
Persistence Semantics for Weak Memory
Integrating Epoch Persistency with the TSO Memory Model

Azalea Raad Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

Thursday 8 November

OOPSLA 2018

Boston, USA

azalea@mpi-sws.org @azalearaadSoundAndComplete.org

History

time

Difficulty

Sequential

😊

History

time

Difficulty

Sequential

😊
SC

😐

History

time

Difficulty

Sequential

😊
SC

😐

WMC

☹

History

time

Difficulty

Sequential

😊
SC

😐

WMC

☹
😣

Persistent
WMC

Volatile memory

x := 1
// x = 1

// x = 0

What is Persistent Memory?

!3// x = v : reading x yields v

Volatile memory

x := 1
// x = 1

// x = 0

What is Persistent Memory?

!3

// x = 0
// no recovery

// x = v : reading x yields v

Volatile memory

x := 1
// x = 1

// x = 0

What is Persistent Memory?

!3

// x = 0
// no recovery

// x = v : reading x yields v

Persistent memory

x := 1
// x = 1

// x = 0

// x = 0 OR x = 1
// recovery routine

Volatile memory

x := 1
// x = 1

// x = 0

What is Persistent Memory?

!3

// x = 0
// no recovery

// x = v : reading x yields v

Persistent memory

x := 1
// x = 1

// x = 0

// x = 0 OR x = 1
// recovery routine

persists are asynchronous (buffered): may not persist immediately

(Sequential) Hardware

CPU

(Volatile) Memory

(Sequential) Hardware

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 : adds x:=1 to memory

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 : adds x:=1 to memory

a:=x : reads x from memory

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

Persistence Buffer

CPU

(Persistent) Memory

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

Persistence Buffer

CPU

(Persistent) Memory

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

Persistence Buffer

CPU

(Persistent) Memory

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

Persistence Buffer

CPU

(Persistent) Memory

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

p-buffer lost; memory retained

Persistence Buffer

CPU

(Persistent) Memory

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 : adds x:=1 to memory

a:=x : reads x from memory

memory lost

x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

p-buffer lost; memory retained

unbuffer* : p-buffer to memory

* at non-deterministic times

• Memory consistency model describes:  
 the order writes are made visible to other threads  
 e.g. SC, TSO, …

What is Memory Persistency Model?

• Memory consistency model describes:  
 the order writes are made visible to other threads  
 e.g. SC, TSO, …

• Memory persistency model describes:  
 the order writes are persisted to memory 
 e.g. Epoch Persistency

What is Memory Persistency Model?

• Memory consistency model describes:  
 the order writes are made visible to other threads  
 e.g. SC, TSO, …

• Memory persistency model describes:  
 the order writes are persisted to memory 
 e.g. Epoch Persistency

What is Memory Persistency Model?

Problem
Formal

Epoch Persistency Model
for

Mainstream Hardware (Weak Memory Models)

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=0;y=0 OR x=1;y=1 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!6

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=0;y=0 OR x=1;y=1 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!6

!! Writes may persist out of order

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=0;y=0 OR x=1;y=1 OR x=1;y=0 OR x=0;y=1

What Can Go Wrong?

!6

!! Writes may persist out of order
☛ persistent fence pfence

!7

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=0;y=0 OR x=1;y=1 OR x=1;y=0 OR x=0;y=1

pfence;☛

Persistent Fence

Persistent Fence

!8

x := 1;

z := 4;

pfence;

y := 2;

x := 3;

a

b

c

d

Persistent Fence

!8

• writes on same locations persist in execution order

x := 1;

z := 4;

pfence;

y := 2;

x := 3;

a

b

c

d

a cpersists before

Persistent Fence

!8

• writes on same locations persist in execution order
• writes on different locations are unordered

x := 1;

z := 4;

pfence;

y := 2;

x := 3;

a

b

c

d

a b may persist in any order

a cpersists before

Persistent Fence

!8

• writes on same locations persist in execution order
• writes on different locations are unordered
• pfence adds a new epoch

x := 1;

z := 4;

pfence;

y := 2;

x := 3;

a

b

c

d

a b may persist in any order

a cpersists before
epoch 1

epoch 2

Persistent Fence

!8

• writes on same locations persist in execution order
• writes on different locations are unordered
• pfence adds a new epoch
• writes persist in epoch order

x := 1;

z := 4;

pfence;

y := 2;

x := 3;

a

b

c

d
persist before a b c d

a b may persist in any order

a cpersists before
epoch 1

epoch 2

// x=0;y=0 OR x=1;y=1 OR x=1;y=0

x := 1;

// recovery routine

// x=0;y=0

y := 1;
pfence;

!9

What Can Go Wrong (Continued)?

!! Execution continues ahead of persistence

asynchronous
(buffered)

// x=0;y=0 OR x=1;y=1 OR x=1;y=0

x := 1;

// recovery routine

// x=0;y=0

y := 1;
pfence;

!9

What Can Go Wrong (Continued)?

!! Execution continues ahead of persistence
☛ persistent sync psync

asynchronous
(buffered)

// x=0;y=0 OR x=1;y=1 OR x=1;y=0

x := 1;

// recovery routine

// x=0;y=0

y := 1;
pfence;

!9

What Can Go Wrong (Continued)?

!! Execution continues ahead of persistence
☛ persistent sync psync

C1; psync; C2

• same persist-ordering as pfence
• C2 executed only when all C1 writes have persisted

asynchronous
(buffered)

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=0;y=0 OR x=1;y=1 OR x=1;y=0

psync;

!10

Persistent Sync

!! Execution continues ahead of persistence
☛ persistent sync psync

C1; psync; C2

• same persist-ordering as pfence
• C2 executed only when all C1 writes have persisted

☛

(Sequential) Hardware
x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

p-buffer lost; memory retained

!11

CPU

(Persistent) Memory

epoch n

epoch 2

pfence

pfence

. . .

pfence

epoch 1

(Sequential) Hardware
x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

unbuffer* : p-buffer to memory (in epoch order)

p-buffer lost; memory retained

* at non-deterministic times !11

CPU

(Persistent) Memory

epoch n

epoch 2

pfence

pfence

. . .

pfence

epoch 1

(Sequential) Hardware
x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

unbuffer* : p-buffer to memory (in epoch order)

p-buffer lost; memory retained

* at non-deterministic times

pfence : introduces a new epoch in p-buffer

!11

CPU

(Persistent) Memory

epoch n

epoch 2

pfence

pfence

. . .

pfence

epoch 1

(Sequential) Hardware
x:=1 : adds x:=1 to p-buffer

a:=x : if p-buffer contains x, reads latest entry
else reads from memory

unbuffer* : p-buffer to memory (in epoch order)

p-buffer lost; memory retained

* at non-deterministic times

pfence : introduces a new epoch in p-buffer

psync : flushes the entire p-buffer to memory

!11

CPU

(Persistent) Memory

epoch n

epoch 2

pfence

pfence

. . .

pfence

epoch 1

What about Concurrency?

TSO POWER ARMv8 …

!12

What about Concurrency?

TSO POWER ARMv8 …

!12

Contributions

!13

• PTSO: First formal epoch persistency semantics under  
mainstream hardware
‣ Operational model
‣ Declarative model
‣ Equivalence of the two models

Contributions

!13

• PTSO: First formal epoch persistency semantics under  
mainstream hardware
‣ Operational model
‣ Declarative model
‣ Equivalence of the two models

Contributions

!13

• PTSO: First formal epoch persistency semantics under  
mainstream hardware
‣ Operational model
‣ Declarative model
‣ Equivalence of the two models

• Verifying programs under PTSO

‣ PTSO programming pattern
‣ Correctness condition: persistent linearisability
‣ Verified several examples under PTSO

Contributions

!13

Total Store Ordering (TSO)

!14

Total Store Ordering (TSO)

!14

Thread2

Buffer

(Volatile) Memory

Thread1

Buffer

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

☛ ☛

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1

☛
☛

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1 y = 1

☛ ☛

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1 y = 1

☛ ☛

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1 y = 1

☛ ☛

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1 y = 1

☛
☛// 0

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1 y = 1

☛
☛// 0

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1 y = 1

☛
☛// 0

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x = 0; y = 0;

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1 y = 1

☛ ☛
// 0 // 0

Store Buffering (SB)

Total Store Ordering (TSO)

!14

Thread2Thread1

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1

y = 1

☛ ☛
// 0 // 0

Store Buffering (SB)

; y = 0;

Total Store Ordering (TSO)

!14

Thread2Thread1

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1

☛ ☛
// 0 // 0

Store Buffering (SB)

; y = 1;

Persistent TSO (PTSO)

!15

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

(Volatile) Memory

CPU

Persistent TSO (PTSO)

!15

(Persistent) Memory

CPU

Persistence Buffer

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

(Volatile) Memory

CPU

Persistent TSO (PTSO)

!15

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

(Persistent) Memory

CPU

Persistence Buffer

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

(Volatile) Memory

CPU

• PTSO: First formal epoch persistency semantics under  
mainstream hardware

‣ Operational model

‣ Declarative model

‣ Equivalence of the two models

Contributions

!16

• PTSO: First formal epoch persistency semantics under  
mainstream hardware

‣ Operational model

‣ Declarative model

‣ Equivalence of the two models

Contributions

!16

• Verifying programs under PTSO

‣ PTSO programming pattern

‣ Correctness condition: persistent linearisability

‣ Verified several examples under PTSO

• PTSO: First formal epoch persistency semantics under  
mainstream hardware

‣ Operational model

‣ Declarative model

‣ Equivalence of the two models

Contributions

!16

• Verifying programs under PTSO

‣ PTSO programming pattern

‣ Correctness condition: persistent linearisability

‣ Verified several examples under PTSO

Verifying programs under PTSO

The persistent variant of the Michael-Scott queue and its recovery mechanism

Verifying programs under PTSO

The persistent variant of the Michael-Scott queue and its recovery mechanism

What constitutes a correct persistent implementation?

Linearisability

!18

thread 1

thread 2

enq(1)a

deq(1)c

enq(2)b

time

Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!18

thread 1

thread 2

enq(1)a

deq(1)c

enq(2)b

time

Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!18

thread 1

thread 2

enq(1)a

deq(1)c

enq(2)b

time

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!18

thread 1

thread 2

enq(1)a

deq(1)c

enq(2)b

time

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb
‣ H is a legal sequence (library-specific)

• Linearisable ⟺ ∃ H. H totally orders events

Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!18

thread 1

thread 2

enq(1)a

deq(1)c

enq(2)b

time

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb
‣ H is a legal sequence (library-specific)

 -- e.g. FIFO sequences for queue

• Linearisable ⟺ ∃ H. H totally orders events

a c b

✔
c a b

✘
a b c

✔

Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!18

thread 1

thread 2

enq(1)a

deq(1)c

enq(2)b

time

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb
‣ H is a legal sequence (library-specific)

 -- e.g. FIFO sequences for queue

• Linearisable ⟺ ∃ H. H totally orders events

a c b

✔
c a b

✘
a b c

✔
linearisable

Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!19

thread 1

thread 2

enq(1)a

deq(2)c

enq(2)b

time

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb

‣ H is a legal sequence (library-specific)

 -- e.g. FIFO sequences for queue

• Linearisable ⟺ ∃ H. H totally orders events

Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!19

thread 1

thread 2

enq(1)a

deq(2)c

enq(2)b

time

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb

‣ H is a legal sequence (library-specific)

 -- e.g. FIFO sequences for queue

• Linearisable ⟺ ∃ H. H totally orders events

a c b c a ba b c

Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!19

thread 1

thread 2

enq(1)a

deq(2)c

enq(2)b

time

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb

‣ H is a legal sequence (library-specific)

 -- e.g. FIFO sequences for queue

• Linearisable ⟺ ∃ H. H totally orders events

a c b

✘
c a b

✘
a b c

✘
non-linearisable

(not legal)

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!20

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

thread 1

thread 2

enq(1)a

deq(1)c
time

enq(2)b

Persistent Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!20

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb
‣ H is a legal sequence

• Persistently linearisable ⟺ ∃ H. H totally orders a subset S of events

thread 1

thread 2

enq(1)a

deq(1)c
time

enq(2)b

Persistent Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!20

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb
‣ H is a legal sequence

• Persistently linearisable ⟺ ∃ H. H totally orders a subset S of events

thread 1

thread 2

enq(1)a

deq(1)c
time

enq(2)b

 -- persists are asynchronous: only a prefix may persist after a crash

Persistent Linearisability

‣ S is hb-prefix-closed : (a, b) ∈ hb and b ∈ S ⇒ a ∈ S

• Define happens-before relation hb

‣ (e1, e2) ∈ hb ⟺ e1.end <time e2.begin

!20

-- e.g. (,) ∈ hb (,) ∉ hb a b a c

‣ H respects hb
‣ H is a legal sequence

• Persistently linearisable ⟺ ∃ H. H totally orders a subset S of events

a c

✔Persistently linearisable

thread 1

thread 2

enq(1)a

deq(1)c
time

enq(2)b

 -- persists are asynchronous: only a prefix may persist after a crash

Persistent Linearisability

‣ S is hb-prefix-closed : (a, b) ∈ hb and b ∈ S ⇒ a ∈ S

!21

What about Multiple Crashes?

execution
time

recovery recoveryexecution execution

!21

What about Multiple Crashes?

execution
time

recovery recoveryexecution execution

no crashes

!21

What about Multiple Crashes?

G1 GnG2

execution
time

recovery recoveryexecution execution

no crashes

!21

‣ H i persistently linearises G i — as before
‣ H1 ++ … ++ Hn is a legal sequence

• A chain G1 … Gn is persistently linearisable ⟺ ∃ H1 … Hn .

What about Multiple Crashes?

G1 GnG2

execution
time

recovery recoveryexecution execution

no crashes

Conclusions
• PTSO: First formal epoch persistency semantics under 

mainstream hardware

‣ Operational model

‣ Declarative model

‣ Equivalence of the two models

• Verifying programs under PTSO

‣ PTSO programming pattern

‣ Correctness condition: persistent linearisability

‣ Verified several examples under PTSO

Conclusions
• PTSO: First formal epoch persistency semantics under 

mainstream hardware

‣ Operational model

‣ Declarative model

‣ Equivalence of the two models

• Verifying programs under PTSO

‣ PTSO programming pattern

‣ Correctness condition: persistent linearisability

‣ Verified several examples under PTSO

Thank you for listening!

azalea@mpi-sws.org @azalearaadSoundAndComplete.org

Programming Pattern

1. // log progress
2. pfence
3. // do the work
4. pfence

Programming Pattern

1. // log progress
2. pfence
3. // do the work
4. pfence

Log at most one step ahead of work

Programming Pattern

1. // log progress
2. pfence
3. // do the work
4. pfence

1.

2.
3.

4.

Log at most one step ahead of work

