Ludic Considerations of Tablet-Based Evo-Art

Simon Colton, Michael Cook and Azalea Raad

Computational Creativity Group, Dept. of Computing, Imperial College, London
http://www.doc.ic.ac.uk/ccg

Abstract. With the introduction of the iPad and similar devices, there
is a unique opportunity to build tablet-based evolutionary art software
for general consumption, and we describe here the i-ELVIRA iPad ap-
plication for such purposes. To increase the ludic enjoyment users have
with i-ELVIRA, we designed a GUI which gives the user a higher level
of control and more efficient feedback than usual for desktop evo-art
software. This relies on the efficient delivery of crossover and mutation
images which bear an appropriate amount of resemblance to their par-
ent(s). This requirement in turn led to technical difficulties which we
resolved via the implementation and experimentation described here.

1 Introduction

While interacting with evolutionary art software can be a very rewarding expe-
rience, doing so is not yet a mainstream hobby, with the notable exception of
online collaborations such as the Electric Sheep project [2]. The recent prolifer-
ation of tablet devices such as the iPad — where an increased emphasis is put
on users enjoying their interaction with software — offers a good opportunity to
bring evolutionary art to a wider audience. We have built the j-ELVIRA desk-
top evolutionary art program (which stands for (J)ava (E)volution of (L)udic
(V)ariation in (R)esponsive (A)rtworks), as a rational reconstruction of the Av-
era software [5], in the usual mould of human-centric evo-art software such as
NEvAr [6]. Porting j-ELVIRA to the iPad raised more than just issues related
to re-programming the software. In particular, the touchscreen interface and the
expectation of constant, enjoyable interaction with iPad applications required a
new design for the GUI and improvements to the efficiency and quality of image
generation. We provide details here of the iPad implementation (i-ELVIRA), in-
cluding aspects of the interface design and the nature of image generation, in
addition to some experiments we have performed to inform our design choices.

In section 2, we describe the particle-based image generation underpinning
the ELVIRA systems, and we critique the desktop version from the perspective
of user-interaction. This critique led us to design i-ELVIRA in such a way as to
increase the ludic quality of the software, i.e., how much fun it is to interact with.
These design choices led to certain technical difficulties. In particular, we found
that images were generated too slowly to achieve the kind of ludic interaction
we hoped for, and that often the images were not appropriate, i.e., they were
blank, or bore too much/too little resemblance to their parents. In sections 3
and 4, we describe how we improved both the generation speed and quality of
the images respectively, including details of some experiments we undertook to
assess mutated image fidelity. In section 5, we assess the suitability of i-ELVIRA
for mainstream use, and we discuss some future directions for our work.

2 A Tablet-Based Interface Design

Particle based image generation schemes have been used to good effect in evo-
lutionary art, for instance in the generation of ricochet compositions [3], and
within the neuro-evolution framework described in [4]. In [5], Hull and Colton
introduced an image evolution scheme which we have re-implemented into the
J-ELVIRA software. The scheme uses six initialisation trees to control the nature
of P particles, in terms of a sextuplet defining their location and their colour:
(x,y,7,9,b,a). Over T timesteps, each particle changes colour and position, as
controlled by six corresponding update trees, and a line is drawn from their pre-
vious position to their new one. The genomes of images therefore comprise a
background colour which the canvas is filled with initially, and 12 trees which
represent mathematical functions that calculate collectively the colour and po-
sition of a particle numbered p as it is initialised and as it changes at timestep
t. Each update function takes as input the current (x,y,r,g,b,a) values of the
particle in addition to ¢ and p, all of which may be used in the function calcu-
lations. The canvas onto which lines are drawn is defined by the rectangle with
corners (—1,—1) and (1,1). At each timestep, after all the particle lines have
been rendered, a Gaussian blur is applied. Each new set of lines is drawn on top
of the previously resulting blurred background.

With the default values of P = 1000 and 7" = 100, the production of an
image requires the plotting of 100,000 lines and 100 blurring operations. In [5],
the authors barely explored the variety of images which can be produced, because
their implementation was slow due to the drawing (off-canvas) of very long lines.
By truncating — if necessary — the start and end points of the lines to be within
the canvas rectangle, we achieved a much faster implementation. This allowed
greater exploration of the types of images that can be produced, and we have
seen a huge variety of images which can evoke perception of: lighting effects,
shadowing, depth, texture and painterly effects. Moreover, the images produced
often have a non-symmetrical and moderately hand-drawn look, which can add
to their appeal. A sample of sixty images produced using this method is given in
figure 1, along with an example genome (of 12 flattened trees) and the resulting
image. We see that the complexity of the images derives not from the complexity
of the individual trees, but rather from the iterative nature of the calculations the
trees perform, and the blurring effect, which adds much subtlety to the images.

j-ELVIRA has a user interface similar to that of many evo-art packages:

® To start with, the user waits while a series of randomly generated genomes are
used to produce a user-chosen number of images (usually 25).

® The user selects the images they prefer, or sometimes at the start of the session,
they tend to select any images which are in any way unusual, as many of the
images will be devoid of interest.

® The user chooses to either crossover and/or mutate the selected images. They
then wait while the software chooses randomly from the selected individuals and
crosses pairs of them and/or mutates them into child genomes from which new
images are produced and shown to the user.

Initialisation functions Update functions

wgp 0= —éO.?S/sin(p))/ —p z(p): = sin(0.25 — p)

y(p)o = —(p* =0.5) + (p/ — 0.01) y(p)t = —sin((x;- 1(1))*0 001) * (az—1(p)/re—1(p)))
r(p)o = cos(cos(sin(—0.001/p))) r(p): = sin(z+—1(p)) + 0.75

g(p)o = —szn(szngo .001 4100 xp)) g(p)¢ = sin((—=bst—1(p) — ye—1(p)) * t)
b(p)o = (—p * p)/(=0.25 * p) b(p)t = yr—1(p) * —0.5
a(p)o = sin(—0.01) a(p)t = cos(t) * 2xry_1(p)

Fig. 1. Top: 60 exemplar images produced with the particles method. Below: a geno-
type/phenotype pair in terms of the genome functions and the image produced.

When implementing i-ELVIRA in Objective C for the iPad, we referred to
Apple’s iPad development guidelines, where it is noted that: (a) “People, not
apps, should initiate and control actions ... it’s usually a mistake for the app to
take decision-making away from the user” (b) “People expect immediate feed-
back when they operate a control”, and (¢) “When appropriate, add a realistic,
physical dimension to your app”. We felt that the interaction design for j-Elvira
was at odds with guidelines (a) and (b). In particular, by choosing which in-
dividuals from the preferred set to crossover/mutate, j-Elvira takes too much
control away from the user, thus contradicting guideline (a). Moreover, j-Elvira
forces users to wait much too long (measured in minutes) for the production of
25 images before more progress can be made, thus contradicting guideline (b).
To address these issues, we designed the iPad interface so that the user explicitly
chooses which individual to mutate, and which pairs to crossover. As soon as
they have made their choice, the child images are produced immediately. This
hands back more control to the user, and they are supplied with feedback as soon
as a new image can be generated (measured in seconds). In response to guideline
(c), to add a realistic element to the interface, we used metaphors of: a recycling
tray for discarding images; a printer/scanner for copying and generating images;
and rows of trays into which sets of images can be dragged.

The random generation of images at the start of a session with j-ELVIRA
is also unappealing, as it is prone to producing blank/dull images, as all/most
of the particle lines are drawn off-canvas. To address this, we generated tens of
thousands of images randomly, and chose by hand 1,000 preset images from them
(60 of which are given in figure 1). These were chosen to maximise the variety
of images afforded by the particles method, so that hopefully every user may
find a preset which fits their aesthetic preferences. We have performed extensive
testing, and we have found that neither large trees, nor more complex functions
than cosine and sine, nor more complex programmatic structures such as con-
ditionals lead to more interesting or varied images. Therefore, when generating
the preset images, we restricted the random search to trees of size 12 or less,
containing only the arithmetic and trigonometric functions and the terminals
{0,0.001,0.01,0.1,0.25,0.5,0.75,1, 10, 100} and their negations.

Fig. 2. (i) Opening screen,
where old sessions can be loaded
(ii) browsing screen, where im-
ages are generated and or-
ganised into trays (iii) edit-
ing screen, where images can
be scaled, rotated, translated,
cropped and re-rendered.

We provide screenshots of the graphical user interface for i-ELVIRA in figure
2. In overview, the user is presented with a continuous supply of preset images
at the top of the screen. The user can drag these images into trays lower on
the screen to organise them. The rows of trays add physicality to the design
and enable the choosing of any pair of images for crossover. If a user drags one
image on top of another, i-ELVIRA immediately crosses over the genomes of
the two images to produce four child images, which appear at the top of the
screen. Moreover, if the user drags an image to the printer/scanner, i-ELVIRA
will immediately start the generation of four mutations of the image. The images
are produced at the full resolution of the iPad screen (768 x 1024 pixels), and
by tapping on an image, it expands to fill the whole screen. In this state, the
image can be cropped, scaled, rotated and translated, and these transformations
are recorded in the image’s genome (as a 4 X 4 matrix). The user can choose
to re-render the image to further explore it, which is done by applying the
transformation matrix to the position of the particle just before the line between
its old (transformed) position, and its new one is rendered.

The interactive nature of the GUI for i-ELVIRA forced two issues. Firstly,
users did not expect to wait long for image generation, i.e., they wanted near-
immediate gratification in the form of more images in the style of ones they
have chosen. Secondly, people expected the images generated in response to
their choices to always be appropriate to those choices, i.e., that the children of
crossed-over or mutated individuals should resemble their parents, but not too
much. Unfortunately, our first implementation of i-ELVIRA regularly presented
the user with inappropriate images, and took up to 15 seconds to produce each
one. In early experiments, we found that this uncertainty in child fidelity and
the slow execution times largely ruined the ludic appeal of the software, and
hence both issues had to be addressed, as described in the following sections.

3 Efficient Image Rendering

The printer/scanner metaphor helps disguise the time taken to produce images,
because as soon as a user has chosen an image for mutation or a pair of images
for crossover, an animation of a blank sheet of paper being output holds the
user’s attention for a few seconds. However, we estimated that any longer than
a five second wait for an image to be produced would be detrimental the the
user’s enjoyment. To calculate the lines which comprise an image, 6 functions
have to be called 100,000 times to calculate the position and colour of the par-
ticles. Fortunately, our preset genomes contain fairly succinct functions, due to

the fact that we restricted tree size to 12 nodes or fewer. However, we still found
that the calculations took prohibitively long: around eight seconds on average.
This was because we were representing the functions as trees which were being
interpreted at runtime. We chose to flatten the trees into mathematical functions
such as those in figure 1 and precompile these into i-Elvira. This dramatically
reduced the calculation time for the particles to around half a second on average.
Of course, a drawback to precompilation is a reduction in the size of the search
space, as new trees cannot be generated at runtime, nor existing ones altered. In
particular, the only option for crossover is to swap entire initialisation/update
functions of two parents, and for mutation, it is to randomly substitute one or
more function with ones from other individuals (i.e., no random generation of
trees is possible). However, the trees themselves are fairly small, so there wasn’t
much scope for crossing over subtrees anyway. Moreover, from the 1000 preset
images, we extracted 1798 distinct initialisation functions and 2076 distinct up-
date functions. Hence, given that any initialisation function may be swapped for
any other, and likewise for update functions, 1798% x 2076% = 2.7 x 1039 distinct
genomes can be produced, which is more than enough.

Having halved the image generation time through precompilation, we turned
to the other major bottleneck: the rendering of the image, i.e., the drawing of
the lines and the blurring operation. Apple supplies the 2D iPad CoreGraphics
graphics library. In our first attempt, we employed CoreGraphics to draw the
lines and wrote a per-pixel blurring operation, which changes a pixel’s colour to
be an average of those in a neighbourhood around it — with a bigger neighbour-
hood producing a more blurred image. Sadly, this method was too inefficient for
our purposes, as it took around 6 seconds to render the image. Hence, we made
several improvements to the image generation pipeline in order to optimise the
process. The most important of these was using OpenGL ES 1.1, an early mobile
version of the popular graphics engine, instead of CoreGraphics. To make the
move to OpenGL, we altered the rendering process to employ a vertex-based
drawing model, whereby each rendering pass contains a single update to the
particles which are described in terms of start and end vertices.

Recall that at each timestep, a blur operation is performed in the image
generation process. As OpenGL ES 1.1 does not support pixel shaders, which
would have allowed for a per-pixel Gaussian blur to be applied between passes,
we instead pass the base image (representing a composite of each rendering
stage completed so far) to OpenGL as a texture. After the lines for the current
timestep are drawn on top of this texture, a further composite comprising the
base image and the new lines is drawn out to another texture using an OpenGL
FrameBufferObject. To this second texture, we perform a blur by redrawing the
texture object four times, offset by one pixel in the four compass directions,
at a reduced opacity. This produces a blurred image without being too costly
for OpenGL to draw. The resulting five-layer image is then flattened down to
become the base image for the next rendering pass. This new pipeline reduced
the rendering time to around 3.5 seconds on average, which is better than the
15 seconds we started with, and within our 5 second ludic limit.

4 Generation of Appropriate Images

The second issue raised by the interactive nature of i-ELVIRA was the disap-
pointment users felt when they were presented with an image which was either
blank, or looked different to what they expected (i.e., too similar or dissimilar
to its parent). Recall that four mutations of a chosen image are supplied when
the user makes a choice, and similarly four offspring are supplied when the user
chooses two parents to crossover. Noting that efficiency of image generation is
a major issue, we decided not to perform a post-hoc check on image quality, in
order to reject an image on grounds of low quality, as this would mean producing
another one, and therefore at least doubling the image generation time on occa-
sions. Instead, we concentrated on enabling i-ELVIRA to more reliably generate
genomes that would produce appropriate images. Blank or nearly blank images
are caused by a lack of lines being drawn on the canvas. One way to avoid the
generation of such images altogether is to somehow map the position of each
particle at each timestep to somewhere within the canvas. One possibility is to
map x and y to their fractional parts, whilst maintaining their parity. Unfor-
tunately, this produces largely uninteresting images, as each line is rendered on
the canvas, and many images gain their beauty by having fewer than the total
100,000 lines drawn. For instance, many interesting images exhibit a blurry look,
as no lines are drawn on them for the last 10 or 20 timesteps.

However, we did find a number of mappings that regularly produce pleas-
ing images. Two such mappings are given along with sample images produced
using them in figure 3. Note that f(k) denotes the fractional part of k, and
Ops = Zrpmod s) g o parameter s, which determines the number of segments
in the kaleidoscope image (default 17). Given that the images produced by these
mappings have appeal, and that the extra processing does not produce a notice-
able increase in rendering time, we have enabled i-ELVIRA to generate images
using the mappings, and a number denoting which mapping to use is stored in
the genome of every generated image. We accordingly added new genomes which
use these mappings, to i-ELVIRA’s presets. In addition, we looked at the un-
mapped genotypes which produced the blank images, and we realised that most
of them were caused by the update functions for the z and/or y co-ordinates
being constant. Hence, we gave i-ELVIRA the ability to avoid producing child
genomes through mutation or crossover where either the = or y update function
was not dependent on any input value. We found that this drastically reduced
the number of blank or nearly blank images to an acceptable level.

People find it difficult to predict what the children of two parent images will
look like, and are fairly forgiving when crossover images don’t resemble their
parents. Indeed, people tend to use the crossover mechanism to search the space
of images, rather than to focus on a particular style. We experimented with
different crossover mechanisms, until the following emerged as a reliable way
to produce child images: given two parent images A and B, child C inherits
the background colour of B, and five initialisation functions and four update
functions from A, with the missing initialisation and update functions inherited
from B. This mechanism works well, except when people crossover two images

xt(}?))

t(P)

<f (z¢(p))cos(2m f (y: (p)))>
!)

Polar mapping:

VRS
<

(zt(p))sin(2m f (y:(p)))
: : +(p)
Kaleidoscope mapping: v p)) —
<608(9ps) sin(0p)) (f(xt(p)) os(2 f(y t(p))))
—sin(fp,s) cos(ps) f(@e(p))sin(3F £ (ye(p)))

Fig. 3. Example images produce by the polar and kaleidoscope particle mappings.

which are themselves the children of a shared parent. In this case, there was a
tendency for C' to be very similar to A and/or B. Hence, whenever an offspring
genome is produced, if the parents share 10 or more functions, the offspring
is mutated by swapping one initialisation function for a randomly chosen one,
and similarly swapping two update functions. This produces children which vary
enough from their parents. In producing four offspring, i-ELVIRA produces two
children as above, and two children with the contributions of A and B swapped.

Users of i-ELVIRA tend to be much less forgiving for mutated versions of their
chosen images, as mutation is the major way of exerting fine-grained control over
image production. Hence users tend to be quite disappointed when a mutated
image is too dissimilar or too similar to its parent. Due to the precompiled nature
of the functions in i-ELVIRA, the smallest mutation possible is a swapping of a
single initialisation function for a randomly chosen one. However, we found that
mutating only initialisation functions was prone to producing too many twin
images, i.e., pairs of siblings in the four produced by i-ELVIRA that look too
similar (see the experimental results below). We therefore looked at mutating a
single update function, but we found that this could sometimes produce both too
dissimilar mutations and too similar ones. Fortunately, we found that both these
problems could be managed by enabling i-ELVIRA to perform a dependency
analysis on the functions in the genomes of images. Looking at table 1, which re-
iterates the update functions for the genome in figure 1, we see, for example, that
the updated alpha value a(p); for particle number p at timestep ¢ is dependent
on the previous red value of p, namely r;_;(p). However, looking at r;(p), we see
that the updated red value of p is dependent on the previous x co-ordinate of p,
namely x;_1(p). Working backwards, we can therefore conclude that output of
a(p); is dependent on output of the r and = update functions.

For each precompiled update function, we gave i-ELVIRA information about
which other functions appear locally, e.g., it is told that a(p); = cos(t)*2xr;_1(p)
is locally dependent on r;_1(p). We further implemented a routine to work back-
wards from the local dependencies to determine which variables each function
is ultimately dependent on. Hence, in the example in table 1, i-ELVIRA knows
that mutating the r¢(p) or z;(p) update function will also affect the output from
the a¢(p) function. In effect, i-ELVIRA can build a dependency matrix such as
that in table 1, where a 1 in row w and column c¢ indicates a dependency of the
row w function on the column ¢ function. For instance, the 1 in the g row and

xyrgba

x{100000(1 z(p): = sin(0.25 —p)
y|1 1100 14} y(p)e = —sin((zi-1(p) — 0.001) * (ar-1(p)/re-1(p)))
r|101000[2| r(p): = sin(xzi—1(p)) + 0.75
gl111111(6] g(p)e = sin((=bi—1(p) — ye—1(p)) *)
bl11101 1|5 b(p) = yi_1(p) * —0.5
al10100 13| a(p): = cos(t) * 2 xri_1(p)
635123

Table 1. Dependency analysis for the genome from figure 1.

b column indicates that the update function g(p); is dependent on previous b
values. Note that we put a 1 in each diagonal position, because each function is
dependent on itself (in the sense that mutating a function will naturally alter
that function). The row totals indicate how many update functions that row’s
function is dependent on. The column totals indicate how many update func-
tions depend upon that column’s function, and can therefore be used to indicate
how disruptive changing that function will be to the location and colour of the
particles. We call these numbers the dependency quotients for the functions. For
instance, the 5 in the r column of table 1 indicates that mutating r(p); will effect
5 attributes of each particle, namely their y, 7, g,b and a values.

On inspection of a number of mutated individuals where a single update
function was swapped for a randomly chosen one, we found that mutating an
update function which had a dependency quotient of 1 led to images which were
too similar to the original. In contrast, swapping a function which had a depen-
dency quotient of 6 led to a change in every colour and location aspect of each
particle, and hence led to a fundamentally different image, i.e., too dissimilar
to the original. So, for instance, for the genome in table 1, it would be unwise
to mutate either the z;(p) update function, upon which all the other functions
depend, or the g;(p) update function, upon which no other functions depend.
We also analysed a number of other cases where the mutation produced was
inappropriate, and used our findings to derive a heuristic mutation mechanism
which produces an acceptably high proportion of appropriate mutations.

This mechanism swaps a single update function for a randomly chosen one.
It first tries to swap the r,g,b or a function, but will only chose one if it has
a dependency quotient between 2 and 5 inclusive. If this fails, it attempts to
swap the z or y function, but again only if one has a dependency quotient be-
tween 2 and 5 inclusive. If this fails, then an update function is chosen randomly
and swapped, ensuring that neither the z;(p) nor the y:(p) update function is
swapped for a constant function. Moreover, if neither the x nor y function is
dependent on the r,g,b or a functions, then either the = or the y initialisation
function (chosen randomly) is mutated. Each part the heuristic mechanism was
motivated by analysis of the reasons why a set of mutations produced inappro-
priate images. To determine the value of the heuristic mechanism, we compared
it to swapping four, five and six initialisation functions for randomly chosen ones
(called the 4-init, 5-init and 6-init methods respectively), and swapping a sin-
gle update function for a randomly chosen one, with no dependency analysis or
constant function checking (called the I-update method).

Method [[ny]ns| na [ne [pr We chose 250 of i-ELVIRA’s presets ran-
Heuristic|| 6 (30| 25 | 29 {|0.84 domly, and for each method, we took each pre-
1-update|[12|34] 95 | 19 ||0.63 set in turn and produced 4 mutations for it, as

4-init || 8 |80| 68 |128|0.66 this is the number that users of i-ELVIRA are

5-init |112/47| 99 |114//0.69 presented with. We performed image analysis

6-init ||17)33/114]128]0.69 on the resulting 1000 mutated images to de-
termine how appropriate they were. We first
recorded the number of mutated images which
were essentially blank (np). We found that
two images look similar if they have a similar colour distribution, and/or if
they exhibit a similar shape, i.e., the parts of the canvas which are covered
by lines for the two images are similar. Given two images i; and io, we im-
plemented a method to determine the colour distance, d.(i1,72) of the images
in terms if their colour histograms, and a method to determine the shape dis-
tance ds(i1,42), in terms of the positions in a 24 x 24 grid which are crossed
by particle lines. Both methods return a value between 0 and 1, with 0 indicat-
ing equal images, and 1 indicating as different as possible images. Analysing
pairs of images visually, we settled on two definitions: a pair of images iy
and i are too similar if min(d.(i1,i2),ds(i1,42)) < 0.1, and too dissimilar if
ma:r(dc(ih ig), ds(il, ’LQ)) > 0.9.

Within the 1000 images produced for each mutation method, we recorded the
number of mutations which were too similar to their parent (ns) and the number
which were too dissimilar (ng). We also recorded the number of twins produced
(n¢). Finally, we recorded the proportion, py, of sets of four mutations which
contained no inappropriate images (i.e., neither too similar to the parent or
eachother, nor too dissimilar to the parent). The results for the five methods are
given in table 2. We see that the heuristic method outperforms the other methods
in all the metrics, with the exception of the 1-update method producing fewer
twins (at the cost of an increased distance between child and parent). Also,
as previously mentioned, we see that the mutation methods which alter only
initialisation functions all suffer from producing too many twins.

Table 2. Results for 250 sets of 4
images by 5 mutation methods.

5 Conclusions and Future Work

We have developed the i-ELVIRA evolutionary art application for the iPad,
guided by general ludic considerations, which include: enabling constant user-
interaction with no periods where the user is waiting for the software to finish
processing; avoiding supplying the user with uninteresting or inappropriate im-
ages; a natural interaction design which enables the crossing over and mutation
of chosen images; an ability for users to customise their artworks and for them to
share their creations with others. We are currently finalising i-ELVIRA for distri-
bution, which requires a ludic graphical user interface to the evolution and image
generation mechanisms. This has only been made possible because we reduced
the image rendering time to 3.5 seconds, and we increased the reliability with
which appropriate mutation images are produced. Looking at the results in table

2, we see that the heuristic mutation method delivers a set of four appropriate
mutations with an 84% likelihood, which we believe is acceptable for i-ELVIRA.
In the context of evolving buildings for a video game, producing artefacts which
have an appropriate resemblance to their parents was addressed in [7]. This is a
key question in bringing evolutionary art to the general public.

To hopefully improve i-ELVIRA, we will experiment with showing users up-
dates during the rendering process, which might hold their attention (although
we have found that for many images, this process can be quite dull, as all the
lines are drawn at the start or the end of the process). We will also experiment
with different blurring processes to explore different visual styles, and we will
enable a search mechanism so that people can find presets similar to ones they
like. With all our experimentation, we will undertake extensive user testing to
determine the value of the changes we impose. In particular, using i-ELVIRA
and j-ELVIRA as research tools, our next step will be to conduct user studies,
whereby we try and derive methods for estimating people’s reactions to images.
Ultimately, we aim to embed machine learning methods into evolutionary art
software, so that it can approximate people’s aesthetic considerations and use
this to deliver better images, as we began to investigate in [1] for image filtering.
In the long term, we aim to show that sophisticated user modelling techniques
can lead to more enjoyable software such as i-ELVIRA for public consumption,
and also be a driving force for machine learning.

Acknowledgements

We would like to thank the anonymous reviewers for their interesting comments.
We would also like to thank the Department of Computing at Imperial College,
London for funding the implementation of the i-ELVIRA system.

References

1. S Colton, P Torres, J Gow, and P Cairns. Experiments in objet trouvé browsing. In
Proceedings of the 1st International Conference on Computational Creativity, 2010.

2. S Draves. The electric sheep screen-saver: A case study in aesthetic evolution. In
Proceedings of the EvoMusArt Workshop, 2005.

3. G Greenfield. Evolved ricochet compositions. In Proceedings of the EvoMusArt
workshop, 2009.

4. E Hastings, R Guha, and K Stanley. Neat particles: Design, representation, and
animation of particle system effects. In Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 2007.

5. M Hull and S Colton. Towards a general framework for program generation in
creative domains. In Proceedings of the 4th International Joint Workshop on Com-
putational Creativity, 2007.

6. P Machado and A Cardoso. NEvAr — the assessment of an evolutionary art tool.
In Proceedings of the AISB00 Symposium on Creative and Cultural Aspects and
Applications of AT and Cognitive Science, 2000.

7. A Martin, A Lim, S Colton, and C Browne. Evolving 3D buildings for the prototype
video game Subversion. In Proceedings of the EvoGames Workshop, 2010.

