
Compositional Bug Detection
for Internally Unsafe Libraries
A Logical Approach to Type Unsoundness

Pedro Carrott 1 Sacha-Élie Ayoun 1 Azalea Raad 1

1 Imperial College London

Safe Abstractions of Unsafe Code

Our motivation:

Rust is a safe alternative to C/C++
high-level safety

low-level control

(when the type system is too strong)
Unsafe escape hatch: write safe abstractions around unsafe code

2

Safe Abstractions of Unsafe Code

A safe abstraction in Rust An internally unsafe function

The Even type: an abstraction of even numbers

fn noop(x : Even) → () {
if x.val % 2 != 0 {

// Cannot be reached
 // without unsafe blocks

unsafe { UB() }
}

}

Example taken from RefinedRust

fn zero() → Even {
Even { val: 0 }

}

unsafe fn succ(x : Even) → Even {
Even { val: x.val + 1 }

}

fn next(x : Even) → Even {
unsafe { succ(succ(x)) }

}

3

fn noop(x : Even) → () {
if x.val % 2 != 0 {

// Cannot be reached
 // without unsafe blocks

unsafe { UB() }
}

}

Safe Abstractions of Unsafe Code

A safe abstraction in Rust An internally unsafe function

The Even type: an abstraction of even numbers

Example taken from RefinedRust

fn zero() → Even {
Even { val: 0 }

}

unsafe fn succ(x : Even) → Even {
Even { val: x.val + 1 }

}

fn next(x : Even) → Even {
unsafe { succ(succ(x)) }

}

Type safety
Type signatures in Rust
encode specifications

4

Safe Abstractions of Unsafe Code

An unsafe abstraction in Rust An internally unsafe function

The Even type: an abstraction of even numbers

fn noop(x : Even) → () {
if x.val % 2 != 0 {

// May be reached
 // without unsafe blocks

unsafe { UB() }
}

}

fn zero() → Even {
Even { val: 0 }

}

fn succ(x : Even) → Even {
Even { val: x.val + 1 }

}

fn next(x : Even) → Even {
succ(succ(x))

}

5

Safe Abstractions of Unsafe Code

An unsafe abstraction in Rust An internally unsafe function

The Even type: an abstraction of even numbers

fn noop(x : Even) → () {
if x.val % 2 != 0 {

// May be reached
 // without unsafe blocks

unsafe { UB() }
}

}

fn zero() → Even {
Even { val: 0 }

}

fn succ(x : Even) → Even {
Even { val: x.val + 1 }

}

fn next(x : Even) → Even {
succ(succ(x))

}

Type safety violation
succ and noop cannot

co-exist as safe functions

6

A Compositional Analysis for Automatic Type Safety Refutation

Reasoning about Unsafe Code

Refutation. No known solutions.
● Our approach: RUXt
● Detection of type safety violations
● Fully automated, no annotations

Verification. Known solutions:
● RustBelt (foundational)
● Gillian-Rust, Verus (semi-automated)
● RefinedRust (both)

Correctness: over-approximate specifications
via Hoare logic.

Type invariants: superset of safe values,
user-defined for each type.

Incorrectness: under-approximate specifications
via incorrectness logic.

Type subvariants: subset of safe values, inferred
via symbolic execution.

8

The RUXt Algorithm

zero: () → Even next: Even → Even

noop: Even → ()

0

Even

2 …

Type Space Inference

Symbolic execution Safe functions for well-typed inputs result in safe values

9

The RUXt Algorithm

zero: () → Even next: Even → Even

succ: Even → Even noop: Even → ()

0

Even

2 …1 3
UB

Type Safety Refutation

Undefined behaviour The library does not encapsulate its unsafe code if it yields UB

10

The RUXt Algorithm

1) Σ = ∅ // Inferred type spaces
2) Pick (safe) function f and inputs from Σ
3) Symbolically execute f:

a) If UB ➤ Refuted safety!
b) Otherwise, update Σ with return state and repeat from 2)

NO False Positives

False Negatives The algorithm may fail to detect provably unsafe abstractions

Every refuted type is a provably unsafe abstraction

11

Type Space Exploration

let x = zero(); // x is 0
let y = succ(x); // y is 1
let z = next(y); // z is 3
noop(z) // UB

let x = zero(); // x is 0
let y = next(x); // y is 2
let z = succ(y); // z is 3
noop(z) // UB

We explore the space of types, not all possible traces.

We can construct programs with only safe calls to the library that result in undefined behaviour

12

Handling References

For updates via references, we implement reference-free wrappers

fn next_wrap(mut x: Even) → Even {
next(&mut x); x

}
fn next(&mut Even) → ()

fn f(&mut T) → &mut U
fn f_wrap(mut x: T, y: U) → T {

*(f(&mut x)) = y; x
}

13

Contributions

ImplementationAlgorithm Formalisation

● Compositional and fully
automated analysis for
type safety refutation

● Reference handling via
reference-free wrappers

● Rocq mechanisation for
𝜆RUXt (inspired by 𝜆Rust
from RustBelt)

● True-positives result:
inadequacy theorem

● Prototype in OCaml for
bug detection in simple
Rust libraries

14

Future Work

Algorithm
vs

Implementation

Yet-unexplored Rust features
Polymorphism Traits Higher-order functions Concurrency Stacked/Tree Borrows

➢ Automate wrapper generation

➢ Extract witness programs

Main Goal Large scale evaluation in real Rust code

15

Contributions

ImplementationAlgorithm Formalisation

● Compositional and fully
automated analysis for
type safety refutation

● Reference handling via
reference-free wrappers

● Rocq mechanisation for
𝜆RUXt (inspired by 𝜆Rust
from RustBelt)

● True-positives result:
inadequacy theorem

● Prototype in OCaml for
bug detection in simple
Rust libraries

16

Thank you!

