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Abstract. Remote Direct Memory Access (RDMA) is a modern tech-
nology enabling high-performance inter-node communication. Despite
its widespread adoption, theoretical understanding of permissible be-
haviours remains limited, as RDMA follows a very weak memory model.
This paper addresses the challenge of establishing sufficient conditions
for RDMA robustness. We introduce a set of straightforward criteria
that, when met, guarantee sequential consistency and mitigate potential
issues arising from weak memory behaviours in RDMA applications. No-
tably, when restricted to a tree topology, these conditions become even
more relaxed, significantly reducing the need for synchronisation primi-
tives. This work provides developers with practical guidelines to ensure
the reliability and correctness of their RDMA-based systems.
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1 Introduction

Remote Direct Memory Access (RDMA) is a modern technology that enables a
machine to have direct read/write access to the memory of another machine over
a network, bypassing the operating systems on both ends. This allows such direct
memory accesses (reads/writes) to be performed with far fewer CPU cycles,
leading to high-throughput, low-latency networking, which is especially useful
in massively parallel computer clusters (e.g. data centres). RDMA has achieved
widespread adoption as of 2018 [69], thanks to efficient implementations available
at comparable cost to traditional infrastructures (e.g. TCP/IP sockets) [32],
with several RDMA technologies such as InfiniBand and RDMA over Converged
Ethernet (RoCE) readily available.

RDMA networks directly interact with the hardware through read (get) and
write (put) operations on remote memory. As a result, programming RDMA
systems is conceptually similar to shared memory systems of existing hardware
architectures (e.g. Intel-x86 or ARM). A key difference, however, is that on
encountering a remote operation, the CPU forwards it onto the network interface
card (NIC), which subsequently handles the remote operation without further
CPU involvement.
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The performance gains of RDMA, as well as its wide range of implemen-
tations, have led to a surge of RDMA research [4,73,71,27]. RDMA networks
exhibit different degrees of concurrency, depending on whether the concurrent
threads reside on different nodes (machines) over the network (inter-node con-
currency) or on the same node (intra-thread concurrency). To understand the
behaviour of RDMA programs and their various notions of concurrency, Ambal
et al. [10] recently developed rdmatso, a formal semantics of RDMA programs
where each node comprises an Intel-x86 CPU and thus intra-node-inter-thread
concurrency is governed by the TSO (total store ordering) model [68].

As the real power of RDMA networks is their ability to run parallel programs
over different nodes, writing efficient RDMA programs hinges on utilising inter-
node concurrency. However, writing such programs correctly is far from straight-
forward. A key challenge is that local operations (accessing the local memory of
the executing node) are handled by the CPU, while remote operations (accessing
remote memory on other nodes) are handled by the NIC independently and in
parallel to CPU operations. Hence, operations in the same thread may not be
executed in the intended (program) order, leading to surprising outcomes. As
Ambal et al. [10] note, this can result in counter-intuitive behaviours even in the
case of sequential programs comprising a single thread. This is in stark contrast
to all previously existing concurrency models (be they of CPU architectures or
programming languages), where sequential programs do behave sequentially.

The permissive nature of RDMA semantics requires developers to carefully
consider potential instruction reorderings. Reasoning about concurrent programs
and ensuring proper synchronisation between threads is inherently complex, even
without instruction reordering. Accounting for instruction reorderings adds an-
other layer of complexity to this challenge.

As such, we should ideally enable reasoning about RDMA programs under
a simpler, more intuitive model such as sequential consistency (SC) [43], where
no instruction reordering is allowed, and thus instructions in each thread always
execute in order. To this end, a common approach to simplify reasoning is to
ensure robustness. A program P is robust under a consistency model CM, if its
set of possible behaviours under CM coincide with those of its behaviours under
SC; i.e. P is robust under CM if it exhibits no non-SC behaviours. If a program
is robust under CM, then we can simply reason about it under SC, without
considering the complexities of CM.

Contributions. In this paper, we close this gap and simplify reasoning about
RDMA program through robustness. To simplify our presentation and not dis-
tract the reader from the RDMA complexities by the orthogonal intricacies of
CPU concurrency, we first present rdmasc, a simplification of the rdmatso

model of Ambal et al. [10], where intra-node concurrency follows the simpler
SC model [43], while inter-node concurrency is analogous to that of rdmatso.
We then identify two sets of sufficient constraints that, if satisfied, ensure the
robustness of rdmasc programs. Our proposed constraints are purely syntactic,
in that they do not require an understanding of the complex RDMA semantics
and can be established by simply checking the syntax of the program. The first
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set of constraints is restrictive, but can be applied to any RDMA program. The
second relaxes the requirements of the first, but requires the RDMA network to
follow a tree topology. Our conditions enable a number of useful paradigms for
RDMA programs such as the server-client model, which we show can be used
for automatically translating existing concurrent algorithms to distributed ones
over RDMA, as well as for modelling star network topologies used e.g. in Local
Area Networks (LAN). Finally, we adapt our results to the rdmatso model and
accordingly propose analogous syntactic and topological constraints.

Outline. In §2 we present an intuitive account of the weak RDMA semantics
through examples and discuss how we ensure robustness through syntactic con-
straints. In §3 we present our formal rdmasc model. In §4 we establish sufficient
syntactic conditions that ensure the robustness of rdmasc programs. In §5 we
apply these findings to tree-shaped network topologies, offering a further stream-
lined set of conditions under rdmasc. We discuss related work in §6. The proofs
of all theorems stated in this paper, as well as the extension of all our results to
the rdmatso model, are available in the extended version [11].

2 Overview

We present an intuitive account of RDMA semantics through several examples,
showing the counter-intuitive and unexpected behaviours they can exhibit due
to possible instruction reorderings (§2.1). We then discuss how we can tame this
complexity by introducing syntactic constraints that, if fulfilled, prohibit prob-
lematic instruction reorderings, pre-empting unexpected behaviours and thus
simplifying the task of reasoning about RDMA programs for developers (§2.2).

2.1 RDMA Semantics at a Glance

Consistency (Concurrency) Models and Weak Behaviours. In the lit-
erature of shared-memory concurrent (multi-threaded) programming, the set of
possible behaviours (i.e. semantics) of a concurrent program is defined via a
consistency model (a.k.a. memory model or concurrency model), with a num-
ber of such models available in different domains such as hardware architectures
(e.g. Intel and ARM) and programming languages (e.g. C/C++ and Java). The
most well-known and intuitive consistency model is sequential consistency (SC,
a.k.a. interleaving concurrency) [43], where the instructions are interleaved in
program order. That is, under SC the instructions in each thread cannot be
reordered. While simple, SC is too strong in that it precludes many common
hardware/compiler optimisations and thus unduly hinders performance. As such,
modern hardware architectures and programming languages adhere to weaker,
more lenient models, admitting more behaviours than SC. In this context a pro-
gram behaviour (outcome) is referred to as weak, if it is not allowed under SC.
Such weak behaviours can typically be understood in terms of instruction re-
orderings within a thread or visibility delays (where the effects of an instruction
(e.g. a write) is not observed at the same time by all threads), both of which are
disallowed under SC.
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Conceptual RDMA Model. We model concurrent RDMA programs run-
ning over a network of nodes (i.e. computers), where each node hosts zero, one,
or more threads, and each thread can directly access remote memory of other
nodes through its network interface card (NIC). As we discuss below, RDMA
programs exhibit three sources of weak behaviours: 1. CPU weak behaviours, due
to the usual interactions (and reordering) of multiple threads on a single node;
2. intra-thread weak behaviours, due to RDMA operations being reordered or
delayed; and 3. inter-node weak behaviours, due to multiple nodes executing
concurrently. Here we focus on the latter two sources as they are specific to
RDMA programs, and discuss how such weak behaviours may be prevented.

CPU Concurrency. RDMA enacts data transfers between nodes via the NIC
subsystems of the constituent nodes, which are independent from the CPU sub-
systems. Consequently, the RDMA technology can be combined with different
CPU architectures governed by different memory models (e.g. TSO or ARM).
The first validated formal model of RDMA programs, rdmatso [10], assumes that
CPU concurrency is governed by the TSO model [68]. To simplify our presenta-
tion and not distract the reader from the RDMA complexities by the orthogonal
intricacies of CPU concurrency, we present the simpler rdmasc model, where
CPU concurrency follow the stronger SC model [43]. We generalise our results
to rdmatso in the extended version [11].

Almost all weak behaviours introduced by RDMA stem from the NIC and
are independent of CPU concurrency (i.e. CPU and RDMA concurrency can
often be decoupled). As such, the distinction between rdmatso and rdmasc is
often irrelevant, in which case we write rdma* to encompass both models. In
particular, in this overview section we focus on nodes with at most one thread
each, i.e. with no CPU concurrency, so all behaviours discussed below hold of
both rdmasc and rdmatso (i.e. for rdma*). Note that this is merely a presen-
tational choice we have made in this section, and our formal models, theorems,
and examples in subsequent sections also account for CPU concurrency.

Litmus Test Outcome Notation. We frequently present small representative
examples (known as litmus tests in the literature). In each example, the outcomes
annotated with ✓ are allowed by the RDMA model under discussion, while those
annotated with ✗ are disallowed.

Remote Direct Memory Access (RDMA). RDMA programs comprise op-
erations that access remote memory, as well as various synchronisation opera-
tions. As such, programming RDMA networks is conceptually similar to shared
memory systems. To distinguish remote (RDMA) operations from CPU ones,
we refer to RDMA reads and writes as get and put operations, respectively. To
distinguish local and remote memory locations, we assume nodes do not reuse
location names, we write xn for a location on a remote node n, and write x for
a location on the local node. A put operation is of the form xn := y and con-
sists of reading from a local location y and writing to a remote location x on n.
Similarly, a get operation is of the form x := yn and consists of reading from a
remote location y on n and writing to a local location x. We write n to identify
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x=0 z=0

x := 1
z2 := x

(a) z=0✗ z=1✓

x=0 z=0

z2 := x
x := 1

(b) z=0✓ z=1✓

x=0 z=0

z2 := x
poll(2)
x := 1

(c) z=0✓ z=1✗

x=0 z=0

z2 := x
z2 := x
poll(2)
x := 1

(d) z=0✓ z=1✓

x=0 z=1 y=2

x := z2

x := y3

(e) x=1✓ x=2✓

y=0

a := y2

y2 := 1

(f) a=0✓ a=1✓

x=1 y=z=0

z2 := x
x := y2

(g) z=0 ✗ z=1✓

x = 1 y=z=0

x := y2

z2 := x

(h) z=0✓ z=1✓

x = 1 y=z=0

x := y2

rfence(2)
z2 := x

(i) z=0✓ z=1 ✗

Fig. 1: Sequential rdma* litmus tests, where each column (separated by ||) de-
notes a distinct node, the statement on the top line of each column denotes the
initial values of locations.

a node other than n. When node n issues a remote operation to be executed on
node n, we state that the operation is by n towards n.

Sequential (Single-Threaded) rdma* Behaviours. When a thread issues
a get or put operation, it is handled by the NIC, in contrast to local reads and
writes handled by the CPU. As such, the interaction between CPU and remote
operations lead to further behaviours even within a sequential (single-threaded)
program. We demonstrate this in the examples of Fig. 1, where each column
represents a distinct node, numbered from left to right starting from 1. For
instance, the example in Fig. 1a comprises a single thread on node 1 (the left-
most column) that writes to the local location x (x := 1) and puts x towards
the remote location z on node 2 (z2 := x).

Intuitively, when a thread t on n issues remote operations towards node n,
one can view these remote operations as if being executed by a thread running
in parallel to t. As such, when a remote operation follows a CPU one, the order
of the two operations is preserved since the parallel thread is spawned only after
the CPU operation is executed. This is illustrated in Fig. 1a. By contrast, when
a remote operation precedes a CPU one, the remote operation is performed by a
‘separate thread’ run in parallel to the later CPU operation in the main thread,
and thus may execute before or after the CPU operation, meaning that in the
latter case the execution order is not preserved. This is illustrated in Fig. 1b.

Therefore, before using the result of a get or reusing the memory location
of a put, it is desirable to avoid such reorderings and to wait for the remote
operation to complete. This can be done through a CPU poll operation, poll(n),
that blocks until the earliest (in program order) remote operation towards node
n has completed. This is shown in Fig. 1c, obtained from Fig. 1b by inserting
a poll after the remote operation: poll(2) waits for z2 := x to complete before
proceeding with x := 1, and thus z2 := x can no longer be reordered after x := 1.

Note that each poll(n) waits for only one (the earliest) and not all pending
remote operations towards n to complete. For instance, in Fig. 1d, poll(2) only
blocks until the first z2 := x is complete, and thus z = 1 is once again possible.
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y=0 x=0

x2 := 1
a := y

y1 := 1
b := x

(a) a=b=0 ✓

x=0 y=0

a := y2

x := 1
b := x1

y := 1

(b) a=b=1 ✓

x=0 y=0

a := y2

poll(2)
x := 1

b := x1

poll(1)
y := 1

(c) a=b=1 ✗

y=0 x=0

x2 := 1
poll(2)
a := y

y1 := 1
poll(1)
b := x

(d) a=b=0 ✓

y=w=0 x=z=0

x2 := 1
c := z2

poll(2)
poll(2)
a := y

y1 := 1
d := w1

poll(1)
poll(1)
b := x

(e) a=b=0 ✗

Fig. 2: Concurrent rdma* litmus tests.

Two remote operations towards different nodes are independent and can
execute in either order, as illustrated in Fig. 1e. The only way to prevent this
reordering is to poll the first operation before running the second.

The ordering guarantees on remote operations towards the same node are
stronger and only certain reorderings are allowed. Recall that a put operation
xn := y comprises two steps: a local read (on y) and a remote write (on xn).
Similarly, a get operation x := yn comprises two steps: a remote read (on yn)
and a local write (on x). Intuitively, NIC operations follow the precedence order:
i) local read; ii) remote write; iii) remote read; iv) local write.

If a step with a higher precedence (e.g. a local read) is in program order before
one with a lower precedence (e.g. a local write), then their order is preserved and
they cannot be reordered. This is illustrated in Fig. 1g. Otherwise the order is
not necessarily preserved and these steps can be reordered, as shown in Fig. 1h
where an earlier local write on x can occur after the later local read.

As before, the reordering of the two remote operations in Fig. 1h can be pre-
vented by polling the first operation before the second. However, polling is costly
as it blocks the current thread, including the submission of remote operations
towards any node. Alternatively, we can use a remote fence, rfence(n), that
blocks only the NIC and only towards node n. This in turn ensures that earlier
(before the fence) remote operations by the thread towards n are executed before
later (after the fence) remote operations towards n. This is illustrated in Fig. 1i,
obtained from Fig. 1h by inserting rfence(2) stopping the reordering.

Concurrent (Multi-Threaded) rdma* Behaviours. The real power of
RDMA comes from programs running on different nodes, introducing a wide
range of weak behaviours. A network can comprise several nodes, each running
several concurrent threads. We limit the examples of Fig. 2 to two nodes, each
having a single thread.

As shown in Figs. 2a and 2b, well-known weak behaviours such as store
buffering (Fig. 2a) and load buffering (Fig. 2b) are possible. This is because
earlier RDMA operations can be delayed after later CPU operations.

As one could expect, most weak behaviours can be prevented by polling the
remote operations as needed, as shown for load buffering in Fig. 2c. However, this
strategy is not enough to prevent the store buffering weak behaviour, as show
in Fig. 2d. This is because the specification of polling offers different guarantees
for get and put operations. Polling a get operation a := xn offers the strong
intuitive guarantee that the operation completed, i.e. the value of xn is fetched
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from node n and written to a. By contrast, polling a put operation xn := a
does not guarantee the write on xn has completed. When sending the value of
a towards node n to be put in xn, the remote NIC merely acknowledges having
received the data, but this data may still reside in a buffer (i.e. the PCIe fabric)
of the remote node, pending to be written xn. Polling a put operation only awaits
the acknowledgement of the data receipt. As such, it is possible to poll a put
operation successfully before the associated remote write has fully completed.
In the case of store buffering in Fig. 2d, it is possible for both poll operations to
complete before the values of x and y are updated (to 1) in memory.

We also assume NICs are connected to memory though the Peripheral Com-
ponent Interconnect Express (PCIe) fabric, the de facto standard for this cate-
gory of hardware [10]. This ensures that (PCIe) reads cannot overtake (PCIe)
writes. As such, a remote read flushes (commits) all pending remote writes to
memory, and similarly on local memory. This can be used to prevent weak be-
haviours such as store buffering, as shown in Fig. 2e, obtained from Fig. 2d by
adding additional gets and subsequently polling them. Polling a (seemingly un-
related) later get (e.g. c := z2) ensures previous remote writes (e.g. x2 := 1)
have been committed to the remote memory.

2.2 Robustness: Taming Weak rdma* Behaviours

Given the permissive nature of the rdma* semantics and the numerous weak
behaviours it exhibits (even in the case of single-threaded programs), the task
of writing correct RDMA programs is laborious. Reasoning about concurrent
programs is already challenging even in the absence of weak behaviours. Ac-
counting for potential instruction reorderings (which requires experience with
rdma* semantics) introduces yet another layer of complexity for developers.

As such, we should ideally enable reasoning about RDMA programs under a
simpler, more intuitive model such as SC (sequential consistency [43]). Specifi-
cally, to simplify program reasoning, a common approach is to ensure robustness.
A program P is robust under a consistency model CM, if its set of possible be-
haviours under CM coincide with those of its behaviours under SC; i.e. P is
robust if it exhibits no weak behaviours. If a program is robust, then we can
reason about it as if it were executed under SC, without considering the com-
plexities of rdma*.

To ensure robustness, we must prevent observable reorderings, i.e. those lead-
ing to weak behaviours. We can achieve this through syntactic requirements (e.g.
by inserting sufficient remote fences and poll operations). A naive solution is
to wait for each remote operation to fully complete before proceeding further,
thereby preventing all reorderings. Unfortunately, this serialises these opera-
tions, and thus defeats the benefits of RDMA, which is designed to parallelise
CPU instructions and data transfers by offloading them to the NIC. Instead,
we should account for the rdma* semantics and only add restrictions when
necessary, while allowing non-observable reorderings.

Certain reorderings are observable even when considering a single thread in
isolation, as in the examples of Figs. 1b, 1e, 1f, and 1h. Specifically, these exam-
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y = 0 z = 0

a := y2

z3 := 1

(a) a = 1 ✗

y = 0 z = 0

a := y2

z3 := 1
y := z3

(b) a = 1 ✓

y = 0 z = 0

a := y2

poll(2)
z3 := 1

y := z3

(c) a = 1 ✗

Fig. 3: Examples showing that necessary restrictions depend on other threads.

ples contain data races within a single thread. Beyond robustness, these patterns
should be avoided in any sensible program. However, most weak behaviours arise
from the interaction of several threads. For instance, in the single-threaded ex-
ample of Fig. 3a, although the two remote operations a := y2 and z3 := 1 on
node 1 may be reordered, this reordering is not observable: it does not lead to
additional weak behaviours, and thus no additional constraints are necessary for
robustness. By contrast, in the multi-threaded variant of Fig. 3b (with a thread
on node 2), nodes 2 and 3 can exchange data and thus we can observe the weak
behaviour a = 1 due to this reordering. As such, to prohibit this, we must pre-
vent the two operations on node 1 from being reordered, e.g. by polling the first
operation, as shown in Fig. 3c.

As seen before, preventing reorderings can be done in different ways. In cases
like Fig. 1i, a remote fence is enough. In cases like Fig. 2e, we need dummy get
operations. Determining when and how to prevent reorderings is not straightfor-
ward. As illustrated in the examples of Fig. 3, it cannot be done thread-locally :
one must account for the communication between other nodes and thus must
take the whole program into account. This raises two questions:

– How do we prevent weak behaviours through simple purely syntactic restric-
tions? Specifically, how can we ensure that a program has enough constraints
(e.g. polls) to prevent weak behaviours, and how do we make sure that waiting
for a specific remote operation (as in Fig. 3a) is unnecessary?

– How do we structure RDMA programs to minimise the amount of necessary
restrictions in order to maintain efficient implementations?

We set out to answer these questions in the remainder of this paper. Specifi-
cally, after defining several formal preliminaries in §3, we present a theorem in §4
stating sufficient syntactic conditions guaranteeing robustness (i.e. the absence
of weak behaviours). In §5 we then build on this theorem and present a useful
RDMA network topology where fewer limitations are necessary to prevent weak
behaviours. Notably, following our prescribed network topology ensures that it
is never necessary to poll a remote operation to prevent multi-threaded weak
behaviours.

3 rdmasc: A Declarative Semantics for RDMA Programs

We present the syntax of RDMA programs (taken from [10]) in §3.1. In §3.2
we then present a formal declarative semantics for our rdmasc model. As we
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describe in the extended version [11], we obtain rdmasc by strengthening the
rdmatso model of Ambal et al. [10] whereby we make a few simple adjustments
to ensure that local (CPU) concurrency follows the SC rather than TSO model.

3.1 rdmasc: Programming Language

Nodes and Threads. We consider a system with N nodes and M threads in
total across all nodes. Let Node = {1, . . . , N} and Tid = {1, . . . ,M} denote the
sets of node and thread identifiers, respectively. We use n and t to range over
Node and Tid, respectively. Given a node n, we write n to range over Node\ {n}.
Each thread t ∈ Tid is associated with a node, written n(t).

Memory Locations. Each node n has a set of locations, Locn, accessible by all
nodes. We define Loc ≜

⊎
n Locn and Locn ≜ Loc \ Locn. We use xn, yn, zn, wn

and xn, yn, zn, wn to range over Locn and Locn, respectively. When the choice
of n is clear, we write x for xn and x for xn. For clarity, we use distinct location
names across nodes and write n(x) for the unique n∈Node where x∈Locn. We
assume all locations can be accessed by all threads on all nodes. However, for
readability, we use a, b, c, and d for (private) locations that are only accessed
by a single thread (on a single node).

Values and Expressions. We assume a set of values, Val, with N ⊆ Val, and
use v to range over Val. We assume a language of expressions over Val and Loc,
and elide its exact syntax and semantics. We use e to range over expressions,
and en to range over expressions whose locations are all included in Locn.

Sequential Commands and Programs. Sequential programs on node n are
described by the Cn grammar below and include primitive commands (cn), se-
quential composition (Cn

1 ;C
n
2 ), non-deterministic choice (Cn

1 +Cn
2 , executing ei-

ther Cn
1 or Cn

2 ), and non-deterministic loops (Cn∗, executing Cn any number of
times). A (concurrent) program, P, is a map from thread identifiers to commands,
associating each thread t∈Tid with a command on node n(t).

Comm ∋ Cn ::= skip | cn | Cn
1 ;C

n
2 | Cn

1 +Cn
2 | Cn∗ PComm ∋ cn ::= ccn | rcn

CComm∋ccn ::= x :=en | assume(x = v) | assume(x ̸= v)

| x :=CAS(y, e1, e2) | poll(n)
RComm∋ rcn ::= x := y | y := x | rfence(n)

Primitive commands include CPU (ccn) and RDMA (rcn) operations. A CPU
operation on n may be a no-op (skip), an assignment to a local location (x := e),
an assumption on the value of a local location (assume(x = v) and assume(x ̸=
v)), an atomic CAS (‘compare-and-set’) operation (x := CAS(y, e1, e2)), or a
‘poll’, poll(n), that awaits the completion notification of the earliest put/get
that is pending (not yet acknowledged). An RDMA operation may be (i) a ‘get’,
x := y, reading from remote location y and writing the result to local location x;
(ii) a ‘put’, y := x, reading from local location x and writing the result to
remote location y; or (iii) a ‘remote fence’, rfence(n), which ensures that all
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later (in program order) RDMA operations towards n will await the completion
of all earlier RDMA operations towards n. poll(n) is executed by the CPU and
blocks its thread (and prevents the requests of later remote operations), while
rfence(n) blocks the NIC for the execution of remote operations towards n.

3.2 rdmasc: Declarative Semantics
Events and Executions. In the literature of declarative models, the traces of
a program are commonly represented as a set of executions, where an execution
is a graph comprising: i) a set of events (graph nodes); and ii) a number of
relations on events (graph edges). Each event is associated with the execution of
a primitive command (in PComm) and is a tuple (ι, t, l), where ι is the (unique)
event identifier, t∈Tid identifies the executing thread, and l∈ELab is the event
label, defined below.

Definition 1 (Labels and events). An event, e ∈ Event, is a triple (ι, t, l),
where ι ∈ N, t ∈ Tid and l ∈ ELabn(t). The set of event labels is ELab ≜⋃

n ELabn for all nodes n. An event label of n, l ∈ ELabn, is a tuple of one of
the following forms:
– NIC local read: l = nlR(xn, vr, n)
– NIC remote write: l = nrW(yn, vw)
– NIC remote read: l = nrR(yn, vr)
– NIC local write: l = nlW(xn, vw, n)
– NIC fence: l = nF(n)

– (CPU) local read: l = lR(xn, vr)

– (CPU) local write: l = lW(xn, vw)

– (CPU) CAS: l = CAS(xn, vr, vw)

– (CPU) poll: l = P(n)

Each event label denotes whether the associated primitive command is han-
dled by the NIC (left column, prefixed with n), or the CPU (right column). A poll
instruction is handled by the CPU. A put operation xn := yn by node n towards
node n comprises a NIC local read from yn and a NIC remote write on xn and
is thus modelled as two events with labels nlR(yn, v, n) and nrW(xn, v), where v
denotes the value read from yn and written to xn. Similarly, a get xn := yn is
modelled as two events with labels of the form nrR(yn, v) and nlW(xn, v, n).

CPU operations are modelled by events as expected. A successful opera-
tion x := CAS(y, v1, v2) is modelled by two events with labels CAS(y, v1, v2) and
lW(x, v1). An unsuccessful x := CAS(y, v1, v2) operation is modelled by a CPU
read instead: lR(y, v) and lW(x, v), with v ̸= v1.

We write type(l), loc(l), vr(l), vw(l), and n(l) for the type (e.g. lR), lo-
cation, read value, write value, and remote node of l, where applicable; e.g.
loc(nlR(xn, vr, n)) = xn and n(nlR(xn, vr, n)) = n. We lift these functions to
events as expected. We write ι(e), t(e), l(e) to project the corresponding com-
ponents of an event e = (ι, t, l), and write n(e) for the node n(t(e)) of an event.

Queue Pairs. As mentioned in §2 (see Fig. 1e), two remote operations by
the same thread towards different remote nodes can be reordered. When using
RDMA, each thread establishes a communication channel, called a queue pair,
towards each remote node. The intuition is that operations on different queue
pairs are independent and can always be reordered. Different threads, even on
the same node, create different queue pairs to connect to the same remote node.
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Notation. Given a relation r and a set A, we write r+ for the transitive clo-
sure of r; r−1 for the inverse of r; r|A for r ∩ (A × A); and [A] for the identity
relation on A, i.e. {(a, a) | a ∈ A}. We write r1; r2 for their relational compo-
sition: {(a, b) | ∃c. (a, c) ∈ r1 ∧ (c, b) ∈ r2}. When r is a strict partial order,
we write r|imm for the immediate edges in r, i.e. r \ (r; r). Given a set of
events E and a location x, we write Ex for {e ∈ E | loc(e)=x}. Given a set
of events E and a label type X, we write E.X for {e ∈ E | type(e) = X}, and de-
fine its sets of reads as E.R ≜ E.lR ∪E.CAS ∪E.nlR ∪E.nrR, writes as E.W ≜
E.lW∪E.CAS∪E.nlW∪E.nrW, CPU events as Ecpu ≜ E.lW∪E.lR∪E.CAS∪E.P,
and NIC writes as E.nW ≜ E.nlW ∪ E.nrW. We define the ‘same-location’ re-
lation as sloc ≜

{
(e, e′)∈Event2 | loc(e)=loc(e′)

}
; the ‘same-thread ’ relation

as sthd ≜
{
(e, e′)∈Event2 | t(e)= t(e′)

}
; and the ‘same-queue-pair ’ relation as

sqp≜{(e, e′)∈Event2 | t(e)= t(e′) ∧ n(e)=n(e′)}. We use sqp for events on the
same queue pair, i.e. by the same thread and towards the same remote node.
Note that sqp ⊆ sthd and that sloc, sthd, and sqp are all symmetric. For a set
of events E, we write E.sloc for sloc|E ; similarly for E.sthd and E.sqp.

Definition 2 (Pre-executions). A tuple G = ⟨E, po, pf⟩ is a pre-execution
of a program if:

– E ⊆ Event is the set of events and includes a set of initialisation events,
E0 ⊆ E, comprising a single write with label lW(x, 0) for each x ∈ Loc.

– po ⊆ E × E is the ‘program order’ relation defined as a disjoint union of
strict total orders, each ordering the events of one thread, with E0×(E\E0) ⊆
po, and such that:
• Each put (resp. get) operation corresponds to two events: a read and a

write with the read immediately preceding the write in po: 1. if r∈G.nlR
(resp. r∈G.nrR), then (r, w)∈po|imm for some w∈G.nrW (w∈G.nlW);
and 2. if w ∈ G.nrW (resp. w ∈ G.nlW), then (r, w) ∈ po|imm for some
r∈G.nlR (r∈G.nrR).

• Read and write events of a put (resp. get) have matching values: if
(r, w) ∈ G.po|imm, type(r) ∈ {nlR, nrR}, and type(w) ∈ {nlW, nrW}, then
vr(r) = vw(w).

– pf ⊆ E.nW × E.P is the ‘polls-from’ relation, relating earlier (in program-
order) NIC writes to later poll operations on the same queue pair; i.e. pf ⊆
po ∩ sqp. Moreover, pf is functional on its domain (every NIC write can be
be polled at most once), and pf is total and functional on its range (every
poll in E.P polls from exactly one NIC write). Also, Poll events poll-from the
oldest non-polled remote operation on the same queue pair:
if w1 ∈ G.nW and w1

po∩sqp−−−−→ w2
pf−→ p2, then there exists p1 such that w1

pf−→
p1

po−→ p2.

Pre-executions are constructed syntactically by induction on the structure of
the corresponding program. This definition is standard and omitted.

Intuitively, a pre-execution can also be seen as a trace of the execution: for
each thread t, po restricted to t is a total order, and so ⟨E, po⟩ is fundamentally
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a sequence of events for each thread. In this view, pf should be considered a well-
formedness condition: each prefix of the trace needs to have at least as many
remote operations as poll operations. So ⟨E, po, pf⟩ can be seen as providing
a well-formed trace for each thread. We later define robustness conditions on
pre-executions, and as such they can also be considered conditions on traces.

We next extend the notion of a pre-execution to an execution by choosing
explicitly how the different events interact.

Definition 3 (Executions). G = ⟨E, po, pf, rf,mo, nfo⟩ is an execution if:
– ⟨E, po, pf⟩ is a pre-execution.
– rf ⊆ E.W ×E.R is the ‘ reads-from’ relation on events of the same location

with matching values; i.e. (a, b) ∈ rf ⇒ (a, b) ∈ sloc∧vw(a)=vr(b). Moreover,
rf is total and functional on its range: every read in E.R is related to exactly
one write in E.W.

– mo ≜
⋃

x∈Loc mox is the ‘modification-order’, where each mox is a strict
total order on E.Wx with E0

x × (E.Wx \ E0
x) ⊆ mox describing the order in

which writes on x reach the memory.
– nfo ⊆ E.sqp is the ‘NIC flush order’, such that for all (a, b) ∈ E.sqp, if

a ∈ E.nlR, b ∈ E.nlW, then (a, b)∈nfo ∪ nfo−1, and if a ∈ E.nrR, b ∈ E.nrW,
then (a, b) ∈ nfo ∪ nfo−1.

We define the reads-before relation as rb ≜ (rf−1;mo)\ [E], relating each read
r to writes that are mo-after the write r reads from. Given a (pre-)execution G
(resp. G), we use the ‘G.’ prefix to project its various components (e.g. G.rf) and
derived relations (e.g. G.rb). When the context is clear, we drop the prefix.

PCIe guarantees that a NIC local read (nlR) propagates all pending NIC
local writes (nlW) (processed by the same queue pair) to memory, while a NIC
remote read (nrR) propagates all pending NIC remote writes (nrW) (processed
by the same queue pair) to memory. We model this total order through the nfo
relation, stipulating that all NIC local reads and writes (resp. all NIC remote
reads and writes) on the same queue pair be totally ordered.

Issue and Observation Points. In what follows we distinguish between when
an instruction is issued and when it is observed. Intuitively, an instruction is
issued when it is processed by the CPU or the NIC, and it is observed when
its effect is propagated to memory. As such, since NIC writes can be delayed
and have an observable effect on memory, the time points at which they are
issued and observed may differ. Since we assume CPUs follow the strong SC
memory model, CPU writes are issued and observed at the same time. However,
the local (resp. remote) write of a get (resp. put) is issued when it is processed
by the NIC and sent to the PCIe fabric, and observed when it is propagated to
memory. All other events are instantaneous in that either they do not have an
observable effect on memory (e.g. reads), or their effect is written to memory
immediately (e.g. CAS operations and CPU writes). Given a set of events E, we
thus define the set of instantaneous events in E as E.Inst ≜ E\(E.nlW∪E.nrW).
Intuitively, the effects of NIC local writes and NIC remote writes (labelled nlW

and nrW) can be delayed in the PCIe fabric and are thus excluded from the set
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Later in Program Order

ippo 1 2 3 4 5 6
EcpunlR nrW nrR nlW nF

E
ar

lie
r

in
P

O A Ecpu ✓ ✓ ✓ ✓ ✓ ✓
B nlR ✗ sqp sqp sqp sqp sqp
C nrW ✗ ✗ sqp sqp sqp sqp
D nrR ✗ ✗ ✗ ✗ sqp sqp
E nlW ✗ ✗ ✗ ✗ sqp sqp
F nF ✗ sqp sqp sqp sqp sqp

Later in Program Order

oppo 1 2 3 4 5 6
EcpunlR nrW nrR nlW nF

E
ar

lie
r

in
P

O A Ecpu ✓ ✓ ✓ ✓ ✓ ✓
B nlR ✗ sqp sqp sqp sqp sqp
C nrW ✗ ✗ sqp sqp sqp ✗
D nrR ✗ ✗ ✗ ✗ sqp sqp
E nlW ✗ ✗ ✗ ✗ sqp ✗
F nF ✗ sqp sqp sqp sqp sqp

Fig. 4: The rdmasc ordering constraints on ippo (left) and oppo (right), where
✓ denotes that instructions are ordered (and cannot be reordered), ✗ denotes
they are not ordered (and may be reordered), and sqp denotes they are ordered
iff they are on the same queue pair.

of instantaneous events. Note that the observation point either follows the issue
point (for NIC writes), or coincides (for instantaneous events).

We next define the ‘issue-preserved program order ’, ippo, as the subset of po
edges (ippo ⊆ po) that must be preserved when issuing instructions. That is, if
two events are ippo-related, then they must be issued in program order; otherwise
they may be processed in either order. The left table of Fig. 4 describes which
po edges are included in ippo, where ✓ denotes that the two instructions are
ippo-related (i.e. they must be issued in program order), ✗ denotes that they are
not ippo-related (i.e. they may be issued out of order) and sqp denotes that they
are ippo-related iff they are on the same queue pair. For instance, when a CPU
instruction is followed by anything, they are issued in order (line A); but when a
NIC instruction is followed by a CPU one, they may be reordered (cells B1-F1).

Analogously, we define the ‘observation-preserved program order ’, oppo, as
the subset of po edges (oppo ⊆ po) that must be preserved when observing
the effects of instructions. I.e., if two events are oppo-related, then they become
observable in program order in rdmasc; otherwise they may become observable
in either order. The right table of Fig. 4 describes which po edges are included
in oppo. The two tables differ in cells C6 and E6. This is because NIC writes
can be delayed, and remote fences do not guarantee propagation to memory.

rdmasc Consistency. The notion of executions (Def. 3) imposes very few
constraints on the po, pf, rf, mo, and nfo relations. Such restrictions and thus
the permitted behaviours of a program are determined by defining the set of
consistent executions, defined below.

Definition 4 (rdmasc-consistency). An execution ⟨E, po, pf, rf,mo, nfo⟩ is
rdmasc-consistent iff ib and ob are irreflexive, where:

ib ≜
(
ippo ∪ rf ∪ pf ∪ nfo

)+ (‘issued-before’)

ob ≜
(
oppo ∪ rf ∪ ([nlW]; pf) ∪ nfo ∪ rb ∪ mo ∪ ([Inst]; ib)

)+ (‘observed-before’)
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The ib (resp. ob) relation is an extension of ippo (resp. oppo), describing the
issue (resp. observation) order across the instructions of different threads and
nodes. rdmasc-consistency requires that ib and ob be irreflexive (i.e. yield strict
partial orders as they are defined transitively).

The rf (resp. pf) component in ib states that if e reads from (resp. polls
from) w, then w must have been issued before e. Recall that nfo totally orders
the nlR/nlW and nrR/nrW operations on the same queue pair and is thus in ib.
The rf component in ob states that if a read r reads from a write w, then the write
has reached memory. This is because reads can only read the main memory and
not auxiliary buffers. The [nlW]; pf component states that if p polls from a NIC
local write w, then w must have left the PCIe fabric and reached the memory.
Note that this is not the case for nrW events: polling an nrW event w might
succeeds when w is still in the remote PCIe fabric before reaching the remote
memory. The nfo in ob can be justified as in the case of ib. The rb component in
ob ensures that a read r on x observes the latest write on x that has reached the
memory. As mo describes the order in which the writes on each location reach
the memory, it is included in ob. Let (τi, τo) be the issue and observation points
of e and (τ ′i , τ

′
o) be those of e′. The [Inst]; ib in ob ensures that if e ib−→ e′ (i.e.

τi < τ ′i) and e is instantaneous (τi=τo), then τo=τi < τ ′i ≤ τ ′o, i.e. e ob−→ e′.

4 Robustness of rdmasc Programs

In the traditional setting of CPU concurrency (where all threads execute CPU in-
structions), the most intuitive consistency model is sequential consistency (SC) [43].
While SC is too strong—in that disallowing all reorderings does not enable
efficient implementations—it provides an intuitive and commonly understood
model, making it easier for developers to reason about their programs.

Although none of the existing well-known consistency models follow SC by
default, programmers typically address this difficulty by focusing on robust im-
plementations of algorithms. Specifically, a program is robust under a weak con-
sistency model CM if every possible behaviour of the program under CM is also
an allowed behaviour under SC. In our model, this is defined as follows.

Definition 5 (SC-consistency and rdmasc-robustness). Given an exe-
cution ⟨E, po, pf, rf,mo, nfo⟩, its associated sequential-consistency relation is de-
fined as sc ≜ (po ∪ rf ∪ rb ∪ mo). An execution G is SC-consistent iff G.sc is
acyclic. A pre-execution is robust under rdmasc iff all of its rdmasc-consistent
executions (Def. 4) are also SC-consistent.

Our aim here is to provide guidelines to ensure the robustness of rdmasc

programs. That is, we identify a number of syntactic requirements such that
if a program fulfils them, then the behaviours of the program under rdmasc

coincide with its behaviours under SC; i.e. the program does not exhibit any
weak behaviours brought about by observable reorderings.

There are two complementary approaches to achieve robustness. The first is
to structure the program in a way that limits the very existence of problematic
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Later in po

gb
different queue pair same queue pair
1 2 3 4 5 6 7 8 9

E
ar

lie
r

in
po

CPU nlR nrW nrR nlW nlR nrW nrR nlW

A CPU ✓ ✓ ✓ ✓ ✓ N/A
B nlR P P P P P ✓ ✓ ✓ ✓
C nrW GP GP GP GP GP GP ✓ ✓ ✓
D nrR P P P P P F F F ✓
E nlW P P P P P F F P ✓

Fig. 5: Constraints necessary to guarantee that a pair of po-related events in
R∪W will be ob-related for any consistent execution. CPU denotes local events
in lW∪lR∪CAS. The ✓ denotes that no additional constraint is needed and that
the events are already in ob. P denotes that the earlier operation must be polled
before executing the later one. F denotes that either the earlier operation must
be polled (similar to P) or that a remote fence must be inserted between the two
operations. GP denotes that a get operation and its associated poll on the first
queue pair must be inserted between the two operations.

cases. The second is to extend the program with enough restrictions (e.g. polls
and remote fences) to prohibit reorderings. In the next section (§5) we focus on
the former and provide a set of explicit guidelines to avoid most problematic
cases by design. In this section we focus on the latter, and describe how to
identify problematic cases and how to block them. In what follows, we present
the general syntactic restrictions required to forbid the reordering opportunities
for specific operations (§4.1). We then propose sufficient syntactic conditions
that block observable reorderings, and we prove that these conditions imply
robustness (§4.2). Finally, we discuss the limitations of this approach (§4.3).

4.1 A Syntactic Approach to Enforce the Program Order

One of our key results relies on enforcing the program order (i.e. blocking instruc-
tion reordering) in potentially observable cases. Recall that given an execution,
the observed-before order (ob) describes when an event takes effect before an-
other. That is, for (e1, e2) ∈ po, when e1

ob−→ e2 in an execution G, then they are
not reordered in G. Our first aim here is to identify syntactic constraints that
ensure that a specific pair of given instructions (of the same thread) are related
by ob. However, in order to define syntactic constraints for robustness, we can
only rely on the syntax of the program and not components such as rf or mo.
Our syntactic constraints can only rely on the pre-execution components po and
pf, and we cannot directly use the ob relation derived from a specific execution.

To this end, we first define the guaranteed-before relation, gb ⊆ po, describing
when two instructions in the same thread are guaranteed to remain in order (and
their reordering is blocked), as shown in Fig. 5. Specifically, if two instructions
are related by oppo, then they are guaranteed to be observed in that order and
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thus there is no need for additional restrictions; this is denoted by ✓ in cells A1–
A5, B6–B9, C7–C9, D9, and E9 (cf. oppo in Fig. 4). For most other cases (noted
P or F), polling the earlier instruction enforces the ordering. Recall that polling
a NIC remote write does not guarantee its completion, and we need to add a
‘dummy’ get operation and its corresponding poll to ensure ordering (noted GP).

In most cases, when the two operations are on the same queue pair, then a
remote fence is sufficient to enforce the ordering (noted F in D6–D8, E6–E7),
and is a cheaper alternative to a poll. Perhaps surprisingly, a remote fence is
not always sufficient: the two outliers are cells C6 and E8. For C6, consider the
program z2 := x; rfence(2);w2 := y: the local value of y might be read before
the value of z is changed. This is because rfence (2) (as with poll) only awaits the
acknowledgement from the remote side which does not necessarily ensure that
the first put has completed. For E8, consider x := z2; rfence(2); y := w2, where
w2 can be read before x is modified: rfence (2) only waits for the NIC local
write (x := vz) to be sent to the local PCIe fabric and thus the put operation
(y := w2) can start earlier than one could expect.

Definition 6 (guaranteed-before). Given a pre-execution G = ⟨E, po, pf⟩,
its guaranteed-before order, gb ⊆ po, is defined as gb ≜ gb+base, with:

gbbase ≜ oppo (A1–A5,B6–B9,C7–C9,D9,E9 in Fig. 5)
∪ [nlR]; po|imm; [nrW]; pf (B1–B5 in Fig. 5)
∪ [nrW]; (po ∩ sqp); [nlW]; pf (C1–C6 in Fig. 5)
∪ [nrR]; po|imm; [nlW]; pf (D1–D8 in Fig. 5)
∪ [nrR]; (po ∩ sqp); [nF]; (po ∩ sqp) (D6–D8 in Fig. 5)
∪ [nlW]; pf (E1–E8 in Fig. 5)
∪ [nlW]; (po ∩ sqp); [nF]; (po ∩ sqp); [nlR ∪ nrW] (E6–E7 in Fig. 5)

Given an execution G = ⟨E, po, pf, rf,mo, rb⟩, we write G.gb for ⟨E, po, pf⟩.gb.
Finally, we prove that gb implies ob for any rdmasc-consistent execution (see
the extended version [11] for the proof).

Theorem 1 (gb implies ob). Given a pre-execution ⟨E, po, pf⟩, for all rdmasc-
consistent executions G = ⟨E, po, pf, rf,mo, nfo⟩ and all e1, e2 ∈ E, if (e1, e2) ∈
G.gb, then (e1, e2) ∈ G.ob.

Given Theorem 1 above, we can use gb as a tool to enforce robustness. Specif-
ically, whenever a program order pair (e1, e2) ∈ po may be reordered, we can
add the prescribed fences to enforce (e1, e2) ∈ gb and thus block the reordering.
The rest of this section describes when we should use this tool.

4.2 Conditions for Robustness under rdmasc

As mentioned before, blocking all instruction reorderings, i.e. by requiring po =
gb, would enforce sequential consistency and thus robustness. However, this is
too strict and highly impractical. Instead, we should ideally enforce gb selectively
when needed and only prevent observable reorderings.
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Two sources of weak behaviours. As presented in §2, rdmasc programs have
two distinct sources of weak behaviours. These come from two different kinds of
pairs of events (of the same thread): (1) pairs forming a data race on a certain
location, e.g. a := y2; y2 := 1, as presented in Fig. 1f (copied below-left) and
Figs. 1b, 1e, and 1h ; and (2) pairs whose reordering can be observed by other
threads, e.g. a := y2; z3 := 1, as in the examples of Fig. 3b (copied below-right).

y=0

a := y2

y2 := 1

a = 1 ✓

y = 0 z = 0

a := y2

z3 := 1
y := z3

a = 1 ✓

As such, stopping these two sources of weak behaviours would be enough
to ensure robustness. Data races within a thread are always problematic, no
matter the context, and we always need to block the reordering of such pairs
(i.e. enforce gb to ensure the pair is ob-ordered in any execution). Pairs of the
second kind cannot create weak behaviours by themselves, but they might allow
weak behaviours depending on the rest of the program of other threads. In the
next section (§5), we show conditions making sure that such pairs can never
create weak behaviours by design. In this section, we focus on deciding whether
such a pair might lead to a weak behaviour and, if so, how to block the reordering.

To formulate this intuition, we write public(x) to denote that x is a public
location accessed by multiple threads, and given a set of events E, we define the
set of public events in E as Epub ≜ {e ∈ E | public(loc(e))}. We further define
E \ t ≜ {e ∈ E | t(e) ̸= t} for the set of events in E that are not by thread t. We
can then formulate the two categories of weak behaviours above as two kinds of
sc cycles: sc cycles on a single thread (1) and sc cycles on public events across
threads (2), as formulated below (see the extended version for the full proof).

Theorem 2 (sc cycle decomposition). Given a rdmasc-consistent execution

G = ⟨E, po, pf, rf,mo, nfo⟩, if ∃e ∈ E. e
G.sc−−−→

+

e (i.e. a cycle in G.sc), then:

– either there is a G.sc cycle on a single thread, i.e. ∃e ∈ E. e
G.sc∩sthd−−−−−−→

+

e;

– or there exists e1, e2 ∈ Epub such that e1
po\G.ob−−−−−→ e2

(G.sc;[Epub\t(e1)])+;G.sc−−−−−−−−−−−−−−−→ e1.
That is, there is an sc cycle on public events, with two po-related events on
some thread t(e1) not related in ob, and where the rest of the cycle does not
go through the events of t(e1).

The two kinds of problematic reorderings are tackled separately below, and
Theorem 5 confirms the two resulting conditions are sufficient for robustness.

Preventing sc cycles from data races. As shown above, when an allowed
reordering is part of a data race, it becomes observable independently from the
context. Thus, we should always preclude this kind of reordering. Specifically, in
Def. 7 below we present a local data-race freedom property to block data races
within each thread and prevent single-threaded weak behaviours.
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Definition 7 (Local DRF). Given a pre-execution ⟨E, po, pf⟩, two events
e1, e2 ∈ E are locally conflicting iff 1. (e1, e2) ∈ sthd; 2. loc(e1) = loc(e2);
and 3. at least one of e1, e2 is a write event. A pre-execution G is locally data-
race free (LDRF), iff for all e1, e2 ∈ G.E, if e1, e2 are locally conflicting, then
(e1, e2) ∈ G.gb∪G.gb−1. Put differently, given the definition of gb (Fig. 5), a pre-
execution ⟨E, po, pf⟩ is LDRF iff for all locally conflicting accesses e1, e2 ∈ E,
if (e1, e2) ∈ po, then the following four conditions hold:

1. If e1 ∈ nlW and (e1, e2) ̸∈ sqp, then there exists e3 ∈ P such that (e1, e3) ∈ pf
and (e3, e2) ∈ po (cells E1, E2, and E5 in Fig. 5).

2. If e1 ∈ nlW, e2 ∈ nlR, and (e1, e2) ∈ sqp, then either there exists e3 ∈ P with
(e1, e3) ∈ pf and (e3, e2) ∈ po; or there exists e3 ∈ nF with (e1, e3) ∈ po and
(e3, e2) ∈ po (E6).

3. If e1 ∈ nlR, e2 ∈ (nlW ∪ lW ∪ CAS), and (e1, e2) ̸∈ sqp, then there exists e′1 ∈
nrW and e3 ∈ P such that (e1, e

′
1) ∈ po|imm, (e′1, e3) ∈ pf, and (e3, e2) ∈ po

(cells B1 and B5).
4. If e1 ∈ nrR and e2 ∈ nrW, then either there exists e3 ∈ nF such that e1

po∩sqp−−−−→
e3

po∩sqp−−−−→ e2; or there exists e′1 ∈ nlW and e3 ∈ P such that e1
po|imm−−−−→ e′1

pf−→
e3

po−→ e2 (cell D7 in Fig. 5).

These cases prohibit all possible races on a location x, i.e. of the form x :=
yn;x := − (E1,E5), x := yn;− := x (E2), x := yn; zn := x (E6), yn := x;x := −
(B1,B5), or − := xn;xn := − (D7). Other entries in Fig. 5 cannot create races
as either their ordering is already guaranteed (e.g. ✓ in E9); or they are on two
read events (e.g. B2,D8); or they cannot be on the same location (e.g. D3,E7).

We argue that the constraints in Def. 7 do not restrict RDMA capabilities
in that waiting for remote operations to complete before reusing their locations
is already considered standard practice when writing RDMA programs.

We next show that LDRF prevents single-threaded weak behaviours.

Theorem 3. Given a rdmasc-consistent execution G = ⟨E, po, pf, rf,mo, nfo⟩,
if ⟨E, po, pf⟩ is locally data-race free, then there is no sc cycle on a single thread;
that is, (G.sc ∩ sthd) is acyclic and the first case of Theorem 2 does not arise.

Preventing sc cycles across threads. Unlike data races, pairs of the second
kind cannot create weak behaviours by themselves, and their reorderings can
only be observed in certain contexts.

The general strategy to prevent observable reorderings is straightforward:
for every pair (e1, e2) ∈ po on public locations, either we know for certain that
e2

sc−→
∗
e1 (using other threads) is impossible, or we conservatively block the re-

ordering by enforcing (e1, e2) ∈ gb. The challenge is that the relation sc is heavily
dependent on the specific execution. So how can we ascertain syntactically that
a later event e2 cannot influence an earlier event e1?

One easily accessible syntactic property is the communication pattern be-
tween nodes (i.e. when one node performs a remote operation towards another).
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Thus, to simplify the task, we over-approximate dependency (i.e. sc) with com-
munication. Intuitively, if two nodes do not communicate in the network topol-
ogy, then they cannot causally influence each other.

We write n1 ↭
E

n2 (defined below) to denote that nodes n1 and n2 com-
municate via some event in E, in that some thread t on n1 performs a remote
operation e ∈ E towards n2, written hasQP(t, n2, E), or vice versa.

n1 ↭
E

n2 ≜ ∃t. (n(t) = n1 ∧ hasQP(t, n2, E)) ∨ (n(t) = n2 ∧ hasQP(t, n1, E))

hasQP(t,n, E) ≜ ∃e ∈ (E.nrW ∪ E.nrR). t(e) = t ∧ n(e) = n

We next show that if there is an sc-path from one event e2 to another e1
using public events in A, then the corresponding nodes (of the locations) of e2
and e1 must communicate via A. This is established in Lem. 1 below, with the
proof given in the extended version [11].

Lemma 1. For all A ⊆ Epub, if e2
sc|A−−→

∗
e1 then n(loc(e2)) ↭

A

∗ n(loc(e1)).

We are interested in the inverse direction of this lemma: a topological connec-
tion between the nodes (of the locations) of e2 and e1 is a necessary condition for
an sc-path from e2 to e1. Put differently, if there is no communication between
the nodes of e2 and e1, then e2 cannot influence e1. As such, we can use this
to over-approximate safely whether an event can influence another. We conser-
vatively assume that if the two nodes can communicate (outside of the thread)
then e2 might influence e1. These communications do not depend on a specific
execution and can be ascertained syntactically from the pre-execution.

We can then prevent sc cycles across threads using the fenced condition below
(Def. 8): for all e1

po−→ e2 on public locations, if e2 might influence e1, then we
block the reordering. We subsequently prove that if a pre-execution is fenced,
then it does not admit sc cycles across threads.

Definition 8 (fenced). A pre-execution ⟨E, po, pf⟩ is fenced iff for all e1, e2 ∈
Epub, if e1

po−→ e2 and n(loc(e1)) ↭
Epub\t(e1)

∗ n(loc(e2)), then (e1, e2) ∈ gb.

Theorem 4. Given an rdmasc-consistent execution ⟨E, po, pf, rf,mo, nfo⟩, if its
associated pre-execution ⟨E, po, pf⟩ is fenced, then there is no sc cycle of the shape

e1
po\ob−−−→ e2

(sc;[Epub\t(e1)])+;sc−−−−−−−−−−−−→ e1 with e1, e2 ∈ Epub. That is, the second case of
Theorem 2 does not arise.

Robustness. Lastly, we show that LDRF and fenced imply robustness under
rdmasc. Thus, this approach can be used to prevent RDMA weak behaviours.

Theorem 5 (Robustness under rdmasc). Given a pre-execution G = ⟨E,
po, pf⟩, if G is locally data-race free (Def. 7) and fenced (Def. 8), then G is also
robust under rdmasc (Def. 5).
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x = 0 y = 0

a := x2

y3 := 1

(a) a = 0 ✓ a = 1 ✗

x,w = 0 y, z = 0

a := x2

y3 := 1
b := x
z3 := w

c := y
d := z

(b) a = 0 ✓ a = 1 ✗

x = 0 y = 0

a := x2

y3 := 1
x := y3

(c) a = 0 ✓ a = 1 ✓

Fig. 6: Examples illustrating the limitation of Theorem 5, where the programs in
(a) and (b) are robust (the weak behaviour a = 1 is not allowed in either) while
that in (c) is not robust (it admits the weak behaviour a = 1); while Theorem 5
rightfully identifies (a) as robust (true positive) and (c) as not robust (true
negative), it conservatively deems (b) not robust (false negative).

4.3 Usage and Limitations

Local data-race freedom (Def. 7) and fenced (Def. 8) are intuitive properties
that can be checked syntactically. Indeed, given a program, it is straightforward
to check mechanically whether these properties hold or to provide an explicit
counterexample and a suggested fix using the definition of gb (Def. 6). As a
result, sufficient constraints can automatically be added to ensure robustness.

However, this simplicity can occasionally be the limitation of our approach.
Specifically, as the main theorem does not account for interactions between
threads, it takes a conservative approach, which at times can lead to false nega-
tives (where the program is deemed not robust even though no weak behaviours
are possible), recommending unnecessary restrictions.

To see this, consider the example in Fig. 6a, where a := x2 and y3 := 1
can be reordered without introducing weak behaviours. In this case, Theorem 5
rightfully confirms that no additional restrictions are necessary. By contrast,
consider the variant shown in Fig. 6b: although the two extended threads do not
introduce any additional weak behaviours, our approach assumes there might be
a causal dependency from y3 := 1 to a := x2, as is the case e.g. in Fig. 6c. As
such, Theorem 5 cannot determine Fig. 6b as robust, and our approach would
recommend inserting a poll operation in the first thread. Note that removing
any of the six operations would enable Theorem 5 to ascertain Fig. 6b as robust.

Understanding that the reordering of the instructions in the first thread of
Fig. 6b is not problematic would require a more complex static analysis beyond
the scope of this paper.

5 Application: Tree Topology

Theorem 5 outlines the conditions under which we can guarantee that a pro-
gram is robust under rdmasc. However, while the LDRF property (Def. 7) is
reasonable, the fenced property (Def. 8) can lead to excessive restrictions (e.g.
as in Fig. 6). Specifically, for every pair of events (e1, e2) in program order, we
must either verify that e2 cannot affect e1, or ensure that their execution order
is preserved. The main issue is that preserving the order of every pair of events
can be particularly costly, notably when considering NIC remote write events. In
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such cases, the only resort is to introduce a ‘dummy’ get operation and poll it,
which is inefficient. Instead, we propose a strategy whereby we stipulate certain
conditions on the network topology (i.e. the shape of the RDMA network) so
that later events are often unable to influence earlier events.

To this end, we propose a tree topology that balances generality (supporting
a wide range of programs) with efficiency and restrictiveness (requiring minimal
additional constraints to respect the fenced property). In §5.1 we present an
overview of our new set of restrictions and illustrate their rationale through ex-
amples. In §5.2 we formalises these restrictions and prove that they indeed imply
robustness under rdmasc. Finally, in §5.3 we demonstrate specific applications
of the tree topology and how RDMA programs can make use of them.

5.1 Overview of the Restrictions

We describe four different conditions that, if satisfied, ensure the robustness of
RDMA programs under rdmasc, and we justify them through examples.

LDRF. As before, we require that programs satisfy LDRF (Def. 7). As dis-
cussed, this is considered standard practice when writing RDMA programs and
should not be seen as a limitation.

Private Copies. We require the local locations of RDMA operations – e.g.
location y in y := x2 – to be private (i.e. accessed by only one thread, namely
that executing the RDMA operation). Intuitively, to maximise the efficiency of
RDMA programs, we should ideally allow arbitrary interleaving of RDMA oper-
ations and CPU computations. For instance, let us consider the single-threaded
program C ≜ y := x2; cycpu, where cycpu denotes a block of CPU instructions
that does not access location y. If y is private, then although cycpu and the get
y := x2 may be reordered, this reordering will not lead to any observable weak
behaviours. That is, when we run C concurrently with any RDMA program C

′

(i.e. as C||C′
), if y is private, then we do not need to poll y := x2 before proceed-

ing with cycpu (even though they may be reordered), as the reordering cannot be
observed by C

′
.

However, if y is accessible by other threads (on the same node or from a
remote node), then the reordering becomes visible, allowing additional, poten-
tially unwanted, weak behaviours. This is illustrated in the example below, where
cycpu ≜ z := 1 and y is public (accessed by nodes 1 and 3).

y, z = 0 x = 1

y := x2

z := 1

a := z1

poll(1)
b := y1

(a, b) = (1, 0) ✓

More concretely, due to the reordering,
the later CPU computation (z := 1)
can be observed before the earlier get
(y := x2), leading to the weak outcome
(a, b) = (1, 0).

Therefore, to prevent such weak behaviours, we stipulate that local locations
of RDMA operations be private. This is not a costly limitation. Specifically,
in the case of put operations, the data can easily be copied beforehand to a
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one-time-use private location. In the case of get operations, it means the thread
running the command needs to acknowledge the data and copy it to make it
available to other threads having access to the node.

Get in Order. We stipulate that each get operation be followed by a remote
fence. Recall that only certain reorderings are allowed on the operations of the
same queue pair. Intuitively, put operations cannot be overtaken, and we do
not need to restrict their usage. However, get operations can be overtaken by
other get/put operations, as shown in the examples below, where the a := x2 is
overtaken by a later remote operation on the same queue pair, leading to weak
behaviours.

x = 0
a := x2

b := x2 x := 1

(a, b) = (1, 0) ✓

x, y = 0
a := x2

y2 := 1
x := y

a = 1 ✓
As such, to prevent non-SC behaviours, we require that each get operation be

followed by a remote fence, forcing the queue pair to await the completion of the
get before starting the next remote operation. Of course, if the get is polled before
another RDMA operation is submitted, the remote fence is not needed. Note that
since remote fences do not block CPU computations nor communications with
other nodes, they are not very expensive and are a reasonable cost to pay to
ensure remote operations towards a specific remote node stay in order.

Tree Topology. Finally, the most important restriction is to constrain the
topology of the network over which the program runs. Intuitively, having multiple
paths between a set of nodes allows for visible effects to overtake each other
(i.e. be reordered) along different paths, leading to weak behaviours. In the
extreme case where every thread can communicate directly with every other
node, we allow for a large number of visible reorderings, and lose any hope of
preventing non-SC behaviours. When such connected topologies are needed to
enable more efficient implementations (e.g. consensus algorithms), the developers
must carefully account for the possible weak behaviours.

Our proposal is to adhere to a minimal topology where there is (at most) a
single communication path between each pair of nodes. In the examples below we
show how not adhering to the tree topology can lead to weak behaviours. Note
that although we have followed each remote operation with a corresponding
(costly) poll, we still cannot prevent the weak behaviours shown.

y = 0 x = 0

x2 := 1
poll(2)
a := y

y1 := 1
poll(1)
b := x

(a, b) = (0, 0) ✓

x = 0 y, z = 0

z3 := 1
poll(3)
x2 := 1

y3 := x
a := y
b := z

(a, b) = (1, 0) ✓

x = 0 y, z = 0

z2 := 1
poll(2)
x := 1

y2 := x
a := y
b := z

(a, b) = (1, 0) ✓

The first example shows that queue pairs in both directions (between nodes
1 and 2) can lead to weak behaviours as they can observe the reordering of
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operations on the other node. The second example illustrates two paths between
node 1 and 3: a direct path from node 1 to 3 (via z3 := 1) and an indirect path
through node 2 (from node 1 to 2 via x2 := 1; from node 2 to 3 via y3 := x).
As shown, having multiple paths between two nodes allows threads to observe
reorderings: z3 := 1 is submitted first, but the effects of x2 := 1, forwarded via
y3 := x, is observed first. The third example is a variant of the second, where
the middle node is replaced by an additional thread on the left node. As queue
pairs from different threads of the same node towards the same remote are still
independent, the weak behaviour shown is permitted.

5.2 Tree Robustness

We next formalise the conditions described in §5.1 in Def. 9 below.

Definition 9 (tree-fenced). A pre-execution ⟨E, po, pf⟩ is tree-fenced iff:
1. Local locations of RDMA operations are private: Epub.nlR = Epub.nlW = ∅
2. Each get operation is followed by a remote fence (or is polled) before the next

remote operation on the same queue pair.
That is, for all e1, e2, if e1 ∈ nrR, e2 ∈ (nrR∪nrW), and (e1, e2) ∈ (po∩sqp),
then: either there exists f ∈ nF such that (e1, f) ∈ (po ∩ sqp) and (f, e2) ∈
(po ∩ sqp); or there exists e3 ∈ nlW and p ∈ P such that (e1, e3) ∈ po|imm,
(e3, p) ∈ pf, and (p, e2) ∈ po.

3. There is (at most) a single communication path between any pair of nodes
in that the following three properties hold:
(a) The network does not have cycles, i.e. for all sets of distinct nodes

{n1; . . . ;nk} with k > 2: ¬(n1 ↭
E

n2 ↭
E

. . . ↭
E

nk ↭
E

n1)

(b) No two nodes have queue pairs towards each other:
¬∃t1, t2. hasQP(t1, n(t2), E) ∧ hasQP(t2, n(t1), E)

(c) Each node has at most one queue pair towards each remote node:
∀t, t′, n. t ̸= t′ ∧ hasQP(t, n, E) ∧ hasQP(t′, n, E) =⇒ n(t) ̸= n(t′)

Conditions 1 and 2 are purely syntactic and can be straightforwardly checked
by examining the RDMA program. Condition 3 pertains to the topology of the
RDMA network and can also be checked by examining the RDMA program.

A key advantage of these restrictions is that preventing weak behaviours
never requires polling remote operations. This is crucial because the efficiency
of RDMA implementations comes from parallelising data transfers and compu-
tations. As shown in the overview (§2), polling is very costly as it completely
halts local computations and prevents submission of remote operations to any
queue pair. With a tree topology, programmers only need to wait for remote op-
erations to use their results (as per LDRF Def. 7), and do not need to sacrifice
computation time to prevent reorderings.

We next prove that if a pre-execution is tree-fenced, then it is also fenced.
The full proof is given in the extended version [11].

Theorem 6. If a pre-execution is tree-fenced (Def. 9), then it is fenced (Def. 8).
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Hence, LDRF and tree-fenced properties imply robustness under rdmasc.

Corollary 1 (Tree robustness under rdmasc). If a pre-execution G =
⟨E, po, pf⟩ satisfies LDRF (Def. 7) and is tree-fenced (Def. 9), then it is also
robust under rdmasc (Def. 5).

5.3 Specific Applications

The tree-fenced conditions above provide guidelines to ensure programs cannot
exhibit weak behaviours. While not all RDMA programs follow the restrictions
presented, a tree topology is sufficient for a range of applications. Notably, any
setup using RDMA solely for the data transfer capabilities (and not for dis-
tributed computations) can easily be configured as a tree.

Star Topology: Single Manager Multiple Workers. The star topology is
one of the most typical network configurations, providing simple and reliable
communication between nodes, with many common applications such as for im-
plementing local area networks (LAN). The star topology allows a main node
to distribute jobs to other nodes and periodically check for progress. As demon-
strated in this paper, this setup prevents any network weak behaviour even if
communications towards different workers are independent and can be reordered.

Star Topology: Single Server Multiple Clients. The tree-fenced condition
(Def. 9) is permissive enough to allow us to translate common concurrent al-
gorithms (comprising loads and stores over shared memory) to distributed ones
over RDMA automatically as follows. Specifically, consider a concurrent algo-
rithm Pc using k threads (t1, ..., tk). We can translate this to a corresponding
RDMA program Pr using k nodes (n1, ..., nk), where a designated node (say n1)
is the server and the others (n2, ..., nk) are clients, and each node ni has a single
thread simulating ti. All shared locations and data are located on the server
node (n1 running t1). For each of the remaining nodes ni, we replace the loads
and stores on shared locations with get and put operations, respectively. More-
over, we insert a remote fence after each get operation (to ensure condition (2)
of Def. 9) and poll get operations before using their values (to ensure LDRF).

The resulting RDMA program follows a star topology, with n1 as the central
(server) node accessed by multiple clients (n2, ..., nk). Client locations are private
by definition, ensuring that the tree-fenced condition holds. Pr thus avoids weak
behaviours and constitutes a suitable implementation of Pc.

Observe that in this implementation, polling put operations is unnecessary
(as long as different local locations are used for copying), and get operations can
be optimised by being submitted as early as possible (i.e. after previous RDMA
operations and reads on the same location) and before they are needed, allowing
them to be interleaved with other computations.

6 Related Work
RDMA Semantics. The first realistic formal model for RDMA programs is
rdmatso by Ambal et al. [10] (where they assume that CPU concurrency is
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governed by TSO) formalised both operationally and declaratively, which they
show to be equivalent. They also validate rdmatso empirically by running an
extensive suite of litmus tests on RDMA hardware. While comprehensive in its
formal description of the language, this work does not present strategies for
mitigating RDMA weaknesses or optimising the use of this technology by using
e.g. minimal poll and fence instructions. The only other work on formal RDMA
semantics is that by Dan et al. [27], which as demonstrated by Ambal et al. [10]
does not follow the RDMA specification.
Weak Memory Models. Existing literature includes multiple examples of
weak consistency models. For hardware, several works have formalised the se-
mantics of the x86, ARMv8 and POWER architectures [68,9,2,63,48,5,59,31,67].
However, none of these works covered the consistency semantics of RDMA
programs. For software, there has been a number of formal models for C11
[42,40,12,37,44,53,56,25] with verified compilation schemes [58,57,51], Java [49,15],
transactional memory [72,61,60], the Linux kernel [8] and the ext4 filesystem [39].
Additionally, there has been several works on formalising the persistency seman-
tics of programs in the context of non-volatile memory, describing the behaviour
of programs in case of crashes [66,65,64,26,38], as well as program logics for
verifying such programs [62,17,70].
Robustness. The concept of robustness against weak memory semantics has
been extensively studied across various models as a means to simplify program-
ming, reasoning, and verification. Notably, robustness for Total Store Order
(TSO) and its Partial Store Order (PSO) variant [36,55,9] has received signif-
icant attention, e.g. [23,24,54,20,35,47,18,1,2,19,45,46]. In addition, robustness
has been used as a correctness notion in the context of automatic fence insertion
for weak hardware memory models [7,29,28,22,6]. More recent work has devel-
oped techniques for checking robustness against concurrency semantics in pro-
gramming languages, particularly the C11 memory model [41,50]. Robustness has
also been explored in distributed systems, where Sequential Consistency (SC) is
replaced by serialisability [30,16,52,21,14,13]. More recently, [34] addressed the
problem of checking robustness in the context of weak persistency models for
non-volatile memory.

Some of these works provide sound and complete techniques for verifying
robustness, along with complexity bounds for specific models. Others, as with
our work on RDMA, focus on practical over-approximations, offering program-
mers guidelines that, when followed, ensure stronger semantics. The well-known
Data-Race-Free (DRF) guarantee [3,33] for multicore hardware and program-
ming language models is a prominent criterion of this type.
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