Our formalisation of the BIL
specification uncovered bugs in that specification, which have been reported to the developers
and corrected. We provide automation to enable better proof scalability, and demonstrate
compositional proofs.

The importance of binary-level analysis has meant that there is increasing work on
theorem provers being applied to verify program binaries.
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Verified machine code. Closest to our work is the PICINE framework [22], which lifts BIL
to Coq for verifying properties like termination and functional correctness. Unlike ISABIL,
its lifter is unverified and adds an extra step via a custom intermediate representation (IR)
with unclear semantics. The work is preliminary, focusing on small examples like memset
and string comparisons.

Early machine-code verification includes Myreen et al.[37, 38], who used Hoare logic on
high-level Arm models. Similarly, Jensen et al. [25] developed separation logic for verifying
low-level x86 code via abstractions, with the framework being encoded in Coq. Later
work on decompilation into logic [39, 40] targets x86, ARM, and PowerPC by translating
binaries into tail-recursive functions in HOL4 [24], avoiding conventional lifters like BAP.
Verification is done via Hoare triples over these functions, shifting trust to mechanised ISA
models [13, 30, 16, 17]. However, these models were not originally designed for decompilation
and may not reflect modern ISAs.

The Islaris framework [44] builds on Sail-based Armv8-A and RISC-V semantics [47, 48, 1],
using higher-order separation logic in Coq with automatic Sail-to-Coq translation. Unlike
Islaris, which focuses on reasoning directly over ISA models, our approach targets lifted
assembly to enable a unifying, architecture-agnostic proof layer. Our automation (§6) is
reusable across architectures supported by BAP. MiniSail [54] encodes a subset of Sail in
proof assistants like Isabelle/HOL, enabling reasoning over lifted Sail models similar to
ISABIL. While useful for verifying Sail’s type soundness, it lacks ISABIL’s automation and
higher-level reasoning capabilities.

Verified compilation. Notable compilation correctness efforts include CakeML [28] and
CompCert [7], targeting ML and C, respectively. Sewell et al.[45] verify seL.4 C code down
to gee-generated binaries. Bedrock [11] uses an intermediate representation and strongest
postcondition reasoning in Coq for C macros, unlike ISABIL, which allows verification of
binaries that may not be generated by a compiler. Overall, these approaches verify functional
correctness at the source level, requiring compiler models and assumptions about architecture
and optimisation levels. Moreoever, they are unsuitable when source code is unavailable,
whereas ISABIL, via BAP, operates directly on binaries.

Verified lifting. Verbeek et al [51] have formalised and integrated a subset of the x86-64
instruction set (i.e., the 64-bit subset of x86) within Isabelle/HOL and used it to verify so
called sanity properties (e.g., the integrity of a return address) for a large codebase. However,
the focus of this verification is correctness of the lifting, as opposed to properties about the
program itself (e.g., termination, functionality). ISABIL employs type verification, however,
this method only verifies that the lifted BIL is correct according to its specification, and
not the specification of the assembly it was lifted from. Lam and Coughlin [29] developed a
verified BAP lifter for ARMv8. BAP is already accompanied by an extensive set of validation
tools that uses trace files to verify the lifter’s accuracy 2, that are checked “per instruction”.
We consider formal verification of BAP lifters to be future work.

Verified instrumentation. Armor [56] presents a checker for memory safety and control
flow integrity of Arm binaries, which instruments a check before particular operations,
then uses HOL to prove that the modified binary is correct. Similarly, RockSalt [35] is a

8 https://github.com/BinaryAnalysisPlatform/bap-veri
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Cog-based checker for a subset of x86 that is used to verify software-based fault isolation
implementations. RockSalt is designed to check specific sandbox policies, e.g., that the code
will only read/write data from specified contiguous segments in memory. Unlike ISABIL,
which has the full flexibility of Hoare and O’Hearn’s logics for proving (in)correctness, both
Armor and RockSalt focus on a subset of properties.

Security analysis. An overview of security properties, exploits and tools for binary analysis
has been given by Shoshitaishvili et al [46]. Above, we have focussed mainly on safety, though
also describe how BAP can be extended to reason about transient execution vulnerabilities
(e.g., as exploited by Spectre and Meltdown) [53, 10, 19]. Cheang et al [10] cover model
checking (using UCLID5), while Wang et al [53] develop a taint tracking tool based on BAP to
check correctness of Spectre mitigations. Griffin and Dongol [19] consider proofs of speculative
execution over BAP outputs, but only cover a subset of the BIL language called AIR. They
apply Hoare-style proofs to verify a hyperproperty [12] known as TPOD [10] directly over
AIR without any of the modularity offered by ISABIL. Nevertheless, it would be interesting
to extend our work to cover proofs of (in)correctness of speculative execution [9, 14].

(Incorrectness) separation logic. In ISABIL we do not currently have support for separation
logic (SL) or its incorrectness analogue, ISL [43]. While the absence of (I)SL support does not
impede the scalability of our approach, it is an interesting direction of future work to pursue.
Doing so, however, is non-trivial as the memory representation in BIL is incompatible with
that of (I)SL. As described in §3.1, memory in BIL is represented as a “history” of updates
(mutations) that must be “replayed” to ascertain its contents. For instance, the BIL memory
[x < 1][y < 2][x < 3] describes any memory obtainable after applying (replaying) the listed
updates in order, namely by first updating location = to hold 1, then updating y to 2 and
finally re-updating x to 3. While this confers the existence and the final values of locations z
and y, it has no bearing on the existence or the values of other memory locations.

Representing the memory in BIL as described above is a design choice we inherited from
BIL, and it is not immediately conducive to “separation” as in (I)SL. As such, to add support
for (I)SL in BIL we would have to fundamentally change the memory representation in BIL,
an undertaking which is far from trivial. While we believe this a worthy direction of work in
the future, doing so is beyond the scope of our work here.
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