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Volatile memory

x := 1
// x = 1

// x = 0

What is Persistent Memory?

!3

// x = 0
// no recovery

// x = v : reading x yields v 

Persistent memory

x := 1
// x = 1

// x = 0

// x = 0 OR x = 1
// recovery routine

persists are asynchronous (buffered):  may not persist immediately 
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Persistence Buffer

CPU

(Persistent) Memory

CPU

(Volatile) Memory

(Sequential) Hardware
x:=1 :  adds x:=1 to memory

a:=x :  reads x from memory 

memory lost

x:=1 :  adds x:=1 to p-buffer

a:=x :  if p-buffer contains x, reads latest entry 
else reads from memory

p-buffer lost; memory retained

unbuffer* : p-buffer to memory

* at non-deterministic times
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• Memory consistency model describes:  
   the order writes are made visible to other threads  
    e.g. SC, TSO, …  

• Memory persistency model describes:  
   the order writes are persisted to memory 
    e.g. Epoch Persistency 

What is Memory Persistency Model?

Problem  
Formal  

Epoch Persistency Model 
for 

Mainstream Hardware (Weak Memory Models)
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x := 1;

// recovery routine

// x=0;y=0

y := 1;
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Persistent Fence

!8

• writes on same locations persist in execution order
• writes on different locations are unordered
• pfence adds a new epoch
• writes persist in epoch order

x := 1;

z := 4;

pfence;

y := 2;

x := 3;

a

b

c

d
persist before a b c d

a b may persist in any order

a cpersists before 
epoch 1

epoch 2
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// x=0;y=0 OR x=1;y=1 OR x=1;y=0

x := 1;

// recovery routine

// x=0;y=0

y := 1;
pfence;

!9

What Can Go Wrong (Continued)?

!! Execution continues ahead of persistence
☛  persistent sync psync

C1; psync; C2

• same persist-ordering as pfence  
• C2 executed only when all C1 writes have persisted

asynchronous 
(buffered)



x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=0;y=0 OR x=1;y=1 OR x=1;y=0

psync;

!10

Persistent Sync

!! Execution continues ahead of persistence
☛  persistent sync psync

C1; psync; C2

• same persist-ordering as pfence  
• C2 executed only when all C1 writes have persisted

☛
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(Sequential) Hardware
x:=1 :  adds x:=1 to p-buffer

a:=x :  if p-buffer contains x, reads latest entry 
else reads from memory

unbuffer* : p-buffer to memory (in epoch order)

p-buffer lost; memory retained

* at non-deterministic times

pfence : introduces a new epoch in p-buffer

psync : flushes the entire p-buffer to memory

!11
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epoch n
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pfence

pfence

. . .

pfence

epoch 1
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• Verifying programs under PTSO

‣ PTSO programming pattern
‣ Correctness condition: persistent linearisability 
‣ Verified several examples under PTSO
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Thread2Thread1

x := 1;
a := y;

Thread1

y := 1;
c := x;

Thread2

x = 1

☛ ☛
// 0 // 0

Store Buffering (SB)

; y = 1;
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Verifying programs under PTSO

The persistent variant of the Michael-Scott queue and its recovery mechanism

What constitutes a correct persistent implementation?
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Linearisability

• Define happens-before relation hb

‣ (e1, e2) ∈ hb  ⟺  e1.end  <time  e2.begin
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thread 1

thread 2

enq(1)a

deq(2)c

enq(2)b

time

-- e.g.  (       ,        ) ∈ hb          (       ,        ) ∉ hb a b a c

‣ H respects hb

‣ H is a legal sequence (library-specific) 

         -- e.g. FIFO sequences for queue

• Linearisable ⟺ ∃ H. H totally orders events

a c b

✘
c a b

✘
a b c

✘
non-linearisable
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• Define happens-before relation hb

‣ (e1, e2) ∈ hb  ⟺  e1.end  <time  e2.begin

!20

-- e.g.  (       ,        ) ∈ hb          (       ,        ) ∉ hb a b a c

‣ H respects hb
‣ H is a legal sequence  

• Persistently linearisable ⟺ ∃ H. H totally orders a subset S of events

a c

✔Persistently linearisable

thread 1

thread 2

enq(1)a

deq(1)c
time

enq(2)b

 -- persists are asynchronous: only a prefix may persist after a crash

Persistent Linearisability 

‣ S is hb-prefix-closed : (a, b) ∈ hb   and  b ∈ S   ⇒   a ∈ S
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‣ H i   persistently linearises G i  — as before
‣ H1 ++  …  ++ Hn  is a legal sequence

• A chain G1 … Gn  is persistently linearisable ⟺ ∃ H1 … Hn .

What about Multiple Crashes?

G1 GnG2

execution
time

recovery recoveryexecution execution

no crashes
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‣ Declarative model

‣ Equivalence of the two models


• Verifying programs under PTSO

‣ PTSO programming pattern

‣ Correctness condition: persistent linearisability 

‣ Verified several examples under PTSO
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2.
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Log at most one step ahead of work


