
Extending the C/C++ Memory Model with Inline Assembly

PAULO EMÍLIO DE VILHENA, Imperial College London, United Kingdom

ORI LAHAV, Tel Aviv University, Israel
VIKTOR VAFEIADIS,MPI-SWS, Germany

AZALEA RAAD, Imperial College London, United Kingdom

Programs written in C/C++ often include inline assembly: a snippet of architecture-specific assembly code

used to access low-level functionalities that are impossible or expensive to simulate in the source language.

Although inline assembly is widely used, its semantics has not yet been formally studied.

In this paper, we overcome this deficiency by investigating the effect of inline assembly on the consistency
semantics of C/C++ programs. We propose the first memory model of the C++ Programming Language with

support for inline assembly for Intel’s x86 including non-temporal stores and store fences. We argue that previous

provably correct compiler optimizations and correct compiler mappings should remain correct under such an

extended model and we prove that this requirement is met by our proposed model.

CCS Concepts: • Theory of computation→ Semantics and reasoning; Concurrency; • Software and its
engineering → Formal language definitions; • Computer systems organization→ Architectures.

Additional KeyWords and Phrases: Concurrency,WeakMemoryModels, Semantics of Programming Languages

ACM Reference Format:
Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad. 2024. Extending the C/C++Memory

Model with Inline Assembly. Proc. ACM Program. Lang. 8, OOPSLA2, Article 309 (October 2024), 27 pages.
https://doi.org/10.1145/3689749

1 Introduction
Large software applications are rarely written in only one language. While the bulk of an application

is typically written in a general-purpose programming language, such as C++, some parts are

invariably written in higher-level domain-specific languages (for example, lexers and parsers,

which generate C++ code) and others directly in assembly code of the underlying architecture(s).

The latter kind is directly supported by mainstream C/C++ compilers through inline-assembly
blocks, which can be used (1) to expose some hardware instructions that are inaccessible or difficult

to simulate in the source language, (2) to write prologue and epilogue code of naked functions [Mi-

crosoft Learn 2021], and (3) to keep the ordering of instructions at compile time [Preshing 2012].

As such, inline assembly constitutes an important tool of C/C++, whose significance is further
attested by major projects, such as the Linux kernel-based virtual machine (KVM) [Linux Kernel

Community 2007] and the GNU Compiler Collection (GCC) [GNU Project 1987], each counting

with thousands of occurrences of inline assembly.

Unlike some of the key features of C/C++, such as synchronization primitives, which have

been the subject of many research papers [Batty et al. 2011; Lahav et al. 2017], and despite the

Authors’ Contact Information: Paulo Emílio de Vilhena, p.de-vilhena@imperial.ac.uk, Imperial College London, London,

United Kingdom; Ori Lahav, orilahav@tau.ac.il, Tel Aviv University, Tel Aviv, Israel; Viktor Vafeiadis, viktor@mpi-sws.org,

MPI-SWS, Kaiserslautern, Germany; Azalea Raad, azalea.raad@imperial.ac.uk, Imperial College London, London, United

Kingdom.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART309

https://doi.org/10.1145/3689749

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-7379-310X
HTTPS://ORCID.ORG/0000-0003-4305-6998
HTTPS://ORCID.ORG/0000-0001-8436-0334
HTTPS://ORCID.ORG/0000-0002-2319-3242
https://doi.org/10.1145/3689749
https://orcid.org/0000-0001-7379-310X
https://orcid.org/0000-0003-4305-6998
https://orcid.org/0000-0001-8436-0334
https://orcid.org/0000-0002-2319-3242
https://doi.org/10.1145/3689749
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689749&domain=pdf&date_stamp=2024-10-08

309:2 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

extensive use of inline assembly, inline assembly lacks a formal semantics: a precise unambiguous

specification.

In this paper, we overcome this deficiency and propose the first formal account of inline assembly.

We distinguish three classes of inline-assembly instructions:

(1) Instructions, such as complex arithmetic and bit-manipulating operations and single instruc-
tion/multiple data [Flynn 1972] (SIMD) instructions, whose effect can be expressed in the

source language (typically, as a sequence of arithmetic operations).

(2) Instructions accessing memory and/or enforcing ordering between instructions (such as store
fences [Intel 2024, Vol. 2B, §4]), whose effect cannot be expressed in the source language.

Such instructions are commonly used in libraries for parallel and persistent programming,

efficient moving of data, and communicating with external devices.

(3) Instructions that have a global effect and may completely change the semantics of the

subsequent program, such as raising an interrupt, writing to the stack pointer register or to

the page table entries [Simner et al. 2022; Alglave et al. 2024], and flushing the translation
lookaside buffer [Intel 2024, Vol. 2A, §3].

We narrow our scope to the second class of instructions for the Intel’s x86 architecture, whose
consistency and persistency semantics have been formalized by Raad et al. [2022] in a model known

as Ex86. We argue that supporting the first class of instructions is straightforward, raising no

challenges beyond that of providing accurate semantics for the individual hardware instructions.

In contrast, the second class affects the memory consistency model of the programming language,

governing how concurrent programs are allowed to interact through shared memory. As we shall

see, the effect of this class of instructions on the language’s model leads to interesting semantic

challenges. As for the third class of instructions, we declare them to be beyond the scope of this

paper.

A particularly interesting use case of inline assembly are x86 non-temporal stores [Intel 2024,
Vol. 1, §10.4.6.2], an x86-specific feature that allows writing to memory while bypassing the cache.

Non-temporal stores are used in cases of bulk memory writes [Raad et al. 2022], whose relative

order is immaterial, such as initializing a memory page with zeros.

Unlike regular x86 stores, non-temporal stores can be reordered with other stores, and so the

following C/C++ program with inline assembly, when compiled with gcc [GNU Project 1987]

or clang [Clang Project 2007], can exhibit the following quite surprising outcome (here and

henceforth, we use pseudocode syntax with 𝑥,𝑦, . . . being shared locations and 𝑎, 𝑏, . . . being

thread-local registers; we assume that all locations are initialized to 0):

asm {[𝑥]:=nt 1}
[𝑦]rel:= 1

𝑎:= [𝑦]acq // 1
𝑏:= [𝑥]rlx // 0

compile
−−−−−→ movnt [𝑥], 1

mov [𝑦], 1
mov 𝑎, [𝑦] // 1
mov 𝑏, [𝑥] // 0 (MP-NT)

Normally, C/C++ release-acquire accesses induce synchronization and thus anything executed

before a release write is deemed to have happened before everything after an acquire read fulfilled

by this write. Yet, this is no longer the case with inline assembly. Applying the standard compilation

scheme of mapping C/C++ release/acquire/relaxed accesses to regular x86 accesses results in a

x86 program that can read 𝑎 = 1 ∧ 𝑏 = 0. The only way to prevent the weak outcome is to add

an appropriate instruction working as a fence between the two store instructions: a store fence

(sfence) suffices, but one may also use a memory fence (mfence), a read-modify-write operation,

or a plain x86 store to 𝑥 . However, without a formal specification, such observations are unclear to

developers, who naturally expect release/acquire synchronization to apply to all kinds of accesses.
1

1
Indeed, Program MP-NT illustrates one of the concerns in a recent Rust bug report: https://github.com/rust-lang/rust/

issues/114582.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

https://github.com/rust-lang/rust/issues/114582
https://github.com/rust-lang/rust/issues/114582

Extending the C/C++Memory Model with Inline Assembly 309:3

The question is how to provide an appropriate semantics for C/C++ programs with inline

assembly, such as the previous example of MP-NT. In §2, we show that devising an appropriate

semantics is by no means trivial. At the very least, one would require a solution that is:

• flexible, that is, allowing arbitrary mixing of C/C++ and inline-assembly accesses with no

partition on threads or memory locations that can or cannot use x86 instructions, since such
restriction is not respected by most use cases of inline assembly;

• supporting a representative set of x86 and C/C++ features that have to do with accessing

memory in a possibly concurrent setting;

• preserving the correctness of the existing C/C++ compilation schemes to x86 and of local
source-to-source code transformations, since these are readily performed by C/C++ compilers;

• precisely matching the x86 (resp. C/C++) model for programs consisting purely of x86 (resp.
C/C++) constructs. This last criterion acts as a sanity check ensuring that the semantics of

existing C/C++ programs (without inline assembly) will not be affected by our proposed

extension of the C/C++ concurrency model.

In addition, we would like our semantics to provide useful guarantees for common correct uses

of inline assembly, such as the following variant of MP-NT, which rules out the weak outcome by

inserting a store fence between the non-temporal store to 𝑥 and the release write to 𝑦:

asm {[𝑥]:=nt 1}
asm {sfence}
[𝑦]rel:= 1

𝑎:= [𝑦]acq // 1
𝑏:= [𝑥]rlx // 0

compile
−−−−−→

movnt [𝑥], 1
sfence
mov [𝑦], 1

mov 𝑎, [𝑦] // 1
mov 𝑏, [𝑥] // 0 (MP-NT-SF)

(In our examples, certain read instructions are followed by comments. When every comment is

displayed in green, as // 𝑣 , the annotated outcome can be observed on some architecture and should

therefore be allowed by the model. When every comment is underlined and displayed in red, as // 𝑣 ,
the annotated outcome cannot be observed and should therefore be forbidden.)

As we explain in §2, many direct approaches to the problem of defining an appropriate semantics

for C/C++ with inline Ex86 assembly fail one or more of the stated requirements.

In response, in §3, we develop a carefully designed extension of the C/C++ consistency model

with support for the user-mode Ex86 inline-assembly instructions that access memory: namely,

plain loads and stores, non-temporal stores, read-modify-write operations, and fences. We prove

that our model is an extension of the Ex86 and C/C++ models, in the sense that plain x86 and plain

C/C++ programs have unchanged semantics.

In §4, we prove that the established sound compilation schemes from C++ to Ex86 remain sound

in spite of the presence of inline-assembly blocks, and that, similarly, so do the sound local source-

to-source code transformations, such as reordering of independent memory loads. In addition, we

introduce a new, provably sound, compilation scheme to Ex86, which compiles relaxed writes to

non-temporal stores for the price of including some additional store fences (Definition 4.2).

2 Overview
In this section, we provide a gentle introduction to §3, where we formalize our contributions. To

this end, in §2.1, we establish a series of desired properties that a model for C/C++ with inline

assembly should enjoy. Then, in §2.2, we show why direct approaches for devising such a model

do not work. Finally, in §2.3 and §2.4, we present an intuitive overview of our proposed model,

showing how it satisfies the established desiderata.

2.1 Desiderata for a Hybrid Consistency Model for C/C++ and x86 Assembly
We argue that tentative “hybrid models” for C/C++ with support for inline Ex86 assembly should

enjoy the following properties:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:4 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

P0: Flexibility. As a first minimal requirement, we ask the hybrid model to support all the

features of the respective C/C++ and x86 models, and to allow free mixing of the two. That is,

we want to be able to write programs where threads can mix both C/C++ and inline-assembly

instructions and where memory locations can be accessed using both types of instructions, as we

have seen in the MP-NT and MP-NT-SF programs.

P1: Correctness of compiler mappings. In the weak-memory literature, a compiler mapping,
or a compilation scheme, maps the memory operations of the source language to sequences of

instructions of the target language that implement the corresponding high-level memory operation.

Two standard compilation schemes from C/C++ to x86 exist [Batty et al. 2011; Lahav et al. 2017]:

the fence-after-sc-write scheme, which places memory fences after sc writes; and the fence-before-
sc-read scheme, which places memory fences before sc reads. Both schemes have been proven

correct with respect to RC11 [Lahav et al. 2017]: the compilation of a C/C++ program 𝑝 following

one of these schemes can only exhibit behaviors that are assigned to 𝑝 by RC11. These schemes can

be easily extended with support for inline Ex86 assembly by simply mapping an inline-assembly

instruction asm {𝑠} to 𝑠 . This mapping is in agreement with how current C/C++ compilers handle

such instructions [Leroy 2021, Chapter 6.6]. It is therefore desirable that these schemes remain

correct with respect to a hybrid model for C/C++ with inline Ex86 assembly.

P2: Correctness of standard compiler optimizations. To improve program performance,

C/C++ compilers perform a sequence of local source-to-source transformations, whose correctness

(in the absence of inline assembly) has been established by prior work [Vafeiadis et al. 2015; Lahav

et al. 2017]. C/C++ compilers readily perform these transformation even when the program contains

inline assembly. It is thus important that these transformations remain correct in any C/C++ model

extended with inline assembly.

P3: Extension of source. For programs that do not use inline assembly, we want our model to

coincide with the model of the source language. Concretely, we consider RC11 as the source model,

and we say that a model 𝑀 is an extension of RC11 if the semantics given by 𝑀 to plain C/C++
programs agrees with the semantics given by RC11. If this property did not hold of a candidate

hybrid model𝑀 , then plain C/C++ and C/C++ with support for inline assembly should be seen as

different programming languages, because programs could have different semantics depending on

whether RC11 or the hybrid model𝑀 is used. We see this distinction as artificial and compromising

to the language.

P4: Extension of target. Analogously, we argue that a candidate hybrid model 𝑀 should

be an extension of Ex86: the semantics given by 𝑀 to a C/C++ program 𝑝 written entirely using

inline Ex86 assembly should agree with the semantics given by Ex86 (to the obvious Ex86 program
corresponding to 𝑝). The model 𝑀 cannot give a stronger semantics to 𝑝 than Ex86 because the
compilation scheme of inline assembly is the straightforward identity map. Therefore, if there

was a mismatch, then the model𝑀 would be necessarily assigning a more relaxed semantics to 𝑝

than Ex86. This weakness in reasoning is undesirable.

P5: Architecture-specific guarantees for mixed programs. The RC11 model is sufficiently

relaxed so as to support efficient compilation to multiple hardware architectures. This generality

has the downside that RC11may allow behaviors that cannot be observed by most implementations.

The following program, for example, depicts such a behavior (known as independent reads from
independent writes - IRIW):

[𝑥]rel:= 1
𝑎:= [𝑥]acq // 1
𝑏:= [𝑦]rlx // 0

𝑐:= [𝑦]acq // 1
𝑑:= [𝑥]rlx // 0 [𝑦]rel:= 1 (IRIW)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:5

P0 P1 P2 P3 P4 P5

Hardware ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Branching ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

TSO-as-RA ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Projection ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Goens et al. [2023] ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Approach of §2.3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Our approach ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

P0 - Flexibility

P1 - Correctness of compiler mappings

P2 - Correctness of compiler optimizations

P3 - Extension of RC11
P4 - Extension of Ex86
P5 - Strong guarantees for mixed programs

Fig. 1. Comparison of approaches according to several desired properties.

This behavior is allowed by RC11 and observed when the program is run on the POWER [Alglave

et al. 2014] architecture. It illustrates that the two independent writes in the first and fourth threads

can be observed in different orders by the second and third threads, even though the accesses in

these two middle threads have to be executed in order (the acq access mode prevents reordering

with subsequent accesses).

When, however, the IRIW program is compiled to x86 and to recent versions of Armv8 [Pulte

et al. 2017], the annotated weak outcome cannot be observed because these target architecture

models provide the multi-copy atomicity guarantee, which postulates that any two writes must

be observed by all threads, except the ones performing the two writes, in the same order. This
multi-copy atomicity guarantee is a key property of the x86 and Armv8 architectures. It can be

exploited to simplify reasoning about the correctness of a given program and, in some cases, to

write more efficient ones.

The problem is that the RC11 model does not provide an efficient way of enforcing multi-copy

atomicity evenwhen the target architecture provides this guarantee. RC11, in fact, provides only two
ways to forbid the weak behavior of IRIW, both of which incur an non-negligible implementation

cost on x86. One can either (1) strengthen all access modes to sc, or (2) insert an sc fence between

the two pairs of read operations. In the context of x86, both solutions are unsatisfactory, as they

involve additional unnecessary fences. With the support for inline Ex86 assembly, one could imagine

a third solution that consists in strengthening the first read operation of each thread as follows:

[𝑥]rel:= 1
asm {𝑎:= [𝑥]}
𝑏:= [𝑦]rlx

asm {𝑐:= [𝑦]}
𝑑:= [𝑥]rlx

[𝑦]rel:= 1 (IRIW-TSO)

One would expect this solution to work because (similar to acq accesses) Ex86 disallows the
reordering of a read operation with any other subsequent operation. This solution avoids the

emission of fences and highlights the reliance on an architecture-specific guarantee.

2.2 Evaluation of Candidate Models
We now consider multiple tentative hybrid models and evaluate them according to our established

criteria. Figure 1 contains a summary of our discussion. The candidate models are organized by lines,

and the desired properties by columns. A full star means that a model enjoys the corresponding

property; an empty star means that it does not; a half star means that the property is partially met.

Hardware approach. The hardware approach is perhaps the first and simplest solution that

comes to mind: it consists of using the hardware model Ex86 itself as the hybrid model. This seems

like a plausible solution, because a program that uses inline Ex86 assembly can only be executed

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:6 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

on this specific architecture. However, one immediate deficiency of this approach is that the Ex86
model is not directly applicable to a C/C++ program; one would first have to consider its compilation

to Ex86 and only then apply the hardware model. As a consequence, one would have to commit to

one of the compilation schemes to Ex86. Therefore, under this approach, the correctness of standard
compilation mappings would not hold in general. Another downside is that this model is not an

extension of RC11: the semantics of a program under Ex86 can clearly disagree from that given by

RC11. Finally, this approach would not validate standard compilation optimizations as many of

them, such as reordering of independent reads, is unsound under Ex86.

Branching approach. A slight refinement of the hardware approach is to branch on whether

the program uses inline assembly: if it does, then the semantics is given by Ex86; otherwise, the
semantics is given by RC11. This approach improves on the previous one by constituting an

extension of RC11, however most compiler optimizations would still be unsound in programs with

inline assembly.

The TSO-as-RA approach. The next approach is to keep the RC11 model, and to simply map

each inline assembly instruction to an existing C/C++ construct with the same or slightly weaker

semantics. In particular, plain Ex86 stores can be mapped to RC11 rel stores, plain Ex86 loads can
be mapped to RC11 acq loads, Ex86 memory fences to RC11 sc fences, and Ex86 store fences to
RC11 acqrel fences.

This approach has three major downsides. First, it does not give any semantic benefit to using

inline assembly (P5). Second, it does not match the Ex86 semantics for programs consisting purely of

inline assembly (P3). For example, consider a version of IRIWwritten entirely using inline assembly;

that is, using inline-assembly reads and writes instead of C++ reads and writes. According to the

TSO-as-RA approach, this inline-assembly version of IRIW can exhibit the annotated behavior

of IRIW, even though, in practice, it can never be observed. Third, the TSO-as-RA approach cannot

model all relevant Ex86 features. In particular, it cannot model Ex86 non-temporal stores because

there is no corresponding RC11 store construct that permits the weak behavior of MP-NT from §1.

Projection approach. Given that neither Ex86 nor RC11 alone are appropriate for ascribing
semantics to C/C++ programs with inline assembly, a natural choice is to use both models together.

At a very high level, the two models seem compatible: they are defined in a declarative style as
a set of constraints that program executions should satisfy. For instance, RC11 states that a read
operation cannot happen before the write instruction from which it reads. An instruction is said to

happen before another one (1) if it appears earlier in the same thread, or (2) if it appears before

some release-acquire synchronization, such as seen in the example of MP-NT. Ex86, on the other

hand, imposes multi-copy atomicity: the order in which independent writes are observed is the

same across all threads (except the ones performing those writes as they may observe their own

writes early).

A natural definition for a combined model would be to take the conjunction of the constraints of

the two models, each applied only to the instructions of the corresponding model. In other words,

to apply the Ex86 constraints to the inline-assembly instructions and the RC11 constraints to the

RC11 accesses. Such a definition is clearly an extension of RC11 and Ex86. Moreover, it supports

the existing compilation schemes and compiler optimizations. It fails, however, to provide useful

semantics for programs with inline assembly: for instance, it does not rule out the weak behaviors

of the MP-NT-SF and IRIW-TSO programs, because it does not rule out cycles with accesses from

both models.

Compound memory model approach. Goens et al. [2023] propose another way of combining

two memory models based on operational semantics, where each thread follows a single operational

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:7

memory model. Their approach is, however, not applicable to the setting of inline assembly because

it is too inflexible: it does not allow the use of both x86 and C/C++ instructions in the same thread.

2.3 Towards a Good Hybrid Model
From the approaches seen so far, only the projection approach comes close to achieving our

desiderata for a hybrid memory consistency model. To arrive at a good hybrid model, we will

therefore start with the projection approach and refine it to strengthen the guarantees given to

programs containing both C/C++ accesses and inline x86 assembly.

Supporting correct message-passing patterns. The first necessary strengthening comes from

carefully inspecting the MP-NT and MP-NT-SF examples. RC11 forbids the weak behavior of the

corresponding programs with only C/C++ accesses with its coherence condition, which says that

the extended coherence order (eco) cannot contradict the model’s happens-before relation (hb).
The extended coherence order eco, orders accesses at a given memory location in the order they

appear to have executed. For instance, it places all writes to the same location, say 𝑥 , in a total

order. A read 𝑟 to 𝑥 is placed by eco after the write𝑤 from which 𝑟 reads and before every other

write that follows𝑤 according to eco itself. In the executions leading to the annotated outcomes

of MP-NT and MP-NT-SF, eco orders the write to 𝑥 before the read to 𝑥 (as the latter reads the

initialization value, 0) and orders the write to 𝑦 before the read to 𝑦 (as the latter reads from the

former).

The happens-before relation hb, defined as (po ∪ sw)+, is given as the transitive closure of the

union of two components: program-order edges (po, relating instructions of the same thread in

the order they appear in the program) and synchronization edges (sw) between threads, when one

thread reads from another in a synchronizing fashion (for example, using rel/acq accesses). In our

example, the write to 𝑦 synchronizes with the read to 𝑦, and thus the previous write to 𝑥 happens

before the read to 𝑥 according to RC11, and so the read to 𝑥 cannot read 0.

Clearly, to regain soundness in the model with inline assembly, we need to adapt the definition

of hb to exclude program-order edges from non-temporal stores to subsequent stores because these

can be reordered by x86. Blindly restricting the definition of hb to relate only C/C++ events (as in

the projection approach) is too weak because the behavior of MP-NT-SF would then be allowed.

A suitable definition is thus to remove from hb only the po edges between a non-temporal store

and any later instruction that is not a fence. That is, we redefine hb as (poRC11 ∪ sw)+, where the
relation poRC11 excludes such po edges (see §3).

Supporting stronger architecture-specific behaviors. Next, we also need to strengthen

the model to support the IRIW-TSO example. If all accesses in the example were x86 accesses,

Ex86 would forbid this outcome by its general acyclicity condition which forbids cycles consisting

of external eco edges (that is, ones between accesses from different threads) and its preserved
program order (ppo), which includes the program-order edges between instructions whose ordering

is guaranteed on x86 (for example, from x86 reads to all subsequent memory instructions).

A minimal way to extend the applicability of this condition would be to require the cycle to

contain at least one inline-x86-assembly instruction. Requiring at least one assembly instruction in

the cycle prevents this new condition from breaking Property P3: the additional condition simply

does not apply to programs without inline assembly. Moreover, it ascribes the intended semantics

to the IRIW-TSO program, forbidding its annotated weak outcome.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:8 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

Sadly, however, this minimal way of adapting the Ex86 model is flawed as it does not validate

compiler optimizations. To see this, consider the following variant of IRIW-TSO:

[𝑥]rlx:= 1
asm {𝑎:= [𝑥]} // 1
𝑏:= [𝑦]rlx // 0

𝑐:= [𝑦]rlx // 1
𝑑:= [𝑥]rlx // 0

[𝑦]rlx:= 1 (IRIW-TSO-2)

The annotated behavior is disallowed under this model because the cycle contains one inline-

assembly instruction. However, a C/C++ compiler can reorder the accesses of the third thread and

arrive at the following program:

[𝑥]rlx:= 1
asm {𝑎:= [𝑥]} // 1
𝑏:= [𝑦]rlx // 0

𝑑:= [𝑥]rlx // 0
𝑐:= [𝑦]rlx // 1

[𝑦]rlx:= 1

The depicted outcome is now allowed: first 𝑑:= [𝑥]rlx reads 0, then the first and second threads

execute, then the fourth thread writes 1 to 𝑦, which is finally read by the third thread.

2.4 Our Approach
Counterexample IRIW-TSO-2 shows that it is too strong to stipulate the absence of Ex86-consistency-
violating cycles that contain at least one Ex86 event. The weak behavior of IRIW-TSO-2 should be

allowed by our model so as to validate the reordering of RC11 relaxed accesses on the third thread

of the program.

In order to allow the annotated behavior of IRIW-TSO-2, our idea is to insist that all ppo edges
in a (ppo ∪ eco)-cycle (that is, in a Ex86-consistency-violating cycle) contain at least one x86
instruction or a sc fence. This is because neither x86 instructions nor sc fences can be optimized by

the compiler in a thread-local fashion. Therefore, the third thread of IRIW-TSO-2 cannot contribute

to the cycle that violates Ex86-consistency, because it contains only plain C/C++ instructions.
Extending RC11with this refined condition leads to a hybrid model that enjoys all our established

desiderata: (1) it supports the established compilation schemes to Ex86; (2) it supports all existing
local compiler optimizations, because these only affect C/C++ operations, and thus do not affect our
model’s preserved program order relation, whichmust include an assembly instruction or a sc fence;
(3) it extends both RC11 and Ex86; and (4) it provides the intended semantics to Program MP-NT

and to all variants of Program IRIW that we have encountered.

3 The Extended Model
In this section, we present our extension of C++’s memory model with support for inline Ex86
assembly. We use RC11 [Lahav et al. 2017] as the memory model for C++. With the interest of

recalling the basic notions of RC11 and setting up notation and useful definitions for the next

subsections, we start with a brief presentation of RC11. We mainly follow the original presentation

by Lahav et al. [2017]. We also rely on Podkopaev et al. [2019] for the precise construction of

execution graphs.

3.1 The RC11 Memory Model
RC11 defines the semantics of multithreaded C/C++ programs. More specifically, RC11 formalizes

how the memory, which initially maps every location to a default value (usually the integer 0), is

updated after the execution of a program. To account for non-determinism (for example, due to the

concurrent execution of threads), the model associates a program 𝑝 not with a single final memory,

but with the set of states in which the memory can be found after the execution of 𝑝 .

The RC11 model follows the declarative approach. In the declarative approach, the set of final

memory states associated with a program 𝑝 is defined in three steps. The first step consists in an op-

erational semantics; that is, a formalization of program execution. However, this formalization does

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:9

Syntax of expressions, commands, and access modes

Expr ∋ 𝑒 ::= 𝑛 (∈ N) | 𝑟 (∈ Reg) | ℓ (∈ Loc ≜ N)
| 𝑒 + 𝑒 | 𝑒 - 𝑒 | 𝑒 * 𝑒

Cmd ∋ 𝑠 ::= 𝑟:= [𝑒]md | [𝑒]md:= 𝑒 | 𝑟 := rmwmd ([𝑒], 𝑒, 𝑒)
| fencemd | if 𝑒 { 𝑠 } | while 𝑒 { 𝑠 } | 𝑠; 𝑠 | skip

Mode ∋ md ::= na | rlx | rel | acq | acqrel | sc na

rlx

acqrel

acqrel

sc

Fig. 2. Syntax of RC11-lang.

not strive to capture exactly how the program 𝑝 runs. Instead, it follows a simple thread-interleaving
semantics where threads non-deterministically take turns and contribute to the construction of

an abstract structure called an execution graph. An execution graph stores, in the form of nodes,

the memory operations (such as writes, reads, and synchronization barriers) issued by threads.

These nodes are also called events. The result of the first step is thus the construction of a set of

execution graphs associated with 𝑝 . The second step is the selection, among this resulting set of

execution graphs, of the consistent execution graphs. A consistent execution graph is one whose

nodes can be connected by extra relations in a way that satisfies conditions postulated by the model

in question. These conditions capture how the model deviates from one that would tolerate only

sequentially consistent behaviors. The third and final step amounts to mapping every consistent

execution graph to the memory state it represents.

To illustrate the RC11 model, we introduce RC11-lang, a simple concurrent imperative pro-

gramming language with support for C++’s memory-access modes. Opting for a simple set of

programming constructs allows us to concentrate on the key aspect of the memory model: the

definition of the semantics of memory operations such as read, writes, and synchronization barriers.

Figure 2 shows the syntax of RC11-lang. The language is parametric on a set of registers, Reg,
and introduces a set of (preallocated) memory locations, Loc, defined as the set of natural numbers.

Expressions 𝑒 are used to compute numbers 𝑛 or locations ℓ by reading numbers stored in registers 𝑟

and performing arithmetic operations. The syntactic category of commands, Cmd, includes if
branching, while loops, sequential composition, a skip instruction, and memory operations, such

as reads, writes, read-modify-writes (RMWs), and fences. The notation [𝑒] is used to indicate

that 𝑒 denotes a memory location rather than a number. Every memory operation carries an access

mode md. Access modes are ordered according to the diagram depicted in Figure 2. To give an

(over-simplistic) intuitive explanation of access modes, we can say that sc operations follow a

sequentially consistent semantics, and operations with a weaker access modemd follow a semantics

that deviates from sequential consistency to a degree that is proportional to how distant md is

from sc. Only certain access modes are permitted per operation:

• Modes na, rlx, rel, and sc apply to writes.

• Modes na, rlx, acq, and sc apply to reads.

• Modes acq, rel, acqrel, and sc apply to fences.

• Modes rlx, acq, rel, acqrel, and sc apply to read-modify-writes.

Finally, a program 𝑝 ∈ Prog is defined as a collection of commands, represented as a finite map

from numbers (or thread identifiers) to commands: Prog ≜ N fin−−⇀Cmd.
We formalize an event either as an initialization event I (ℓ), representing the initialization of ℓ

with the default value 0, or as a pair of natural numbers (𝑖, 𝑗), where 𝑖 is a thread identifier and 𝑗 is

the order of this event with respect to the events emitted by thread 𝑖 . (These numbers are used, for

example, in the definition of the program-order relation.) An execution graph is represented as a pair
of a set of events E and a map lab from events to labels. A label specifies both the type of a memory

event (whether it is a read, a write, a read-modify-write, or a fence) and its arguments. A read label is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:10 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

Pool reduction 𝑃 / 𝐺 −→ 𝑃 / 𝐺

ReadStep

𝑃 [𝑖] .

reg_st = 𝜙

ev_counter = 𝑗

next_cmd = 𝑟:= [𝑒]md; 𝑠
𝑃 ′ = 𝑃

𝑖 := 𝑃 [𝑖] .

reg_st := 𝜙 [𝑟 := 𝑛]
ev_counter := 𝑗 + 1

next_cmd := 𝑠


ℓ = J 𝑒 K𝜙 𝑎 = (𝑖, 𝑗) 𝐺 ′ = 𝐺.

{
E := 𝐺.E ⊎ {𝑎}
lab := 𝐺.lab[𝑎 := Rmd (ℓ, 𝑛)]

𝑃 / 𝐺 −→ 𝑃 ′ / 𝐺 ′

TerminateStep

𝑃 [𝑖] .next_cmd = skip 𝑃 ′ = 𝜆 𝑗 ∈ dom(𝑃) \ {𝑖}. 𝑃 [𝑗]
𝑃 / 𝐺 −→ 𝑃 ′ / 𝐺

Fig. 3. Definition of pool reduction.

represented as Rmd (ℓ, 𝑛); a write label is represented as Wmd (ℓ, 𝑛); a fence is represented as Fmd
; and

a read-modify-write label is represented as RMWmd (ℓ, 𝑛, 𝑚?), where𝑚?
denotes either a number or

the marker ⊥ representing the case of a failed read-modify-write operation. We are often lax about

the distinction between events and labels; we use them interchangeably. Moreover, we write R, W, F,
and RMW to denote respectively the sets of events whose label is a read, a write, a fence, and a

read-modify-write. We further partition RMW into its subset of successful read-modify-writes RMW-s
and its subset of failed read-modify-writes RMW-f.

The construction of the set of execution graphs associated with a program relies on the notions

of threads and thread pools. A thread pool is modeled as a finite map from thread identifiers to

threads. A thread, in its turn, is modeled as a tuple containing the following fields: reg_st, which
maps a register to the number it stores; ev_counter, which stores the number of events issued by

the thread; and next_cmd, which stores the next command to be executed by the thread. In sum,

here is the definition of the set of threads, Thread, and of the set of thread pools, Pool:

𝑃 ∈ Pool ≜ N fin−−⇀Thread 𝑡 ∈ Thread ≜

reg_st : Reg → N;
ev_counter : N;
next_cmd : Cmd


On top of these definitions, the set of candidate execution graphs associated with a program is

captured by the pool reduction relation, a relation between pairs of pools and execution graphs. It

is noted 𝑃 / 𝐺 −→ 𝑃 ′ / 𝐺 ′
. Intuitively, the statement toPool(𝑝) / Init −→∗ ∅ / 𝐺 expresses

that 𝐺 is an execution graph associated with 𝑝 . The graph Init in this statement denotes the initial
execution graph, a graph where Init .E is the set of initialization events I (ℓ) for every location ℓ , and

where Init .lab maps I (ℓ) to Wna (ℓ, 0). The pool ∅ denotes a thread pool whose domain is empty.

The pool toPool(𝑝) denotes a thread pool in its initial state:

toPool(𝑝) ≜ 𝜆𝑖 ∈ dom(𝑝).
{
reg_st = 𝜆_.0; ev_counter = 0; next_cmd = 𝑝𝑟𝑜𝑔(𝑖); skip

}
Figure 3 includes some illustrative cases of the pool reduction relation. The complete definition

can be found in the Appendix [de Vilhena et al. 2024, §A]. Some cases rely on the interpretation

of an expression 𝑒 under a map 𝜙 from registers to numbers. This interpretation, noted J 𝑒 K𝜙 , is
simply defined as the interpretation of the syntactic arithmetic operators as their mathematical

counterpart. Rule ReadStep shows how a new read event 𝑎 is added to the execution graph when

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:11

a read operation is executed. There is no restriction to the value 𝑛 returned by the read operation.

It is only at the level of execution graphs that consistency conditions are imposed and certain

values are ruled out. Rule TerminateStep shows how completed threads are removed from the

pool. Eventually, all threads complete their execution and the pool degenerates to ∅.
To define RC11’s notion of a consistent execution graph, we need to introduce the program-order

relation po and we need to consider the extension of an execution graph with a reads-from relation rf
and a modification-order relation mo. We are often lax about the distinction between an execution

graph 𝐺 and its extension (𝐺, rf, mo).

Notation. The metavariables 𝑎, 𝑏, 𝑐 , 𝑑 , and 𝑒 range over events. An event, as we recall, is

formalized as either an initialization event, I (ℓ), or as a pair of natural numbers, (𝑖, 𝑗), where 𝑖
is a thread identifier and 𝑗 is the order of the event. The terms 𝑎.1 and 𝑎.2 denote the first and

the second projections of 𝑎 in the case where 𝑎 is a pair. The relation 𝑅−1
is the inverse relation

of 𝑅: (𝑏, 𝑎) ∈ 𝑅−1 ⇐⇒ (𝑎, 𝑏) ∈ 𝑅. The relation 𝑅1; 𝑅2 is the sequential composition of 𝑅1 and 𝑅2:

(𝑎, 𝑐) ∈ 𝑅1; 𝑅2 ⇐⇒ ∃𝑏. (𝑎, 𝑏) ∈ 𝑅1∧(𝑏, 𝑐) ∈ 𝑅2. The relation [𝑆] is the smallest reflexive relation

on a set 𝑆 ; it is defined as {(𝑠, 𝑠) | 𝑠 ∈ 𝑆}. The relations 𝑅?
, 𝑅+

, and 𝑅∗
respectively denote the

reflexive closure, the transitive closure, and the reflexive-and-transitive closure of 𝑅. The relations 𝑅𝑖
and 𝑅𝑒 are the internal and external components of 𝑅: (𝑎, 𝑏) ∈ 𝑅𝑖 ⇐⇒ (𝑎, 𝑏) ∈ 𝑅 ∧ 𝑎.1 = 𝑏.1, and,

𝑅𝑒 = 𝑅 \𝑅𝑖 . Given a graph𝐺 , the relation 𝑅ℓ is the at-ℓ restriction of 𝑅: it restricts 𝑅 to events 𝑎 such

that 𝐺.lab(𝑎) accesses ℓ . The term 𝑎.loc denotes the location accessed by 𝑎. The relation 𝑅 |loc is
the per-location restriction of 𝑅: (𝑎, 𝑏) ∈ 𝑅 |loc ⇐⇒ (𝑎, 𝑏) ∈ 𝑅 ∧ 𝑎.loc = 𝑏.loc. The relation 𝑅 |≠loc
is the distinct-locations restriction of 𝑅: 𝑅 |≠loc = 𝑅 \ 𝑅 |loc.All these restrictions can be similarly

applied to sets of events. The graph 𝐺 is usually clear from the context and left implicit.

Program order. The program order reflects the order in which events were emitted by a given

thread: (𝑎, 𝑏) ∈ po ⇐⇒ (𝑎 = I (_) ∧ 𝑏 ≠ I (_)) ∨ (𝑎.1 = 𝑏.1 ∧ 𝑎.2 < 𝑏.2).

Reads-from. The reads-from relation relates write events to read events, rf ⊆ (W ∪ RMW-s) ×
(R ∪ RMW). It captures how information flows from a write to a read on the same location. There are

two conditions. First, for every read 𝑏, there must be a unique write 𝑎 such that (𝑎, 𝑏) ∈ rf. Second,
for every pair (𝑎, 𝑏) ∈ rf, the events 𝑎 and 𝑏 must act on the same location and the value read by 𝑏

must be equal to the value written by 𝑎.

Modification order. The modification order is a relation on write and successful read-modify-

write events,mo ⊆ (W ∪ RMW-s)× (W ∪ RMW-s). Intuitively, it describes how single memory cells have

been observed to evolve during program execution. The mo relation is equal to the disjoint union

of the relations moℓ , defined as the restriction of mo to events in ℓ : mo =
⊎

ℓ∈Loc moℓ . Moreover,

for every ℓ , the relation moℓ is a strict total order (transitive, irreflexive, and total).

We are finally in position to introduce the RC11-consistency conditions:

Definition 3.1 (RC11-Consistency). An execution graph (𝐺, rf, mo) is RC11-consistent if the
conditions

• irreflexive(hb; eco?) (Coherence)

• acyclic(psc) (SC)

• irreflexive(rb; mo) (Atomicity)

• acyclic(po ∪ rf) (No-Thin-Air)

hold, where the relations happens-before (hb), synchronizes-with (sw), extended coherence order (eco),
reads-before (rb), partial-SC (psc), and SC-before (scb) are defined as follows:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:12 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

Cmd ∋ 𝑠 ::= . . . | asm {𝑟:= [𝑒]} | asm {[𝑒]:= 𝑒} | asm {𝑟 := rmw ([𝑒], 𝑒, 𝑒)} | asm {mfence}
| asm {[𝑒]:=nt 𝑒} | asm {sfence}

Fig. 4. Syntax of RC11Ex86-lang.

rb ≜ (rf−1; mo) \ [E]
hb ≜ (po ∪ sw)+
eco ≜ (rf ∪ mo ∪ rb)+

sw ≜


[E⊒rel]; ([F]; po)?; [W⊒rlx];
rf+;

[R⊒rlx]; (po; [F])?; [E⊒acq]

psc ≜ pscbase ∪ pscfence

scb ≜ po ∪ po|≠loc; hb; po|≠loc ∪ hb|loc ∪ mo ∪ rb
pscbase ≜ ([Esc] ∪ [Fsc]; hb?); scb; ([Esc] ∪ hb?; [Fsc])
pscfence ≜ [Fsc]; (hb ∪ hb; eco; hb); [Fsc]

These consistency conditions are equivalent to the ones formulated by Margalit and Lahav

[2021], who diverge from Lahav et al. [2017] only in a minor way: the synchronizes-with relation

relies on a simplified notion of release sequences, defined as the reflexive-and-transitive closure

of rf. This simplification is in agreement with the current documentation of the C++ programming

language [Cppreference Community 2019]. We further adapt the statement of Atomicity according

to our design choice of modeling RMWs as single events rather than as pairs of reads and writes

related by an extra relation rmw.
To complete the description of RC11, showing how it defines the semantics of a program, we

need to introduce the notions of data race and of undefined behavior (UB):

Definition 3.2 (Data Race). A pair of events (𝑎, 𝑏) forms a data race if the following conditions
hold: (1) 𝑎 ≠ 𝑏, (2) 𝑎.loc = 𝑏.loc, (3) {𝑎, 𝑏} ∩ (W ∪ RMW-s) ≠ ∅, and (4) (𝑎, 𝑏) ∉ hb ∪ hb−1.

Definition 3.3 (RC11-Behaviors).(
toPool(𝑝) / Init −→∗ ∅ / 𝐺 ∧ (𝐺, rf, mo) is RC11-consistent

)
⊢ 𝑝 −→ (𝐺, rf, mo)(

toPool(𝑝) / Init −→∗
_ / 𝐺 ∧ (𝐺, rf, mo) is RC11-consistent

∧ (𝑎, 𝑏) forms a data race ∧ na ∈ {𝑎.md, 𝑏.md}

)
⊢ 𝑝 −→ UB

Each consistent execution graph (𝐺, rf, mo) represents one of the possible final-memory states

of a program. We use the function finalSt to extract this memory state: finalSt (𝐺, mo) denotes
the memory where a location ℓ stores the value 𝑛 of the last write event W (ℓ, 𝑛) in 𝐺 with respect

to mo. The memory finalSt (𝐺, mo) is represented as a partial map where a location ℓ belongs

to dom(finalSt (𝐺, mo)) iff there exists 𝑎 ≠ I (_) such that 𝐺.lab(𝑎) ∈ Wℓ ∪ RMW-sℓ .

Definition 3.4 (RC11-lang Semantics). The semantics of a RC11-lang program 𝑝 is defined as its

set of final states:

𝜎 ∈ J 𝑝 KRC11 ⇐⇒ 𝑝 −→ UB ∨ ∃𝐺, rf, mo. 𝑝 −→ (𝐺, rf, mo) ∧ 𝜎 = finalSt (𝐺, mo)

3.2 The RC11Ex86 Memory Model - An Extension of RC11 with Inline Ex86 Assembly
We now introduce RC11Ex86, an extension of RC11 with inline Ex86 assembly. We illustrate the

model in an extension of RC11-lang with inline assembly, called RC11Ex86-lang.
Figure 4 shows the syntactical increments of RC11Ex86-lang over RC11-lang. The main difference

with respect to Figure 2 is the addition of inline-assembly commands, distinguished by the prefix asm.
They allow one to access the following Ex86-specific instructions: plain Ex86 reads, writes, and
read-modify-writes; non-temporal stores; store fences; and memory fences.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:13

nt
W

(asm)

na
W/R

rlx
W/R/RMW

acq
R/RMW/F

rel
W/RMW/F

acqrel
RMW/F

tso
W/R/RMW
(asm)

sf
F

(asm)

sc
W/R/RMW/F

Fig. 5. Diagram of access modes of RC11Ex86.

To give an intuitive operational account of these instructions, we can rely on the formal opera-

tional model of Ex86 [Raad et al. 2022]. In this operational model, every thread contains a local

buffer where write instructions first take effect before reaching the global main memory, which is

shared among all threads. A non-temporal store [𝑒]:=nt 𝑒′ bypasses the local buffer, if the buffer
contains no writes to the same location. Therefore, a non-temporal store can be reordered with

respect to writes or non-temporal stores to different locations. A store fence sfence can be used to

avoid the reordering of non-temporal stores. A memory fence mfence can be used for the same

purpose. Additionally, it can be used to stop the reordering of a write followed by a read.

To distinguish events emitted by inline-assembly commands from events emitted by pure RC11-
lang commands, we introduce three new access modes:

Mode ∋ md ::= . . . | nt | sf | tso

Events emitted by plain Ex86 reads, writes, and read-modify-writes carry the mode tso: Wtso, Rtso,
and RMWtso. Events emitted by non-temporal stores carry the mode nt: Wnt. Events emitted by store

fences carry the mode sf: Fsf. Events emitted by Ex86 memory fences are indistinguishable from

those emitted by sc fences, they all carry the mode sc. Of course, it would be possible to distinguish
events emitted by memory fences by using an extra mode, say mf. However, our model assigns

the same strength to sc fences and to memory fences, so we prefer to simply use the mode sc. (In
other words, in our proposed model, programmers have no good reason to use asm {mfence}, as
they can equivalently use fencesc; we include asm {mfence} only for comprehensiveness.)

The following definition introduces RC11Ex86-consistency. Many of the conditions are identical

to those from RC11 (Definition 3.1). Therefore, to avoid repetition, we include only the differences

with respect to RC11. For clarity, we highlight these differences using a colored background. Finally,

we observe that (in both the new definitions and in those inherited from RC11) the ranges of access
modes should be interpreted using the graph from Figure 5; that is, using the order induced by the

reflexive-and-transitive closure of the directed-edge relation from Figure 5.

Definition 3.5 (RC11Ex86-Consistency). An execution graph (𝐺, rf, mo) is RC11Ex86-consistent if,
in addition to the conditions from Definition 3.1 (where Coherence is renamed to Coherence-I),

the conditions

• acyclic(ppoasm ∪ eco) (Coherence-II)

• irreflexive([Wnt]; po; (rb ∪ mo)) (Coherence-III)

hold, where the relations hb, eco, poRC11, and ppoasm are defined as follows:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:14 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

hb ≜ (poRC11 ∪ sw)+ eco ≜ (rf𝑒 ∪ mo ∪ rb)+

poRC11 ≜ [E \ Wnt]; po
∪ po; [RMWtso ∪ F⊒sf]
∪ po|loc; [W]

ppoasm ≜ po; [RMWtso ∪ F⊒sf]
∪ [Rtso ∪ RMWtso ∪ Fsc]; po
∪ [F⊒sf]; po; [E \ R]
∪ [Wtso]; po; [E \ R \ Wnt]
∪ [E \ R \ Wnt]; po; [Wtso]

This definition diverges from RC11 in multiple ways:

Diagram of access modes. The diagram of access modes unites RC11 modes and Ex86-inspired
modes into the same picture. It is intriguing because it misses some orderings that one

would naturally expect, such as tso ⊏ sc or perhaps even na ⊏ nt. Given that non-

temporal stores break release-acquire synchronization, as we shall explain, it is not difficult

to understand the absence of the ordering na ⊏ nt. Perhaps more striking is the absence of

the ordering tso ⊏ sc. We explain in §3.2.1 that adding such an ordering violates (at least)

one of our desiderata.

Definition of hb. Instead of the full po relation, now the definition of hb uses a restricted version

of po that excludes edges starting in non-temporal stores, unless they reach a sc fence, a sf
fence, a tso read-modify-write, or a write to the same location. In §3.2.3, we explain in detail

the motivation for this change, but, for now, let us simply say that this relaxation of hb is
necessary, for example, to allow the weak behavior of Program MP-NT.

Definition of eco. In RC11, the relation eco can be defined using either the full rf relation or

the external restriction rf𝑒 . The two formulations of RC11 are equivalent. In the presence

of inline assembly, especially of non-temporal stores, however, the definition of eco must

use rf𝑒 : a formulation of RC11Ex86 where eco is defined using rf is unsound. In §3.2.4, we

explain in detail why this is the case.

Consistency Condition - Coherence-II. The consistency conditions now postulate the absence

of cycles in ppoasm ∪ eco. This condition is the key principle that allows one to reason about

inline assembly using our model. In §3.2.2, we shall see that this condition is an adaptation

of one of Ex86-consistency conditions. We believe that extensions of RC11 with support for

inline assembly for other architectures could be obtained by redefining ppoasm.
Consistency Condition - Coherence-III. The addition of this condition is a technicality. In RC11,

Condition Coherence-I ensures that mo𝑖 and rb𝑖 are included in po. In RC11Ex86, however,
Condition Coherence-I is insufficient to rule out cases that violate these properties, because

a po edge that starts with a non-temporal store is not necessarily included in hb. As a
consequence, the existence of an event 𝑎 such that (𝑎, 𝑎) ∈ [Wnt]; po; (rb ∪ mo) is not a
contradiction to irreflexive(hb; eco). This new condition must therefore be included.

3.2.1 Diagram of Access Modes. Let us start by explaining how the mode sf fits in Figure 5. It

naturally sits between the two strongest modes allowed in a fence: acqrel and sc. This positioning
is natural because an acqrel fence is erased by the standard compilation schemes to x86, so they

cannot be used to stop the reordering of non-temporal stores. Moreover, a sc fence can be used to

stop the reordering of a write and a read, for which a store fence is insufficient. This explains the

ordering sf ⊏ sc.
An interesting implication of the (derived) ordering rel ⊏ sf is that the model allows store

fences to establish release-acquire synchronization. In other words, a store fence is allowed in the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:15

beginning of a sw edge. It can thus be used to rule out behaviors that contradict the irreflexivity

of hb; eco? (Coherence-I). This is exhibited by the following pair of programs:

asm {[𝑥]:=nt 1}
fencerel
[𝑦]rlx:= 1

𝑎:= [𝑦]acq // 1
𝑏:= [𝑥]rel // 0

asm {[𝑥]:=nt 1}
asm {sfence}
[𝑦]rlx:= 1

𝑎:= [𝑦]acq // 1
𝑏:= [𝑥]rel // 0

The behavior depicted is allowed by our model in the program on the left, but forbidden in the

program on the right. This is in agreement with the behavior exhibited by these programs in Ex86
after compilation, because the rel fence would then be erased.

Let us now explain the positioning of nt in the diagram. That non-temporal stores are deemed

weaker than relaxed writes is easy to understand when we take Program MP-NT into account.

Indeed, the weak behavior of MP-NT is disallowed when a rlx write is used instead of a non-

temporal store:

[𝑥]rlx:= 1
[𝑦]rel:= 1

𝑎:= [𝑦]acq // 1
𝑏:= [𝑥]rlx // 0

This explains the ordering nt ⊏ rlx.
The lack of the ordering na ⊏ nt can be similarly explained:

[𝑥]na:= 1
[𝑦]rel:= 1

𝑎:= [𝑦]acq // 1
if (𝑎 == 1) {
𝑏:= [𝑥]rlx // 0

}

asm {[𝑥]:=nt 1}
[𝑦]rel:= 1

𝑎:= [𝑦]acq // 1
if (𝑎 == 1) {
𝑏:= [𝑥]rlx // 0

}

The if-branching is just to prevent a data race between the na write and the rlx read to 𝑥 :

it makes sure that, when the read is issued, it is preceded by the write with respect to hb. The
program on the left cannot exhibit the depicted behavior because of a cycle in hb; rb, forbidden in

both RC11 and RC11Ex86 (since it is an extension of RC11). The program on the right can exhibit

the annotated behavior because of the reordering of non-temporal stores with writes to distinct

locations.

The lack of the ordering nt ⊏ na is justified by the catch-fire semantics of na. A data race makes

every behavior allowed by the model:

[𝑥]na:= 1
𝑎:= [𝑥]rlx

𝑏:= [𝑦]rlx // 42
asm {[𝑥]:=nt 1}

𝑎:= [𝑥]rlx

𝑏:= [𝑦]rlx // 𝑏 ≠ 0

This example might instigate the reader to ask the question: why do non-temporal stores, or,

more generally, inline-assembly accesses, not follow a catch-fire semantics? There are multiple

reasons to avoid this approach. First, assigning catch-fire semantics to racy inline-assembly accesses

compromises Property P5 (because it allows the behavior of IRIW) and Property P4 (because the

semantics of a racy program written entirely using inline Ex86 assembly would diverge from the

semantics given by Ex86). Additionally, the reasons that justify the catch-fire semantics of na
accesses do not apply to inline-assembly accesses. Indeed, there are roughly two reasons why the

catch-fire semantics of na accesses is necessary: (1) to validate compiler optimizations (for example,

the reordering of na accesses to different locations), and (2) to support the mapping of na accesses

to plain accesses in architectures that do not enforce the acyclicity of po ∪ rf. In our setting, the

compiler is not expected to reorder inline assembly, and our compilation schemes are only to Ex86,
which enforces this acyclicity condition.

Finally, let us explain how tso is placed in the diagram. Because the strengthening to tso
accesses is one of our desired properties, tso is placed above every non-sc access. The lack of the

ordering tso ⊏ sc however is intriguing, because sequential consistency is stronger than total store

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:16 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

order [Sindhu et al. 1992]. The problem is that, in general, RC11 does not enforce SC semantics to

programs that mix sc and non-sc accesses to the same location. The following pair of examples

(inspired by the Z6.U example from [Lahav et al. 2017]) shows that the semantics assigned to sc
accesses by RC11 can be weaker than the semantics assigned to tso accesses by our model:

asm {[𝑥]:= 1}
[𝑦]rel:= 1

asm {𝑎:= [𝑦]} // 1
𝑏:= [𝑧]rlx // 0

[𝑧]sc:= 1
fencesc
𝑐:= [𝑥]rlx // 0

[𝑥]sc:= 1
[𝑦]rel:= 1

𝑎:= [𝑦]sc // 1
𝑏:= [𝑧]rlx // 0

[𝑧]sc:= 1
fencesc
𝑐:= [𝑥]rlx // 0

3.2.2 Consistency Condition. - Coherence-II. Condition Coherence-II is the key principle that

allows one to reason about programs with inline assembly. Ideally, one would like to reason about

such instructions using the hardware model, Ex86, by relying on the guarantee that every cycle

containing at least one inline-assembly instruction should comply to Ex86-consistency. However,
as explained in §2.4, such an approach would be too strong, ruling out behaviors that could be

introduced by standard compiler optimizations. We thus argued that a possible solution would

be to enforce the guarantee that every cycle in which every pair of po-separated events contains

at least one inline assembly instruction should comply to Ex86-consistency. This is the approach
implemented by Coherence-II, with some small caveats.

The formulation of Ex86-consistency, as introduced by Raad et al. [2022], includes two consistency
conditions: an internal condition, which applies to cycles confined within single threads; and an

external condition, which posits the absence of certain cycles spanning over multiple threads.

The internal condition in Ex86 posits the irreflexivity of po; (rf𝑖 ∪ mo𝑖 ∪ rb𝑖). This condition
is equivalent to the irreflexivity of both po; rf𝑖 and po; (mo𝑖 ∪ rb𝑖). 2 Condition No-Thin-Air is

stronger than the irreflexivity of po; rf𝑖 , and Conditions Coherence-I and Coherence-III together

rule out reflexive edges in po; (mo𝑖 ∪ rb𝑖).
Therefore, Condition Coherence-II focus on integrating the external condition to the model. To

recall the definition of Ex86’s external condition, and to make its comparison with Coherence-II

clear, we include this definition here, putting it side-by-side with Coherence-II:

acyclic(ppoasm ∪ eco)
ppoasm = po; [RMWtso ∪ F⊒sf]

∪ [Rtso ∪ RMWtso ∪ Fsc]; po
∪ [F⊒sf]; po; [E \ R]
∪ [Wtso]; po; [E \ R \ Wnt]
∪ [E \ R \ Wnt]; po; [Wtso]

(RC11Ex86- Coherence-II)

acyclic(ppo ∪ rf𝑒 ∪ mo𝑒 ∪ rb𝑒)
ppo = po; [RMW ∪ MF ∪ SF]

∪ [R ∪ RMW ∪ MF]; po
∪ [SF]; po; [E \ R]
∪ [W]; po; [W]
∪ [W ∪ NT]; po|loc; [W ∪ NT]

(Ex86 - External)

We keep the notation used by Raad et al. [2022] in the statement of External, which diverges

from ours in two minor ways: (1) instead of a single set of fences, Ex86 introduces one set exclusively
for store fences (SF) and one set exclusively for memory fences (MF); (2) analogously, instead of a

single set of write events, there is one exclusive set for non-temporal stores (NT) and one for regular
writes (W).

2
The condition irreflexive (𝐴; (𝐵 ∪ 𝐶)) is equivalent to irreflexive (𝐴; 𝐵) ∧ irreflexive (𝐴; 𝐶) , for any relations𝐴, 𝐵, and𝐶 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:17

The side-by-side comparison reinforces the claim that Coherence-II integrates Ex86-consistency
into RC11Ex86 under the condition that pairs of po-separated events in a violating cycle include at

least one inline-assembly event. Indeed, most cases of ppoasm edges either start or end in a event

with mode tso, nt, or sf. There is one exception to this case: edges that either either start or end

in a sc fence. This is explained by how we model memory fences. The condition therefore rules

out certain kinds of cycles with no inline-assembly instructions, provided that the po-separated
events include a sc fence. Such cycles however are already ruled out by Condition SC.

To conclude, let us comment on the differences between the statements of the acyclicity conditions:

Coherence-II uses eco, which includes the internal edgesmo𝑖 and rb𝑖 ; whereas External uses rf𝑒 ∪
mo𝑒 ∪ rb𝑒 , thereby including only external edges. The inclusion of [W∪ NT]; po|loc; [W∪ NT] edges
in the definition of ppo compensates for the absence of mo𝑖 , whereas the inclusion of [R]; po
edges compensates for the absence of rb𝑖 . This explanation also justifies why, in the statement

of Coherence-II, we can omit the “per-location” case in the definition of ppoasm, and reuse eco.
The attentive reader might notice that the internal edges in eco evade the constraint of one inline-

assembly event per pair of po-separated events. They however pose no risk to the soundness of

compiler optimizations, because (1) no optimization applies to pairs of a read and a write to the

same location, so rb𝑖 edges cannot be undone; and (2) mo𝑖 edges between plain RC11 accesses in
a ppoasm ∪ eco cycle can always be merged into an edge of type mo𝑒 , rb𝑒 , or ppoasm.

3.2.3 Definition of hb. To see why hb is defined using poRC11 instead of po, let us consider Pro-
gram MP-NT. As we shall see, whether the final state 𝜎 that maps both 𝑥 and 𝑦 to 1 is allowed (that

is, whether 𝜎 ∈ JMP-NTK) depends on the definition of hb.
In our model, the final state 𝜎 is allowed, thanks to the use of poRC11 in the definition of hb.

If, however, hb was defined as in RC11, that is, hbRC11 = (po ∪ sw)+, then the state 𝜎 would be

disallowed. This is of course problematic, because the behavior is allowed by the Ex86-compiled

version of this program.

In §1, we informally justified why this behavior is allowed in Ex86 after compilation in terms

of possible reorderings. Having introduced the key consistency condition of Ex86 (Condition

External), we can now formally justify why this is the case. We take this opportunity to il-

lustrate our idea of mixed execution graphs, a reasoning tool we introduce to conduct proofs of

compilation correctness. It allows us to represent graphs from both source and compiled programs

simultaneously:

Wnt (𝑥, 1) NT(𝑥, 1)

Wrel (𝑦, 1) W (𝑦, 1)

Racq (𝑦, 1) R (𝑦, 1)

Rrlx (𝑥, 0) R (𝑥, 0)

𝑎

𝑏

𝑐

𝑑

po po
rb

sw

Nodes in this graph carry pairs of a RC11Ex86 event, issued by the source program, and a

Ex86 event, issued by the compiled program. Using this structure, we are able to make several

observations:

(1) The behavior is allowed by Ex86 after compilation, because (𝑎, 𝑏) ∉ ppo, therefore the

cycle (𝑎, 𝑏, 𝑐, 𝑑) does not violate External.
(2) The behavior is allowed by RC11Ex86. Two conditions could potentially be violated by the

cycle (𝑎, 𝑏, 𝑐, 𝑑): Coherence-I and Coherence-II. The cycle does not violate Coherence-I,

because (𝑎, 𝑏) ∉ poRC11. The cycle does not violate Coherence-II, because (𝑎, 𝑏) ∉ ppoasm.
(3) The behavior breaks the irreflexivity of hbRC11; eco, because (𝑎, 𝑑) ∈ hbRC11 and (𝑑, 𝑎) ∈

rb ⊆ eco. Therefore, a naive extension of RC11 that keeps hbRC11 would be unsound.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:18 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

3.2.4 Definition of eco. To see why rf𝑒 is used in eco, let us consider the following example:

asm {[𝑥]:=nt 1}
𝑎:= [𝑥]rlx // 1
[𝑦]rel:= 1

𝑏:= [𝑦]acq // 1
𝑐:= [𝑥]rlx // 0

This program is a slight variation of MP-NT, where we add a read instruction between the

non-temporal store and the write to 𝑦. Again, we wish to study whether the annotated behavior is

allowed by Ex86 after compilation. If that is the case, then the behavior must be allowed by our

model. As we shall see, the behavior is indeed exhibited by the compiled program and our model

correctly allows it, thanks to the exclusion of rf𝑖 edges from eco. The following mixed execution

graph helps to sustain these claims:

Racq (𝑦, 1) R (𝑦, 1)

Rrlx (𝑥, 0) R (𝑥, 0)

Wnt (𝑥, 1) NT(𝑥, 1)

Rrlx (𝑥, 1) R (𝑥, 1)

Wrel (𝑦, 1) W (𝑦, 1)

𝑎

𝑏

𝑐

𝑑

𝑒

po
po rf

rf

sw

rb

This is the only execution graph that corresponds to the annotated behavior, because these rf
edges are the only ones that comply with the results of the read operations. Here is the summary

of the conclusions we can draw by studying this graph:

(1) The behavior is allowed by Ex86 after compilation, because the graph is Ex86-consistent.
Indeed, both the edges (𝑎, 𝑏) and (𝑎, 𝑐) do not belong to ppo+, therefore (𝑎, 𝑐, 𝑑, 𝑒) does not
violate External.

(2) The behavior is allowed by RC11Ex86. Two conditions could potentially be violated by the

cycle (𝑎, 𝑐, 𝑑, 𝑒): Coherence-I and Coherence-II. The cycle does not violate Coherence-II,

because (𝑎, 𝑐) ∉ ppoasm+
. The cycle does not violate Coherence-I, because (𝑒, 𝑎) is the

longest eco edge starting from 𝑒 , and because (𝑎, 𝑏) ∉ poRC11, so extending the hb edge (𝑏, 𝑒)
with eco does not close the cycle.

(3) The behavior breaks the irreflexivity of hb; ecoRC11, even when the RC11Ex86 definition of hb
is used. Indeed, both the edges (𝑏, 𝑐) and (𝑑, 𝑒) belong to poRC11, and (𝑎, 𝑏) ∈ rf𝑖 ⊆ ecoRC11,
so (𝑏, 𝑏) forms a reflexive edge in hb; ecoRC11. Therefore, a naive extension of RC11 that
keeps ecoRC11 would be unsound.

4 Metatheory
In this section, we study properties of RC11Ex86. In particular, we study the correctness of compila-

tion, the correctness of compiler optimizations, and the data-race-freedom property: the property

that, if a program 𝑝 has races only on sc accesses, then 𝑝 can exhibit only sequentially consistent

behaviors. Data-race freedom is one of the main design goals of RC11, so it is important to show

that RC11Ex86 preserves this property.
The discussion is organized as follows. In §4.1, we define two compilation schemes to Ex86. In §4.2,

we introduce the notion of mixed execution graphs, a key concept in our proofs of compilation cor-

rectness, whose sketch we present in §4.3. In §4.4, we discuss our results of compiler-optimization

correctness. Finally, in §4.5, we present the formal statement of data-race freedom. The prop-

erty that RC11Ex86 is an extension of RC11 and Ex86 is in the Appendix [de Vilhena et al. 2024,

Theorems C.13 and C.14].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:19

4.1 Compilation Schemes – Definition and Correctness
Following the traditional approach in the weak-memory literature, we formalize the notion of

compilation as a compilation scheme. Roughly speaking, a compilation scheme is a program trans-

formation that modifies only memory instructions: the main structure of the program, including

control flow and the distribution of threads, is kept, whereas memory instructions from the source

language are mapped to zero, one, or multiple instructions from the target language. Therefore, this

approach allows us to concentrate on how the transition from the model of the source language

to the model of the target language affects the way in which the program interacts with memory.

Intuitively, the compilation scheme is correct if the execution of the transformed program can

update memory only to a subset of the final states reachable from the execution of the source

program.

Definition 4.1 (Compilation Scheme from RC11Ex86-lang to Ex86-lang).

L [𝑒]sc:= 𝑒′ M ≜ [𝑒]:= 𝑒′; mfence
L [𝑒]≠sc:= 𝑒′ M ≜ [𝑒]:= 𝑒′

L 𝑟:= [𝑒]md M ≜ 𝑟:= [𝑒]
L 𝑠; 𝑠′ M ≜ L 𝑠 M; L 𝑠′ M
L skipM ≜ skip

L asm {𝑠}M ≜ 𝑠

L fencesc M ≜ mfence
L fence≠sc M ≜ skip

L 𝑟 := rmwmd ([𝑒1], 𝑒2, 𝑒3) M ≜ 𝑟 := rmw ([𝑒1], 𝑒2, 𝑒3)
L while 𝑒 { 𝑠 }M ≜ while 𝑒 { L 𝑠 M }

L if 𝑒 { 𝑠 }M ≜ if 𝑒 { L 𝑠 M }

Definition 4.2 (Alternative Compilation Scheme). Same as Def. 4.1 except for the following cases:

L [𝑒]sc:= 𝑒′ M-alt ≜ sfence; [𝑒]:= 𝑒′; mfence
L [𝑒]rel:= 𝑒′ M-alt ≜ sfence; [𝑒]:= 𝑒′

L [𝑒]rlx:= 𝑒′ M-alt ≜ [𝑒]:=nt 𝑒′
L fencerel, acqrel M-alt ≜ sfence

Definition 4.1 follows largely the scheme from Lahav et al. [2017]. Perhaps more striking is

Definition 4.2, which provides an alternative scheme for Ex86, where relaxed writes can be compiled

to non-temporal stores. The price to pay is the addition of store fences to the compilation of rel/sc
writes and rel/acqrel fences. The idea is to ensure that every sw edge starts with a store fence.

In this way, non-temporal stores, even when emitted from the compilation of rlx writes, cannot
invalidate release-acquire synchronization.

In a similar way to howwe constructed the function J _KRC11, which defines the semantics of RC11
programs, and to how we implicitly constructed J _KRC11Ex86 , we can introduce the function J _KEx86
defining the semantics of Ex86-lang programs. The definition is in the Appendix [de Vilhena et al.

2024, Definition B.3]. The statement of compilation correctness is then straightforward:

Theorem 4.3. [Correctness of Definitions 4.1 and 4.2] For every RC11Ex86-lang program 𝑝 , the set
of final states of L 𝑝 M defined by Ex86 is included in the set of final states of 𝑝 defined by RC11Ex86:

∀𝑝. J L 𝑝 MKEx86 ⊆ J 𝑝 KRC11Ex86

4.2 Mixed Execution Graphs
Our proofs of compilation correctness rely on the novel notion of mixed execution graphs, a type of
execution graph whose nodes contain events from both the source-level and target-level models.

Before presenting the proof sketch of our compilation-correctness results, let us give a brief

introduction to mixed execution graphs.

Informally speaking, a mixed execution graph is the superposition of two execution graphs:

one called source graph, which is associated with a source program 𝑝; and one called target graph,
which is associated with the compilation of 𝑝 . The key feature of a mixed execution graph is that it

captures the fact that source and target graphs share the same overall structure. Indeed, because

a compilation scheme preserves the control flow of the source program and changes only how

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:20 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

Wsc (𝑥, 1)
W (𝑥, 1)

MF

Wsc (𝑦, 1)
W (𝑦, 1)

MF

Rsc (𝑦, 0) R (𝑦, 0) Rsc (𝑥, 0) R (𝑥, 0)

𝑎

𝑏

𝑐

𝑑

po po

rb

rb

Fig. 6. Example of a mixed execution graph.

memory operations are mapped to operations in the target language, for every execution graph of

the compiled program, one can always construct an execution graph of the source program that

preserves much of the structure of the target graph, including its primitive relations po, rf, and mo.
The only mismatches between these graphs come from how one memory operation from the source

language might be mapped to zero, one, or multiple memory operations from the target language.

To account for these mismatches, nodes in a mixed graph, called mixed nodes, carry events

from both source and target models. Events from the two models however cannot be arbitrarily

assembled in a mixed node: the source-level events in a mixed node correspond to the events of

a single source instruction and the target-level events correspond to the events emitted by the

snippet of target-level language produced by the mapping of this instruction. Therefore, the range

of mixed nodes is fixed and determined by the underlying compilation scheme.

Mixed graphs form a very convenient tool for proving compilation-correctness results because

they allow one to work with the execution graphs from both the source program and its compiled

version at the same time, and because they allow one to forget about the compilation scheme

which is ultimately encoded in the set of permissible mixed nodes. Moreover, it is possible to

lift the consistency conditions from the models of source and target languages to this mixed-

graph structure. Both models can thus be defined on the same structure, thereby allowing one to

formally reason about statements of the kind “one model is stronger than the other”. In fact, the

main convenience of mixed execution graphs is precisely to allow one to formulate the compilation

correctness result as a statement in this fashion: “in a mixed execution graph with nodes taken from
a well-chosen set, if the consistency conditions of the target model hold, then so do the consistency
conditions of the source model”. The set of nodes has to be well chosen so as to correctly reflect the

compilation scheme begin considered.

To give an illustration of mixed execution graphs, let us consider the example depicted in Figure 6.

We refer the reader to the Appendix [de Vilhena et al. 2024, §D.2] for a complete exposition of

mixed execution graphs and for a more thorough explanation of this example. The nodes are

depicted as domino-shaped boxes where the first part contains RC11Ex86 events and the second

part contains Ex86 events. There are two types of nodes in this example: one captures how a sc
write is compiled to a plain write followed by a memory fence; the other one captures how a sc
read is compiled to a plain read. In this simple example, it is easy to see how a RC11Ex86 graph 𝐺
and a a Ex86 graph 𝐺 ′

can be recovered from the mixed structure. We wish to argue that the

behavior represented by the mixed graph is disallowed in 𝐺 because all access modes are sc. In
other words, we wish to argue that 𝐺 is inconsistent. If compilation is correct, then 𝐺 ′

should also

be inconsistent. Thanks to the mixed graph structure, we can carry out both proofs in the same

graph:𝐺 is inconsistent because the cycle (𝑎, 𝑏, 𝑐, 𝑑) contradicts SC, and𝐺 ′
is inconsistent because

the same cycle contradicts External.

4.3 Compilation Correctness - Proof Sketch
The overall structure of our proofs is depicted by the following diagram:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:21

𝑝

L 𝑝 M

𝐺

𝐺 ′

∼L _M

It illustrates the first step of a two-steps strategy to prove that L _M is correct.
This first step consists of showing that, for every program 𝑝 , for every execution graph 𝐺 ′

associated with L 𝑝 M, there exists a graph𝐺 associated with 𝑝 , such that𝐺 is simulated by 𝐺 ′
[de Vil-

hena et al. 2024, Definition D.8], noted𝐺 ∼ 𝐺 ′
, which means that 𝐺 and 𝐺 ′

can be merged into a

mixed graph𝐺𝑚 . This first step is accomplished by induction over the construction of the graph𝐺 ′
.

Intuitively, because the compiled program L 𝑝 M preserves much of the structure of 𝑝 , it is possible to

replay the pool-reduction steps from L 𝑝 M and yield a graph 𝐺 that satisfies the desired properties.

The second step is then to show that, if𝐺𝑚 is Ex86-consistent, then it is RC11Ex86-consistent, for
notions of Ex86-consistency and RC11Ex86-consistency adapted to mixed graphs [de Vilhena et al.

2024, Definitions D.5 and D.6]. The consistency of a mixed graph holds iff each of its constituent

graphs is consistent, a property we call Transfer Principle [de Vilhena et al. 2024, Theorem D.7].

It follows from this principle that the second step is equivalent to the proof that, if 𝐺 ′
is Ex86-

consistent, then 𝐺 is RC11Ex86-consistent. This is sufficient to conclude the proof.

4.4 Compiler Optimizations
We now study the compiler optimizations discussed by Lahav et al. [2017]. We wish to determine

under which conditions they are sound in RC11Ex86. As previously stated, our model validates all

thread-local optimizations. The only optimization that is only valid under additional conditions is

sequentialization, which is a global transformation.

Following Lahav et al. [2017], we formalize a compiler optimization as a program transformation:
a mapping that takes and produces programs in the source language, which, in our case, is the

language RC11Ex86-lang. When discussing a given transformation, we use the notation 𝑝 ⇝ 𝑝′ to
express that 𝑝′ can be obtained by applying the transformation to 𝑝 .

A program transformation is sound, if applying this transformation does not introduce new

behaviors. Formally speaking, this means that, if 𝑝 ⇝ 𝑝′ holds, then the set of behaviors of 𝑝′ is a
subset of the set of behaviors of 𝑝 , that is, J 𝑝′ K ⊆ J 𝑝 K.
To prove the soundness of a program transformation, we usually resort to its natural general-

ization to the level of execution graphs: a transformation that applies to events in an execution

graph rather than to instructions. In the transformations considered here, this generalization is

straightforward. We use the notation 𝐺 ⇝ 𝐺 ′
to express that 𝐺 ′

can be obtained by applying the

transformation to𝐺 . The property that allows us to shift our attention to the graph transformation

when proving soundness of a program transformation is the following: if 𝑝 ⇝ 𝑝′, and if𝐺 ′
is an

execution graph associated with 𝑝′, then there exists an execution graph 𝐺 associated with 𝑝 such

that𝐺 ⇝ 𝐺 ′
. Under this property, to show the soundness of the program transformation, it suffices

to show (1) that, if 𝐺 ′
is RC11Ex86-consistent, then so is 𝐺 ; and (2) that, if 𝐺 ′

is racy, then so is 𝐺 .

4.4.1 Register Promotion. Register promotion replaces accesses to a memory location with accesses

to a register, provided that this location is accessed by only one thread and that this location is

not accessed via an inline-assembly read-modify-write. At the level of execution graphs, the

transformation 𝐺 ⇝ 𝐺 ′
removes all the accesses to a location 𝑥 in 𝐺 , provided that these accesses

are related by 𝐺.po and that their intersection with RMWtso is empty. Avoiding RMWtso is necessary,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:22 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

asm {[𝑥]:=nt 1}
𝑎:= [𝑥]rlx // 1
[𝑦]rel:= 1

𝑏:= [𝑦]acq // 1
𝑐:= [𝑥]rlx // 0 ⇝

asm {[𝑥]:=nt 1}
𝑎:= [𝑥]rlx // 1
[𝑦]rel:= 1

𝑏:= [𝑦]acq // 1
𝑐:= [𝑥]rlx // 0

asm {[𝑥]:= 1}
asm {𝑎:= [𝑥]} // 1
asm {𝑏:= [𝑦]} // 0

asm {[𝑦]:= 1}
asm {mfence}
asm {𝑐:= [𝑥]} // 0

⇝

asm {[𝑥]:= 1}
asm {𝑎:= [𝑥]} // 1
asm {𝑏:= [𝑦]} // 0

asm {[𝑦]:= 1}
asm {mfence}
asm {𝑐:= [𝑥]} // 0

Fig. 7. Counterexamples showing the unsoundness of sequentialization in RC11Ex86.

because RMWs act as barriers in x86. Intuitively, this transformation is correct because a consistency-

violating cycle in 𝐺 involving more than one thread must not contain accesses to 𝑥 (because 𝑥 is

never shared between two threads), so such a cycle would still exist in 𝐺 ′
.

4.4.2 Strengthening. Strengthening replaces an access mode with a stronger one with respect to

the ordering of access modes (Figure 5). Definitions in RC11Ex86 are monotonic: only upward-closed

ranges of the form “⊒ md” occur. 3 The correctness of this transformation is thus trivial, because,

every edge of the original graph is preserved.

4.4.3 Deordering and Merging. Deordering transforms sequential composition into parallel compo-

sition: 𝑠; 𝑠′ ⇝ 𝑠 𝑠′. Merging transforms two consecutive instructions into one: 𝑠; 𝑠′ ⇝ 𝑠′′. Lahav
et al. [2017, Table 1 and Figure 11] defines the pairs of deorderable instructions and mergeable

instructions permitted in RC11. Both transformations remain valid in RC11Ex86 when restricted to

the same deorderable and mergeable pairs of instructions. Intuitively, the correctness argument

relies on the remark that these transformations have no effect on ppoasm. Therefore, the additional
Coherence-II condition of our extended model does not pose a risk to the correctness of these

optimizations, because cycles in ppoasm ∪ eco cannot be undone by deordering and merging.

4.4.4 Sequentialization. Sequentialization merges two threads into one by interleaving their in-

structions. Figure 7 depicts two counterexamples showing the unsoundness of sequentialization

in RC11Ex86.
Sequentialization is unsound because, when merging two threads, an external rf edge might

become internal. Because internal rf edges are not included in poRC11, in ppoasm, or in eco, exchanging
a rf𝑒 edge for a rf𝑖 edge might undo cycles in ppoasm ∪ eco, in hb; eco?, or in psc.
The omission of rf𝑖 edges from poRC11, ppoasm, and eco, is necessary because non-temporal

stores break release-acquire synchronization. Moreover, the omission of rf𝑖 in the statement of

Coherence-II is inherited from Ex86, which also omits rf𝑖 edges in the statement of External. For

this reason, sequentialization is also unsound in plain Ex86 [Kang et al. 2017].

Because sequentialization is unsound in Ex86, its support is incompatible with Property P4. If

we ignore Property P4, then there are two approaches to add support for sequentialization: (1) to

relax the model so as to allow the behavior of the programs on the left-hand side of Figure 7, or (2)

to make the model stronger than, or incomparable to, RC11Ex86 so as to disallow the behavior of

the programs on the right-hand side of Figure 7. The first approach leads to a lost of reasoning

3
Sets of the form 𝑆md

, for md ∈ {sc, tso}, can be rewritten as 𝑆⊒md
, and sets of the form 𝑆 \ Wnt can be rewritten

as (𝑆 \ W) ∪ (𝑆 ∩ W⊒na) .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:23

principles, whereas the second approach invalidates the straightforward identity map as a sound

compilation scheme for inline assembly (Property P1). Therefore, instead of aiming to support

sequentialization for the price of abandoning Property P4, we investigate conditions under which

sequentialization is sound in RC11Ex86 as is.
We call a rf𝑒 edge of a RC11Ex86-inconsistent graph 𝐺 problematic if sequentialization trans-

forms 𝐺 into a RC11Ex86-consistent graph 𝐺 ′
. We note that a problematic edge must contain at

least one inline-assembly event. Indeed, because [E \ Wnt]; rf𝑖 is included in poRC11, transforming

a𝐺.rf𝑒 edge between plain RC11 events into𝐺 ′ .rf𝑖 makes this edge part of𝐺 ′ .hb, so it cannot undo
a cycle in hb; eco. Such a transformation cannot undo a cycle in ppoasm ∪ eco either, because, by

definition of ppoasm, every edge (𝑎, 𝑏) ∈ 𝐺.rf𝑒 ; [R≠tso] that is part of a cycle in ppoasm ∪ eco must

be followed by an edge (𝑏, 𝑐) ∈ po; [RMWtso ∪ F⊒sf], therefore (𝑎, 𝑐) ∈ 𝐺 ′ .ppoasm.
When we consider two threads, a sufficient purely syntactic condition to rule out the existence

of such problematic rf edges is the following: (1) if one thread includes plain RC11 reads then

the addresses of all these accesses and the addresses of all locations modified by the other thread

using inline assembly should be statically known and disjoint, and (2) if one thread includes

inline-assembly reads then the addresses of all these accesses and the addresses of all locations

modified by the other thread (using inline assembly or not) should be statically known and disjoint.

We call this condition No Interaction Through Inline Assembly (NITIA). Notice that, thanks to the

inclusions [RMW]; rf𝑖 ⊆ poRC11 ∩ ppoasm and rf𝑖 ; [RMW] ⊆ poRC11 ∩ ppoasm, read-modify-writes can be

ignored when checking the NITIA condition. Refining the statement of sequentialization to require

this condition to hold when merging two threads leads to a sound optimization. We prove this

claim in the Appendix [de Vilhena et al. 2024, Theorem D.16].

Another possible refinement of sequentialization is to add a sc fence between the threads to

be merged. Inserting such a fence imposes the constraint that the instructions from one thread

are ordered with respect to the instructions from the other thread. In retrospect, with the NITIA-

refinement of sequentialization, threads can be arbitrarily interleaved. We prove soundness of this

second version of sequentialization in the Appendix [de Vilhena et al. 2024, Theorem D.17].

4.5 Data-Race Freedom
Informally stated, the data-race-freedom property posits that, if a program 𝑝 has races only on

sc accesses, then 𝑝 can exhibit only sequentially consistent behaviors. This property enforces the

reasoning principle that, to recover the relative simplicity of sequential consistency, it suffices to

show the absence of races on non-sc accesses.
Because the notion of a race, as introduced in Definition 3.2, applies to execution graphs, not to

programs, to formalize this statement we must define what it means for a program to have races
only on sc accesses, that is, to be data-race free:

Definition 4.4 (Data-Race Free). A program 𝑝 has races only on sc accesses, or, is data-race free, if
every SC-consistent execution graph 𝐺 associated with 𝑝 has races only on sc accesses:

𝑝 is data-race free ⇐⇒

∀𝐺, mo, rf, 𝑎, 𝑏.©­«
toPool(𝑝) / Init −→∗

_ / 𝐺
(𝐺, rf, mo) is SC-consistent
(𝑎, 𝑏) forms a data race

ª®¬ =⇒ 𝑎.md = 𝑏.md = sc

The definition relies on the notion of SC-consistency, captured by a single condition: the acyclicity
of po ∪ rf ∪ mo ∪ rb. The restriction to SC-consistent graphs strengthens the reasoning principle
enforced by data-race freedom. If, for example, the graphs were assumed to be RC11Ex86-consistent,
then the resulting property would offer no benefit over RC11Ex86 itself.
Finally, data-race freedom is formally stated as follows:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:24 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

Theorem 4.5 (Data-Race Freedom). ∀𝑝. 𝑝 is data-race free =⇒ J 𝑝 KRC11Ex86 = J 𝑝 KSC

A detailed proof of this theorem can be found in the Appendix [de Vilhena et al. 2024, §C.1].

5 Related Work
To the extent of our knowledge, we are the first authors to consider the problem of extending C++’s
memory model with support for inline assembly. In the following paragraphs, we discuss related

work on topics that we covered in this paper.

Models of x86. Sewell et al. [2010] introduce an operational model of x86 that, according to the
documented tests, agrees with the behavior of actual x86 machines and is proven to be equivalent

to the axiomatic formulation of total store order (TSO) [Sindhu et al. 1992]. Such a model is devoid

of the ambiguity that is often present in the documentation of multiprocessors written in informal

prose. An interesting application of the model is to explain the correctness of an optimization that

was the subject of a famous discussion in the Linux Kernel Mailing List [1999]. In this paper, we

rely on Raad et al. [2022]’s Ex86, an extension of x86 with support for (1) non-temporal stores,

(2) store fences, and (3) reads and writes to the full range of Intel’s memory types (uncacheable,
write-combined, and write-through). More specifically, we rely on the axiomatic formulation of Ex86,
which formulation is included in the Appendix [de Vilhena et al. 2024, Definition B.1].

Models of C++. Batty et al. [2011] introduce the first formal memory model of C++ as a formal-

ization of the C++ standard [ISO 2011] mechanized in Isabelle/HOL [Nipkow et al. 2002]. Lahav

et al. [2017] however identify several issues with this model. They introduce RC11 (for Repaired
C11) in an attempt to repair these flaws. Indeed, Lahav et al. [2017] identify at least four problems

with the original model of Batty et al. [2011]: (1) the proposed compilation schemes [Batty et al.

2012; Sarkar et al. 2012] to POWER is unsound; (2) the semantics of sc fences is too weak, the

authors show that placing sc fences between every memory access is not sufficient to enforce

only sequentially consistent behaviors, and they argue that sc fences are not cumulative; (3) out-
of-thin-air behaviors are allowed even though they cannot be observed in any actual hardware;

(4) the model lacks monotonicity [Vafeiadis et al. 2015]. The RC11 model fixes these issues with

the Axiom SC, which weakens the semantics of programs mixing sc and non-sc accesses so that

the compilation schemes to POWER are sound and which strengthens the semantics of sc fences;

and with the Axiom No-Thin-Air, which disallows out-of-thin-air behaviors. The latter axiom has

the undesired effect of also disallowing load buffering behaviors, which can be observed in actual

hardware.

Multi-language semantics. Devising a model for C++ with inline assembly can be framed as a

problem of combining the semantics of two different languages: C++ and the assembly language of

the underlying hardware architecture. We identify some works that propose general solutions to

the problem of specifying multi-language semantics. Sammler et al. [2023] introduce DimSum, a

generic framework to reason about programs written in different languages. Inspired by process

calculi, one of the key ideas is to consider the semantics of a program as a labeled transition system

where nodes represent the (global) state and transitions are labeled by events. The semantics of a

program is written as a refinement statement that accounts for both demonic non-determinism (the

usual flavor of non-determinism) and angelic non-determinism [Floyd 1967], which is motivated

by situations where the representation of a value in one language matches the representation

of multiple different values in another language. This framework is inadequate for our purposes

because, as it stands, it is limited to sequential languages. Moreover, there is also a difference in

the nature of our works: whereas Sammler et al. [2023] concentrate on a general framework to

define the semantics programs written in different languages, with special attention on how the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

Extending the C/C++Memory Model with Inline Assembly 309:25

memory representation differs in each of these languages, our focus is rather to underpin the exact

(consistency) semantics of programs combining two specific languages, C++ and assembly. Goens

et al. [2023] study the question of devising memory models for heterogeneous processors, processors
that mix CPUs and GPUs and allow them to share memory. Their contribution is the introduction of

the notion of a compound memory model, a way to combine the different memory models from each

of devices sharing memory. As the authors put it, “a compound memory model is not a new memory
model”, in the sense that threads from devices abiding by different memory models continue to

adhere to these models. This is in contrast with our work, where (1) our extended model constitutes

a new model and (2) single threads can mix accesses from two different models, RC11 and Ex86.

Compilation-correctness proofs. Lahav et al. [2017] prove the correctness of compilation

schemes from RC11 to several architectures (x86, POWER, and Armv7). Podkopaev et al. [2019]

introduce the idea of an intermediate memory model (IMM), a model to which high-level languages,

such as C++, can be mapped and from which low-level code can be produced according to compila-

tion schemes proven correct once and for all. The authors argue that IMM is useful for structuring

proofs of correctness compilation, because, for example, in the situation where one has to establish

the correctness of compilation schemes of a language to 𝑁 architectures, instead of proving 𝑁

results, one could instead prove correctness of a mapping from this language to IMM (assuming

that the mappings exists). Such a proof would still be a proof of compilation correctness (from the

given language to IMM); we argue that our idea of mixed execution graphs would be valuable in

this compilation-correctness-proof effort. Kokologiannakis et al. [2023] develop Kater, a tool that

automates reasoning about the metatheory of memory models. The tool can decide the inclusion

between two relations in an execution graph and it is possible, even though intricate, to formulate

compilation-correctness statements in this fashion. At the start of our project, the tool was unfit

to our purposes because the notion of events comes as a built-in, thereby precluding its use with

new types of events such as non-temporal stores and store fences. The tool has since then been

extended with support for introducing user-defined sets of events. However, at the time of writing,

this feature lacks a comprehensive documentation and the tool lacks a specification of the facts

that it takes as assumptions.

6 Conclusion
In this paper, we have presented a formal model for C/C++ with inline x86 assembly as an extension

of the RC11 formal consistency model for C/C++. One can similarly try to extend RC11 with inline

assembly for other hardware platforms, such as Armv8. Doing so is expected to involve a few more

challenges, since the Armv8 model makes use of syntactic dependencies between instructions,

which do not have an analogue in the C/C++ setting and are not guaranteed to be preserved by

compilers. Another possible extension of our work would be to model the persistency semantics of

architectures over non-volatile memory. We think that both extensions are worth exploring and

leave them for future work.

Acknowledgments
Paulo Emílio de Vilhena is supported by the UKRI Future Leaders Fellowship MR/V024299/1.

Ori Lahav is supported by the European Research Council under the European Union’s Horizon

2020 research and innovation programme (grant agreement No. 851811) and by the Israel Science

Foundation (grant No. 814/22). Viktor Vafeiadis is supported by the European Research Council

under the European Union’s Horizon 2020 research and by innovation programme (grant agreement

No. 101003349). Azalea Raad is supported by the UKRI Future Leaders Fellowship MR/V024299/1,

by the EPSRC grant EP/X037029/1, and by VeTSS.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

309:26 Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad

References
Jade Alglave, Richard Grisenthwaite, Artem Khyzha, Luc Maranget, and Nikos Nikoleris. 2024. Puss In Boots: on formalizing

Arm’s Virtual Memory System Architecture. IEEE Micro (July 2024), 1–9. https://doi.org/10.1109/MM.2024.3422668

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats - Modelling, simulation, testing, and data-mining

for weak memory. ACM Transactions on Programming Languages and Systems 36, 2 (2014). https://doi.org/10.1145/2627752
Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clarifying and Compiling C/C++

Concurrency: From C++11 to POWER (Principles of Programming Languages (POPL)). 509—-520. https://doi.org/10.1145/

2103656.2103717

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In Principles
of Programming Languages (POPL). ACM Press, 55–66. https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf

Clang Project. 2007. Clang: a C language family frontend for LLVM. https://clang.llvm.org/

Cppreference Community. 2019. Cppreference - Memory Order. https://en.cppreference.com/w/cpp/atomic/memory_order

Paulo Emílio de Vilhena, Ori Lahav, Viktor Vafeiadis, and Azalea Raad. 2024. Extending the C/C++Memory Model with

Inline Assembly – Technical Appendix. https://doi.org/10.5281/zenodo.13625916

Robert W. Floyd. 1967. Nondeterministic Algorithms. Journal of the ACM 14, 4 (Oct. 1967), 636–644. https://doi.org/10.

1145/321420.321422

Michael J. Flynn. 1972. Some Computer Organizations and Their Effectiveness. IEEE Trans. Computers C-21 (Nov. 1972).
https://ieeexplore.ieee.org/document/5009071

GNU Project. 1987. GNU Compiler Collection. https://gcc.gnu.org/git/gcc.git

Andrés Goens, Soham Chakraborty, Susmit Sarkar, Sukarn Agarwal, Nicolai Oswald, and Vijay Nagarajan. 2023. Compound

Memory Models, Vol. 7. ACM Press, 153:1–153:24. https://doi.org/10.1145/3591267

Intel. 2024. Intel 64 and IA-32 Architectures Software Developer’s Manual (Combined Volumes). https:

//software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-

volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html Order Number: 325462-083US.

ISO. 2011. ISO International Standard ISO/IEC 14882:2011(E) – Programming Language C++. International Organization for

Standardization (ISO). https://www.iso.org/standard/50372.html

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxed-

memory concurrency. In Principles of Programming Languages (POPL). 175–189. https://www.cs.tau.ac.il/~orilahav/

papers/popl17.pdf

Michalis Kokologiannakis, Ori Lahav, and Viktor Vafeiadis. 2023. Kater: Automating Weak Memory Model Metatheory and

Consistency Checking. In Principles of Programming Languages (POPL), Vol. 7. https://doi.org/10.1145/3571212

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency

in C/C++11. In Programming Language Design and Implementation (PLDI). ACM Press, 618–632. https://plv.mpi-

sws.org/scfix/paper.pdf

Xavier Leroy. 2021. The CompCert C verified compiler. http://compcert.org/man.

Linux Kernel Community. 2007. Linux Kernel-Based Virtual Machine. https://git.kernel.org/pub/scm/virt/kvm/kvm.git

Linux Kernel Mailing List. 1999. spin_unlock optimization(i386). https://lists.archive.carbon60.com/linux/kernel/105412

Roy Margalit and Ori Lahav. 2021. Verifying Observational Robustness Against a C11-Style Memory Model. Proceedings of
the ACM on Programming Languages 5, POPL (Jan. 2021). https://doi.org/10.1145/3434285

Microsoft Learn. 2021. Advantages of Inline Assembly. https://learn.microsoft.com/en-us/cpp/assembler/inline/advantages-

of-inline-assembly

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL — A Proof Assistant for Higher-Order Logic.
Lecture Notes in Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap between Programming Languages and Hardware

Weak Memory Models. In Principles of Programming Languages (POPL), Vol. 3. ACM Press, 69:1–69:31. https://doi.org/10.

1145/3290382

Jeff Preshing. 2012. Memory Ordering at Compile Time. https://preshing.com/20120625/memory-ordering-at-compile-time

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2017. Simplifying ARM

Concurrency: Multicopy-Atomic Axiomatic and Operational Models for ARMv8, Vol. 2. ACM Press, 19:1–19:29.

https://doi.org/10.1145/3158107

Azalea Raad, Luc Maranget, and Viktor Vafeiadis. 2022. Extending Intel-X86 Consistency and Persistency: Formalising the

Semantics of Intel-X86 Memory Types and Non-Temporal Stores. Proceedings of the ACM on Programming Languages 6,
POPL (Jan. 2022), 22:1–22:31. https://doi.org/10.1145/3498683

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer.

2023. DimSum: A Decentralized Approach to Multi-Language Semantics and Verification, Vol. 7. 27:1–27:31. https:

//doi.org/10.1145/3571220

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade Alglave, and Derek Williams.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

https://doi.org/10.1109/MM.2024.3422668
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/2103656.2103717
https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
https://clang.llvm.org/
https://en.cppreference.com/w/cpp/atomic/memory_order
https://doi.org/10.5281/zenodo.13625916
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/321420.321422
https://ieeexplore.ieee.org/document/5009071
https://gcc.gnu.org/git/gcc.git
https://doi.org/10.1145/3591267
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.iso.org/standard/50372.html
https://www.cs.tau.ac.il/~orilahav/papers/popl17.pdf
https://www.cs.tau.ac.il/~orilahav/papers/popl17.pdf
https://doi.org/10.1145/3571212
https://plv.mpi-sws.org/scfix/paper.pdf
https://plv.mpi-sws.org/scfix/paper.pdf
http://compcert.org/man
https://git.kernel.org/pub/scm/virt/kvm/kvm.git
https://lists.archive.carbon60.com/linux/kernel/105412
https://doi.org/10.1145/3434285
https://learn.microsoft.com/en-us/cpp/assembler/inline/advantages-of-inline-assembly
https://learn.microsoft.com/en-us/cpp/assembler/inline/advantages-of-inline-assembly
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3290382
https://preshing.com/20120625/memory-ordering-at-compile-time
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3571220

Extending the C/C++Memory Model with Inline Assembly 309:27

2012. Synchronising C/C++ and POWER (Programming Language Design and Implementation (PLDI)). 311—-322. https:

//doi.org/10.1145/2254064.2254102

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. X86-TSO: A Rigorous

and Usable Programmer’s Model for X86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89—-97. https://doi.org/10.

1145/1785414.1785443

Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard Grisenthwaite, and Peter Sewell. 2022.

Relaxed Virtual Memory in Armv8-A. In European Symposium on Programming (ESOP) (Lecture Notes in Computer Science,
Vol. 13240). Springer, 143–173. https://doi.org/10.1007/978-3-030-99336-8_6

Pradeep S. Sindhu, Jean-Marc Frailong, and Michel Cekleov. 1992. Formal Specification of Memory Models. Springer, 25–41.
https://doi.org/10.1007/978-1-4615-3604-8_2

Viktor Vafeiadis, Thibault Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common

Compiler Optimisations are Invalid in the C11MemoryModel andWhatWe Can Do About It. In Principles of Programming
Languages (POPL). ACM Press, 209–220. https://dl.acm.org/doi/10.1145/2676726.2676995

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 309. Publication date: October 2024.

https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/978-1-4615-3604-8_2
https://dl.acm.org/doi/10.1145/2676726.2676995

	Abstract
	1 Introduction
	2 Overview
	2.1 Desiderata for a Hybrid Consistency Model for C/C++ and x86 Assembly
	2.2 Evaluation of Candidate Models
	2.3 Towards a Good Hybrid Model
	2.4 Our Approach

	3 The Extended Model
	3.1 The RC11 Memory Model
	3.2 The RC11Ex86 Memory Model - An Extension of RC11 with Inline Ex86 Assembly

	4 Metatheory
	4.1 Compilation Schemes – Definition and Correctness
	4.2 Mixed Execution Graphs
	4.3 Compilation Correctness - Proof Sketch
	4.4 Compiler Optimizations
	4.5 Data-Race Freedom

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

