Weak Persistency Semantics from the Ground Up:
Formalising the Persistency Semantics of ARMv8 & Transactional Models

Azalea Raad John Wickerson Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)
Imperial College London

> azalea@mpi-sws.org %SoundAndComplete.org gj @azalearaad

Computer Storage

4)
i

v fast RAM

X volatile

X slow
:

s ¥ persistent
L - [_HDD

What is Non-Volatile Memory (NVM)??

[

.
11
NVM

i

N\

NVM: Hybrid Storage + Memory
Best of both worlds:

v persistent (like HDD)
v fast, random access (like RAM)

\TEL OPTANE™
OLOGY

&

NON-VOLATILE

DENSE

Q: Why Formal NVM Semantics”?

Volatile memory
)/ x=0
X =1

/) x=1

f

// NO recovery
g // x=0)

Q: Why Formal NVM Semantics”?

Volatile memory
)/ x=0
X =1

/) x=1

f

// NO recovery

g)/ x=0)

Non-Volatile memory

)/ x=0
X =1
1

/) x=

i

// recovery routine

9 /ox=1

Q: Why Formal NVM Semantics”?

Volatile memory Non-Volatile memory
// X = o // x =0
=] = 1
// x=1 //2 1
// NO chovery // recovery routine
L /) x=0 y / /) x=1)

A: Program Verification

Q: Why Formal NVM Semantics”?

What about Concurrency?

a)

/Jox=y=...=0

Cr |l c2 || ... || Ca
/AR irke

i

// recovery routine
/) 227

Formal Semantic Models

EMﬁgtu

. > time
Sequential

(1940s)

Formal Semantic Models

DiffiAcuIty

Sequential SC
(1940s) (1979)

» time

Formal Semantic Models

DiffiAcuIty

» time

Sequential SC WMC
(1940s) (1979) (1990s)

Weak Memory Consistency (WMC)

No total execution order (to) =

weak behaviour absent under SC, caused by:

® |nstruction reordering by compiler
* write propagation across cache hierarchy

Weak Memory Consistency (WMC)

Consistency Model

the order in which
writes are made visible
to other threads

e.g. TSO, ARMv8, POWER, C11, Java

Formal Semantic Models

Difficulty

(5

. > time
Sequential SC WMC WNVMC

(1940s) (1979) (1990s) (2017)

What Can Go Wrong”

/) x=y=0
X = 1
y = 1

// recovery routine

/) x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1
_

What Can Go Wrong”

/) x=y=0
X = 1;
y = 1;

L

// recovery routine

// x=y=1 OR szy=0) OR x=1;y=0 OR x=0;y=1

-

! Execution continues ahead of persistence
— asynchronous persists

What Can Go Wrong”

/) x=y=0
X = 1;
y = 1;

L

// recovery routine

// x=y=1 OR szy=0) OR x=1;y=0 OR (x=0;y=1

-

! Execution continues ahead of persistence
— asynchronous persists

Writes may persist
— relaxed persists

What Can Go Wrong”

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

What Can Go Wrong”

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

NVM Semantics

Consistency + Persistency Model

25 This Talk 72

10

Challenge #1: Relaxed Persists

~

N\

/) x=0; y=0
X = 1
y = 1

// recovery routine
// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR[(x=0;y=1

~

J

persists

11

Persist Barriers: Desiderata

N\

/) x=0; y=0

// recovery routine
// x=1;y=1 OR x=0;y=0 OR x=1;y=0

persists

w persist barriers?

12

Persist Barriers: Desiderata

ARMv8

does not provide
persist barriers!

ARMv8 memory barriers
(e.g. DSB-full)

do not enforce
persist ordering!

12

Challenge #2: Asynchronous Persists

-)
/) x=0;vy=0
x := 1
y = 1

// recovery routine

/) x=1;vyv=1 OR(x=0;y=0)J0OR x=1;vy=0 OR x=0;y=1
_ J

Execution continues

Explicit Persists: Desiderata

/) x=0; y=0

X = 1;
M persist x;

// recovery routine

/) x=1;y=1 OR =¢=B4+y=6- OR x=1;y=0 OR x=0;y=1

N\

J

! Execution continues ahead of persistence
w explicit persists?

14

Explicit Persists: Reality on ARMvS

-
/) x=0;vy=0

X = 1;
¢ DC-CVAP x;
y = 1;

L

// recovery routine

// x=1;y=1 OR x=0;y=0 OR x=1;vy=0 OR x=0;y=1
N

~

J

! Execution continues ahead of persistence
w explicit persists?

15

Explicit Persists: Reality on ARMvS

-
/) x=0;vy=0

X = 1;
¢ DC-CVAP x;
y = 1;

L

// recovery routine

// x=1;y=1 OR x=0;y=0 OR x=1;vy=0 OR x=0;y=1

N\

~

J

! Execution continues ahead of persistence
w explicit persists?

DC-CVAP x: asynchronously persist cache line containing x

15

Explicit Persists: Reality on ARMvS

ARMv8 explicit persists
are themselves

asynchronous!

15

Solution: Persist Sequence

/) x=0;vy=0

X = 1;
DC-CVAP x;
LDSB—full;J

~\

vy = 1;

f

// recovery routine

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1
_ _J

Solution: Persist Sequence

/) x=0; y=0

X = 1;
DC-CVAP x;

~

. DSB-full; y

vy = 1;

f

// recovery routine

/) x=1;y=1 OR x=B+45=B OR x=1;y=0 OR x=0;y=1
_ J

()

< Waits until earlier writes on x are persisted v" synchronous persists

. .

Solution: Persist Sequence

/) x=0; y=0

X = 1;
DC-CVAP x;

~

. DSB-full; y

vy = 1;

f

// recovery routine
/) x=1;y=1 OR ==B+%=6 OR x=1;y=0 OR n=04%5=1
_

_J
r D |
< Waits until earlier writes on x are persisted v" synchronous persists
k’:‘ Disallows reordering persists
y,

PARMVS

ARM® Architecture Reference Manual

Tk
ﬁ' 6354
pages! |

17

PARMVS

ARM® Architecture Reference Manual

“aDSB-full will not complete until
all previous DC-CVAP have completed

“ DC-CVAP executes 1n program order

relative to writes to an address 1n the
same cache line”

17

PARMVS

ARM® Architecture Reference Manual

“aDSB-full will not complete until
all previous DC-CVAP have completed

“ DC-CVAP executes 1n program order

relative to writes to an address 1n the
same cache line”

Ambiguities In text!

17

PARMVS

ARM® Architecture Reference Manual
m/_—qm

6354
pages!

“aDSB-full will not complete until
all previous DC-CVAP have completed

“ DC-CVAP executes 1n program order

relative to writes to an address 1n the
same cache line”

Ambiguities in text!

PARMvVE Axiomatic Specification

e ARMvS8 axioms in [Pulte et al. 2018] hold
o (po’;[DMBsy11 U DSBey11];po’) \ id C ob
e VX € CL. [Wx URx]; po; [WBx] C ob

e VX € CL. [WBx]; po; [WBx] C ob

o dom([WBJ; ob; [DSBru11]) € P

e | WB]; ob; [DSB¢ 11]; 0b; [D] € nvo

e VX € CL. [Wx |;0b; [WBx,| C nvo

e Vx, € PLoc. MOy, € Nvo

17

PARMVS

Problem

ambiguous text
counter-intuirtive semantics
low-level hardware details

Solution

high-level, hardware-agnostic
NVM libraries:

17

What is a Transaction?

Concurrency control mechanism:

» atomic work unit:
= all-or-nothing writes

» consistent (e.g. serialisable)

18

What is a Persistent Transaction?

Concurrency & persistency control mechanism:

» atomic work unit:
= all-or-nothing writes
= all-or-nothing persists

» consistent (¢.g. serialisable)

// recovery routine
\//x=y=O OR x=y=1

_/

What is a Persistent Transaction?

Concurrency & persistency control mechanism:

» atomic work unit:
= all-or-nothing writes
= all-or-nothing persists

» consistent (¢.g. serialisable)
» persistent (c¢.g. persistently serialisable)

[)

// recovery routine
\//X=y=0 OR x=y=1

_/

Serialisability (SER)

All transactions appear to execute in a sequential order

20

Persistent Serialisabllity (PSER)

All transactions appear to execute in a sequential order
A prefix of transactions appears to persist in the same sequential order

4)
4) 4)
T1:| X := L; T2:-| v = 1

a := vy; b = x;
_ _/ _ _
_ J

Persistent Serialisabllity (PSER)

All transactions appear to execute in a sequential order
A prefix of transactions appears to persist in the same sequential order

4)
[) 4)
T1:| X := L; T2:-| v = 1

a := vy; b = x;
N Y _)
_ J

T1)-(12)
6 '"*-"* /[l x=y=0

Persistent Serialisabllity (PSER)

All transactions appear to execute in a sequential order
A prefix of transactions appears to persist in the same sequential order

[)
4 N [)

T1 - X o= 1; T2 - Yy -
a := vy; b :

|
I
Ne we

—> 5 *E /[x=1 y=0

Persistent Serialisabllity (PSER)

All transactions appear to execute in a sequential order
A prefix of transactions appears to persist in the same sequential order

[)
4) [)

T1 - X o= 1; T2 - Yy -
a := vy; b :

|
I
Ne we

Persistent Serialisabllity (PSER)

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

5 -----------

8- - 7
I

11~ (12) - (13) - [14) > (15 - {16} - 17
| | |
| ' |

all persist none persist

22

Persistent Serialisabllity (PSER)

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order
iIn each era

9 9 —— no crashes
(===~ - ==L

execution execution execution
—py P P P e

recovery recovery

23

Persistent Serialisabllity (PSER)

PSER

Strong guarantees
Intuitive semantics

23

Persistent Serialisabllity (PSER)

PSER Evaluation

1. Is PSER feasible”?
2. s PSER useful?

23

- ao

- ao

G

G

COC

COC

s PSER Feasible”’

v PSER implementation in ARM
Take SER Implementation — e.qg. 2-PL

€

€

for persistence — 1.e. persist sequences

to log metadata for recovery

-+ add recovery mechanism

24

s PSER Feasible”’

v PSER implementation in ARM

Take SER Implementation — e.qg. 2-PL
- add code for persistence — |.e. persist sequences

-+ add code to log metadata for recovery
-+ add recovery mechanism

(- .)
recovery mechanism

6 N check log for incomplete transactions:

either complete

o rollback y

s PSER Feasible”’

Yes!

Correct Implementation in PARMvS8

24

s PSER Useful”?

Given library L (e.g. queue library):

1. Take any correct sequential implementation of L

[N
enq(q,v)=

<eng body>

deq(q)=
<deqg body>

o)

sequential queue Imp.

Given library L (e.g. queue library):

s PSER Useful”?

1. Take any correct sequential implementation of L

2. wrap each operation in a PSER transaction

-

-

enq(q,v)=
<eng body>

deq(q)=
<deqg body>

~

)

sequential queue Imp.

enq(q,v)=
pser{
<eng body> }

deq(q)=
pser{
<deq body> }

J

25

s PSER Useful”?

Given library L (e.g. queue library):

1. Take any correct sequential implementation of L
2. wrap each operation in a PSER transaction
= correct, concurrent & persistent implementation of L

~ D - B
enq(q,v)= enq(q,Vv)=
<eng body > pser{
<eng body> }
deq(q) = deq(q) =
< deqg body > pser{
N <deqg body> }
N Y . Y,
correct
seqguential queue Imp. concurrent & persistent

gueue imp.

25

s PSER Useful”?

Yes!

any correct sequential implementation

—

correct, concurrent & persistent

Implementation

25

Summary

v Formalised architecture-level NV semantics:
- PARMVvS

v Formalised language-level NVM semantics:
+ PSER

v More in the paper
-+ General framework for declarative persistency

? Future Work:
-+ program logics

-+ model checking algorithms

Summary

v Formalised architecture-level NV semantics:
- PARMVvS

v Formalised language-level NVM semantics:
+ PSER

v More in the paper
-+ General framework for declarative persistency

? Future Work:
-+ program logics

-+ model checking algorithms

Thank You for Listening!

> azalea@mpi-sws.org %SoundAndComplete.org gj @azalearaad

