€CCOP25
Bergen

Compositional Bug Detection
for Internally Unsafe Libraries

A Logical Approach to Type Unsoundness

Pedro Carrott?! Sacha-Elie Ayoun ! Azalea Raad?

1 Imperial College London

Safe Abstractions of Unsafe Code
Our motivation: @“St

high-level safety

+

low-level control

Rust is a safe alternative to C/C++ -

—

Unsafe escape hatch: write safe abstractions around unsafe code

(when the type system is too strong)

Safe Abstractions of Unsafe Code

The Even type: an abstraction of even numbers

A safe abstraction in Rust An internally unsafe function

fn zero() » Even {

Even { val: 0 }
) fn noop(x : Even) > () {

if x.val % 2 !'= 0 {
// Cannot be reached
// without unsafe blocks
unsafe { UB() }

fn next(x : Even) > Even {
unsafe { succ(succ(x)) }

}

Example taken from RefinedRust 3

Safe Abstractions of Unsafe Code

Type safety
Type signatures in Rust
encode specifications

Safe Abstractions of Unsafe Code

The Even type: an abstraction of even numbers

An unsafe abstraction in Rust

An internally unsafe function

fn zero() » Even {
Even { val: 0 }
}

fn succ(x : Even) » Even {

Even { val: x.val + 1 }

}

fn next(x : Even) > Even {
succ(succ(x))

}

fn noop(x : Even) > () {
if x.val % 2 !'= 0 {
// May be reached
// without unsafe blocks
unsafe { UB() }

Safe Abstractions of Unsafe Code

Type safety violation

succ and noop cannot
co-exist as safe functions

RUX)t

A Compositional Analysis for Automatic Type Safety Refutation

Reasoning about Unsafe Code

Verification. Known solutions:
e RustBelt (foundational)
e Gillian-Rust, Verus (semi-automated)
e RefinedRust (both)

Refutation. No known solutions.
e Our approach: RUXt
e Detection of type safety violations
e Fully automated, no annotations

Correctness: over-approximate specifications
via Hoare logic.

Type invariants: superset of safe values,
user-defined for each type.

Incorrectness: under-approximate specifications
via incorrectness logic.

Type subvariants: subset of safe values, inferred
via symbolic execution.

The RUXt Algorithm

Type Space Inference

Symbolic execution Safe functions for well-typed inputs result in safe values

zero: () > Even next: Even -»> Even

pd

Even

0w

noop: Even > ()

The RUXt Algorithm

Type Safety Refutation

Undefined behaviour The library does not encapsulate its unsafe code if it yields UB
zero: () > Even next: Even j/Even

succ: Even > Even noop: Even > ()

m
<
D
S

10

The RUXt Algorithm

1) £ =92 // Inferred type spaces
2) Pick (safe) function f and inputs from Z

3) Symbolically execute f:

a) IfUB > Refuted safety!
b) Otherwise, update X with return state and repeat from 2)

False Negatives

NO False Positives

The algorithm may fail to detect provably unsafe abstractions

Every refuted type is a provably unsafe abstraction

11

Type Space Exploration

We can construct programs with only safe calls to the library that result in undefined behaviour

let x = zero(); // x is © let x = zero(); // x is ©
let v = next(x); // y is 2 let vy = succ(x); // y is 1
let z = succ(y); // let z = next(y); //

noop (z) // UB noop (z) // UB

We explore the space of types, not all possible traces.

12

Handling References

For updates via references, we implement reference-free wrappers

fn next_wrap(mut x: Even) > Even {
fn next(&mut Even) > () # next (&mut x); X

}

fn f_wrap(mut x: T, y: U) > T{
fn f(&mut T) > &mut U # *(f(&mut x)) = y; x

+

13

Contributions

RU{Xt

Algorithm Formalisation Implementation
e Compositional and fully e Rocq mechanisation for e Prototype in OCaml for
automated analysis for Aguxe (inspired by 4. bug detection in simple
type safety refutation from RustBelt) Rust libraries
e Reference handling via e True-positives result:
reference-free wrappers inadequacy theorem

14

Future Work

ARl > Automate wrapper generation
VS
Implementation > Extract witness programs

Yet-unexplored Rust features

Polymorphism Traits Higher-order functions Concurrency Stacked/Tree Borrows

Main Goal | arge scale evaluation in real Rust code

15

Contributions

RU{Xt

Algorithm Formalisation Implementation
e Compositional and fully e Rocq mechanisation for e Prototype in OCaml for
automated analysis for Aguxe (inspired by 4. bug detection in simple
type safety refutation from RustBelt) Rust libraries
e Reference handling via e True-positives result:

reference-free wrappers inadequacy theorem T h a n k YO U !

16

