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Emerging non-volatile memory (NVM) technologies promise the durability of disks with the performance of

volatile memory (RAM). To describe the persistency guarantees of NVM, several memory persistency models

have been proposed in the literature. However, the formal semantics of such persistency models in the context

of existing mainstream hardware has been unexplored to date. To close this gap, we integrate the buffered epoch
persistency model with the ‘total-store-order’ (TSO) memory model of the x86 and SPARC architectures. We

thus develop the PTSO (‘persistent’ TSO) model and formalise its semantics both operationally and declaratively.

We demonstrate that the two characterisations of PTSO are equivalent. We then formulate the notion of

persistent linearisability to establish the correctness of library implementations in the context of persistent

memory. To showcase our formalism, we develop two persistent implementations of a queue library, and

apply persistent linearisability to show their correctness.
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1 INTRODUCTION
Computer storage is traditionally divided into two categories: (1) fast volatile byte-addressable
memory (e.g. SRAM and DRAM), which loses its contents in case of a power failure; and (2) slow

persistent block-addressable storage (e.g. hard drives and flashmemory), which preserves its contents

in case of a power failure. Due to this split, applications typically maintain their data structures in

memory and periodically write important data to disk (often in a serialised format).

There are, however, two technology trends that may well render this dichotomy obsolete, and

may thus greatly affect how applications are structured. First, the size of memory has been steadily

increasing; it is now common to have fairly large applications, such as in-memory databases, operate

with their entire data in memory [IBM 2013; TimesTen Team 1999; Wang et al. 2014]. Second,

emerging new technologies in non-volatile memory (NVM) such as PCM [Lee et al. 2009], STT-

RAM [Kawahara et al. 2012] and memristors [Strukov et al. 2008], make it possible for processors

to access data guaranteed to persist a power failure at byte-level granularity and at performance

comparable to regular (volatile) RAM. It is widely believed that volatile memory will be augmented,
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and eventually replaced with non-volatile memory, allowing for efficient access to persistent

data [Intel 2014; International technology roadmap for semiconductors 2007; Pelley et al. 2014]. As

such, non-volatile memory has become a popular research topic [Boehm and Chakrabarti 2016;

Chakrabarti et al. 2014; Chatzistergiou et al. 2015; Coburn et al. 2011; Izraelevitz et al. 2016a; Kolli

et al. 2016a,b; Nawab et al. 2017; Volos et al. 2011; Wu and Reddy 2011; Zhao et al. 2013].

Using persistent memory correctly, however, is by no means easy. A key challenge lies in

ensuring correct recovery after a crash (e.g. a power failure) by maintaining the consistency of

the data structures in persistent memory. This in turn requires a clear understanding of the order

in which stores are propagated to the non-volatile memory. The problem is that CPUs are not

directly connected to memory; instead there are multiple non-persistent caches in between. As

such, memory stores are not propagated to memory at the time and in the order that the processor

issues them, but rather at a later time and in the somewhat arbitrary order decided by the cache

coherence protocol. This can lead to perhaps surprising outcomes. For instance, consider the simple

sequential program x := 1;y := 1, running to completion and subsequently crashing due to a power

failure. On restarting the computer, the memory may well contain y = 1 and yet x = 0; i.e. the

write x := 1 may not have propagated to memory before the power failure.

To ensure correct recovery, one must thus control the order in which the stores are propagated

to persistent memory. One simple way to do this is by requiring strict persistency [Pelley et al. 2014].

Under strict persistency, stores are persisted to memory in an order allowed by the underlying

memory consistency model. For example, under the x86 or the ARM consistency models [Pulte et al.

2017; Sewell et al. 2010] each processor’s stores would be persisted in the same order they become

visible to other processors. However as Condit et al. [2009] argue, this coupling of persistence and

visibility puts persistence in the critical execution path, degrading performance significantly.

To regain good performance, Pelley et al. [2014] relaxed the notion of persistency by decoupling

it from the visibility of stores. They introduced the epoch persistency model, in which the execution

of each thread is divided into several epochs, separated by persist barriers. A persist barrier ensures

that stores prior to the barrier are persisted to memory before those after the barrier. In the example

above, inserting a persist barrier after x := 1 ensures that the store to x is persisted before that of y,
and thus one cannot observe the outcome x = 0 and y = 1 after a crash.

A naive way of implementing a persist barrier is to block execution until all pending stores are

persisted to the memory. A more efficient way is to persist updates to memory asynchronously by

an additional buffering layer [Condit et al. 2009; Izraelevitz et al. 2016b; Joshi et al. 2015]. This way,

memory persists are buffered in a queue of write-backs to persistent memory, and execution may

proceed ahead of persistence. When it is necessary to control the write-back of buffered persists

explicitly (e.g. before performing I/O), a separate syncing instruction can be used to wait until all

pending persists have been propagated and the persistent buffer is drained.

Several existing articles, including [Condit et al. 2009; Joshi et al. 2015; Kolli et al. 2016b],

have investigated the feasibility of epoch persistency by studying the implementability of persist

barriers and demonstrating their performance gain over other models. As such, we believe that

(buffered) epoch persistency constitutes a viable and efficient persistency model. In this article,

we thus formalise the buffered extension of epoch persistency by integrating it with the ‘total-
store-order’ (TSO) memory model. We choose the TSO memory model as the basis of our extension

for two reasons: (1) it is a mainstream practical weak memory model (followed by the x86 and

SPARC architectures); and (2) it has an intuitive operational semantics in terms of processor-local

buffers [Sewell et al. 2010]. We call our formal model PTSO (‘persistent TSO’) and describe its

semantics both operationally and declaratively, proving that the two characterisations are equivalent.
The reason for the two semantics is that while the operational semantics provides programmers

with a more intuitive account of the hardware guarantees, the declarative one streamlines the
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construction of correctness proofs such as those for linearisability arguments [Herlihy and Wing

1990] or triangular race freedom [Owens 2010]. To construct our declarative semantics, we develop

a general framework for describing declarative concurrency models in the context of persistent

memory. We then present PTSO as an instance of this general framework and as an extension of

the TSO model formalised by Sewell et al. [2010]. In the future, it should be possible to instantiate

this framework for other consistency models, such as the ARM model [Pulte et al. 2017].

Next, we introduce a notion of correctness for persistent libraries in our general declarative

framework for describing concurrency models in the presence of persistent hardware. To this end,

we adapt the notion of buffered durable linearisability by Izraelevitz et al. [2016b], and describe

a general proof pattern for constructing linearisability arguments in the presence of persistent

memory, by identifying the linearisation points and inspecting their persistence.

To showcase the application of persistent linearisability, we develop two persistent implemen-

tations of a queue library: one as a simple lock-based implementation, other as a variant of the

Michael-Scott queue implementation [Michael and Scott 1996]. In both cases, we develop a recovery
mechanism restoring the queue data structure to a consistent state upon recovery. We then establish

the correctness of both implementations by using our proof pattern for persistent linearisability.

Related Work. Although the existing literature on non-volatile memory has grown rapidly in the

recent years, formalising persistency models, as well as verifying implementations under persistent

memory, have largely remained unexplored to date.

On the formalisation side, the existing work on (buffered) epoch persistency has several limi-

tations. First, there is little work on formalising the semantics of epoch persistency, especially in

the context of weak memory models. Second, no existing work considers the formal integration of

epoch persistency with the weak memory models of mainstream architectures (e.g. the x86 TSO
model or the ARM memory model). Third, no existing work defines a formal operational semantics

for epoch persistency. The latter can help provide a more intuitive description of persistence

semantics and is thus especially important in making persistence programming accessible.

Pelley et al. [2014] informally describe the behaviour of epoch persistency under sequentially
consistent (SC) machines; whilst Condit et al. [2009]; Joshi et al. [2015] do so under ‘total-store-order’
(TSO) machines. However, neither work provides a formal semantics (declarative or operational)

for epoch persistency. Izraelevitz et al. [2016b] give a declarative semantics for buffered epoch

persistency under the release consistencymodel [Gharachorloo et al. 1990] using abstract executions.

However, a more intuitive operational semantics is missing. The authors attribute their choice of the

release consistency model to its relaxed nature; nevertheless, they do not explore the integration of

epoch persistency with other weak memory models supported by mainstream hardware.

On the verification side, there is very little work exploring the correctness conditions of concur-

rent library implementations under persistent memory. Izraelevitz et al. [2016b] introduced the

notion of buffered durable linearisability for linearisability under buffered epoch persistency. How-

ever, to our knowledge, neither the authors nor the existing literature have studied the application

of buffered durable linearisability for showing the correctness of persistent library implementations.

Outline. The remainder of this article is organised as follows. In §2 we present an overview of

our contributions and the necessary background information. In §3 we present the formal PTSO

model (operational and declarative) . In §4 we formalise the notion of persistent linearisability for

PTSO and present a persistent queue library implementation. In §5 we present a persistent variant

of the Michael-Scott queue implementation. Finally, we discuss future work and conclude in §6.

2 OVERVIEW
We proceed with an overview of our contributions as outlined in §1.
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Fig. 1. The storage subsystems of the TSO (left) and PTSO (right) memory models

2.1 The PTSO Memory Model
We present an intuitive account of the PTSO memory model as an extension of the TSO memory

model integrated with buffered epoch persistency.

Total Store Ordering (TSO). First introduced by the SPARC architecture [SPARC 1992], TSO is

the consistency model used by the x86 architecture (both Intel and AMD) [Sewell et al. 2010]. As

illustrated in Fig. 1a, in the TSO model, each thread is connected to the main (volatile) memory via

a FIFO buffer. When a thread writes a value to a location, the write is recorded only in its buffer.

When a thread reads from a location, it first consults its own buffer. If it contains buffered writes

for that location, the thread reads the value of the last buffered write to that location; otherwise, it

consults the main memory. Threads can unbuffer their writes by propagating them (in FIFO order)

to the main memory at non-deterministic points in time. To control the unbuffering of writes,

programmers can appeal to memory barriers. Upon encountering a memory barrier, the buffer of

the executing thread is flushed to the memory, unbuffering all its pending writes.

Memory Persistency. Declarative (a.k.a. axiomatic) memory consistency models describe the

permitted behaviours of programs by ensuring that operations on memory follow specific rules.

This is done by defining a volatile memory order. The volatile memory order (e.g. the ‘total-store-

order’ in case of TSO) defines the permitted behaviours of programs by constraining the visible

order of loads and stores to the volatile memory (i.e. allowable visible memory states) between

processors or cores. This in turn allows memory operations to be reordered, while preserving the

intended program behaviour. Analogously, memory persistency models describe the permitted

behaviours of programs upon recovering from a crash (e.g. due to a power failure), by defining a

persistent memory order [Pelley et al. 2014]. The persistent memory order constrains the visible

order in which stores are committed to the persistent memory. Any pair of stores ordered by

persistent memory order may not be observed out of that order upon crash recovery. To distinguish

the volatile and persistent memory order, memory stores are differentiated from memory persists.
The former denotes the process of making a store visible to other processors, whereas the latter

denotes the process of committing stores durably to non-volatile memory. As with consistency

models, persistency models may be strict or relaxed.
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Under strict persistency, the persist order observes all happens-before relations implied by the

volatile memory order; that is, the volatile and persistent memory orders coincide. In case of the TSO

model, this means that the TSO order also prescribes the order in which stores are propagated to

persistent memory. As such, all persists are ordered with respect to the program order of the issuing

thread. However, strict persistency introduces many persist dependencies unnecessary for correct

recovery. The most common unnecessary dependency occurs due to the program-order constraint

of TSO for two stores. Programs frequently persist to large, contiguous regions of memory that

logically represent single objects, but which cannot persist atomically (due to their size).

To remedy this, Pelley et al. [2014] propose relaxed persistency models where the volatile and

persistent memory orders are separated. As an instance of relaxed persistency, Pelley et al. [2014]

introduce the epoch persistency model.

Epoch Persistency. The epoch persistency model was introduced by Pelley et al. [2014], inspired by

the work of Condit et al. [2009]. Under epoch persistency, the execution of each thread is separated

into persistence epochs by persist barrier instructions, written as pfence. Any two memory stores

on the same thread and separated by a persist barrier are ordered by the persistent order. Persist

barriers enforce that no memory stores after the barrier are persisted before those prior to the

barrier. However, memory stores within the same epoch (not separated by a barrier) are concurrent

and may be reordered or occur in parallel. Epoch persistency inherits some constraints from the

volatile memory order: any two memory stores to the same location assume the order from the

volatile memory order. Consequently, two persists to the same location are always ordered even

if they occur in the same epoch. In order to improve performance, persist buffering [Condit et al.

2009; Izraelevitz et al. 2016b; Joshi et al. 2015] has been proposed to allow memory persists to

occur asynchronously. That is, memory persists are buffered in a queue of write-backs to persistent

memory. This way, persists occur after their corresponding stores and as prescribed by the persistent

memory order; however, execution may proceed ahead of persistence. As such, pfence instructions
may complete without waiting for confirmation that the stores have indeed been persisted to

non-volatile memory. When it is necessary to control the write-back of buffered persists explicitly

(e.g. before performing I/O), a separate syncing instruction, psync, can be used to wait until all

pending persists have been committed and the persistent buffer is drained.

The Operational PTSO Model. We develop the PTSO (‘persistent TSO’) memory model by integrat-

ing (buffered) epoch persistency described above with the TSO consistency model. As illustrated

in Fig. 1b, the PTSO storage system has an additional layer compared to its TSO counterpart,

namely the persistent buffer described above. To capture persistency epochs, the persistent buffer is

modelled as a FIFO queue of persistent sub-buffers, each representing a distinct epoch. As noted

above, two stores in the same epoch may be persisted (i) in any order when they are to distinct

locations; or (ii) in the volatile memory order, namely the TSO order, when they are to the same

location. As such, each sub-buffer is modelled as a map associating each location with a FIFO queue.

The persistent buffer sits between the per-thread buffers and the main (non-volatile) memory

and plays the same role as that of volatile memory in the TSO model with respect to per-thread

buffers. More concretely, when a thread writes a value to a location, the write is recorded in its

buffer as before. Threads can unbuffer their writes (in the FIFO order) by propagating them to

the persistent buffer at non-deterministic points in time. Analogously, memory barriers (fence
instructions) can be used to enforce the unbuffering of writes to the persistent buffer. The persistent

buffer in turn may unbuffer the pending stores by propagating them (in the epoch order, while

respecting the per-location order in each epoch) to the non-volatile memory at non-deterministic

points in time. Persistent barriers (pfence instructions) can be used to enforce epoch ordering by

introducing a new epoch in the persistent buffer; whilst persistent syncs (psync instructions) can
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be used to enforce the unbuffering of all pending persists to the memory and draining the persistent

buffer. As before, when a thread reads from a location, it first inspects its own buffer. If it contains

buffered writes for that location, then the value of the last buffered write to that location is read;

otherwise, it consults the persistent buffer. Similarly, if the persistent buffer contains buffered stores

for that location, then the value of the last buffered store to that location in the latest epoch is read;

otherwise the thread consults the main memory.

The Declarative PTSO Model. We describe a general framework for declarative concurrency

models in the context of persistent memory. We then present PTSO as an instance of this general

definition. To model crashing programs, we define an execution chain E as a sequence G1; · · · ;Gn ,

with each Gi describing an execution era between two adjacent crashes. Each execution era Gi
denotes the traces of shared memory accesses generated by the program in that era. As is standard

in the literature of declarative concurrency models, each Gi comprises a set of memory events (the

Gi nodes), and a number of relations on events (the Gi edges). To capture the orderings imposed

by persistent barrier and sync instructions, each Gi includes a ‘non-volatile-order’ relation, nvo,
constraining the persist order of write/update events.

2.2 Correctness of Persistent Libraries
Implementing and verifying concurrent libraries is a challenging undertaking. Traditionally, the

library implementer is tasked with ensuring the underlying library state (e.g. a queue) remains

consistent (e.g. the queue maintains its FIFO property), when accessed by multiple threads simulta-

neously. This is achieved via a suitable synchronisation mechanism, such as transactions, locks or

atomic instructions, to control the concurrent accesses to shared data. On the other hand, the library

verifier is tasked with identifying the appropriate proof techniques to formalise and establish the

desired consistency guarantees. One well-known such technique is that of linearisability proofs as

proposed by Herlihy and Wing [1990], and has been extensively used in the verification literature.

Both tasks of implementing and verifying concurrent libraries are further compounded in the

presence of non-volatile hardware. Library implementers must ensure the library state remains both

consistent and persistent in the presence of crashes. This in turn requires a clear understanding of

the persistent ordering guarantees afforded by the underlying hardware. The library verifiers must

accordingly adapt their arsenal of formal techniques to establish the desired persistence properties.
In order to reason about the correctness of persistent library implementations, Izraelevitz et al.

[2016b] introduced the notion of buffered durable linearisability as an extension of linearisability

under buffered epoch persistency.

Linearisability. In traditional linearisability proofs, a library call is represented by two call events,
inv and ack, referred to as a matching pair, corresponding to the call invocation (making the call)

and acknowledgement (returning from the call). The traces of library client programs are then

represented as histories or sequences of events. As the library is concurrently accessed by multiple

threads, in a history the inv and ack events of a call by one thread may be interleaved with those

of others. Intuitively, a history H is sequential if the events of a matching pair are not interleaved

by other call events in H . A history H is linearisable if: 1) H can be extended (completed) to some

history Hc (by appending zero or more ack events); 2) Hc can be truncated to a history Ht by

removing every inv in Ht without a matching ack; and 3) Ht is equivalent to a legal sequential
history Hs that preserves the ‘real-time’ ordering of calls in H . Intuitively, extending H to Hc
captures the notion that a pending inv may have taken effect even though its matching ack has

not yet been returned to the caller. Truncating Hc to Ht captures the notion that the remaining

pending invocations have not yet had an effect. The notion of legal histories is library-specific;

e.g. the FIFO property of queue histories. In the context of weak memory models, the ‘real-time’
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1. c.inc(v) ≜
2. pc:= getPC(); t:= getTC();
3. m:= max(v,0); lock(c); o:= c.val;
4. map[t][pc]:= o+m; pfence;
5. if (v > 0) {
6. c.val:= o+v; pfence;
7. } unlock(c); return o;

8. getProgress(t) ≜
9. pc:= -1; v:=⊥;
10. while (map[t][pc+1] !=⊥) {
11. pc++; v:= map[t][pc]; }
12. return (pc,v);

13. recover() ≜
14. // check that map and c are initialised;

15. // code redacted

16. for(t in P) {
17. (pc,v):= getProgress(t);
18. if (pc>=0 && c.val>=v)
19. P’[t]:= sub(P[t],pc+1);
20. else if (pc>=0)
21. P’[t]:= sub(P[t],pc);
22. else P’[t]:= P[t];
23. }
24. run(P’);

Fig. 2. A persistent counter implementation and its recovery mechanism with persistence code in blue

order in the linearisability definition is replaced with the weaker ‘happens-before’ order, defined

specifically for the model considered.

Persistent linearisability. Buffered durable linearisability [Izraelevitz et al. 2016b], henceforth

persistent linearisability, captures the notion of linearisability under (buffered) epoch persistency.

When the execution of a library client program crashes n−1 times, its execution comprises n eras,
where an era spans the execution period between two adjacent crashes. As such, when the execution

crashes n−1 times, its trace is given by a history chainH1; · · · ;Hn , with eachHi denoting the history

in the ith era. Due to the asynchronous nature of persists in buffered epoch persistency, in each

era (except the last) only a subset of stores may persist prior to the crash. As such, a history chain

H1; · · · ;Hn is persistently linearisable if there exist P1 · · · Pn−1 such that: (i) each Pi is a sub-history
(prefix) of Hi ; and (ii) P1 · · · Pn−1;Hn is linearisable. This captures the notion that those events in

the portion of Hi after Pi were buffered but not persisted before the crash.

In what follows, we present a persistent implementation of a pedagogical counter and describe

intuitively how we can show its correctness by constructing a persistent linearisability proof.

2.2.1 A Persistently Linearisable Counter in PTSO. In Fig. 2 we present a persistent implementation

of a simple counter library (left) and its recovery mechanism (right), discussed shortly. We consider

a counter library with a single operation, inc(v), for incrementing the value of the counter by

v, where v is non-negative. We use a coarse-grained lock to control concurrent accesses to the

counter. A counter at location c thus comprises two components, represented as two adjacent cells:

(i) the counter lock at c; and (ii) the counter value at c+1, written c.val.
The lock on c is acquired by calling lock(c); dually, the lock on c is released by calling

unlock(c). The lock implementation is straightforward and is elided here; we present the lock im-

plementation later in §4.1. Ignoring the code in blue, the inc(v) implementation is straightforward.

A call to inc(v) acquires the counter lock, increments its value by v (when v is non-negative), and

finally releases the lock, returning the old value of the counter. That is, m=max(v,0) denotes the

increment value as either v when v is non-negative, or 0 when v is a negative value.

Simplifying Assumptions. We assume that a given counter client program P is of the form

c0 | | · · · | |ck , where each ci is of the form oi
0
; · · · ;oil , and each o

i
j is a counter operation (i.e. inc). We

thus represent each ci as an array Ci of length l+1, with each Ci [j] = oij . We then represent P as an
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array of length k+1 at location P, with P[i] = Ci .1 A client program P is executed by calling run(P).
A call to run(P) spawns k+1 threads τ0 · · · τk and sets up their contexts, with each τi executing
Ci . We further assume that the context of each thread τi is set up such that: (1) a call to getTC()
returns i; and (2) a call to getPC() returns the ‘progress counter’ (or ‘program counter’), namely

the index of the counter operation in Ci currently under execution (i.e. j when executing oij ).

Persistence of inc. To ensure correct crash recovery, our implementation must defensively

account for the possibility of a crash at each program point. To do this, we record the relevant

metadata for tracking the progress of each thread in a map of length k+1 at map, one entry per

thread. When the ith thread contains l+1 instructions (i.e. ci is of the form oi
0
; · · · ;oil ), then the map

entry associated with thread τi (i.e. map[i]) is an array of length l+1, with one entry per instruction.

When τi executes its j
th
increment operation inc(v)with m=max(v,0), then map[i][j] is updated

to (o+m), where o denotes the value of the counter immediately before the increment; i.e. o+m
denotes the counter value right after the increment. This is done on line 4, where the subsequent

pfence instruction ensures that the thread metadata does not lag behind its progress. As we

describe shortly, upon recovery we use map[i] to assess the progress of τi after a crash. The map
initialisation code is redacted here; for each thread τi the map[i] is initialised with a ⊥-array (an

array where all entries are ⊥) to denote that no thread has made any progress yet.

Recovery. After a crash, a client program is restored by triggering a recovery mechanism. The

recovery mechanism of the counter client programs is given by recover() in Fig. 2. Executing

recover() restores the progress of threads by generating a new program P’, where each P’[i]
entry is a suffix of the original program in P[i]. The progress of the ith thread τi is assessed
by calling getProgress(i) on line 17. A call to getProgress(i) traverses the array at map[i],
inspecting each entry in turn to locate the latest non-⊥ value. That is, if getProgress(i) returns

(pc,v) then: (1) the effects of the first pc−1 inc operations of thread τi have persisted prior to

the last crash; (2) the pcth inc operation of τi is of the form inc(w) for some w, o and m such that

m = max(w,0) and v = o+m; and (3) the effect of this pcth inc operation may or may not have

persisted prior to the last crash. As such, if the current counter value (persisted before the crash)

is greater than or equal to v, then the effect of the pcth inc operation has persisted prior to the

crash and thus thread progress can be advanced to pc+1. This is done on line 19 by setting P[i]
to sub(P[i],pc+1), i.e. the suffix (subarray) of P[i] starting at pc+1. On the other hand, if the

counter value is less than v, then the effect of the pcth inc operation has not persisted and thus

the progress is restored to pc (line 21). Lastly, if pc<0 then τi has made no progress prior to the

crash and hence it must execute P[t] from the start (line 22).

Constructing Histories for Persistent Linearisability. The typical way of proving a library im-

plementation linearisable is to locate the linearisation points of each operation implementation.

The linearisation points are points in the implementation source code which, when executed, are

deemed to perform the entire observable effect of the operation instantaneously, and thus define

the order in which the concurrent library operations are to be linearised. For instance, in our im-

plementation inc has two linearisation points depending on the value of v: (i) if v is non-negative,

the linearisation point is on line 6, i.e. when the counter is incremented; (ii) if v is negative, the

linearisation point is on line 3, when the counter value is read.

To identify a linearising historyHs ofH , recall that we must first completeH toHc (by extending

it with zero or more acknowledgement events), completing those pending invocations that have

taken effect (executed their linearisation points) even though their matching acks have not yet been

1
Note that we do not make assumptions about the thread IDs; nor do we assume that recovery restores the same threads

(with same IDs). Rather, as the number of threads in P is known in advance, each thread is distinguished by its index in P.
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reached. We then truncate Hc to Ht by removing the pending invocations that have not yet had an

effect (not reached their linearisation points). Linearisation points can be used to decide Hc and Ht
for persistent linearisability as follows. For each library invocation event inv without a matching ack
event: (i) if its linearisation point is persisted before the crash, the matching ack is added to Hc ; and

(ii) if its linearisation point is not persisted, the inv is removed from Ht . Finally, we must construct

a sequential history Hs that enumerates the library events in Ht . As each inc operation acquires

the counter lock at the beginning, this global lock acquisition imposes a total ‘happens-before’

order on the execution of inc operations in Ht . Using this global order, we can thus construct a

sequential history Hs that enumerates the library events in Ht in the ‘happens-before’ order.

Persistent Programming Pattern. While developing the persistent counter in Fig. 2, as well as the

persistent queues presented later in §4 and §5, we noted that our persistent implementations all

follow a certain pattern. More concretely, the implementation of each library operation (e.g. inc)
adheres to the same structure as follows: (1) update the metadata for tracking the progress of the

executing thread; (2) execute a pfence instruction; (3) carry out the effect of the library operation;

(4) execute a pfence instruction. For instance, given the implementation of inc in Fig. 2, steps (1)

and (2) correspond to lines 2-4; whilst steps (3) and (4) correspond to lines 5-6. We believe that this

pattern can be used to develop implementations of other concurrent libraries in the presence of

persistent hardware. In particular, the first two steps ensure that the recovery metadata of each

thread does not lag behind its progress; conversely, the last two steps ensure that the progress of

each thread does not lag behind its recovery metadata. Therefore, when executing the recovery

mechanism (recover()) upon crash recovery, the persisted progress of each thread τ may at most

be one step behind its persisted metadata. As such, it suffices to ascertain whether the effect of

the last recorded instruction for τ has persisted and to restore the progress of τ accordingly. For

instance, in the recovery mechanism of the counter implementation in Fig. 2, for each thread τ it

suffices to check if the effect of the last recorded pc value (obtained on line 17) has persisted and to

restore the progress of τ to either pc+1 or pc, as required.

Lifting the Simplifying Assumptions. As discussed on page 7, we assume that our client programs

are of a certain shape. This in turn allows us to use a simple progress counter pc to record the

necessary metadata for tracking how far a thread has advanced along its execution. However,

in a more realistic system, one needs to lift these simplifying assumptions and adapt metadata

maintenance accordingly. For instance, one way to achieve this is to log the call stack of each thread

to ensure correct recovery. However, as we demonstrated, programming under persistent memory

is subtle even when ignoring the details of how recovery metadata is maintained. As our aim here

is to highlight these subtleties, we opt for our simplifying assumptions to streamline metadata

maintenance and avoid distracting the reader with the specifics of a particular maintenance strategy.

3 THE PTSO MEMORY MODEL: EPOCH PERSISTENCY FOR TSO
We describe a simple programming language for TSO; we then extend it with persistence primitives

to obtain a language for PTSO. We present the PTSO operational semantics in §3.1; and present the

PTSO declarative semantics in §3.2. We establish the equivalence of the two semantics in §3.3.

A Programming Language for TSO. To keep our presentation concise, we employ a simplified

concurrent programming language as given in Fig. 3, ignoring the highlighted fragments. We

assume a finite set Loc of memory locations; a finite set Reg of registers (local variables); a finite

set Val of values; a finite set TId of thread identifiers; and any standard interpreted language

for expressions Exp containing at least registers and values. We use x, y, z as metavariables for

locations; v for values; τ for thread identifiers; and e for expressions. The sequential fragment of
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Basic domains
x ∈ Loc Memory locations

a ∈ Reg Registers

v ∈ Val Values

τ ∈ TId Thread identifiers

Programs
P ∈ Prog ≜ TId

fin

→ Com

Expressions and sequential commands
Exp ∋ e ::=v | a | e+e | · · ·

Com ∋ c ::= skip | if (e) then c else c | while (e) do c
| c; c | a:= e | a:= x | x:= e | fence
| a:=CAS(x, e, e) | a:= FAA(x, e)
| pfence | psync | recover

Fig. 3. A simple concurrent programming language extended with persistence primitives as highlighted

the language is given by the Com grammar and includes the standard constructs of skip (no-op),

conditionals, loops, sequential composition, and local variable assignment. The a:= x denotes an

atomic memory read from location x; similarly, the x:= e denotes an atomic memory write to
location x. The fence denotes a memory barrier instruction. As discussed above, when thread τ
encounters a fence instruction, the store buffer of τ is flushed to memory, unbuffering all pending

writes. The a:=CAS(x, e, e ′) denotes the atomic ‘compare-and-swap’ operation, where the value

of location x is compared against e: if the values match then the value of x is set to e ′ and 1 is

returned in a; otherwise x is left unchanged and 0 is returned in a. Analogously, the a:= FAA(x, e)
denotes the atomic ‘fetch-and-add’ operation, where the value of location x is incremented by e
and its old value is returned in a. The CAS and FAA are collectively known as atomic update or
RMW (‘read-modify-write’) instructions. Upon their execution, the memory content of a location

is read and subsequently modified depending on its old value. To ensure their atomicity, RMW

instructions act as memory barriers and may only proceed when the store buffer of the executing

thread is flushed of all pending writes. Moreover, the resulting update is committed directly to the

memory, bypassing the thread buffer. This is to ensure that the resulting update is immediately

visible to other threads. Note that the behaviour of update instructions with respect to thread

buffers differs from that of write instructions: writes are added to the thread buffer; updates bypass

the thread buffer and flush it of pending writes. Lastly, we model a multi-threaded program P
as a function mapping each thread to its (sequential) program. We write P = c1 | | · · · | |cn when

dom(P) = {τ1 · · · τn} and P(τi ) = ci .

A Programming Language for PTSO. As presented in Fig. 3, the programming language of PTSO is

that of TSO, extended with persistence primitives, namely persistent barrier (pfence) and persistent
sync (psync) instructions. As discussed in §2.2, when a program crashes it restarts a recovery

mechanism. The recovery mechanism is program-specific and must be provided alongside the

program itself. For instance, the recovery program for a database may choose to roll-back or

roll-forward those queries rendered incomplete due to a crash. To model this, we extend our

programming language with an abstract recovery instruction, recover, which is to be executed

after a program crash. Later in §4, we present a recovery mechanism for two different queue

libraries.

Formalising the PTSO Memory Model. Sewell et al. [2010] described the TSO semantics both

operationally via a small-step transition system, and declaratively via execution graphs. They then

established the equivalence of the two semantics. Inspired by their formalism, in §3.1 we revisit

their operational semantics and describe how we extend it to support epoch persistency. Later in

§3.2, we similarly extend their declarative semantics for epoch persistency. In §3.3 we establish the

equivalence of our two semantics by means of an intermediate transition system.
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3.1 The PTSO Operational Semantics
We describe the PTSO operational semantics by separating the transitions of its program and storage
subsystems. The former describe the steps in program execution, e.g. how and when a conditional

branch is triggered. The latter describe how the storage subsystem (comprising the non-volatile

memory, the persistent buffer and per-thread buffers as depicted in Fig. 1b) determine the execution

steps, whilst simultaneously being updated by the transitions. The PTSO operational semantics is

then defined by combining the transitions of the program and storage subsystems.

3.1.1 Program Transitions. The transitions of the PTSO program subsystem are given in Fig. 4a.

Program transitions are defined in terms of the transitions of their constituent threads. Thread

transitions are of the form: c, s
τ :l
−−→ c′, s′, where c, c′ ∈ Com denote sequential programs as described

by the grammar in Fig. 3. The s, s′ ∈ Store denote variable stores, mapping local variables (registers)

to their associated values. The τ :l marks the transition by recording the identifier of the executing

thread τ , as well as the transition label l. A label may be: ϵ , to denote silent transitions of no-ups;

R(x,v) to denote reading v from location x; W(x,v) to denote writing v to location x; U(x,v,v ′) to

denote a successful update (RMW) instruction modifying x to v ′
m when its value matches v ; F to

denote the execution of a memory barrier; PF to denote the execution of a persistent barrier; and

PS to denote the execution of a persistent sync. The thread transition can thus be read as, given

variable store s, thread τ can take an l step to reduce c to c′, whilst updating the variable store to s′.
Most thread transitions are standard; all but the highlighted transitions are identical to their TSO

counterparts. The (T-CAS0) transition describes the reduction of a ‘compare-and-swap’ instruction

a:=CAS(x, e, e ′) when unsuccessful; i.e. when the value read (v) is different from s(e). Accordingly
the value of a in the store is updated to 0, reflecting the failed CAS. The (T-CAS1) transition

dually describes the reduction of a CAS instruction when successful. Note that in the failure case,

as no update takes place, the transition is marked with a read label R(x,v) and not an update

label as in the success case. The (T-FAA) transition can be described analogously. The (T-Fence)

transition describes the execution of a memory barrier (fence) instruction, reducing to skip with

label F, leaving the variable store unchanged. Similarly, the highlighted (T-PFence) and (T-PSync)

transitions describe the execution of persistence primitives pfence and psync.

Program transitions are of the form: P, S
τ :l
−−→ P′, S′, where P,P′ ∈ Prog denote multi-threaded

programs as defined by the grammar in Fig. 3. The S, S′ ∈ SMap denote variable store maps,
associating threads with their variable stores. Program transitions are described by simply lifting

the transitions of their constituent threads.

3.1.2 Storage Transitions. The transitions of the PTSO storage subsystem are given in Fig. 4b

and are of the form:M,PB,B
τ :l
−−→ M′,PB′,B′

. TheM,M′ ∈ Mem denote the non-volatile memory,
modelled as a (finite) map from locations to values. The PB,PB′ ∈ PBuff denote the persistent
buffer, represented as a sequence (FIFO queue) of persistent sub-buffers. Each persistent sub-buffer,

pb ∈ PSBuff, captures an epoch and is modelled as a (finite) map associating each location with a

sequence of values. The B,B′ ∈ BMap denote the buffer map, associating each thread with its buffer.
Lastly, a buffer, b ∈ Buff, is modelled as a sequence of location-value pairs.

Recall that when a thread reads from a location x, it first consults its own buffer, followed by

the persistent buffer (if no write to x was found in the thread buffer), and finally the non-volatile

memory (if no store to x was found in the thread buffer or the persistent buffer). This lookup

chain is captured by the read(M,PB,B(τ ), x) function in the premise of the (M-Read
*
) transition.

The definition of the read(M,PB,B(τ ), x) function is given at the bottom of Fig. 4b. The PTSO
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Per-thread transitions: Com × Store

TId:Lab

−−−−−−−→ Com × Store s ∈ Store ≜ Reg

fin

⇀ Val

Program transitions: Prog × SMap

TId:Lab

−−−−−−−→ Prog × SMap S ∈ SMap ≜ TId

fin

→ Store

l ∈ Lab ≜
{
ϵ, R(x,v), W(x,v), U(x,v,v ′), F, PF, PS x ∈ Loc ∧v,v ′ ∈ Val

}
s(e),0 ⇒ c=c1 s(e)=0 ⇒ c=c2

if (e) then c1 else c2, s
τ :ϵ
−−−→ c, s

(T-If)

c1, s
τ :l
−−→ c′

1
, s′

c1; c2, s
τ :l
−→ c′

1
; c2, s′

(T-Seq1)

skip; c, s
τ :ϵ
−→ c, s

(T-Seq2)

while (e) do c, s
τ :ϵ
−−−→ if (e) then (c;while (e) do c) else skip, s

(T-While)

s′ = s[a 7→ s(e)]

a:= e, s
τ :ϵ
−→ skip, s′

(T-ReadL)

s′=s[a 7→ v]

a:= x, s
τ :R(x,v)
−−−−−→ skip, s′

(T-Read)

x:= e, s
τ :W(x,s(e))
−−−−−−−→ skip, s

(T-Write)

v , s(e) s′ = s[a 7→ 0]

a:=CAS(x, e, e ′), s
τ :R(x,v)
−−−−−−−→ skip, s′

(T-CAS0)

s′ = s[a 7→ 1]

a:=CAS(x, e, e ′), s
τ :U(x,s(e),s(e ′))
−−−−−−−−−−−−−→ skip, s′

(T-CAS1)

s′ = s[a 7→ v]

a:= FAA(x, e), s
τ :U(x,v,v+s(e))
−−−−−−−−−−−−−→ skip, s′

(T-FAA)

fence, s
τ :F
−−→ skip, s

(T-Fence)

pfence, s
τ :PF
−−→ skip, s

(T-PFence)

psync, s
τ :PS
−−→ skip, s

(T-PSync)

P(τ ), S(τ )
τ :l
−−→ c, s

P, S
τ :l
−→ P[τ 7→ c], S[τ 7→ s]

(P-Step)

(a) Program transitions in PTSO

Storage transitions: Mem × PBuff × BMap

TId:Lab

−−−−−−−→ Mem × PBuff × BMap

read(M,PB,B(τ ), x) = v

M,PB,B
τ :R(x,v)
−−−−−−−→ M,PB,B

(M-Read
*
)

M,PB,B
τ :W(x,v)
−−−−−−−→ M,PB,B[τ 7→ (x,v).B(τ )]

(M-Write)

B(τ )=ϵ PB=pb.PB′ read(M,PB, ϵ, x)=vr

M,PB,B
τ :U(x,vr ,vw )
−−−−−−−−−−−→ M, pb[x 7→ vw .pb(x)].PB′,B

(M-RMW
*
)

B(τ ) = ϵ

M,PB,B
τ :F
−→ M,PB,B

(M-Fence)

B(τ ) = b.(x,v) PB = pb.PB′′ PB′ = pb[x 7→ v .pb(x)].PB′′

M,PB,B
τ :ϵ
−−−→ M,PB′,B[τ 7→ b]

(M-BProp
*
)

PB = PB′.pb pb(x) = S .v

M,PB,B
τ :ϵ
−−−→ M[x 7→ v],PB′.(pb[x 7→ S]),B

(M-PBProp)
PB , ϵ

M,PB.pb
0
,B

τ :ϵ
−−−→ M,PB,B

(M-PBPropE)

B(τ ) = ϵ

M,PB,B
τ :PF
−−−→ M, ϵ .PB,B

(M-PFence)

B(τ ) = ϵ PB = pb
0

M,PB,B
τ :PS
−−−→ M,PB,B

(M-PSync)

with

M ∈ Mem ≜ Loc

fin

→ Val

PB ∈ PBuff ≜ Seq ⟨PSBuff⟩

pb ∈ PSBuff ≜ Loc

fin

→ Seq ⟨Val⟩

B ∈ BMap ≜ TId

fin

→ Buff

b ∈ Buff ≜ Seq ⟨Loc × Val⟩

and pb
0
≜ λx.ϵ

read(M,PB, b, x) ≜


v if rdb(b, x) = v
v if rdpb(PB, x) = v
M(x) otherwise

rdb((y,v).b, x) ≜

{
v if x=y
rdb(b, x) otherwise

rdb(ϵ, x) undef

rdpb(pb.PB, x) ≜

{
v if ∃s . pb(x) = v .s
rdpb(PB, x) otherwise

rdpb(ϵ, x) undef

(b) Storage transitions in PTSO where starred* rules denote those changed from their TSO counterparts

Fig. 4. The program and storage transitions in PTSO with persistence extensions highlighted
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Operational semantics: Prog × SMap ×Mem × PBuff × BMap ⇒ Prog × SMap ×Mem × PBuff × BMap

P, S
τ :ϵ
−−−→ P′, S′

P, S,M,PB,B ⇒ P′, S′,M,PB,B
(SilentP)

P, S
τ :l
−−→ P′, S′ M,PB,B

τ :l
−−→ M′,PB′,B′

P, S,M,PB,B ⇒ P′, S′,M′,PB′,B′
(Step)

M,PB,B
τ :ϵ
−−−→ M′,PB′,B′

P, S,M,PB,B ⇒ P, S,M′,PB′,B′
(SilentM)

P, S,M,PB,B ⇒ recover, S0,M,PB0,B0
(Crash)

with S0 ≜ λτ .∅, B0 ≜ λτ .ϵ and PB0 ≜ pb
0
.

Fig. 5. The PTSO operational semantics with thread and storage transitions in Fig. 4

(M-Read
*
) differs from its TSO counterpart transition in that the TSO lookup chain does not contain

the persistent buffer, but rather the relevant thread buffer and the volatile memory.

As described earlier, when a thread writes value v to a location x, this is recorded in its buffer as

the (x,v) pair. This is captured by the (M-Write) transition. In the (M-RMW
*
) transition, when

executing an RMW instruction on location x (i.e. a CAS or FAA) a similar lookup chain is followed

to determine the value of x, as with a read. Recall that RMW instructions act as memory barriers. As

such, the execution of an RMW may proceed only when the thread buffer is drained, as stipulated

by the premise B(τ )=ϵ . Moreover, the resulting update is committed directly to the persistent buffer,

bypassing the thread buffer. This is to ensure that the resulting update is immediately visible to

other threads. The difference between (M-RMW
*
) and its TSO analogue lies in the lookup chain (as

described above), and in committing the update to the persistent buffer, rather than the memory.

The (M-Fence) transition describes the execution of a memory barrier by ensuring that the buffer

of the executing thread is fully drained (B(τ )=ϵ). Analogously, the (M-PFence) transition describes

the execution of a persistent barrier by introducing a new empty epoch ϵ and appending it to the

existing ones. Recall that when thread τ executes a persistent barrier, it ensures that all stores prior

to the barrier (in program order) are persisted before all those following the barrier. How are we

then to ensure this for those writes in the thread buffer, not yet flushed to the persistent buffer?

To this end, the execution of a persistent barrier requires that the thread buffer be drained and

thus acts as a memory barrier. The (M-PSync) transition describes the execution of a persistent

sync by ensuring that the persistent buffer is fully drained (PB=pb
0
). That is, the persistent buffer

comprises a single empty sub-buffer (epoch) captured by pb
0
. The empty sub-buffer pb

0
is defined

at the bottom of Fig. 4b and associates each location with an empty sequence. Note that ensuring

that the persistent buffer is empty has the same effect as issuing a new epoch. As such, a persistent

sync additionally mimics a persistent barrier. Recall that when a thread executes a persistent sync,

it ensures that all stores prior to the sync (in program order) are persisted before proceeding with

the execution. As such, in order to ensure that the pending writes in the thread buffer are persisted,

the execution of a persistent sync requires that the thread buffer be drained and thus acts as a

memory barrier. That is, a persistent sync subsumes both a memory barrier and a persistent barrier.

The (M-BProp
*
) describes the non-deterministic propagation of pending writes in a thread buffer

to the latest epoch in the persistent buffer. The PTSO (M-BProp
*
) differs from its TSO counterpart

in that the pending writes in a thread buffer are written back to the persistent buffer and not to

the memory. Analogously, the (M-PBProp) describes the propagation of stores in the persistent

buffer to the main memory. Note that as described earlier, epochs are propagated in FIFO order.

Moreover, in each epoch, the stores to the same location are propagated in FIFO order. However,

the stores to different locations in an epoch are not ordered and may be propagated in any order.

Lastly, the (M-PBPropE) describes a silent transition where a drained (empty) epoch is evicted from

the persistent buffer.
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3.1.3 Combined Transitions. The PTSO operational semantics is defined by combining the transi-

tions of the program and storage subsystems, as presented in Fig. 5. The (SilentP) rule describes

the case when the program subsystem takes a silent step and thus the storage subsystem is left

unchanged. Analogously, the (SilentM) rule describes the case when the storage subsystem takes a

silent step and hence the program remains unchanged. The (Step) rule describes the case when the

program and storage subsystems both take the same transition (with the same label) and thus the

transition effect is that of their combined effects. Lastly, the (Crash) rule describes the case when

the program crashes: the execution is restarted with the recovery program recover; the memory is

left unchanged as it is non-volatile; the variable stores and buffers of all threads are lost and are

thus reset to empty; and the persistent buffer is similarly reset to a single empty epoch.

3.2 The PTSO Declarative Semantics
We describe a framework for declarative concurrency models in the context of persistent memory.

We then present PTSO as an instance of this general definition.

Notation. Given a relation r on a set A, we write r?, r+ and r∗ for the reflexive, transitive and
reflexive-transitive closure of r, respectively. We write r−1 for the inverse of r; r|A for r∩(A×A); [A]
for the identity relation on A, i.e.

{
(a,a) a ∈ A

}
; irreflexive(r ) for ∄a. (a,a) ∈ r ; and acyclic(r) for

irreflexive(r+). Given two relations r1 and r2, we write r1; r2 for their (left) relational composition,

i.e.

{
(a,b) ∃c . (a, c) ∈ r1 ∧ (c,b) ∈ r2

}
. Lastly, when r is a strict partial order, we write r|imm for the

immediate edges in r:
{
(a,b) ∈ r ∄c . (a, c) ∈ r ∧ (c,b) ∈ r

}
.

Definition 1 (Events). An event is a tuple ⟨n,τ , l⟩, where n ∈ N is an event identifier, τ ∈ TId is a

thread identifier, and l ∈ Lab is an event label as defined in Fig. 4a.

We typically use a, b and e to range over events. The functions tid, lab, typ, loc, valr and
valw respectively project the thread identifier, label, type (in

{
R, W, U, F, PF, PS

}
), location, and

read/written values of an event, where applicable. Given a relation r on events, we write rx for{
(a,b) ∈ r loc(a)=loc(b)=x

}
. Similarly, given a setA of events, wewriteAx for

{
a ∈ A loc(a)=x

}
.

Execution Chains and Execution Graphs. In the literature of declarative models, the traces of

shared memory accesses generated by a program are commonly represented as a set of execution
graphs, where each graph G comprises: (i) a set of events denoting the nodes of the graph; and

(ii) a number of relations on events, denoting the sundry edges of the graph. It is common practice

to consider complete executions only, i.e. those that do not fail (crash) and terminate successfully.

However, this latter assumption renders this model unsuitable for capturing the crashing behaviour

of executions in presence of persistent memory. Instead, we model an execution chain E as a

sequence G1; · · · ;Gn , with each Gi describing an execution era between two adjacent crashes.

More concretely, when an execution of program P crashes n−1 times, we model this as the chain

E = G1; · · · ;Gn , where (1)G1 describes the initial era between the start of execution up to the very

first crash; (2) for all i ∈ {2 · · ·n−1}, Gi denotes the i
th
execution era, recovering from the (i−1)st

crash; and (3) Gn describes the final execution era terminating successfully.

Definition 2 (Execution graphs). An execution graph,G , is a tuple (E0, EP , E, po, rf, vo, nvo), where:
• E0 is a set of initialisation events, comprising a single event with label W(x,v), for each location
x ∈ Loc, where v ∈ Val.

• EP is a set of persistent events with E0 ⊆ EP .
• E is a set of eventswith EP ⊆ E. The set of read events in E is denoted by R ≜

{
e ∈ E typ(e)=R

}
;

the sets of write eventsW , update events U ,memory barrier events F , persistent barrier events
PF and persistent sync events PS are defined analogously.
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• po ⊆ E × E denotes the ‘program-order’ relation, defined as a disjoint union of strict total

orders, each ordering the events of one thread, with E0 × (E \ E0) ⊆ po.
• rf ⊆ (W ∪ U ) × (R ∪ U ) denotes the ‘reads-from’ relation between store and lookup events of

the same location with matching values; i.e. (a,b) ∈ rf ⇒ loc(a)=loc(b) ∧ valw(a)=valr(b).
Moreover, rf is total and functional on its co-domain, i.e. every lookup event is related to

exactly one store event.

• vo ⊆ E × E is the ‘volatile-order’, defined as a strict partial order with E0 × (E \ E0) ⊆ vo.
• nvo ⊆ E×E is the ‘non-volatile-order’, defined as a strict partial order with E0×(E \E0) ⊆ nvo.

In the context of an execution graph G – we often use the “G .” prefix to make this explicit –

the persistent events EP include those events whose effects (if any) have reached the non-volatile

memory; e.g. those stores that have persisted. As discussed earlier, the ‘volatile-order’ vo constrains
the visible order of loads and stores to the volatile memory (i.e. allowable visible memory states)

between processors or cores. For instance, the ‘total-store-order’ in case of the TSO memory model

constitutes the vo order in TSO. Analogously, the ‘non-volatile-order’ nvo constrains the visible
order in which stores are committed to the persistent memory.

Definition 3 (Execution chains). An execution chain E is a sequence G1; · · · ;Gn of execution

graphs such that for each i ∈ {1, · · · ,n−1} and Gi = (E0i , E
P
i , Ei , poi , rfi , voi , nvoi ):

• ∀x ∈ Loc. ∃w . w ∈ E0
1
∧ lab(w)=W(x, 0)

• ∀x ∈ Loc. ∃w,v . w ∈ E0i+1 ∧ lab(w)=W(x,v) ∧ ∃e ∈ max
(
nvoi |EPi ∩(U x∪W x)

)
. valw(e)=v ;

• EPn = En .

The first constraint ensures that in the first era all locations are initialised with value 0; similarly,

the second constraint ensures that in each subsequent i+1st era all locations are initialised with a

value persisted by a store in the previous (ith) era maximally (in nvoi order). The last constraint
ensures that the execution of the final era is complete (does not crash) by stipulating that all its

events be durable (persistent). That is, we assume that in the absence of a crash, all memory events

are eventually persisted.

In the literature of declarative concurrency models, the set of execution graphs associated with

a program can be defined straightforwardly by induction on the structure of programs (see e.g.

[Vafeiadis and Narayan 2013]). Analogously, the set of execution chains associated with a given

program in persistent settings can be defined by induction on the number of execution eras. For each

era, the set of execution graphs can be defined by induction over the structure of programs and their

associated recovery mechanisms. Each execution of a program P has a particular program outcome,
prescribing the final values of local variables in each thread. In the definition above, the execution

outcomes are almost unrestricted as there are very few constraints on the constituent execution eras

and their respective po, rf, vo and nvo relations. Such restrictions and thus the permitted outcomes

of a program are determined by defining the set of valid execution chains, defined specifically for

the model under consideration. In what follows, we define the set of PTSO-valid executions.

Definition 4 (PTSO-validity). An execution chain E = G1; · · · ;Gn is PTSO-valid, iff each execution

graph Gi ∈ E is PTSO-valid. An execution graph G=(E0, EP , E, po, rf, tso, nvo) is PTSO-valid iff:

• tso is total on E \ R; (tso-total)

• po \ (W × R) ⊆ tso; (tso-po)

• rf ⊆ tso ∪ po; (tso-rf1)

• ∀(w, r ) ∈ rf. ∀w ′∈W ∪ U . (w ′, r ) ∈ tso ∪ po ∧ loc(w ′)=loc(r ) ⇒ (w,w ′) < tso. (tso-rf2)

• nvo is a strict total order on PE × PE, with PE=W ∪ U ∪ PF ∪ PS; (nvo-total)

• for each location x ∈ Loc, nvox ⊆ tso; (nvo-tso)
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• [PS ∪ PF]; tso; [PE] ∪ [PE]; tso; [PS ∪ PF] ⊆ nvo. (nvo-psf)

• dom(nvo; [EP ]) ⊆ EP ; (nvo-pre)

• R ∪ F ∪ PS ⊆ EP . (nvo-pers)

Note that in PTSO-valid execution graphs, the ‘volatile-order’ vo is given by the ‘total-store-order’
tso of the TSO memory model. For clarity, we have thus replaced vo with tso in our definition.

The (tso-total), (tso-po), (tso-rf1) and (tso-rf2) constraints are borrowed directly from those

of TSO-consistency as proposed by Sewell et al. [2010].

The (nvo-total) states that nvo totally orders those events that affect the non-volatile memory,

i.e. those events in PE. Recall that under epoch persistency, for each location x the volatile and

non-volatile memory orders (tso and nvo in PTSO) agree. This is captured by (nvo-tso).

The (nvo-psf) describes the epoch orderings imposed by persistent barriers and syncs: if the

execution of e ∈ PE is ordered with respect to that of a persistent barrier or sync, then their persists

are also accordingly ordered. The (nvo-pre) states that nvo is prefix-closed with respect to durable

(persistent) events: if an event e is durable, then all those preceding it in nvo order are also durable.

The (nvo-pers) states that the events in R ∪ F ∪ PS are always durable and are thus included

in the set of persistent events EP . In the case of PS, this is because their execution is carried

out synchronously. Once a persistent sync is executed, its effect (flushing all pending persists) is

immediately committed to the non-volatile memory. In the case of R ∪ F , their execution has no

bearing on the persistent layer (the persistent buffer and the non-volatile memory) of the system –

they leave the persistent layer unchanged – and thus their effect is vacuously durable. By contrast,

write/update events (in W ∪ U ) and persistent barrier events (in PF ) may or may not be durable. If

the program crashes before a write/update is persisted to the non-volatile memory, its effect is lost,

rendering it volatile. Similarly, if the program crashes before the epoch introduced by a persistent

barrier pf ∈ PF is flushed to non-volatile memory, the orderings imposed by pf are lost.

3.3 Equivalence of the PTSO Operational and Declarative Semantics
The PTSO operational semantics presented in §3.1 is equivalent to the PTSO declarative semantics

in §3.2. We formalise this in Thm. 1 below. We refer the reader to the technical appendix [Raad and

Vafeiadis 2018] for the full proof. To establish the equivalence of the two semantics we must show

that for all programs P, if P, S0,M0,PB0,B0 ⇒
∗ skip| | · · · | |skip, S,M,PB,B, then we can construct

a PTSO-valid execution chain E with the same program outcome (S); and vice versa.

To this end, we develop an intermediate semantics as an event-annotated transition system. More

concretely, we describe the intermediate semantics by separating the transitions of its program and

storage subsystems, as before. The transitions of the annotated program subsystem are of the form

P, S
λ
−→ P′, S′, where λ is an annotated label, recording the memory event e ∈ E (Def. 1) making the

transition. For instance, when executing a barrier instruction fence, the annotated label λ is a fence
label, F⟨f ⟩, where f ∈ F is a memory barrier event. Similarly, when executing a read instruction

a:= x, the annotate label λ is a read label, R⟨r , e⟩, where r ∈ R is a read event, and e ∈ W ∪ U is

a write/update event, denoting the event responsible for writing the value read by r . That is, e
denotes the write/update event that r reads from. Tracking the write/update events this way allows

us to construct the rf relation when constructing the corresponding PTSO-valid execution chains.

Similarly, the transitions of the storage subsystem are of the form M, PB, B
λ
−→ M ′PB′, B′

, where

M,M ′
are the event-annotated memory; PB, PB′

are the event-annotated persistent buffer ; and B, B′
are

the event-annotated buffer maps. An annotated memory M is a map from locations to write/update
events. That is, for each location x, rather than recording its value, we record the write/update

event responsible for setting x to its current value. An annotated persistent buffer PB is analogously

augmented to record the write/update events to be propagated. Mutatis mutandis for B.
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The intermediate semantics is then obtained by combining the transitions of the program and

storage subsystems. The combined transitions are of the form: P, S, M , PB, B,H , π ⇒ P′
, S′, M ′

,

PB′
, B′

,H ′
, π ′

. The π denotes the execution path in the current execution era, and is of the form

λn . · · · .λ1, modelled as a sequence of annotated labels. That is, each time the combined system

takes a λ step, the current execution path is extended by appending λ at the end. Recording the

execution path in π allows us to construct the po, tso and nvo relations of the current execution
era. The H denotes an execution history, tracking the execution paths of the previous eras. That is,

at any point during the execution, if the execution has encountered n crashes, then the history H

contains n entries, π1 · · · πn , with each πi tracking the execution path in the ith era. Recording the

history H allows us to construct the execution graphs of the previous eras.

To establish the equivalence of our two semantics we must show that: (i) the PTSO operational se-

mantics is equivalent to the PTSO intermediate semantics; and (ii) the PTSO intermediate semantics

is equivalent to the PTSO declarative semantics. Proof of part (i) is by straightforward induction on

the structure of ⇒ transitions. Proof of part (ii) is more involved. As discussed above, to construct

PTSO-valid execution chains from the intermediate semantics, we appeal to the events recorded in

the storage subsystem, as well as the order of events in execution paths and histories. Dually, to

construct the intermediate transitions with the same outcome given a PTSO-valid execution chain

E, we must construct the relevant execution path and histories given the execution eras in E and

their sundry relations. We refer the reader to the technical appendix [Raad and Vafeiadis 2018] for

the full details of the proof.

Theorem 1 (Semantics equivalence). The PTSO operational semantics in §3.1 is equivalent to the
PTSO declarative semantics in §3.2.

Proof. The full proof is given in the technical appendix [Raad and Vafeiadis 2018].

4 LINEARISABILITY FOR EPOCH PERSISTENCY
In §4.1 we present a formal definition of linearisability in the presence of non-volatile hardware.

In §4.2 we develop a persistent queue library together with its recovery mechanism in the PTSO

language, and demonstrate that our implementation is persistently linearisable.

4.1 Persistent Linearisability
Izraelevitz et al. [2016b] formulated the notion of buffered durable linearisability using abstract

executions and histories as discussed in §2.2. Here, we adapt their definition to that of execution

graphs (Def. 2). To this end, we define library events as the set of events (Def. 1) extended with

library call events, namely inv and ack events. To identify each inv and ack pair uniquely, we

assume a finite set of call identifiers, CId, ranged over by ι. The labels of matching pairs are thus of

the form I(ι,m,va) and A(ι,m,vr ), wherem denotes the name of the library operation called, va
denotes the invocation argument, and vr denotes the return value.

Definition 5 (Library events). Given a library L and its associated set of library operations
OpL ⊆ String, A library event of L is a tuple ⟨n,τ , l⟩, where n ∈ N is an event identifier, τ ∈ TId

is a thread identifier, and l ∈ Lab ∪
{
I(ι,m,va), A(ι,m,vr ) ι ∈ CId ∧m ∈ OpL ∧va ,vr ∈ Val

}
is an

event label with Lab as defined in Fig. 4a. The set of invocations I is defined as

{
e typ(e) = I

}
.

The set of acknowledgements A is defined analogously. The set of matching call pairs is defined as

Duals ≜
{
(ei , ea) ∃ι,m. lab(ei ) = I(ι,m,−) ∧ lab(ea) = A(ι,m,−)

}
.

The function cid returns the call identifier of an event. The definitions of execution graphs

(Def. 2), execution chains (Def. 3) and PTSO-validity (Def. 4) are then simply lifted to admit library

events. As such, we write e.g. library execution graph for an execution graph whose events are
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library events. Given a library execution graph G , we assume that call identifiers are unique across

matching pairs inG .E, i.e. no two invocation (acknowledgement) events have the same call identifier.

As discussed in §2.2, the ‘happens-before’ relation is commonly used in the definition of linearis-

ability in the context of weak memory models. As such, in our following definition of persistent

linearisability we use the widely-used ‘happens-before’ relation defined as hb ≜ (po∪rf)+, denoting
a strict partial order on the execution events.

Definition 6 (Persistent linearisability). A history (sequence of events) H linearises a library

execution graph G = (E0, EP , E, po, rf, vo, nvo) iff there exist Ec and Et such that:

• Ec ∈ comp(EP ) with comp(S) ≜

S
′ ⊇ S

S ′ \ S ⊆ A ∧ ∀ea ∈ S ′ \ S .
∃ei ∈ S . (ei , ea) ∈ Duals
∧∄e ′a ∈ S . (ei , e

′
a) ∈ Duals

∧∀e ′a ∈ S ′ ∩ A. cid(ea)=cid(e ′a) ⇒ ea=e
′
a

;
• Et = trunc(Ec ) with trunc(S) ≜ (I ∪ A) ∩

(
S \

{
i ∈ I ∄a ∈ S . (i,a) ∈ Duals

} )
;

• H is an enumeration of Et such that: ∀a,b ∈ Et . (a,b) ∈ hb ⇒ a ≺H b, where hb ≜ (po∪rf)+

denotes the ‘happens-before’ relation, and a ≺H b denotes that a appears before b in H ;

• H is sequential, i.e. is of the form i1;a1; · · · ; im ;am , with each (ik ,ak ) ∈ Duals.

An execution chain E = G1; · · · ;Gn of library L is persistently linearisable iff there exist H1 · · ·Hn
such that: i) each Hi linearises Gi ; and ii) H1; · · · ;Hn is a legal history of L.

Definition 7 (Library linearisability). A PTSO implementation of library L is persistently linearis-
able iff all its PTSO-valid library execution chains are persistently linearisable.

4.2 A Persistently LinearisableQueue Library in PTSO
In Fig. 6 we present a persistent implementation of a queue library (left) and its recovery mechanism

(right) in the PTSO language. We consider a queue library with two standard operations, enq(v)
and deq(), for adding and removing elements from the queue, respectively. We use a coarse-grained

lock to control concurrent accesses to the queue. The contents of the queue are stored as an array,

with the head index recorded at a designated location. A queue at location q thus comprises three

components, represented as three adjacent cells: (i) the queue lock at q, written q.lock, recording
an integer which may be 0 (when unlocked) or 1 (when locked); (ii) the queue contents at q+1,
written q.data, recording the location at which the contents array resides; and (iii) the queue head
at q+2, written q.head, recording the index of the first entry in q.data.

The lock on q is acquired by calling lock(q), where the calling thread spins until q.lock holds

0, at which point its value is atomically set to 1 (via a CAS operation). Dually, the lock on q is

released by calling unlock(q), where q.lock is set to 0. To keep our presentation simple, we

assume that the array at q.data can grow dynamically, and elide the details of array management.

Ignoring the code in blue, the enq(v) and deq() implementations are straightforward. A call to

enq(v) creates a new node n with value v, acquires the lock, traverses the queue starting at the

head q.head until it finds an empty (null) entry, inserts the new node n at this location, and

finally releases the lock. Analogously, a call to deq() acquires the lock and retrieves the head entry

at q.head (which may hold nullwhen the queue is empty) in n. If n is not null (the queue is not

empty), the head index is duly incremented by one. The lock is then released and n is returned.

As described in §2.2, we assume that client programs are of the form c0 | | · · · | |ck ; that each ci is of
the form oi

0
; · · · ;oil , where each o

i
j is a library operation (enq or deq); and that the client program

is represented as an array at P. A client program P is executed by calling run(P), with each thread

context set up as discussed in §2.2. As before, to ensure correct recovery, the metadata for tracking

the progress of each thread is recorded in a map at map.
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1. q.enq(v) ≜
2. pc:= getPC(); t:= getTC();
3. n:= newNode(v,t,pc);
4. map[t][pc]:= n; pfence;
5. lock(q); h:= q.head;
6. while (q.data[h] != null)
7. h:= h+1;
8. q.data[h]:= n;
9. pfence; unlock(q);

10. q.deq() ≜
11. pc:= getPC(); t:= getTC();
12. lock(q); h:= q.head; n:= q.data[h];
13. map[t][pc]:= n;
14. if (n != null) {
15. t’:= n.t; pc’:= n.pc;
16. map[t’][pc’]:=⊤ }
17. pfence;
18. if (n != null) {
19. q.head:= h+1; pfence; }
20. unlock(q); return n;

21. lock(q) ≜
22. while (!CAS(q.lock,0,1)) skip;

23. unlock(q) ≜ q.lock:= 0;

24. isIn(q,n) ≜
25. h:= q.head; c:= q.data[h];
26. while (c != null) {
27. if (n==c) return true;
28. else { h:= h+1; c:= q.data[h]; }
29. } return false;

30. getProgress(t) ≜
31. pc:= -1; n:=⊥;
32. while (map[t][pc+1] !=⊥) {
33. pc++; n:= map[t][pc]; }
34. return (pc,n);

35. start() ≜
36. lq:= newQueue();
37. s:= P.size; lmap:= newMap(s);
38. for (t in P)
39. lmap[t]:= newArray(P[t].size,⊥);
40. pfence;
41. q:= lq; map:= lmap; run(P);

42. recover() ≜
43. if (q==null || map==null)
44. goto start();
45. for(t in P) enq[t]:= -1;
46. unlock(q);
47. for(t in P) { // deq recovery

48. (pc,n):= getProgress(t);
49. if (pc>=0 && isDeq(P[t][pc])) {
50. if (n==null)
51. P’[t]:= sub(P[t],pc+1);
52. else {
53. if (inIn(q,n))
54. P’[t]:= sub(P[t],pc);
55. else
56. P’[t]:= sub(P[t],pc+1);
57. t’:= n.t; pc’:= n.pc;
58. enq[t’]:=max(enq[t’],pc’+1);}
59. }
60. else if (pc<0) P’[t]:= P[t];
61. }
62. for(t in P) { // enq recovery

63. (pc,n):= getProgress(t);
64. if (pc>=0 && isEnq(P[t][pc])) {
65. if (pc < enq[t])
66. P’[t]:= sub(P[t],enq[t]);
67. else if (n==⊤ || isIn(q,n))
68. P’[t]:= sub(P[t],pc+1);
69. else
70. P’[t]:= sub(P[t],pc); }
71. } run(P’);

Fig. 6. A persistent queue implementation and its recovery mechanism with persistence code in blue

Initialisation. The start() commences the execution of the client program stored at location

P by initialising the metadata necessary for crash recovery. It thus creates a new (empty) queue

at q, together with a recovery map of the relevant size (the number of threads in P) at map, and
launches the execution by calling run(P). As before, when the ith thread contains l+1 instructions
(P[i].size = l+1), then its associated map entry (i.e. map[i]) is an array of length l+1, with one

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 137. Publication date: November 2018.



137:20 Azalea Raad and Viktor Vafeiadis

entry per instruction. For each ith thread τi the map[i] entry is initialised with a ⊥-instantiated

array of the appropriate size (i.e. P[i].size) to denote that τi has made no progress as of yet.

The pfence on line 40 ensures that if the execution of start() crashes, then recovery does not

observe a partially initialised map.

Persistence of Queue Operations. Recall that we track the progress of each thread in map to ensure

correct crash recovery. In particular, when τi executes its j
th
operation, prior to carrying out the

relevant queue update, it updates map[i][j] to n, where n denotes the node being added or removed.

This is done on lines 4 and 13 of enq and deq, where the subsequent pfence instructions (lines 4

and 17) ensure that the thread metadata does not lag behind its progress.

Upon recovery, the progress of the ith thread τi is assessed by calling getProgress(i) on line 48.

A call to getProgress(i) traverses the array at map[i] in order to locate the latest non-⊥ value.

That is, if getProgress(i) returns (j,n) then: (1) the effects of the first pc−1 operations of τi have
persisted prior to the last crash; (2) the pcth operation of τi was attempting to enqueue/dequeue

node n; and (3) the effect of this pcth operation may or may not have persisted prior to the last

crash. As such, if getProgress(i) returns (j, n) and oij (the j
th
operation of τi ) is a deq, node n

may or may not have been removed by τi when the crash occurred. One can then inspect the queue

to ascertain whether the execution of oij was completed and persisted. If n is in the queue, then the

crash occurred before the removal of n was persisted and thus recovery must resume executing

τi from oij . On the other hand, if n is not in the queue, then recovery must resume τi from oij+1.

Similarly, if oij is an enq, one can in most cases determine the progress of τi by inspecting the queue.

If n is in the queue, then the crash occurred after the insertion of n was persisted and thus recovery

must resume τi from oij+1. However, if n is not in the queue, it may be the case that τi added n to

the queue, while another thread later removed n from the queue, prior to the crash.

To understand this better, consider P=q.enq(v)| | (q.deq();o1
1
;o1

2
). Let us suppose thread τ0

executing enq(v) acquires the lock before τ1, adds v to the queue and thus sets map[0][0] to n
for some n with value v. Thread τ1 later acquires the lock, executes deq() and removes n from the

queue, and subsequently crashes while executing o1
2
. Let us assume that all writes persisted before

the crash, i.e. map[0][0]=n. In this scenario, even though the execution of τ0 was finalised and

fully persisted, we cannot ascertain this by simply inspecting the queue, as n is removed by τ1.
To remedy this, the deq operations must help advance the progress of enq operations. That

is, when removing a node n, we can confirm that n was indeed added to the queue, and thus the

progress of the thread responsible for inserting it must be advanced accordingly. To this end, for

each node n added to the queue, the representation of n additionally records the metadata of the

thread responsible for adding it to the queue. More concretely, when the jth operation of τi adds
node n to the queue, as part of its representation n records: 1) the thread index i at location n+1,
written n.t; and 2) the operation index j at location n+2, written n.pc. When removing n via

deq, the implementation updates the current progress of the thread responsible for inserting n (i.e.

n.t) in map if necessary (lines 14-16). That is, when n.t = τi and n.pc = j, as τi has successfully
enqueued n via its jth operation, its current recorded progress in map[i][j] is updated to the

designated value ⊤, to indicate that the insertion of n is indeed successful. As we describe shortly,

upon recovery, when map[i][j] = ⊤ and oij (the j
th
operation of τi ) is an enqueue operation, we

can infer that the effect of oij has persisted successfully and can thus advance the progress of τi
accordingly. In the example above, this ensures that τ1 sets map[0][0] to ⊤ when removing n, thus
ensuring that recovery realises the completion of τ0 operations.
Lastly, the pfence instructions on lines 9 and 19 ensure that the thread progress does not lag

behind its recovery metadata in map. Note that the queue implementation in Fig. 6 follows the

persistent programming pattern discussed on page 9.
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Recovery. The recovery mechanism of a queue client program at location P is triggered by calling

recover(). The first two lines ensure that q and map have been initialised; otherwise start() is

called. As discussed above, the deq calls help advance the progress of their counterpart enq calls.

Analogously, the recovery program can also use the progress of deq calls prior to crash to restore

the progress of enq calls correctly. To this end, the enq array (initialised on line 45) tracks the

progress of enq calls as observed by deq calls. After releasing the queue lock, recovery restores

the progress of threads by generating a new program P’, where each P’[τi] entry is a suffix of the

original program in P[τi]. This restoration is done in two passes: first for threads executing a deq
operation prior to crash (lines 47-61), and then for those executing an enq (62-71).

Recall that the progress of thread τ prior to crash can be ascertained by calling getProgress(τ).
For each dequeuing thread τ , when getProgress(τ) returns (pc,n), if n=null (the queue was

empty when τ attempted a deq) then its effect has (trivially) persisted and thus its progress can be

advanced to pc+1. This is done on line 51 by setting P[τ] to sub(P[τ],pc+1), i.e. the subarray of

P[τ] starting at pc+1. On the other hand if n,null, then the effect of τ (removing n) may or may

not have persisted. Recall that to determine the progress of τ one can inspect the queue to ascertain

whether it contains n. This is done by calling isIn(q,n). As discussed above, the τ progress can

be restored accordingly to either pc when n is still in the queue (line 54), or pc+1 when n is not in

the queue (line 56). In both cases, we can confirm that the thread responsible for enqueuing n has

persisted past the operation inserting n. When n.t=τ ′ and n.pc=pc’, the enq[τ ′] entry is thus

set to the maximum value observed for τ ′ so far, i.e. max(enq[τ ′],pc’+1) – see line 58.

For each enqueuing thread τ , when getProgress(τ) returns (pc,n), if the progress recorded
for τ lags behind that observed by dequeuing operations (pc<enq[τ]), then progress is duly set to

enq[τ] on line 66. On the other hand, if the progress is not lagging, then the effect of τ (adding

n) may or may not have persisted. Inspecting the queue, one can then restore the τ progress

accordingly to either pc+1 when n is in the queue (line 68), or pc when n is not in the queue (line

71). Moreover, recall that dequeuing threads help advance the progress of enqueuing threads by

updating the relevant entry to the designated value ⊤. As such, when n = ⊤ (line 67), we can

deduce that the node inserted by the pcth operation has been removed by a dequeuing thread prior

to the crash, and thus the progress of τ can be advanced to pc+1 accordingly.

Lastly, for each thread τ , when getProgress(τ) returns (pc,n), observe that when pc<0 then

τ has made no progress prior to the crash and hence it must execute P[τ] from the start (line 60).

4.2.1 Persistent Linearisability of the Implementation. We demonstrate that the implementation in

Fig. 6 is persistently linearisable. To do this, we describe a proof pattern for constructing persistent

linearisation histories using linearisation points. We then present an informal argument of the

persistent linearisability of our queue implementation and state it formally as a theorem. We refer

the reader to the technical appendix [Raad and Vafeiadis 2018] for the full proof.

Constructing Histories for Persistent Linearisability. Recall that to show a library implementation

is persistently linearisable, one must show that each constituent era is persistently linearisable.

Proving that an execution era G is persistently linearisable is similar to showing it is linearisable.

Intuitively, to show an eraG is linearisable, one must identify a history that linearises its library
events (i.e. inv and ack events in G .E); whereas to show G is persistently linearisable, one must

identify a history that linearises its persistent library events (i.e. those in G .EP ).
To identify a linearising history H , recall that we must first complete EP to Ec by extending it

with zero or more acknowledgement events, completing those pending inv events that have taken

effect (executed their linearisation points) even though their matching acks have not yet been
reached. We then truncate Ec to Et by removing pending invocation methods that have not yet had

an effect (not reached their linearisation points). As discussed in §2.2, linearisation points can be
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used to decide Ec and Et for persistent linearisability as follows. For each library invocation event

inv without a matching ack event: (i) if its linearisation point is persisted (i.e. in EP ), the matching

ack is added to Ec ; and (ii) if its linearisation point is not persisted (i.e. not in EP ), the inv is removed

from Et . Finally, we must construct a sequential history H that enumerates the library events in Et .
This construction is dictated by the ‘happens-before’ relation induced by the implementation and

is thus implementation-specific.

Persistent Linearisability of the Implementation in Fig. 6. As discussed above, the construction of

linearisable histories is guided by the linearisation points. In our implementation, the enq operation
has a single linearisation point on line 8, when n is appended to the end of q.data. The deq
operation has two linearisation points depending on q: (i) if q.data is empty, the linearisation

point is on line 12, when null is read and q is left unchanged; (ii) if q.data is not empty, the

linearisation point is on line 19, when q.head is advanced.

Note that the placement of pfence instructions in our implementation, together with the PTSO-

validity of executions ensure that in each era G, each thread has at most one pending inv event

without a matching persisted ack. This is due to (tso-po), (nvo-psf) and (nvo-pre) in Def. 4.

To show that an execution eraG of our implementation is persistently linearisable, we construct

the Ec and Et sets as described above. Finally, we must construct a sequential history H that

enumerates the library events in Et . As each queue operation acquires the global queue lock at the

beginning, this global lock acquisition imposes a total ‘happens-before’ (hb) order on the execution

of queue operations inG . Using this global order, we can thus construct a sequential history H that

enumerates the library events in Et in the hb order.

Recall that as part of the linearisability proof one must additionally show that the combined

histories of execution eras form a legal history. As discussed earlier, the notion of a legal history is

library-specific. For the queue library, a history H is a legal history if it respects the FIFO property.

We formalise this in Def. 8 below. We then state the persistent linearisability of our implementation

in Thm. 2, with its full proof given in the technical appendix [Raad and Vafeiadis 2018].

Definition 8 (Legal queue history). A history H is a legal history of a queue library iff:

• ∀e ∈ H . lab(e) ∈
{
I(−, enq,−), A(−, enq,−), I(−, deq,−), A(−, deq,−)

}
; and

• fifo(ϵ,H ) holds, where

fifo(s,H )
def

⇐⇒ H=ϵ ∨ (∃n,H ′, ι. n,null ∧ H=I(ι, enq,n); A(ι, enq, ());H ′ ∧ fifo(s;n,H ′))

∨(∃n,H ′, ι, s ′. n,null ∧ s=n; s ′∧ H=I(ι, deq, ()); A(ι, deq,n);H ′∧ fifo(s ′,H ′))

∨(∃H ′, ι. s=ϵ ∧ H=I(ι, deq, ()); A(ι, deq, null);H ′ ∧ fifo(s,H ′))

Theorem 2. The queue implementation in Fig. 6 is persistently linearisable.

Proof. The full proof is provided in the technical appendix [Raad and Vafeiadis 2018].

5 PERSISTENT MICHAEL-SCOTT QUEUE LIBRARY IN PTSO
In Fig. 7 we present a persistent variant of the lock free Michael-Scott (MS) queue [Michael and

Scott 1996] implementation (left) and its recovery mechanism (right) in the PTSO language. For

simplicity, in our variant of the Michael-Scott queue we do not track the tail pointer.
As before, the queue contents are stored as an array that may grow dynamically. A queue at q

comprises two components, represented as two adjacent cells: (i) the queue contents at q, written
q.data, recording the location of the contents array; and (ii) the queue head at q+1, written q.head.
As before, we assume that a client program is represented as an array at P; and that P is executed

by calling run(P), with each thread context set up as discussed in §2.2. Similarly, we record the

relevant metadata for tracking the progress of each thread in a map at map.
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1. q.enq(v) ≜
2. pc:= getPC(); t:= getTC();
3. n:= newNode(v,t,pc,null);
4. map[t][pc]:= n; pfence;
5. h:= q.head;
6. find: while (q.data[h] != null)
7. h:= h+1;
8. if (!CAS(q.data[h], null, n))
9. goto find;
10. pfence;

11. q.deq() ≜
12. pc:= getPC(); t:= getTC();
13. try: h:= q.head; n:= q.data[h];
14. if (n!=null && !CAS(n.deq,null,t))
15. goto try;
16. map[t][pc]:= n;
17. if (n != null) {
18. t’:= n.t; pc’:= n.pc;
19. map[t’][pc’]:=⊤;
20. } pfence;
21. if (n!=null) {
22. q.head:= h+1; pfence;
23. }
24. return n;

25. recover() ≜
26. if (q==null || map==null)
27. goto start();
28. for(t in P) enq[t]:= -1;
29. for(t in P) { // deq recovery

30. (pc,n):= getProgress(t);
31. if (pc>=0 && isDeq(P[t][pc])) {
32. if (n==null)
33. P’[t]:= sub(P[t],pc+1);
34. else {
35. if (inIn(q,n)) {
36. P’[t]:= sub(P[t],pc);
37. n.deq:= null; }
38. else
39. P’[t]:= sub(P[t],pc+1);
40. t’:= n.t; pc’:= n.pc;
41. enq[t’]:=max(enq[t’],pc’+1);}
42. } else if (pc<0) P’[t]:= P[t]; }
43. for(t in P) { // enq recovery

44. (pc,n):= getProgress(t);
45. if (pc>=0 && isEnq(P[t][pc])) {
46. if (pc < enq[t])
47. P’[t]:= sub(P[t],enq[t]);
48. else if (n==⊤ || isIn(q,n))
49. P’[t]:= sub(P[t],pc+1);
50. else
51. P’[t]:= sub(P[t],pc); }
52. } pfence;
53. run(P’);

Fig. 7. A persistent Michael-Scott queue implementation and its recovery with persistence code in blue

Queue Operations. The implementation of enq(v) in Fig. 7 is rather similar to its counterpart

implementation in §4.2. The difference of the two lies in the synchronisation mechanism used to

control concurrent accesses. More concretely, rather than a global queue lock, the enq implementa-

tion in Fig. 7 uses a CAS instruction to atomically append the new node n to the end of the queue.

The implementation of deq() in Fig. 7 is also similar to its counterpart implementation in §4.2.

As before, when thread τ executes its jth operation which is a deq, the implementation proceeds

by retrieving the first queue entry (at the head index) in n. To correctly track its progress, recall

that the map entry at map[τ][j] must be accordingly updated to n. Let us assume n,null. As the
MS queue is lock free, another thread τ ′ may concurrently attempt to execute its k th operation
which is also a deq, thus updating its map[τ ′][k] entry to n. Now consider the scenario when τ ′

wins the race to remove n, and subsequently the program crashes. When recovering, the recovery

mechanism observes that n is removed from the queue and rightfully advances the progress of τ ′

to k+1. Following the same observation, it also advances the progress of τ to j+1, even though τ
did not complete its dequeue before the crash.
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To correctly track the progress of dequeue operations, the representation of each node n addi-

tionally includes a ‘deq’ field, written n.deq, recording the index of the thread that successfully

removed it. When creating a new node n, the n.deq is initialised with null (see line 3). When

seeking to remove n, the executing thread τ signals to other threads its intention to remove n
by attempting to atomically set n.deq to τ via a CAS instruction. This is done on line 14 of the

implementation. If the CAS fails, this is because another thread is in the process of removing n and

τ must thus retry dequeuing. On the other hand, if the CAS is successful, this will prevent other
threads from racing with τ to remove n. The rest of the deq implementation then proceeds as before.

The map[τ] entry is updated, the progress of the thread responsible for enqueuing n is advanced if

necessary, and the head pointer is updated (if n,null). Note that the queue implementation in

Fig. 7 follows the persistent programming pattern discussed on page 9.

Initialisation and Recovery. The execution of a client program is commenced by running start()
in Fig. 6 as discussed in §4.2. The recovery mechanism of the Michael-Scott queue library is given

by recover() in Fig. 7. The code of recover() is almost identical to its counterpart in Fig. 6. The

only difference between the two lies in lines 37 and 52. Line 37 captures the case when a crash

occurs during a deq execution, before the dequeuing thread successfully removes a node n and

persists its effect. As such, upon recovery n.deq is set to null to facilitate the re-execution of deq
to remove n. Line 52 ensures that the changes made to the queue by the recovery (when resetting

n.deq on line 37) are persisted before those of the restarted execution.

Persistent Linearisability of the Implementation in Fig. 7. The linearisation points of our imple-

mentation are analogous to those of their counterparts in §4.2. The linearisation point of enq is

on line 8; the deq has two linearisation points depending on q.data: (i) if q.data is empty, the

linearisation point is on line 13; (ii) if q.data is not empty, the linearisation point is on line 22. To

show that an execution era G of our implementation is persistently linearisable, we construct the

Ec and Et sets using the linearisation points as described in §4.2.

Note that the linearisation points of enq operations, as well as those of deq in case (ii) above,

are write and update instructions and are thus ordered by the total-store-order G .tso. To construct

a sequential history H , we extend G .tso to a total order tsot , where all linearisation points are

ordered with respect to one another. We then construct H as an enumeration of the library events

such that the order between their linearisation points is respected. That is, H is of the form

inv1; ack1; · · · ; invm ; ackm , where for all i, j ∈ {1 · · ·m} we have: i < j iff the linearisation point

associated with (invi , acki ) is tsot -ordered before that of (inv j , ackj ).
Lastly, we demonstrate that the combined histories of execution eras form a legal queue history

as given in Def. 8. We state the persistent linearisability of our implementation in Thm. 3 below;

we refer the reader to the technical appendix [Raad and Vafeiadis 2018] for the full proof.

Theorem 3. The Michael-Scott queue implementation in Fig. 7 is persistently linearisable.

Proof. The full proof is provided in the technical appendix [Raad and Vafeiadis 2018].

Towards a Non-Blocking Implementation. Observe that in contrast to the original Michael-Scott

queue implementation in [Michael and Scott 1996], the deq implementation of the variant presented

in Fig. 7 is blocking in that a thread attempting to dequeue may spin until the current dequeuing

thread completes its dequeue operation (lines 14-15). This adaptation was merely to keep the

presentation simple. In the technical appendix, we present a fully non-blocking persistent variant

of the Michael-Scott queue together with its recovery mechanism, and demonstrate its persistent

linearisability. We refer the reader to [Raad and Vafeiadis 2018] for the full details.
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6 CONCLUSIONS AND FUTUREWORK
We developed the PTSO memory model by combining the buffered epoch persistency model with

the TSO memory model, which underpins the x86 and SPARC architectures. We demonstrated the

use of those semantics by verifying two queue implementations against our formal semantics. To

our knowledge, the work presented here is the first to study persistence semantics formally in the

context of a mainstream architecture.
We believe that the approach presented here can be used to combine epoch-persistency with

any multi-copy-atomic architecture, e.g. ARMv8. More concretely, for operational semantics, the

underlying machine transitions must be adapted to incorporate the additional persistent buffer.

For declarative semantics, the existing axioms must be extended with those of epoch-persistency

in Def. 4 (i.e. the (nvo-total), (nvo-tso), (nvo-psf), (nvo-pre) and (nvo-pers) axioms), with tso
replaced by vo (volatile order), as determined by the underlying architecture (see Def. 2).

As directions of future work, we thus plan to build on top of the work presented here in two ways.

First, we plan to explore the semantics of epoch persistency when integrated with other consistency

models. Of particular interest is the recent ARM consistencymodel by Pulte et al. [2017]. The authors

formalised the semantics of the ARM memory model both operationally and declaratively. As with

the work presented here, we plan to extend both characterisations with persistence primitives

under the epoch persistency model and establish their equivalence. The declarative semantics of

the ARM memory model fits our general framework for describing declarative concurrency models

in the presence of persistent memory. This will allow us to apply correctness conditions such as

that of persistent linearisability to verify the correctness of library implementations under the

ARM memory model.

Second, we plan to develop reasoning techniques for verifying the correctness of persistent

programs and libraries. We plan to pursue this in two different directions. First, utilising our formal

declarative semantics (those presented in this article as well as those in future work), we can

formulate the notion of persistent linearisability in the context of other persistency models and

architectures. Moreover, we can adapt other correctness conditions, such as that of triangular

race freedom by Owens [2010], for persistent memory under different persistency models. Second,

taking advantage of our formal operational semantics, we plan to develop program logics that

would allow us to verify properties of persistent programs. This can be achieved by either extending

existing program logics for weak memory with persistence primitives, or developing new program

logics for currently unsupported models.
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