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—— Abstract

Rust is a modern programming language marrying the best of language design by offering fine-

grained control over system resources (thus enabling efficient implementations), while simultaneously
ensuring memory safety and data-race freedom. However, ensuring type safety in internally unsafe
libraries remains an important and non-trivial challenge, where unsafe features enable low-level
control but can introduce undefined behaviour (UB). Existing works on reasoning about unsafe code
either use verification techniques to show correctness (i.e. safety, useful only when the unsafe code is
indeed correct), or use bug detection techniques to show incorrectness (i.e. unsafety) but fail to do
so automatically (to avoid developer burden), compositionally (to support libraries without a main
function), soundly (without false positives) and generally (rather than applying to specific patterns).

We close this gap by developing RUXt, a fully automatic, compositional bug detection technique
for detecting UB in internally unsafe Rust libraries with a formal inadequacy theorem (formalised
and proven in Rocq) providing a no-false-positives guarantee. RUXt leverages the Rust type system
to under-approximate the set of safe values for user-defined types and detect safety violations without
requiring manual annotations by the user. By encoding well-typed values in Rust as separation logic
assertions, RUXt enables compositional reasoning about types to refute unsound type signatures
and detect UB. The inadequacy theorem of RUXt ensures that each UB detected by RUXt in an
internally unsafe library is a true safety violation that can be triggered by a safe program, i.e. one
that solely interacts with the safe API of the library. To this end, when RUXt identifies a UB,
it additionally produces a safe program witnessing the UB. In addition, we develop a prototype
implementation in OCaml that can analyse programs written in a small model of Rust, and apply it
to several case studies, showcasing its ability to detect true safety violations.
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Compositional Bug Detection for Internally Unsafe Libraries

1 Introduction

Programming languages such as C and C++ provide developers with fine-grained control over
system resources, thereby enabling efficient implementations, albeit at the cost of safety. By
contrast, modern languages prioritise safety through high-level abstractions, compromising on
low-level control. A long-standing goal in programming language design has been to bridge
this divide and create a language that delivers both safety features and control over system
resources. The Rust language [27] is the most significant industrial effort toward achieving
this goal to date. Rust enables zero-cost abstractions for common systems programming
patterns and operates without relying on a garbage collector. Moreover, Rust offers the
safety features of high-level languages, ensuring memory safety and data-race freedom, thus
guaranteeing the absence of undefined behaviours (UB).

To do this, Rust uses an ownership-based type system, enforcing a strict discipline that
prevents mutation of aliased data. This discipline, enforced statically at compile time, ensures
the absence of UB in Rust programs. Unfortunately, the Rust type system can be overly
conservative at times, making it too restrictive to implement basic low-level data structures
such as Vec, or synchronisation mechanisms such as Mutex. To circumvent this, Rust provides
unsafe blocks and functions that unlock “unsafe superpowers” to bypass the Rust compiler’s
safety checks. Using unsafe code, developers can implement, for instance, the aforementioned
Vec data structure, providing a safe encapsulation of the unsafe code. That is, using the safe
Vec API, developers should not be able to trigger any undefined behaviour.

Effectively, defining such an internally unsafe data structure extends the Rust type system
with a new type whose safety is not monitored by the compiler. That is, while the compiler
enforces the safety guarantees for safe code, in the case of internally unsafe code it simply
assumes them to hold, and the onus is on the library developer to ensure their safety.

Ensuring the above, however, is error-prone and far from straightforward, as evidenced
by the subtle bugs discovered in the literature [3, 4, 17]. This underlines the need for formal
methods and rigorous techniques for reasoning about unsafe code. Indeed, there has been a
large body of work on reasoning about unsafe code, falling into one of two main categories
(see §7 for a comprehensive discussion): (i) verification techniques aimed at showing the
correctness (safety) of unsafe code [10, 1, 7, 23]; or (ii) bug detection techniques aimed at
showing the incorrectness (unsafety) of unsafe code [2, 35, 5]. Specifically, the approaches
in i are useful when the unsafe code under consideration is correct and they guarantee the
absence of false negatives (i.e. missed bugs). However, they require extensive annotation
efforts from the user, they simply fail when the code is indeed unsafe, and they cannot be
used to identify the causes of safety violations. By contrast, the approaches in ii focus on
detecting the sources of safety violations.

A bug detection technique (in category ii) should ideally (1) be fully automatic (“push-but-
ton”) and require no user input or annotations — this ensures that the technique can be used
out of the box, without imposing a learning curve on the user or requiring a background
in formal methods; (2) only detect true positives (genuine safety violations) without any
false positives (spurious reports of safety violations); (3) be applicable to a wide range of
scenarios rather than specific patterns; and (4) be compositional (i.e. support analysing
incomplete programs rather than accepting only full programs with a main function) to
ensure its scalability and thus wide applicability to large codebases.

Unfortunately, however, no existing bug detection technique meets all above criteria. Spe-
cifically, RUDRA [2], Kani [35] and TraitInv [5] all suffer from false positives. Moreover, while
RUDRA and TraitInv are automatic, Kani is not automatic and relies on user-supplied sym-
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bolic tests for checking the desired properties. It only supports first-order, non-compositional
properties (i.e. not ownership properties) and cannot reason about type safety. On the other
hand, RUDRA and TraitInv have limited applicability: RUDRA uses linter-like heuristics to
detect three specific patterns that are likely to be safety violations, while TraitInv can only
detect violations of simple, first-order properties in the implementations of six standard
traits, e.g. that a partial equality function is transitive and symmetric.

Our approach: RUXt. Our main contribution bridges this gap: RUXt is a fully automatic,
compositional tool for detecting UB in (internally unsafe) Rust libraries, accompanied by a
formal true-positives theorem proven in Rocq, guaranteeing that all reported UB are true
safety violations.

To do this, we leverage the Rust type system: the type signature of a Rust function
is indeed a safety specification/annotation provided by the developer (in contrast to type
annotations in languages such as C). To this end, we draw inspiration from the semantic
model of Rust types as formalised in RustBelt [19]. Specifically, we focus on RUXtBelt, a large
fragment of the RustBelt model, enhanced with a clear account of errors necessary for bug
detection. As in RustBelt, references in RUXtBelt do not have a different semantics from raw
pointers, allowing us to maintain a simple formalism by avoiding special aliasing semantics
such as Stacked Borrows [18] or Tree Borrows [37]. As our focus here is bug detection rather
than verification, we can safely forgo such semantics, at the cost of missing some safety
violations, without compromising on our true-positives result.

As in RustBelt, in RUXtBelt we use separation logic [14] and represent well-typed values
as resources, enabling compositional reasoning about types. This way, given a library that
introduces a new type T, we can reason about it in isolation and independently of a concrete
client by considering only the T type space, namely the set of all allowed (safe) values in T.
To ensure type soundness, the T type space disallows values that lead to UB, and we can
find such UB by solving a reachability problem: we can explore the T type space to show
that a set of values modeled by a separation logic assertion are reachable only through safe
code. Specifically, given a function fn f(x: U) -> T, all values reachable by executing f
must belong to the T type space, as long as the input belongs to the U type space. On the
other hand, if we can show that UB is reachable using inputs that must belong to the U type
space, then we have found a safety violation. By iteratively exploring and enlarging our
knowledge of the type spaces through symbolically executing functions from the library, we
can reliably detect type safety bugs fully automatically.

Our reachability analysis introduces the notion of type subvariants, namely a subset of the
T type space, thus under-approximating the T type space. We obtain this under-approximation
by leveraging incorrectness separation logic (ISL) [29, 31] to derive reachable values and infer
type subvariants. We thus develop RISL (Rust incorrectness separation logic, pronounced
rizzle), a compositional program logic for detecting UB and show that it is sound against
our RUXtBelt model. RISL is inspired by ISL and similarly enjoys a true-positives theorem,
meaning that all type safety bugs found by RISL are indeed true safety violations.

We then develop RUXt as a symbolic execution engine that operates on RISL assertions.
RUXt automates the process of deriving RISL triples (and thus detecting UB). We prove that
RUXt enjoys a no-false-positives guarantee through our inadequacy theorem: every UB found
is a true type unsoundness in the library. That is, when RUXt detects UB, it guarantees that
it is possible to construct a trace of safe calls to the library witnessing the UB. This is a
direct consequence of under-approzimating type spaces.
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struct Even { val: i32 } typedef struct { int val } Even;
fn zero() -> Even { Even zero() {
Even { val: 0 } return (Even){.val = 0};
} }
unsafe fn succ(x: Even) -> Even { Even succ(Even x) {
Even { val: x.val + 1 } return (Even){.val = x.val + 1};
} }
fn next(x: Even) -> Even { Even next(Even x) {
unsafe { succ(succ(x)) } return succ(succ(x));
} }
fn noop(x: Even) -> () { void noop(Even x) {
if x.val % 2 !'= 0 { if (x.val % 2 !'= 0) {
unsafe { *(0 as *mut i32) =1 } *((int *)0) = 1;
} }
} }

Figure 1 Library for the Even type implemented in Rust (left), alongside its C analogue (right).

The underlying theory behind RUXt and the proofs of all our theorems are fully mechanised
in Rocq. We also develop a prototype implementation of RUXt in OCaml, and we conduct
three small case studies, showing that it can detect subtle safety violations resulting from
the interaction of several independently-safe functions of a library.

Outline. The rest of this article is organised as follows. We present an intuitive account of our
contributions in §2. In §3 we describe the RUXt algorithm and our prototype implementation
in OCaml, and provide an informal argument for why every UB detected by RUXt is indeed
a safety violation that can always be triggered. In §4 we present several examples of UB
found by RUXt. In §5 we describe our RISL logic for detecting UB. In §6 we present our
RUXtBelt model, show that RISL is sound with respect to RUXtBelt and then present our
inadequacy theorem formally showing that RUXt enjoys a guarantee of no false positives.
Finally, we discuss related work and conclude in §7.

2 Overview

We present an intuitive account of our contributions through an example inspired by a case
study from RefinedRust [10], as shown in Fig. 1 (left). We define a new type in Rust, Even,
as an abstraction of even integers, along with a safe API for interacting with values of this
type. We discuss the specificities and challenges of creating safe abstractions in Rust by
showing an analogous C implementation of Even and highlighting the differences. Using this
illustrative example, we first explain why Rust enables the detection of a new class of bugs,
thanks to its more expressive type system, and then demonstrate how we can leverage Rust
types to detect such bugs automatically.

2.1 Type Safety Bugs

We implement the Even type as a struct encapsulating an 132 value (a 32-bit integer) in the
val field. We also implement a library for interacting with Even through an API comprising
three safe functions: (1) zero encapsulates 0 as the base value for Even and returns it; given
an Even value, (2) next returns a new Even value encapsulating the next even integer, and
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(3) noop writes to an arbitrary pointer if the encapsulated integer is odd. The zero and next
functions encode constructors for well-formed Even values: every Even value they return
encapsulates an integer that is guaranteed to be even. As a result, noop effectively performs
no operations on safe inputs: the encapsulated integer is never odd by construction. Were
this not the case, the function would attempt to write to an arbitrary memory address,
resulting in undefined behaviour (UB). Note that noop is typed as a safe function, even
though it is implemented with unsafe code; the unsafe block is needed as manipulating raw
pointers is, in general, unsafe. In this example, however, our usage of unsafe features is safely
encapsulated by ensuring that we never perform the unsafe write operation for safe inputs
and thus we never observe UB.

The library implementation also includes the succ function which we have not yet
mentioned. Given an Even value as input, succ increments the encapsulated integer and
returns the result as a value of type Even. This behaviour clearly breaks the “evenness”
abstraction that we desire for Even, and thus succ is marked as unsafe. This unsafe function
is only used as an auxiliary function in the implementation of next, where it is called twice
within an unsafe block, ensuring that its usage is safely encapsulated. Although succ itself
does not contain any unsafe code, it allows odd integers to be encapsulated as Even values,
breaking the requirements for the safety of noop. Therefore, defining succ as a safe function
invalidates the safety of noop, meaning that both functions cannot co-ezist as safe functions
for the library to be type-safe.

By maintaining this boundary between safe and unsafe code, one can extend the language
with new types that carry rich information besides structural layouts. For instance, noop
restricts the val field of Even values to be even, since this is the only way of ensuring noop is
safe. In C, this kind of information is unattainable as usage of unsafe features is unrestricted
and thus safety cannot be expressed programmatically. The C analogue of our Rust library
in Fig. 1 (right) exemplifies this: in noop the unsafe write is no longer wrapped in an unsafe
block. Since we cannot distinguish safe functions from unsafe ones in C, one could assume
that all functions are safe by default and apply the same reasoning as in Rust, but we have
already shown that succ and noop cannot be simultaneously safe. Therefore, one must
assume that all C functions are unsafe by default, meaning that we cannot leverage the type
of noop to obtain information about the Even type.

Effectively, type signatures in Rust, including the unsafe keyword, are specifications
written by the developer. In particular, safe functions guarantee the absence of UB for safe
inputs, and we can invalidate such a specification by showing the presence of UB for such
inputs, hence showing that the library violates safety. Functions such as noop and succ (if
both are declared safe) constitute such a safety violation. Naturally, we refer to these as type
safety bugs. These bugs are not detectable in C: unlike in Rust, analysis tools can only rely
on the structural layout of data and not on the implicit meaning that programmers attribute
to their programs.

2.2 Finding Real Bugs in Rust Libraries

The state-of-the-art Infer:Pulse analyser [31, 24] classifies memory safety bugs into two
categories: (1) manifest: a bug that occurs in all calling contexts; and (2) latent: a bug
that occurs only in specific calling contexts. Infer:Pulse always reports manifest bugs as they
are contert-independent: if a function always exhibits UB, then it is not safe to include it in
a library. By contrast, a latent bug is only reported if the calling context that triggers it is
reachable from a program entry point, e.g. the main function. In other words, Infer:Pulse
cannot report context-dependent bugs as real bugs in libraries, relying on specific codebases
to report real bugs that are latent.

5:5
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Manifest
Vo. bug(o)

Latent
Jo. bug(o)

Type Safety
Jo. bug(o) A safe(o)

Figure 2 Taxonomy of bug categories. The variable o represents a calling context, where bug(o)
expresses that UB is observable in o and safe(o) expresses that o is obtained solely from safe code.
Every type safety bug is a latent bug. Every manifest bug is a type safety bug: if every context
triggers a bug, then the bug occurs in both safe and unsafe contexts. Manifest and type safety bugs
are highlighted in red as they are always true bugs, in contrast to latent bugs.

We show that, in Rust, context-dependent bugs can be reported as real bugs as long as
we restrict the conditions on calling contexts. In particular, type safety bugs are a class of
context-dependent bugs where the calling context is obtained by executing only safe code,
including calls to internally unsafe functions. For example, by making succ safe, we can
construct an apparently safe program that encapsulates an odd integer as an Even value,
resulting in a context where noop exhibits UB. Although this type safety bug could be
reported as a real bug in the Rust implementation, Infer:Pulse would merely identify it as a
latent bug in the C analogue. That is, as type safety is not expressible in C, it is impossible
to restrict the calling context as in Rust.

As illustrated in Fig. 2, reasoning about type safety allows us to report more bugs: certain
bugs that would be dismissed as latent in C can be reported as type safety bugs in Rust.
Indeed, it is possible to detect strictly more real bugs than what Infer:Pulse currently reports,
since every manifest bug is also a type safety bug. This opens the door to a new realm of
analysis techniques for sound bug detection, which is the main contribution of our work.

2.3 Reasoning about Type Safety

Type safety, also known as type soundness, is a fundamental property of safe programming
languages: well-typed programs (i.e. programs that type-check) will always exhibit well-
defined behaviour (no UB). Conversely, one can think of a type safety bug as type unsoundness.

The RustBelt project [19] provided a semantic model of Rust types, mechanising and
proving the type soundness of the safe fragments of Rust (which can be syntactically type-
checked). RustBelt further provides a framework for verifying the type soundness of internally
unsafe libraries (these are not covered by the type soundness proof), provided of course that
they are indeed sound. While we focus on detecting type unsoundness in internally unsafe
libraries, we introduce one of the main ideas behind RustBelt, from which we draw inspiration:
separation logic invariants [14].

Safe values in RustBelt are interpreted as resources in separation logic, enabling composi-
tional reasoning about types. This means that given a library that introduces a new type,
we can reason about it in isolation and independently of a concrete client. To ensure type
soundness is preserved when introducing a new type, RustBelt relies on user-defined type
invariants that over-approximate the set of allowed values for a given type, which we refer to
as type spaces. That is, while type spaces define the ezact set of values inhabiting a given
type, type invariants over-approximate types and thus a type invariant is a superset of its
associated type space, as illustrated in Fig. 3. Hereafter, we refer to a value in a type space
as a safe value. Type soundness guarantees that a safe program moves between safe values in
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Type Invariant Type Space Type Subvariant

Figure 3 Type spaces represent the exact set of safe values of a given type; type invariants
over-approximate type spaces; type subvariants under-approzimate type spaces.

type spaces. For example, since the zero function is safe, its output must necessarily belong
to the Even type space. Similarly, given a value in the Even type space as input, the next
function produces another value in the Even type space. That is, as both zero and next are
safe functions, every even integer must inhabit the Even type space.

2.4 A Logical Approach to Type Unsoundness

We present RUXt, a compositional, fully automated analysis algorithm and tool for detecting
type safety bugs in (internally unsafe) Rust libraries. RUXt does not require explicit definitions
of type invariants from the user. Instead, it reduces the problem of detecting type unsoundness
to a reachability problem. By leveraging type signatures and incorrectness separation logic [31],
it automatically infers a set of safely reachable values for each type. The set of reachable
values detected by our analysis constitutes an under-approximation of the type space, which
we call a type subvariant. Specifically, we grow type subvariants by iteratively performing
under-approximate compositional symbolic execution (& la Infer:Pulse [24] or Gillian [25]) on
the library functions. In turn, if the function f (x: T) can reach UB from an input x that
belongs to a subvariant of T, then the library must be type-unsound. The relation between
type spaces, type invariants and type subvariants is represented pictorially in Fig. 3.

Importantly, RUXt enjoys a guarantee of no false positives: every bug found corresponds
to a true type unsoundness in the library. That is, when RUXt detects UB, it guarantees
that it is possible to construct a trace of syntactically-safe calls to the library witnessing
the UB. Furthermore, exploring type spaces is drastically more efficient than exploring the
space of all possible traces, as we only need to find the safe values; that is, while many traces
may construct the same safe value, we can mitigate repeated work using each safe value only
once as an input to a function execution.

RUXt’s symbolic execution engine is based on the set of proof rules that we define for RISL,
our incorrectness separation logic for Rust, underpinned by our model of Rust (RUXtBelt),
presented in §5. RISL allows us to derive an under-approximate postcondition for each safe
function, given initial type subvariants for each of its inputs. In turn, we can use these
postconditions to grow the type subvariants for the output types of the functions.

For instance, take the Even library defined in Fig. 1 (left). We demonstrate how RUXt
can detect type unsoundness by describing the analysis step by step. Remember that the
unsoundness arises when the succ function is marked as safe.

1. Initially, the subvariant for the Even type is empty (no safe values are known).
2. Because next, noop, and succ receive Even values as input, we cannot symbolically

execute them without first inferring a non-empty subvariant for Even. However, zero
does not require any input, and we can therefore symbolically execute starting from the

emp assertion, capturing an empty heap (executing zero should not need any resources).

We can then immediately infer that the output Even { val: 0 } must be a safe value,
and we thus add it to our subvariant for Even.

5:7
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3. We now have a non-empty subvariant for Even and can symbolically execute next from
this subvariant, learning that the value Even { val: 2 } is also safe. Our newly-grown
subvariant contains both Even { val: 0 } and Even { val: 2 }.

4. If we now symbolically execute succ from this subvariant, we learn that the values
Even { val: 1 } and Even { val: 3 } are also safe.

5. Finally, if we symbolically execute noop from this subvariant, we can detect UB when
dereferencing a null-like pointer, as the Even type space now includes non-even values.

As soon as we perform the last step and detect the UB, we can report the type unsoundness
in the library, with a guarantee that the bug is real and can be triggered by a syntactically-safe
program. Specifically, RUXt returns the following program as a witness of the UB:

fn exhibit_ub() {

let x = {

let x = {
zero() // witness of Even { val : 0 }

};
succ(x) // witness of Even { val : 1 }

};

noop(x); // witness of UB

If, however, the succ function is correctly marked as unsafe, our analysis does not use it
to grow the subvariant for Even and never learns that the Even type space contains non-even
values. In this case, the library is sound, and we do not report any type unsoundness.

Note that, in this case, we would provide a notion of fuel to RUXt to prevent it from
looping indefinitely, capping its number of iterations. In general, doing so is always sound:
in the worst case we fail to detect bugs, but we would never report false positives.

3 RUXt: A Compositional Analysis for Type Safety Refutation

We present our algorithm for compositionally and automatically detecting type unsoundness
in internally unsafe Rust libraries. To this end, we introduce the RUXt programming language
(§3.1), formally describe type spaces and subvariants (§3.2) and present the RUXt algorithm
and discuss our prototype implementation in OCaml (§3.3).

3.1 RUXt Programming Language

Our programming language, Aruxt, is inspired by those of both RustBelt (Aryst [19]) and
ISL [31]. We consider a heap-manipulating ezpression language in the style of Aryst, similar
to the command language in ISL.

TERM 3¢ ==wv | © € VAR VALsvu=2z€Z | beB | leLoc | ()
PURESp:u=t | ©p | p1 D pe ©Ou=—, | ®u=+4, | <,
ExPrR > e =p | alloc | free(t) | t1 < to | *t | f(2) |

assume(t) | error | e; +ey | let z =¢ in ey

The Aruxt (program) expressions are defined by the e grammar above and include
pure expressions, standard heap-manipulating constructs for allocation (alloc), deallocation
(free(t)), storing (heap mutation, t; < t5) and loading (heap lookup, *t), as well as function
calls (f(t), see below), assume expressions (assume(t)), explicit error expressions (error),
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non-deterministic choice (e; + e3) and let bindings (let x = e; in e2). Pure expressions (p)
have no side effects and comprise terms as well as unary/binary operations on terms. A term
t is either a value or a program variable (x) meant to be substituted with concrete values. A
value v may be an integer z, a boolean b, a heap location [ or the unit value (). Note that as
heap-manipulating and assume expressions contain terms instead of pure expressions, unary
and binary operations must first be evaluated through a let binding, creating a new variable.

Other standard language constructs such as sequential composition, reference allocation,
assert expressions and deterministic conditionals can be encoded using the above:

€1, €3 £ let =€ in €2
ref(t) £ let x = alloc in v + t;
assert(t) = let x = —t in assume(t) + (assume(z); error)

if ¢ then ¢; else e = let x = —t in (assume(t); e;) + (assume(z); ez)

Functions and Loops. As Arux: supports function calls (f (%)), we omit loop expressions (e*),
since the same behaviour can be obtained with recursive functions. Since Aryx: is not higher-
order, functions must be externally provided as an implementation context, v, mapping func-
tion identifiers to their concrete implementations. We write f(Z){e} € v to denote that v con-
tains an implementation for f, where e is the f body and T are its arguments (i.e. free variables
in e). For example, the Even library would correspond to an implementation context 7 such
that dom(y) = {zero, succ,next,noop} and next(z){ let x = succ(z) in succ(z) } € 7.

Type signatures. A function implementation is annotated with a type signature, recorded
in a signature contexrt, A. Signature contexts contain type signatures for safe functions
only, as they are the only ones required to preserve type safety. Therefore, unsafe functions
are excluded from signature contexts, even though they still appear in implementation
contexts. We write f(7)—7 € A to denote that A contains a signature for f where 7T are its
input types and 7 is its output type. In the case of Even with v described above, we have
dom(A)=dom(v)\{succ} and next(Even)—Even € A. In essence, excluding succ from A
means that we cannot leverage type information from succ to infer anything about Even.

3.2 Type Spaces and Subvariants

Recall that we leverage signature contexts to construct type subvariants by inferring safe
values of the types in a library. To this end, we introduce the notion of a summary and
define a type subvariant as a set of summaries. We track the subvariants associated with
each library type through a summary context.

Summaries. A summary, ¢, is of the form Summary(Av. P | e), where e is a safe program
(described below) that witnesses value v (i.e. executing e yields v) constrained by the

separation logic (SL) assertion P. Rather than using concrete values, v is a symbolic value:

it serves as a binder for P, allowing us to represent an infinite number of concrete values in
a single assertion. We define assertions as follows:

ASRT > P,Q :=uvma | True | False | PAQ | PVQ | P=Q | 3z. P |
emp | l—=v | lh] l=e| PxQ
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Our assertion language is standard and includes truth, falsity, conjunction, disjunction,
implication and existential quantification. A purely logical proposition' = may be lifted to
an assertion as Lwi. Our assertions also include standard SL assertions for describing an
empty heap (emp), a single-cell heap (I — v, comprising a single location ! that holds value v)
and composite heaps via the separating conjunction * (P * @, describing a heap that can be
decomposed into two parts, one described by P and another by Q). We further include the
negative heap assertions from ISL, [ &, and the unknown heap assertions [ —+, respectively
describing a heap comprising a single location [ that has been freed or is uninitialised.

For every summary Summary(— | e), e must be a safe program: a program e is safe if it
is syntactically well-typed (i.e. e type-checks) and comprises solely a sequence of calls to the
safe functions in the API of the current library. Furthermore, a safe program should require
no initial resources to execute safely (i.e. should execute safely starting from emp).

A summary context ¥ is a map from types to their subvariants (set of summaries). For
example, the zero function always returns the value 0 in an empty heap, and thus when the
summary context is given by 3, then Summary(Av. Lo = 04 | zero()) € X(Even). Note that
the Even type is particularly simple and does not make use of the heap. In §4, we describe a
more complex linked-list example where the constraining assertion is not pure.

Summary inference. We infer summaries using compositional symbolic execution [24, 25]:
starting with an empty summary context X, we iteratively execute safe functions from the
library to extend . Given a safe function f with return type 7, every output value of f must
be a safe value of 7 (i.e. in the 7 subvariant), and thus we can extend 3(7) to include the
output value. More concretely, let f be the safe function we consider at the current iteration,
where f takes n arguments of types 7y - -+ 7,, and has output type 7. We then proceed as
follows:

1. For each input type 7;, we pick one summary ¢; = Summary(Av;. P; | ¢;) from X(7;).
At this step we pick a function f only if we have at least one summary for each of
its input types, which may not always be the case. The strategy for selecting f is
immaterial for soundness of our approach, and thus we omit such details from our
formalism. Nevertheless, each library typically has constructor functions which do not
require an input, or require inputs of other types, for which our analysis would compute
subvariants.

2. We combine v; - - - v, into a list of symbolic values v to pass as arguments to f, and
define a precondition P & Py % ---x P, for f. This yields a safe context for executing
f: as the input values are safe by construction and f is safe, it should execute safely,
returning a safe value of type 7. However, recall that this is not always the case when
the library is internally unsafe.

3. We sequentially compose witness programs e - --e,, followed by a call to f on the
associated values, resulting in the program e = let z; = e; in ...let z,, = e, in f(Z).
Note that as the function call is syntactically well-typed and every program e; is a safe
program, the composite program e is also safe by construction. Program e will serve as a
witness program for the result of executing f on these safe input values, whether it be a
safe execution or not.

4. As f may be internally unsafe, its execution may reach an error. To distinguish safe
executions from unsafe ones, we record termination (exit) conditions as follows:

EXIT 3 € ::= ok(v) | err | miss(l)

! That is, any term definable in Rocq with type PROP, such as equality assertions or other similar relations.
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TryRefute(, A, ¥) — SuMMCTX + EXPR
1: (f,5,7) + pickCandidate(A, X)

2: (v, P,€) «+ constructContext(<) Summary contexts HARE

3: e « constructWitness(e, f)

4: for [e: Q] € execute(y, f(v), P) do R-EMPTY

5 match ¢ with 7ARD

6 case ok(v) R-INFER

7: ¢ < Summary(\v. Q | e) v, AF Y TryRefute(y,A, %) =X’
8 Y+ X[r ¢, 2(7)] v, ARY

9 case err | miss(—)

10: return e
11: return X

Figure 4 The RUXt refutation procedure (left) and rules for inferring well-formed summary
contexts (right).

5. We analyse the resulting exit condition € and proceed accordingly.
6. If € is successful, denoted by ok(v), the return value v is a symbolic value (as the inputs
are themselves symbolic) and represents multiple safe values of 7; therefore,

7. the symbolic execution engine constrains v by returning a postcondition ), whereby
we construct a new summary ¢ = Summary(Av. @ | €), where e (constructed as
described above) is the safe program that witnesses ¢ as reachable; and

8. we extend the subvariant of 7 in ¥ with ¢.

In the future iterations, we can then use this summary as a safe value for functions that

require an input of type 7. Note that we may re-execute previously executed functions

with the new input summary Summary(Av. @ | €): UB may now be reachable from this
new summary, even if it was not reachable for prior safe inputs.

9. Otherwise € is unsuccessful, given by either (i) err: denoting a memory safety error (e.g.

performing a double free); or (ii) miss(l): denoting an access to a location ! for which we
do not own sufficient resources (e.g. an out-of-bounds access). We elaborate further on
the distinction between these two cases later in §5.

10. Finally, we report the unsuccessful termination as a type unsoundness (safety
violation), returning e as a witness program that triggers the unsoundness.

Note that we can soundly identify an unsuccessful exit as a true bug. Specifically, as we
only consider safe functions with safe values (summaries) as input, we solely interact with
the safe API of the library. As such, if a safe function does not terminate successfully on safe
inputs, then the library API does not encapsulate its usage of unsafe code, resulting in UB
and rendering the library type-unsound. In other words, by considering only safe contexts,

we can identify latent bugs as type safety bugs thanks to the expressivity of the type system.

3.3 The RUXt Algorithm

We present RUXt, our compositional, fully automatic analysis for detecting safety violations
in internally unsafe libraries. The RUXt algorithm comprises a meta-loop that calls the
TryRefute procedure (Fig. 4, left) at each iteration. Each execution of TryRefute infers
summaries for a safe function and updates ¥ to some ¥/, as discussed in §3.2, following
the rules in Fig. 4 (right). This meta-loop is performed until a type unsoundness is found
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or a predefined limit (“fuel”) is reached. Although the search is not exhaustive and some
bugs may go undetected, we prioritise the guarantee of true positives by only exploring an
under-approximation of the possible interactions with the library.

Refutation procedure. The TryRefute procedure is parametrised by the current summary
context, X, along with an implementation context 7 (for function implementations) and a
signature context A (for function type signatures), returning either the updated summary
context or a witness program if a type unsoundness is found. Specifically, lines 1-10 in
TryRefute correspond to steps 1-10 on page 10.

The pickCandidate procedure (line 1) selects a safe function f and its associated input
summaries and output type (see step 1 on p. 10); that is, f(7)—7 € A and Vi. 3; € X(7).
We then construct a safe context using constructContext (line 2) and a witness program using
constructWitness (line 3), as we described previously (see steps 2 and 3 on p. 10, respectively).
Given P, we then call execute (line 4) to symbolically execute the function call f(7), which
returns a set of postconditions (due to non-determinism). For each postcondition [e : Q],
we perform a case analysis (lines 5-10) on its exit condition €, as discussed in steps 5-10
on p. 11. Finally, if no type unsoundness is found by the end of the meta-loop, the final
summary context is returned (line 11).

Well-formed summary contexts. The judgement v, A -3 (Fig. 4, right) denotes a well-
formed summary context: every summary in ¥ is reachable by interacting solely with the
safe functions given in implementation context v and signature context A. The R-EmMPTY
rule states that an empty summary context is always well-formed. The R-INFER rule allows a
well-formed summary context to be extended: given a well-formed ¥, if TryRefute returns an
updated summary context ¥/, then Y’ is also well-formed. Since TryRefute maintains the
previous summaries and only extends the summary context with new ones that are reachable
from a safe function, well-formedness is preserved across iterations.

Soundness. The soundness of RUXt depends on the soundness of its underlying symbolic
execution engine. Indeed, the execute procedure must derive a valid under-approximation of
the values that are reachable by the program. To ensure this, we develop the RISL program
logic (§5) and prove that it is sound with respect to our under-approximate semantics (§6).
The RISL soundness allows us to prove our main result, the inadequacy theorem (see
Theorem 7): if TryRefute returns a witness program for a library, then the witness is a safe
program for which UB is observable. The returned witness thus demonstrates that UB can
emerge by interacting solely with the safe API of the library. In other words, we show that
any violation reported by RUXt proves the existence of a true safety bug in the library.

Handling references. Until now, we have not discussed how RUXt handles reference types.
Namely, given a Rust function fn f(x: &mut T), the RUXt algorithm cannot infer anything
about type T from f mutating x, since T is not the output type. Therefore, rather than
perform the analysis directly on £, we define a safe wrapper f£_wrap that receives and returns
a value of type T, and run RUXt on f_wrap instead. The wrapper simply calls the original
function and returns the mutated input: fn f_wrap(mut x: T) -> T { f(&mut x); x }.
The intuition for this wrapper function is that any safe mutating operation should always
re-establish the safety of its input value, and we can use this information to grow our
subvariants. Indeed, since f_wrap type-checks, it must be safe and therefore our analysis can
immediately be applied to the wrapper without further proof. We demonstrate this wrapper
transformation through a linked list example in §4.
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These wrappers can be constructed fully automatically directly in Rust and then type-
checked by the compiler. Moreover, similar wrappers can also be defined for other reference
types. For example, a function fn f(&mut T) -> &mut U that returns a mutable reference
can be wrapped into a function that assigns an arbitrary value to the returned reference:
fn f_wrap(mut x: T, y: U) -> T { *(£(&mut x)) = y; x }. Again, the intuition is
that assigning an arbitrary value to the reference should not break the safety of the input
structure. Shared references can be handled similarly by simply checking that reading from
the reference does not trigger UB on safe inputs. Note that if a function receives or returns
several references, we can apply these transformations to each reference separately and
analyse each wrapper independently to grow our subvariants.

Even if the wrappers use mutable references in their body, the analysis can still be
performed, since references are semantically equivalent to raw pointers in our model (similarly
to RustBelt). However, RUXt is thus unable to detect specific classes of bugs related to
aliasing semantics from stronger semantic models such as Stacked Borrows [18] or Tree
Borrows [37]. Nevertheless, our approach remains sound as we are not compromising on our
promise of true positives: all bugs reported by RUXt are true safety violations, even if other
UBs allowed by Stacked Borrows or Tree Borrows remain undetected.

RUXt prototype implementation. We develop a prototype implementation of RUXt in
OCaml. The execute procedure is implemented using the technique of compositional symbolic
execution for incorrectness reasoning [25], a form of symbolic execution that allows reasoning
about fragments of states that correspond to separation logic assertions. A similar technique is
implemented in other tools for correctness and/or incorrectness reasoning such as VeriFast [15],
Viper [28] or Gillian [26]. The engine was designed to follow the RISL proof rules (see §5),
ensuring that, starting from a precondition P and executing a function body e, the engine
constructs only postconditions [e : Q] such that the triple F [P]e [e: ] holds.

Furthermore, in the implementation, the analysis is initialised with valid subvariants for
the primitive types such as integers and booleans. For instance, the initial subvariant for
the int type is given by the single summary Summary(Av. v € Z | v), where v represents
all integers, as constrained by the assertion. In §4, we exemplify further the use of such
symbolic summaries with a constructor function for the Even type that receives an integer
as parameter.

Finally, since the algorithm presented in Fig. 4 may loop indefinitely, our implementation
receives an initial fuel parameter to limit the number of iterations.

4 Case Studies

To demonstrate the feasibility and applicability of RUXt, we run our prototype implementation
on three Aryx: case studies and show that we can automatically detect type unsoundness
in ill-defined libraries. First, we target the unsoundness in our running example Even (§2),
and next we consider an extension of Even with a more general constructor. Finally, we
define a List library in Aryxt with a function that causes an unsoundness. Note that as our
prototype does not currently construct witness programs, we omit these from the summaries
shown in this section.

4.1 Even Integer

We re-implement the functions presented in Fig. 1 within our prototype. Our implementation
successfully finds the unsoundness when succ is marked as safe, and accurately does not
when it is marked as unsafe.

5:13

ECOOP 2025



5:14

Compositional Bug Detection for Internally Unsafe Libraries

Even integer extension. The Even example in §2 is simplified and does not fully demonstrate
the benefits of using symbolic execution, as all inferred values are concrete. To illustrate the
power of symbolic execution, we replace the zero constructor with a new function new that
takes an integer x and returns it if x is even; otherwise, it increments x and returns it.

fn new(x: int) -> Even {
if x%h2=0 {x}
else { x + 11}

}

Here, int is a base case: we know that the ezact type space (i.e. neither over- nor
under-approximate) of a value n of type int is “n € Z”. We can use this type space as a
subvariant to construct the input context for new. We then obtain the following subvariant
for Even by symbolically executing new from that context, obtaining two branches and hence
two sumimaries:

Y (Even) = {Summary(An. n € Z An%2 = 0),Summary(An. n € Z A (n — 1)%2 # 0)}

This newly obtained subvariant covers exactly the entire type space of Even. Using a simple
SMT check, we can then prove that the concrete value returned by zero is included in this
subvariant. This allows us to remove (or never add) the concrete value as a subvariant,
thereby reducing path explosion. The same approach could be used for other base cases that
are “native” to the language (e.g. the slice or Box types), where the type spaces are known
exactly and can be formulated as simple separation logic assertions.

4.2 Linked List

We define a simple linked list library, List, in Agryxt. Unlike Even, linked lists are real-world
data structures that are infamously difficult to implement soundly in Rust. Within List
we introduce a subtle unsoundness and show that our prototype can detect it automatically.
The List library contains the following functions:
fn new() -> List: creates a new empty list, a null pointer represented as the value 0;
fn push(l: List) -> List: adds a newly allocated node to the front of (input list) 1;
fn drop(l: List): iterates through 1 and frees each node until a null pointer is found;
fn cycle(l: List) -> List: overrides the null pointer terminating 1 with a pointer
to its first element, creating a cycle in the list.

In a real Rust implementation, push and cycle would receive a mutable reference to
the list. However, as discussed in §3.3 (p. 12), the analysis can only be performed on
wrappers. Since our prototype does not yet automate this transformation, we implement
push and cycle as the actual wrappers. For example, we transform the Rust implementation
(receiving a mutable reference to the list), Rust_push, by wrapping it in our push implement-
ation, where inline_Rust_push(&mut 1) denotes inlining the body of Rust_push(&mut 1):
fn push(mut 1: List) -> List { inline_Rust_push(&mut 1); 1 }.

The first three functions (new, push and drop) are standard and exist in the LinkedList
implementation of Rust standard library. However, the cycle function is not standard and
indeed introduces unsoundness: dropping a cyclic linked list will lead to a use-after-free error
the second time the iteration reaches a node in the cycle?.

2 An alternative implementation of drop which would check for cycles would not suffer from this issue.
However, the current implementation of the LinkedList structure in the Rust standard library does
not check for cycles when iterating.
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RUXt can detect this unsoundness as follows.

1. At first, we can only pick the new function: it requires no arguments, while all other
functions require an argument of type List for which we are yet to infer a subvariant.
By executing new, we infer that the empty linked list — i.e. a null pointer — must be a
safe value of type List. In other words, thus far we have inferred the type subvariant:

Y(List) = {Summary(Av. Lo = 04)}

2. Later on, we pick push and execute it from our current List subvariant, learning a new
subvariant for lists of size one:

Y(List) = {Summary(Av. Lo = 04), Summary(Al. [ — 0)}
3. Subsequently, we pick cycle and learn a new subvariant:
Y(List) = {Summary(Av. Lv = 04), Summary(Al. I — 0), Summary(Al. [ — 1)}

4. Finally, we pick drop, and using our last subvariant we detect a use-after-free UB.

4.3 Key Takeaways

These examples highlights several key aspects of the kinds of unsoundness detected by RUXt:
In Rust, functions such as cycle would require unsafe code, as safe Rust prevents the
kind of aliasing required for a cyclic linked list. Importantly, reasoning about this aliasing
is made substantially simpler thanks to separation logic.

The cycle and succ functions are not inherently wrong. For instance, in the List case,
the unsoundness arises from the interaction of cycle and drop; the library would be sound
without either of these functions. Safety is, inherently, an inter-procedural property [16].
In our prototype, we also check that no unsoundness is found if either function is removed
from the library, or if either is marked as unsafe.

We do not need to explore all traces as we build subvariants. As demonstrated with the
zero and new functions of the Even library, some subvariants might be removed from our
>} when a strictly larger subvariant is found. We believe that this compositional approach
dramatically reduces path explosion issues in comparison to whole-program type-guided
approaches such as Crabtree [34], described in more details in §7.

5 The RISL Program Logic

We now present RISL (Rust incorrectness separation logic), our under-approximate logic
for deriving reachable states in RUXt. Our proof rules are standard and similar to those of
ISL [31], with the caveat that Agyx: programs are not commands, but rather expressions
that reduce to values on successful termination. Unlike ISL, RISL supports function calls
and is the first separation logic to reason about missing resources (the miss exit condition).

5.1 Proof Rules

We present the RISL proof rules in Fig. 5. Intuitively, a RISL triple T' - [P]e [e: Q] is
interpreted similarly to ISL: every state in the postcondition @ is reachable by executing
program e starting from some state in the precondition P, where € is the exit condition, as
described in §3.2 (p. 10). To reason about function calls, RISL allows reusing of derived
specifications through a specification context, I', mapping each function to a list of under-
approximate specifications. More concretely, [(E) P ‘ €: Q} € T'(f) denotes that [e: Q] is
reachable by executing f(7) starting from P (i.e. I' - [P] f(7) [e: Q] holds).
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Under-approximate triples 'k [Plele: Q]
S-VAL S-ASSUME S-ERROR
I' F [emp] v [ok(v): emp] I' F [emp] assume(true) [ok: emp] I' F [emp] error [err: emp]
S-MiNus S-ADD

I' F [emp] p [ok(z): emp] Ik [emp] p1 [ok(z1): emp] T F [emp] pg [ok(z2): emp]
T'F [omp] —, plok(—2): emp] T [empl g1 1, p2 [ok(z1 + 22): emp)
S-Not S-LE

L'k [emp] p [ok(5): emp) T F [emp] ps [ok(z1): emp] Tk [emp] ps [ok(z3): emp]
I F [emp] —gp [ok(—b): emp] Tk [emp]p1 <, pa [ok(z1 < 22): emp]

S-FREE S-STORE S-LoAD

TH [l v]free(l) [ok: [ 4] T[]l vlok: I+ v] Tk [l v]*l[ok(v): | — v]

S-FREEUNINIT S-STOREUNINIT S-LOADUNINIT
'k [l |—>7} free(l) [ok: l »7@] 'k [Z *—>?] [+ [ok: [ — v} 'k [l r—>7] *1 [err: l Hﬂ

S-FREEFREED S-STOREFREED S-LOADFREED
L+ [l /4] free(l) [err: [ /] D[4+ vlerr: L] Dk [IA] L err: 1]
S-FREEMISS S-STOREMISS S-LoAaDMIss

[+ [emp] free(l) [miss(l): emp] Tk [emp]l < v [miss(l): emp] Tk [emp]*I [miss(l): emp]

S ALLOC S-CALL S-LerCut
A el (e LD PEQIETY)  TEIPleie @) £ oK)
P . TF [P (@) e Q] TF [Pllet z = ey in s e Q]
S-CHOICE S-LET
I'F[Plele: Q) Fie{l,2} 'k [Ple; [ok(v): R] Tk [R]ex]v/z][e: Q]
'k [Pler +exle: Q] TH[Pllet x =e¢p inesfe: Q]
S-Disy S-FRAME
Lk [Plele Q] TF[P]ele Qs I'F[Plele: Q] frameable(e, R)
F"[Pl\/PQ}e[GZQl\/QQ} F"[P*R}@[EQ*R]
S-EXIsTS S-Cons
'k [Plele Q] I'cl EP' =P) T'H[PleleQ] E@Q=Q)
P-[Fax Plele: 3 2. Q] 'k [Plele: Q]

Figure 5 The RISL proof rules.

Plain values always reduce to the value itself successfully (S-VaL). Pure expressions
reduce to the result of the underlying operation on the reduction values of its operands
(S-Minus, S-Not, S-App and S-LE). Assume expressions only terminate if the term evaluates
to true® (S-AssuMmE). Error expressions always terminate erroneously (S-ERROR).

3 For readability, when programs reduce to () (unit value), we simply write ok rather than ok(()).
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For heap-manipulating expressions, the successful cases (with ok) are analogous to their
ISL counterparts (S-FrREE, S-STORE, S-LoaD and S-ArLoc). As in ISL, accessing previously
freed locations results in a memory safety issue and thus erroneous termination (S-FREEFREED,
S-STOREFREED and S-LoADFREED). As we model uninitialised memory, compared to ISL we
further have rules to account for accessing uninitialised memory. Specifically, while freeing and
overwriting uninitialised locations terminates successfully (S-FREeUNINIT and S-STOREUNINIT),
loading from such locations leads to UB (S-LoapUninit). We further introduce new rules to
reason about missing resources (via the miss exit condition). For instance, when attempting
to free a location [ for which we do not own the necessary resources in the precondition, i.e. we
have emp rather than [ — — V[ 7, then we terminate unsuccessfully due to missing location
I, denoted by the miss(l) exit condition in S-FrReeMiss. The S-SToreEMiss and S-LoADMISS
describe analogous scenarios when storing to or loading from [. This miss exit condition
could be surprising to readers familiar with ISL; we discuss it in more details shortly.

Let bindings correspond to sequential composition in ISL. As in ISL, S-LETCuUT captures
the short-circuiting semantics of sequential executions: when the execution of the first
expression e; terminates unsuccessfully, then the let expression let x = e; in e; also executes
unsuccessfully. The S-LeT rule captures the case where executing e; terminates successfully

with value v, in which case (unlike in ISL) v is propagated to ey through variable substitution.

The S-Cuoick rule states that the states in @) are reachable when executing e; + e if
they are reachable from P when executing either branch. As in incorrectness (separation)
logic, this is due to the under-approrimate nature of RISL.

Missing resources. The miss exit condition is a novel aspect of RISL, allowing us to derive
triples when the proof context does not carry sufficient resources to execute a program
successfully. By contrast, in ISL, missing resources do not lead to a specific exit condition,
but rather to a failure to derive a triple.

This is because unlike existing analyses based on ISL, RUXt is designed to reason about

the soundness of Rust libraries, where types capture the resources required for safe execution.

That is, if RUXt computes a subvariant assertion P for a given type T, then P should contain
enough resources to execute the body of any safe function f(x: T). Therefore, if we can
derive a triple with a miss exit for the body of a function f (x: T) starting from a computed
subvariant for T, we have shown that the resources associated with T are insufficient for the
function to execute safely, and thus we can report it as a type safety violation.

Note that additional care is needed to ensure that triples with miss exits do not break
the S-FraME rule. Specifically, when applying S-FRAME to a triple with e = miss(l), we must

ensure the framed-on resources R do not invalidate miss(l) by framing the missing location .

This is captured by the frameable(e, R) premise of the S-FramE rule, defined as follows:
frameable(e, R) 2V I. € = miss(l) = = sat(RA (True x (I — — V14 V [ 7))

Note that when e € {ok,err}, the frameable(e, R) premise is immediately satisfied, ensuring
that we can always frame on additional resources R in such cases, as in ISL. That is, in these

cases our frame rule is identical to that of ISL (which cannot account for missing resources).

By contrast, in the case of € = miss(l), the right-hand side of the implication above ensures
that R does not express ownership of [, i.e. does not contain [ — — or [ % or [ —+ (among
other resources, as denoted by True).

Function calls. The S-CaLL rule allows specifications from the I' context to be directly
applied when they match a given function call. Rather than executing f(v) directly, one can
consult the specifications of f in I" and check if there exists a specification [(@) P ‘ €: Q} eT'(f)
for the same input values ©.
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Specification contexts

S-EMPTY S-EXTEND 3 o
v<sT f@){etey Tk [Plefv/a]le Q)

7 <s empty(7) v <s L[f = [(@) P|e Q], T(f)]

Figure 6 Proof rules for well-formed specification contexts.

The S-Cons rule further allows the specification context I'V to be extended to I' so long
as I' contains all specifications that ' does (i.e. I CT £V f. I'(f) C I'(f)). This ensures
that T' preserves any specification that may have been used to prove the original triple.

Note that RISL rules are only sound provided that the given specification context is
consistent with the concrete implementation context under analysis. Therefore, we next show
how to construct specification contexts soundly by deriving specifications in RISL.

5.2 Well-Formed Specification Contexts

The rules in Fig. 6 allow one to construct well-formed specification contexts. A specification
context I is well-formed with respect to an implementation context =y, written v <s I, when
every specification in I'(f) holds of (can be derived for) the concrete implementation in ~y(f),
for all f in v. We write empty(7y) to denote an empty specification context for -y, i.e. one
where I'(f) is an empty list, for all functions f in 7. An empty specification context for v is
vacuously well-formed with respect to v (S-EmpTY). When v <s IT" holds, we can extend T
(in a well-formed fashion) with a specification [(5) P ‘ €: Q] for f in ~y, provided that we can
prove it in RISL by directly executing the f body with concrete input values ¥ (S-EXTEND).

In other words, by iterating over functions and deriving RISL (under-approximate) spe-
cifications for concrete inputs, we can dynamically construct I', tailor-made for a specific
implementation context 7. This way, we can also reason about (mutually) recursive func-
tions for a bounded number of iterations (i.e. under-approximate them) by first deriving
specifications for non-recursive calls, which can then be used to derive specifications for the
recursive calls. Moreover, note that the S-Cons rule ensures that derived RISL triples remain
valid when extending the specification context, which in turn ensures that RISL is sound
under specification context extension.

In the RUXt algorithm, we obtain reachable states by following the RISL proof (Fig. 5) and
refinement (Fig. 6) rules. Indeed, every derived postcondition [e : Q] € execute(y, f(v), P) on
line 3 in Fig. 4 (left) implies that there exists I such that v <s I and I - [P] f(7) [e: Q] hold.
As such, the soundness of RUXt follows directly from the soundness of RISL with respect to
our under-approximate RUXtBelt semantics, which we describe next in §6.

6 RUXtBelt: The Semantic Model of RUXt

We present RUXtBelt, our under-approximate semantic model underpinning RISL and RUXt.
As discussed in §1, RUXtBelt covers a large fragment of RustBelt. Unlike RustBelt, however,
in RUXtBelt we explicitly account for memory safety errors (e.g. use after free) as this is
required for bug detection. Specifically, while the RustBelt semantics simply gets “stuck”
when encountering a memory safety issue, in RUXtBelt we directly identify them as errors
using our unsuccessful exit conditions.
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In §6.1 we present the RUXtBelt operational semantics. In §6.2 we define the semantic
interpretation of RISL triples and prove the RISL proof system sound against the RUXtBelt
semantics. Finally in §6.3 we prove that the RUXt algorithm is sound through our inadequacy
theorem, stating that every UB detected by RUXt is a true safety violation in the library.

6.1 RUXtBelt Operational Semantics

We present two characterisations of our RUXtBelt semantics. First, we describe our big-step
semantics that explicitly accounts for unsuccessful termination, but does not distinguish
between the two kinds of unsuccessful termination (err or miss). Specifically, in our big-step
semantics we assume that we have the full heap at all times and do not miss any resources,
i.e. that there are no additional resources in the frame. As such, when accessing a location [
that is not within the underlying heap, we simply terminate with err (and not miss(l)). We
thus refer to this big-step semantics as the RUXtBelt full semantics.

We next present the RUXtBelt instrumented (big-step) semantics — inspired by
JaVerT2.0 [9] and Gillian [26] — that can operate on partial heaps and thus distinguishes
between unsuccessful termination due to memory safety errors (err) and missing resources
(miss). We then establish a semantics preservation lemma (Lemma 1) stating that our
instrumented semantics can simply be erased to our big-step semantics, in that if a program
e terminates with exit condition ¢ under the instrumented semantics, then (1) either € = ok
and e also terminates with ok in our big-step semantics; or (2) € # ok (i.e. it is either err or
miss) and e terminates with err in our big-step semantics.

As we show below, our instrumented semantics simplifies the task of proving RISL sound:
miss RISL triples directly correspond to miss judgements in our instrumented semantics. As
such, we first prove RISL sound against our instrumented semantics, and subsequently show
that RUXt is sound against our full semantics through our semantics preservation lemma.

RUXtBelt big-step semantics. We define our RUXtBelt big-step operational semantics in
Fig. 7, through judgements of the form v <h, ‘ e> J <h/ ‘ e>, where 7 is an implementation
context (for function implementations), e is a Aryxt program (expression), € is an exit condition
and h, h' are program states. A program state is a heap, h € HEAP £ Loc — VAL W {&, &},
mapping locations to either values in VAL or designated values for uninitialised (#) and
freed (@) locations. The ~ <h, ‘ e> [} <h’ ‘ e> judgement states that h’ is reachable with exit
condition e by evaluating e starting from h, under the implementation context ~y.

We further define partial evaluation functions for terms (|- |; : TERM — VAL) and pure
expressions (||, : PURE — VAL) as follows:

lv]e = v [—zple = —Lplo if [plp €Z  [p1 +, p2]p

42 £ Lpljp'i‘ Lp2inf |_p1JP? \_szpEZ
[ty = [tle  [-sple £ —lpleif [PJp €B  |;m <, p2]p

[p1]e < p2]p if |[p1]p, [2]p € Z

> 1>

Most of the rules in Fig. 7 are standard. Pure expressions, assume expressions and
explicit errors do not interact with the heap and leave it unchanged. Specifically, pure
expressions simply reduce to their corresponding value (O-PUre), assume(t) is only reducible
if ¢ evaluates to true (O-AssuME) and error terminates unsuccessfully with err (O-ERROR).

Heap allocation always returns a fresh, uninitialised location (O-Arroc). As in ISL,

deallocation updates the value of the freed location to the designated & value (O-FREE).

Storing to a heap location [ is successful when [ is not deallocated but may be potentially
uninitialised (O-SToRE), while loading from [ is only successful if [ is initialised, in which
case it returns the value at [ (O-LoaDp). Accessing a previously freed location or loading from

an uninitialised location terminates erroneously (O-FREEERR, O-STOREERR and O-LOADERR).
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Figure 7 The full RUXtBelt semantics; the instrumented RUXtBelt semantics is obtained by

replacing err in O-FREEMIsS, O-STOREMISS and O-LOADMISS with miss(l).

Moreover, accessing locations that are not part of the (full) heap also terminate erroneously

(O-FreEMiss, O-SToreMiss and O-LoADMISS).
resources required for successful termination or it terminates erroneously.

That is, the full heap must contain all

The remaining judgements closely mimic RISL rules in Fig. 5. Starting from h, non-
deterministic choice e; + e reduces to I/ with € if either e; or ex does so. A let binding
short-circuits if e; terminates unsuccessfully (O-LETCuT); otherwise, e; propagates its value

v to ez by substituting the binder x (O-LET).

A call to f is reduced by substituting its

arguments with input terms in its body when f is in the implementation context (O-CALL).

Instrumented semantics.

We next define our instrumented semantics that operates on

incomplete heaps and distinguishes err and miss conditions. Our instrumented semantics

comprises judgements of the v = (h|e) |; (W' |e)

(note the i subscript in {}) and only
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differs from the full semantics by yielding a miss(l) exit in O-FREeMiss, O-STorEMiss and
O-LoapMiss. In effect, the full semantics maps every miss termination in the instrumented
semantics to an err one, preserving all other outcomes, as we show in the following lemma.

» Lemma 1 (Semantics preservation). For all v, h,h/, e and ¢, if v+ (h|e) I (I’ | €), then
one of the following holds:

1. e=ok(v) and v+ (h ‘ e) I (I ‘ ok(v)).

2. e#ok(=) and v+ (h ‘ e) I (W ‘ err).

As we show below, our instrumented semantics enjoys strong frame preservation properties,
namely frame subtraction (Lemma 2) and frame addition (Lemma 3). The former describes
the effects of removing fragments from the underlying heap, while the latter accounts for
heap extensions. We write hs#hp to denote that hs and hp are disjoint (i.e. have disjoint
domains) and can thus be composed (combined) through the disjoint union operator .

eande, if vy F <le Whr ‘ e> s
<h,’S Whp ‘ e> and hs#hp holds, then one of the following holds:

1. yF(hg|e) Ui (W, |€) and W #hp.

2. There exist h',l such that v <hs

» Lemma 2 (Frame subtraction). For all v, hg, hp, b

e) 4 (W' | miss(l)), W'#hp and | € dom(hp).

» Lemma 3 (Frame addition). For all vy, h,h', e and €, if v <h ‘ e> (¥ <h,’ ‘ e>, then for all
hr such that h'#hp holds, one of the following holds:

1. v+ <h Whrp ‘ e> (¥ <h’ Whp ‘ e> and h#hp.

2. There exists | such that e = miss(l) and | € dom(hp).

Lemma 2 states that removing a fragment from the heap under execution either (1)
preserves the behaviour of the program; or (2) terminates unsuccessfully due to a missing
location in the frame. Conversely, Lemma 3 states that extending the underlying heap (1)
preserves the behaviour of the program unless (2) the program terminates with a miss before
adding the frame, and the frame contains the missing location. This is precisely why we need
the frameable(e, R) requirement in the premise of the S-FRAME rule, i.e. to ensure that the

extension R does not include missing resources that may change the termination condition.

These lemmas demonstrate how (when dealing with incomplete heaps in our instrumented
semantics) extending and shrinking the underlying heap may affect the termination condition
with regards to missing resources. By contrast, in our full semantics we assume that the
underlying heap is always complete, and thus we need not account for extending or shrinking
it. As our instrumented semantics considers partial (incomplete) heaps, it closely captures the
compositional nature of our RISL proof rules, where in each rule the pre- and post-conditions
only describe the (partial) heap fragments needed for executing a given Agryx: program, and
the underlying heap (resources) may always be extended using the S-FraME rule. As such, it
is simpler to first show RISL sound against our instrumented semantics, as we show next in
§6.2, and then relate it to our full semantics using Lemma 1 for our inadequacy result in
§6.3.

6.2 Semantic RISL Triples and Soundness

We next formalise the semantic interpretation of RISL triples. Recall that RISL triples (Fig. 5)
are given using assertions. As such, we first present the semantics of RISL assertions.
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Semantic interpretation ’ () : AsrRT — HEAP — PROP

(ra) 2Xh.h=0A7  (True) =X _. T  (Falsep =X _. L
(PAQ)= XN (P)(R)A(QN(R)  (PV Q)= XA (P)(h)V(Q)(R)
(P= Q)= Xh. (P)(h) = (Q)(h) (Fx. P)=Xh. Iz (P)(h)
U o) 2Ah h={lmv}) (=) 2Ahh={l>%} (A 2Ahh={l— o)
(emp) =X h. h =10 (PxQ) & X h. 3 hp,hg. h=hpWhg A (P)(hp) A (Q)(hg)

Figure 8 Assertion semantics.

Assertion semantics. We define the semantics of assertions in Fig. 8 through an interpret-
ation function, (), that maps assertions to predicates (PROP in Rocq) on heaps (i.e. our
program states). Pure assertions require no heap resources and thus assert ownership of
an empty heap. Semantics of truth and falsity do not depend on the heap, semantics of
conjunction, disjunction, implication and existential quantification are defined inductively
and as expected. For separation logic (SL) assertions, emp simply expresses ownership of an
empty heap, while [ — v expresses ownership of a singleton heap mapping ! to v. Similarly,
I v& and [ —+ express ownership of a singleton heap mapping [ to @ and ®, respectively.
Finally, the separating conjunction requires the heap to be split into two disjoint sub-heaps,
each satisfying one sub-assertion. An assertion P is wvalid, written = P, if it holds of every
heap; P is satisfiable, written sat(P), if it holds of some heap:

= P2Y h (P)(h) sat(P) 2 3 h. (P)(h)

Semantic RISL triples. A semantic triple (c¢f. syntactic RISL triples in Fig. 5), v F
[Plele: @], states that every heap hy satisfying @ is reachable under e from some heap h,
satisfying P by executing e under implementation context ~y:

vE[Plele: Q1 £V hg. (Q)(hg) = 3 hy. (P)(hp) Ay F (hy | €) Ui (hy |€)

Note that while the syntactic RISL triples (Fig. 5) are defined using a specification context
I', semantic triples (above) are given using an implementation context . To give a semantic
meaning to our RISL triples, we thus lift the notion of a semantic triple with «, to one using
I, provided that I' is well-formed with respect to . Recall that in §5.2 we provided a logical
notion of this well-formedness, v <s I', that can be derived using the rules in Fig. 6. We
analogously define a semantic notion of well-formedness as follows. We define the semantics
of the refinement relation from §5.2 as follows:

v <sTEVED, Pe,Q. [(0) Ple Q] €T(f) = 3T e. f(T){e} €vAyF[Plefv/z]e: Q)

This ensures that every specification (D) P | e: Q] of function f in I' is the result of directly
executing the function body with the given input values.
We next lift the notion of semantic triples (with 7) to semantic RISL triples (with T'):

I'E[Plele QI&2Vy. v<sT =vE[Plele Q]

That is, as RISL only relies on derived specifications and not on concrete implementations,
a semantic RISL triple with T" holds when the corresponding semantic triple holds for all
implementation contexts v with respect to which I' is semantically well-formed.
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Soundness of RISL. In Lemma 4 below we prove that (i) every RISL triple that can be
derived using the rules in Fig. 5 is a valid semantic RISL triple.; and (ii) every well-formed
specification context I' constructed using the rules in Fig. 6 is semantically well-formed.

» Lemma 4. ForallT, v, P,Q, e and €:
1. if Tk [Plele: Q] is derived using the rules in Fig. 5, then T' E [P]e[e: Q] holds; and
2. if v <s I is derived using the rules in Fig. 6, then v <s T' holds.

Finally, we prove that the RISL proof system is sound by showing that every triple derived
for a given implementation using the RISL rules in Fig. 5 is a (sound) semantic triple.

» Theorem 5 (RISL soundness). For allT, v, P,Q, e and ¢, if v <s T' and T F [P]e[e: Q]
is derived using the rules in Fig. 5, then v E [P]e[e: Q] holds.

Crucially, RUXt relies on this result to justify the soundness of its summary inference.
Specifically, every postcondition [e : Q] € execute(wy, f(T), P) derived by its underlying sym-
bolic execution engine (underpinned by RISL) on line 3 (Fig. 4, left) must ensure that
~v E [P] f(7) [e: Q] holds, which follows immediately from the RISL soundness above (The-
orem 5). That is, by implementing the RISL proof system in its underlying symbolic
execution engine, the RUXt algorithm thus guarantees that every summary it infers is a
sound under-approximation of the reachable states.

6.3 Soundness of RUXt

We next show that RUXt is sound by proving its no-false-positives guarantee: when RUXt
detect a UB with a witness program e, then e is indeed a safe program that results in UB,
witnessing that the usage of unsafe code is not encapsulated by the safe API of the library.
To this end, using the RISL soundness result (Theorem 5), in Theorem 6 below we first show
that every summary derived by RUXt yields a sound RISL triple starting from an initial
empty heap and terminating successfully. Furthermore, the witness program associated
with inferred summary is guaranteed to be a safe program, meaning that the corresponding
safe value can be constructed by solely interacting with the safe API of the library. More
concretely, given an implementation context -y, a signature context A and a summary context
%, if RUXt derives v, A - X using the rules in Fig. 4 (right) with Summary(Av. @ | e) in 3,
then for every concrete value v (1) e is a safe program; and (2) v F [emp] e [ok(v): Q] holds.

» Theorem 6 (Summary soundness). For all v, A, X, Q, e, if v, A F X is derived using the
rules in Fig. 4 and Summary(Av. Q | e) €X, then e is a safe program and y E [emp]e[ok(v): Q]
holds for all v.

Finally, using the soundness of summary inference in RUXt, we prove our key inadequacy
theorem: given a well-formed summary context, if the refutation procedure reports a type
unsoundness, then the returned witness is a safe program that leads to UB.

» Theorem 7 (Inadequacy). For all v, A, X, e, if v,A b X is derived using the rules in
Fig. 4 and TryRefute(y, A, %) returns a witness program e, then e is a safe program and
(0 ‘ e) I (h ‘ err), for some h.

Note that our inadequacy theorem states that e results in an error in our full semantics
starting from an empty heap. Although summaries are only shown to be reachable using
the instrumented semantics (in the conclusion of Theorem 6), our semantics preservation
lemma (Lemma 1) allows us to exchange any judgement of the instrumented semantics into
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one in our full semantics (by leaving successful judgements unchanged, while transforming
unsuccessful ones with miss or err into erroneous ones with err), provided that we operate on
the full heap. Indeed, the empty heap should suffice for safe programs to execute safely, and
thus RUXt can soundly report miss exits as true UB. Concretely, our inadequacy theorem
states that any UB reported by RUXt is a true safety violation in the library, that can be
triggered by its returned witness program.

7 Related and Future Work

RUXt exists in a rich ecosystem of tools and techniques for analysing unsafe Rust code, as
well as techniques that combine type-guided reasoning with under-approximate reasoning.
We discuss these in turn, categorising Rust analysis tools into three categories: compositional
verification, whole-program analysis and bug-finding tools.

Compositional type-safety verification for Rust. There are a number of tools that aim to
verify the type safety of Rust programs. RustBelt [19] is an Iris mechanisation [20, 22] that
provides a formal model of Rust’s type system and provides a framework for compositionally
verifying the type safety of internally unsafe libraries. Later, RefinedRust [10] (based on
Lithium [33]), VeriFast for Rust [7] (based on VeriFast [15]) and Gillian-Rust [1] (based on
Gillian [8, 26]) are all underpinned by RustBelt and aim to verify the type safety of Rust
code, each with their own set of caveats and trade-offs. Verus [23] is a language (embedded
in Rust) for writing formally verified code that can be extracted to idiomatic Rust code.
However, Verus cannot verify existing unsafe Rust code that has not been written within
Verus. While these tools are powerful, they all require a substantial amount of manual effort
on the part of users and, as verification tools, are prone to false positives.

Whole-program analysis for Rust. Miri is a Rust interpreter distributed with the Rust
compiler. It allows for the concrete execution of Rust programs and can detect many UB
such as out-of-bounds memory accesses or more subtle Rust-specific issues, e.g. the violation
of aliasing rules [18]. However, Miri is a testing tool, it requires the user to write tests, and
can only explore one execution path.

Kani [35] is a whole-program bounded model checker for Rust. It performs symbolic
execution, and as such can explore infinitely many execution paths. However, Kani still
requires users to write tests and first-order logic assertions, and it is prone to both false
positives (due to its over-approximate nature) and false negatives (as it is bounded). Moreover,
Kani is unsound with respect to several Rust-specific features, e.g. the detection of uninitialised
memory accesses, or the violation of aliasing rules. Neither Miri nor Kani can detect type
unsoundness in Rust programs, as they cannot reason compositionally about library invariants.

Bug-finding tools for Rust. We know of three automatic bug-finders for Rust: RUDRA [2],
TraitInv [5] and Crabtree [34]. RUDRA uses linter-like heuristics to detect three specific unsafe
patterns in Rust code that are known to often lead to type unsoundness. It is automatic
and was ran on the entirety of the Rust openly-available packages (crates.io), finding
more than 250 new safety issues. However, its scope is limited to the detection of the three
patterns, and it is prone to false positives.

TraitInv automatically synthesises symbolic tests that check certain properties expected
to hold for eight core Rust traits (e.g. that PartialEq is symmetric and transitive). TraitInv
then runs these tests using Kani and reports violations. Unfortunately, TraitInv’s approach is
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limited to these specific traits, and supporting new traits requires manual effort as it cannot
infer new trait invariants. Furthermore, since it relies on Kani, TraitInv is also prone to false
positives; it can only be extended to support first-order properties and cannot be used to
enforce separation logic (ownership) properties such as that required by the Copy trait.

Crabtree is an automatic test synthesiser that uses a type-guided approach to increase
coverage of the library under test. It can generate tests that make use of advanced Rust
features such as higher-order trait functions; it uses Miri to execute the generated tests
and can detect type unsoundness in the library if a test fails. Its type-guided approach is
somewhat similar to ours. However, instead of inferring type subvariants, Crabtree notes
when it finds a path that generates a value of a type not previously seen in the test suite,
and uses that information to call functions that have not yet been covered because of the
lack of input values for this type. This approach is, unlike ours, not compositional, and still
quickly leads to combinatorial (path) explosion.

Type refutation and under-approximation. The recent development of Incorrectness Lo-
gic [31] has led to the exploration of reasoning techniques that combine type systems with
under-approximation, starting with a theoretical experiment from Ramsay and Walpole [32]
who introduced a two-sided type system that allows for refutation of type assignments.

Next, HAYSTACK [38] is an extension of LIQUIDHASKELL [36], a refinement type system
for Haskell. HAYSTACK is similar to RUXt, in that it infers subsets of the refinement type
spaces that are sufficient to refute the refinement types provided by the user. However, it
differs from RUXt in several key aspects. First, HAYSTACK is used to provide explanations
for type errors when the user provides a refinement type annotation that cannot be proven
by L1QUIDHASKELL. However, as refinement type checking is inherently over-approximate,
inability to type-check does not guarantee that the program is incorrect. Furthermore,
HAYSTACK can only help finding counter-examples in Haskell programs that have been
annotated with refinement types and is therefore not fully automatic. Finally, LIQUIDHASKELL
refinement types are first-order and cannot express separation logic (ownership) properties.

Finally, Qian et al. [30] propose a semantic type refuter that can find type unsoundness
in a simple functional language. However, their approach requires knowledge of the semantic
typing of all existing types, which must be defined using first-order logic. As such, they
cannot find type unsoundness in internally-unsafe libraries, where type invariants must be
inferred from the code itself and must be expressed using separation logic.

Symbolic execution for bug-finding. There is an extensive literature on symbolic execution
for bug-finding, which can be split into two categories: dynamic and static symbolic execution.
None of these techniques have been applied to Rust, or leverage the main novelty in our
approach: the use of type-guided reasoning to refute the type safety of a program.
Dynamic first-order symbolic execution (or concolic execution) has been used to auto-
matically detect bugs and generate tests using tools such as KLEE [6], DART [12, 11, 13],
and more [39, 21]. However, our prototype implementation is based on static compositional
symbolic execution, which, in the context of bug-finding, is implemented in Infer:Pulse [24]
and Gillian [26, 25]. However, as explained in §2, these tools are only able to soundly detect
manifest bugs, while our approach can detect a larger class of bugs, namely type unsafety.

Future Work. In the future, we will extend and build on our work here in several ways.
First, we will extend our Agyx: language and RUXtBelt formalisation to include support
for relevant Rust features such as polymorphism and higher-order functions. Second, we
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will extend RUXt accordingly to include support for these features, and further ensure that
UB reports are accompanied by witness programs. Finally, we will perform a large-scale
evaluation of RUXt by applying it to real Rust codebases.
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