
Semantics of Remote Direct Memory Access: Operational and

Declarative Models of RDMA on TSO Architectures

GUILLAUME AMBAL
∗
, Imperial College London, UK

BRIJESH DONGOL, University of Surrey , UK
HAGGAI ERAN, NVIDIA, Israel
VASILEIOS KLIMIS, Queen Mary University of London, UK
ORI LAHAV, Tel Aviv University, Israel
AZALEA RAAD, Imperial College London, UK

Remote direct memory access (RDMA) is a modern technology enabling networked machines to exchange
information without involving the operating system of either side, and thus significantly speeding up data
transfer in computer clusters. While RDMA is extensively used in practice and studied in various research
papers, a formal underlying model specifying the allowed behaviours of concurrent RDMA programs running
in modern multicore architectures is still missing. This paper aims to close this gap and provide semantic
foundations of RDMA on x86-TSO machines. We propose three equivalent formal models, two operational
models in different levels of abstraction and one declarative model, and prove that the three characterisations
are equivalent. To gain confidence in the proposed semantics, the more concrete operational model has been
reviewed by NVIDIA experts, a major vendor of RDMA systems, and we have empirically validated the
declarative formalisation on various subtle litmus tests by extensive testing. We believe that this work is
a necessary initial step for formally addressing RDMA-based systems by proposing language-level models,
verifying their mapping to hardware, and developing reasoning techniques for concurrent RDMA programs.

CCS Concepts: • Software and its engineering→ Formal language definitions; •Theory of computation

→ Program semantics; Distributed computing models; • Hardware → Testing with distributed and
parallel systems.

Additional Key Words and Phrases: RDMA, Operational Semantics, Declarative Semantics, x86-TSO

ACM Reference Format:

Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad. 2024. Semantics
of Remote Direct Memory Access: Operational and Declarative Models of RDMA on TSO Architectures. Proc.
ACM Program. Lang. 8, OOPSLA2, Article 341 (October 2024), 68 pages. https://doi.org/10.1145/3689781

1 Introduction

Remote direct memory access (RDMA) technologies such as InfiniBand and RDMA over Converged

Ethernet (RoCE) enable a machine to have direct read/write access to the memory of another
machine over a network, bypassing the operating systems of both machines. This way, remote
reads and writes are performed with far fewer CPU cycles, leading to high-throughput, low-latency
∗Corresponding author

Authors’ Contact Information: Guillaume Ambal, Imperial College London, UK, g.ambal@imperial.ac.uk; Brijesh Dongol,
University of Surrey , UK, b.dongol@surrey.ac.uk; Haggai Eran, NVIDIA, Israel, haggaie@nvidia.com; Vasileios Klimis,
Queen Mary University of London, UK, v.klimis@qmul.ac.uk; Ori Lahav, Tel Aviv University, Israel, orilahav@tau.ac.il;
Azalea Raad, Imperial College London, UK, azalea.raad@imperial.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART341
https://doi.org/10.1145/3689781

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0002-4667-7266
HTTPS://ORCID.ORG/0000-0003-0446-3507
HTTPS://ORCID.ORG/0000-0002-2159-9046
HTTPS://ORCID.ORG/0000-0002-3173-8636
HTTPS://ORCID.ORG/0000-0003-4305-6998
HTTPS://ORCID.ORG/0000-0002-2319-3242
https://doi.org/10.1145/3689781
https://orcid.org/0000-0002-4667-7266
https://orcid.org/0000-0003-0446-3507
https://orcid.org/0000-0002-2159-9046
https://orcid.org/0000-0002-3173-8636
https://orcid.org/0000-0003-4305-6998
https://orcid.org/0000-0002-2319-3242
https://doi.org/10.1145/3689781

341:2 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

networking, which is especially useful in massively parallel computer clusters, e.g. for data centres,
big data, and scientific computation. Thanks to implementations that offer higher performance at a
comparable cost over traditional networking infrastructure (e.g. TCP/IP sockets) [Gerstenberger
et al. 2018], RDMA has achieved widespread adoption as of 2018 [Shpiner et al. 2017] and has been
rapidly adopted in modern data centres.
At the lowest level, RDMA networks directly interact with the hardware through calls to read

(get) and write (put) operations to remote memory locations. As a result, programming RDMA
systems is conceptually similar to shared memory systems of existing hardware architectures
such as Intel-x86 or ARM. A key difference, however, is that when a machine encounters a remote
operation, the CPU forwards it onto the network interface card (NIC), which subsequently handles
the remote operation and its associated memory accesses without further CPU involvement.
There is a wide range of RDMA implementations, starting from the Virtual Interface Architec-

ture (VIA) [Dunning et al. 1998], later adapted by InfiniBand [IBTA 2022] and RoCE [InfiniBand
Trade Association (IBTA) 2018]. Other standards include iWarp [Recio et al. 2007] and Omni-Path
[Birrittella et al. 2015]. Some transfer technologies without NICs, such as FireWire [Anderson 1999],
can also be considered RDMA, but they do not scale to wide networks. In most implementations, an
RDMA NIC implements the transport in hardware and is controlled by software through APIs such
as Verbs [linux-rdma 2018] or libfabric [OpenFabrics 2016]. A NIC typically connects to the host
CPU through an internal server fabric such as PCIe, though in some cases the NIC and compute
cores can be more tightly integrated, e.g. in academic proposals [Novakovic et al. 2014] and in
DPUs [NVIDIA Corporation 2021]. In addition, there have been proposals for next-gen fabrics to
replace PCIe (e.g. CXL [Van Doren 2019]).

Our focus here is on the IB Verbs model defined by IBTA [2022], using PCIe as the internal fabric.
It was designed for InfiniBand and reused for RoCE, the two most popular RDMA technologies.
While the specification for the iWarp protocol is slightly more permissive, its main implementation
(libfabric) follows the stronger semantics presented here. Lastly, the more recent Omni-Path fabric
also has legacy support for IB Verbs.
The performance gains of RDMA, as well as its wide range of implementations, have led to a

surge of both theoretical and practical RDMA research [Aguilera et al. 2019; Dan et al. 2016; Wei
et al. 2015; Zhu et al. 2015]. However, as we discuss below, programming RDMA systems correctly
is not straightforward, and the RDMA community would benefit greatly from formal models and
rigorous techniques for reasoning about RDMA programs.

A key challenge lies in understanding the different degrees of concurrency and their interaction
thereof. More concretely, a program may comprise threads that run over multiple nodes (machines)
over the network (inter-node concurrency), with each node itself executing several threads (intra-
node concurrency). As such, to understand the behaviour of a concurrent RDMA program, one
must understand how remote and local operations on different nodes interact with one another.
The problem is that local operations are handled by the CPU, while remote operations are handled
by the NIC independently and in parallel to other CPU operations. Consequently, two sequential
operations may not be executed in the intended (program) order, leading to surprising outcomes.

To understand the behaviour of RDMA programs, we must understand the order in which CPU
and remote operations are executed, how they may be reordered, and how and when their effects are
made visible to concurrent threads, be they on the same or different nodes. Specifically, much in the
same way that the semantics of multi-processor hardware architectures such as Intel-x86, POWER,
and ARM have been described via formal consistency models (a.k.a. memory models) [Alglave et al.
2021, 2014; Cho et al. 2021; Mador-Haim et al. 2012; Pulte et al. 2018, 2019; Raad et al. 2022; Raad
and Vafeiadis 2018; Raad et al. 2020b, 2019b; Sarkar et al. 2011; Sewell et al. 2010], we should ideally
describe the semantics of RDMA programs formally. Such formal models not only provide a rigorous

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:3

underpinning for reasoning about the behaviour of programs, they have also been historically
successful at identifying mistakes and ambiguities in the existing hardware reference manuals, as
well as compilation bugs [Alglave et al. 2021, 2014; Lahav et al. 2017; Pulte et al. 2018; Raad et al.
2020b].

Unfortunately, the existing literature includes next to no work on the formal semantics of RDMA
programs. Indeed, to our knowledge, the coreRMA model by Dan et al. [2016] is the only one to
offer a formal description of RDMA programs. However, this work has four key shortcomings.
First, coreRMA assumes that CPU concurrency on each node is governed by the sequential

consistency (SC) [Lamport 1979] model. This is an unrealistic assumption as no existing CPU
architecture supports SC by default, and the two mainstream CPU architectures, Intel-x86 and
ARM, are both subject to weaker models that exhibit behaviours not possible under SC. This is a
significant gap since Intel-x86 and ARM architectures are ubiquitous.
Second, coreRMA describes the semantics only declaratively (i.e. via execution graphs that

are subject to a set of axioms stipulating the absence of certain cycles in the graphs) and not

operationally (via transitions that describe how the underlying hardware processes each operation
and manipulates the memory). While declarative models are common in the literature of weak
memory models and are more concise, operational models provide a more intuitive account of the
hardware guarantees (as they prescribe a step-by-step mechanism for producing the behaviours of
a program). Moreover, having two characterisations is useful not only for ensuring the accuracy of
the formalism, but also because each formulation may be more useful for establishing different
results. In particular, operational models are better suited for underpinning program logics and
checking the reachability of an erroneous configuration and/or robustness for finite-state programs
with loops (e.g. [Abdulla et al. 2021; Bouajjani et al. 2013; Lahav and Boker 2020]).

Third, the coreRMA authors have failed to validate their model against existing implementations
in that they could not observe any of the weak behaviours allowed by coreRMA on existing
implementations. That is, they could not practically justify the weakness of coreRMA.

Fourth and most importantly, as we discuss in detail in §6, coreRMA is not faithful to the RDMA
specification [IBTA 2022] and departs from it in three different ways. In particular, coreRMA is
neither stronger nor weaker than the specification, meaning that it admits certain behaviours
disallowed by the specification, while prohibiting others allowed by the specification.
To close these gaps, we present rdmatso, the first formal semantics of RDMA programs in the

context of the x86 architecture, which implements the TSO model [Sewell et al. 2010]. We describe
rdmatso both operationally and declaratively and prove that the two are equivalent. Specifically,
we first develop two operational models of rdmatso: (1) a concrete model, reflecting the hardware
structure for propagating data across the network; and (2) a simplified model, abstracting away the
hardware details, resulting in a cleaner model. We prove that our two operational characterisations
of rdmatso are equivalent and mechanise our proof in Coq. We then present a declarative model of
rdmatso and show that it is equivalent to our simplified (and thus also concrete) operational model.

We have developed rdmatso in close collaboration with engineers at NVIDIA, the largest manu-
facturer of networking products worldwide (after acquiring Mellanox in 2019). In particular, we
have discussed all weak behaviours admitted by rdmatso with the engineers and have reflected the
hardware justification for such behaviours in our concrete semantics. To further increase confidence
in the fidelity of rdmatso to the specification, we have empirically validated it via extensive testing
on existing implementations. More specifically, through our empirical validation we have managed
to establish that (1) rdmatso is not too strong: we did not observe any of the behaviours prohibited
by rdmatso on existing implementations; and (2) rdmatso is not too weak: we managed to observe
almost all weak behaviours allowed by rdmatso, on existing implementations, and in the few
cases where we did not observe a weak behaviour allowed by rdmatso, the engineers at NVIDIA

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:4 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

𝑥 = 𝑦 = 0

𝑥 := 1
𝑎 := 𝑦

𝑦 := 1
𝑏 := 𝑥

(a) 𝑎 = 𝑏 = 0 ✓

𝑥 = 𝑦 = 0

𝑥 := 1
mfence
𝑎 := 𝑦

𝑦 := 1
mfence
𝑏 := 𝑥

(b) 𝑎 = 𝑏 = 0 ✗

𝑥 = 𝑦 = 0

𝑎 := 𝑦

𝑥 := 1
𝑏 := 𝑥

𝑦 := 1

(c) 𝑎 = 𝑏 = 1 ✗

𝑥 = 𝑦 = 0

𝑥 := 1
𝑦 := 1

𝑎 := 𝑦

𝑏 := 𝑥

(d) 𝑎 = 1, 𝑏 = 0 ✗

Fig. 1. TSO litmus tests for CPU concurrency, where locations 𝑥,𝑦 are accessed by all threads, while locations

𝑎, 𝑏 are accessed by one thread only, and 𝑥 = 𝑦 = 0 on the first line denotes that 𝑥,𝑦 initially hold value 0.

confirmed that current implementations explicitly do not utilise the weakness admitted by the
RDMA specification (see §5).

Contributions andOutline. In §2we present an intuitive account of rdmatso through a number
of examples. In §3 we present our concrete and simplified operational semantics of rdmatso and
show that they are equivalent. In §4 we present our declarative semantics of rdmatso and show
that it is equivalent to our simplified operational semantics. In §5 we describe how we empirically
validated rdmatso through extensive litmus testing. We discuss related and future work in §6.

Additional Material. The full proofs of all stated theorems are given in the accompanying
appendix and Coq development [Ambal et al. 2024]. We provide the executable RDMA code (in
machine-readable format) and detailed instructions for replicating our experiments and analysing
our litmus tests [Ambal et al. 2024].

2 Overview

We present an account of the formal RDMA semantics, rdmatso, through a number of examples.
We model concurrent programs running over a network of machines, and hereafter refer to each
machine on the network as a node. In our setting, the semantics of a concurrent program and thus
its possible weak behaviours are determined by two factors: (1) the origin of the threads, i.e. whether
all threads originate from (are forked by) the same node and thus the concurrency is intra-node
(within one node), or they originate from several nodes and thus concurrency is inter-node (across
two or mode nodes); and (2) the memory targeted by the threads, i.e. whether each thread accesses
its own local memory (on the same node), that of other nodes, or a combination thereof.

Litmus Test Outcome Notation. In the remainder of this article, as well as in the technical
appendix, we present small representative examples (known as litmus tests in the literature) to
illustrate whether an outcome is allowed by a given model (e.g. in Fig. 1, Fig. 2 and Fig. 3), and
annotate a given outcomes with: (1) ✓, to denote that the outcome is allowed by the model and
observed in practice (in our empirical validation); (2) ✓*, to denote that the outcome is allowed by
the model and not observable in practice; (3) ✗, to denote that the outcome is disallowed by the
model and not observed in practice. See §5 or §A for more details.

CPU Concurrency and TSO. Existing work on RDMA semantics [Dan et al. 2016] assumes
that CPU concurrency on each node is governed by the strong and unrealistic sequential consistency
(SC) model [Lamport 1979]. We relax this assumption here and instead model each node as an
x86 machine, subject to the TSO memory model [Sewell et al. 2010] introduced by the SPARC
architecture [SPARC 1992]. Under TSO, a later read (in program order) can be reordered before
an earlier write on a different location. This is illustrated in the store buffering example of Fig. 1a,
where 𝑥 and𝑦 denote locations accessed by both threads, while 𝑎 and 𝑏 denote locations accessed by

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:5

𝑥 =0 𝑧=0

𝑥 := 1
𝑧2 := 𝑥

(a) 𝑧=0✗ 𝑧=1✓

𝑥 =0 𝑧=0

𝑧2 := 𝑥

𝑥 := 1

(b) 𝑧=0✓ 𝑧=1✓

𝑥 =0 𝑧=0

𝑧2 := 𝑥

poll(2)
𝑥 := 1

(c) 𝑧=0✓ 𝑧 = 1✗

𝑥 =0 𝑧=0
𝑧2 := 𝑥

𝑧2 := 𝑥

poll(2)
𝑥 := 1

(d) 𝑧=0✓ 𝑧=1✓

𝑥 =0 𝑧=1 𝑦=2

𝑥 := 𝑧2

𝑥 := 𝑦3

(e) 𝑥 =1✓ 𝑥 =2✓

𝑥 =0 𝑧=1 𝑦=2

𝑦3 := 𝑥

𝑥 := 𝑧2

(f) 𝑦=0✓ 𝑦=1✓

𝑥 =1 𝑦=𝑧=0

𝑧2 := 𝑥

𝑥 := 𝑦2

(g) 𝑧=0✗ 𝑧=1✓

𝑥 = 1 𝑦=𝑧=0

𝑥 := 𝑦2

𝑧2 := 𝑥

(h) 𝑧=0✓ 𝑧=1✓

𝑥 = 1 𝑦=𝑧=0
𝑥 := 𝑦2

rfence (2)
𝑧2 := 𝑥

(i) 𝑧=0✓ 𝑧=1✗

Fig. 2. Sequential RDMA litmus tests (excerpt), where each column (separated by | |) denotes a distinct node,
the statement on the top line of each column denotes the initial values of locations, and the statements in

the caption express whether each outcome is allowed by rdma
tso

and observed in practice (✓), or disallowed

by rdma
tso

and not observed in practice (✗); i.e. we have empirically validated all outcomes shown.

one thread only.1 Specifically, the reads 𝑎 := 𝑦 and 𝑏 := 𝑥 can respectively be reordered before the
writes 𝑥 := 1 and 𝑦 := 1, allowing them to read the initial value 0 from 𝑦 and 𝑥 , yielding 𝑎 = 𝑏 = 0
at the end of execution. Note that this weak behaviour is not allowed under the stronger SC model
as SC admits no instruction reordering.

To prevent such write-read reordering, one can use an mfence as in Fig. 1b: mfence instructions
cannot be reordered in either direction, and thus the weak behaviour shown is no longer possible.
Indeed, other than write-read reordering, TSO admits no other reorderings and thus other weak
behaviours, e.g. load buffering in Fig. 1c and message passing in Fig. 1d are prohibited under TSO.

Remote Direct Memory Access (RDMA). RDMA allows one to build a network of commu-
nicating nodes (machines), where each node can directly access remote memory (of other nodes)
through its network interface card (NIC). RDMA networks are programmed via operations that
read from and write to remote memory, as well as various synchronisation operations. As such,
programming RDMA networks is conceptually similar to shared memory systems such as TSO.

To distinguish remote (RDMA) operations from CPU ones, we refer to RDMA reads and writes as
get and put operations, respectively. Moreover, to distinguish local and remote memory locations,
we write 𝑥𝑛 for a memory location on a remote node 𝑛, and write 𝑥 for a memory location on the
current local node. A put operation is of the form 𝑥𝑛 := 𝑦, and consists of reading from a local
memory location 𝑦 (referred to as a ‘NIC local read’) and writing to a remote memory location 𝑥

on node 𝑛 (a ‘NIC remote write’ or simply a ‘remote write’). Similarly, a get operation is of the
form 𝑥 := 𝑦𝑛 , and consists of reading from a remote memory location 𝑦 on node 𝑛 (a ‘NIC remote
read’ or a ‘remote read’) and writing to a local memory location 𝑥 (a ‘NIC local write’). We write
𝑛 to identify a node other than 𝑛. When a thread on local node 𝑛 issues a remote operation to be
executed on remote node 𝑛, we denote this by stating that the operation is by 𝑛 towards 𝑛.

Sequential (Single-Threaded) rdma
tso

Behaviours. When a thread issues a put or get op-
eration, it is handled by the NIC subsystem (and its associated queue pairs and buffers as shown
1In our general model, all memory locations are shared and thus can be accessed by all threads both locally (on the same
node) and remotely. However, for better readability, we follow the convention of naming locations accessed by multiple
threads (locally or remotely) as 𝑥 , 𝑦, 𝑧 and 𝑤, while naming locations accessed by a single local thread as 𝑎, 𝑏, 𝑐 and 𝑑 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:6 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

in Fig. 4), in contrast to the CPU operations which are handled by the processor subsystem (and
its associated store buffers). As such, the interaction between CPU and remote operations lead to
further behaviours even within a sequential (single-threaded) program. We demonstrate this in the
examples of Fig. 2, where each column represents a distinct node, numbered from 1 onwards. For
instance, the example in Fig. 2a comprises a single thread on node 1 (the left-most column) that
writes to the local location 𝑥 (𝑥 := 1) and puts 𝑥 towards the remote location 𝑧 on node 2 (𝑧2 := 𝑥).

Intuitively, when a thread 𝑡 on 𝑛 issues remote operations towards node 𝑛, one can view these
remote operations as if being executed by a thread running in parallel to 𝑡 . As such, when a remote
operation follows a CPU one, the order of the two operations is preserved since the parallel thread
is spawned only after the CPU operation is executed. This is illustrated in Fig. 2a: as 𝑧2 := 𝑥 follows
𝑥 := 1, it observes the 𝑥 := 1 write and thus puts value 1 to 𝑧; i.e. outcome 𝑧 = 0 is not permitted.

By contrast, when a remote operation precedes a CPU one, the remote operation is performed
by a ‘separate thread’ run in parallel to the later CPU operation in the main thread, and thus may
execute before or after the CPU operation, meaning that in the latter case the execution order is
not preserved. This is illustrated in Fig. 2b, where the earlier 𝑧2 := 𝑥 may execute (be reordered)
after the later 𝑥 := 1, and thus both 𝑧 = 0 and 𝑧 = 1 outcomes are possible.
Therefore, before using the result of a get or reusing the memory location of a put, it may be

desirable to avoid such reordering and to wait for the remote operation to complete. This can
be done through a CPU poll operation, poll(𝑛), that blocks until the earliest (in program order)
remote operation towards node 𝑛 has completed.2 This is shown in Fig. 2c, obtained from Fig. 2b by
inserting a poll after the remote operation: poll(2) waits for 𝑧2 := 𝑥 to complete before proceeding
with 𝑥 := 1, and thus 𝑧2 := 𝑥 can no longer be reordered after 𝑥 := 1, prohibiting the 𝑧 = 1 outcome.

Note that each poll(𝑛) waits for only one (the earliest in program order) and not all pending
remote operation towards 𝑛 to complete. This allows for more efficient and fine-grained control
over remote operations, but requires some care. For instance, consider the example in Fig. 2d, where
poll(2) blocks until the first 𝑧2 := 𝑥 is complete, and thus the second 𝑧2 := 𝑥 operation can be
reordered after the later 𝑥 := 1, once again allowing for the 𝑧 = 1 outcome.

Two remote operations towards different nodes are fully independent and can execute in either
order (as if within two separate threads). For instance, the two get operations in Fig. 2e can execute
in either order, and thus the final value of 𝑥 may be either that of 𝑧 (𝑥 = 1 outcome) or that of 𝑦
(the 𝑥 = 2 outcome). Similarly, Fig. 2f has two possible outcomes. The only way to enforce the
execution order is polling the first remote operation before running the second.
The ordering guarantees on remote operations towards the same node are stronger and only

certain reorderings are allowed. Recall that a remote (NIC) put operation 𝑥𝑛 := 𝑦 comprises two
steps: a NIC local read (obtaining the value of 𝑦) and a NIC remote write (writing the value of 𝑦 to
𝑥𝑛). Similarly, a remote get operation 𝑥 := 𝑦𝑛 comprises two steps: a NIC remote read (obtaining the
value of 𝑦𝑛) and a NIC local write (writing the value of 𝑦𝑛 to 𝑥). Intuitively, for remote operations
on a given location 𝑥 , these four steps mandate a precedence which in turn determines whether they
can be reordered. Specifically, the four steps described above give way to the following precedence
order: i) NIC local read; ii) NIC remote write; iii) NIC remote read; iv) NIC local write.
If a step with a higher precedence (e.g. a NIC local read) is in program order before one with a

lower precedence (e.g. a NIC local write), then their order is preserved and they cannot be reordered;
otherwise the order is not necessarily preserved and these steps can be reordered. For instance, in
the Fig. 2g example, the earlier NIC local read on 𝑥 (in 𝑧2 := 𝑥) has a higher precedence than the

2In the Verbs API, poll(𝑛) returns a value denoting whether the operation being polled has completed and does not block
the execution. However, it is common practice for calls to poll to be placed in a spin loop that returns only when the
operation is completed, hence blocking the execution. Here, we model this common pattern with stronger behaviours.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:7

𝑦=0 𝑥 =0

𝑥2 := 1
𝑎 := 𝑦

𝑦1 := 1
𝑏 := 𝑥

(a) 𝑎=𝑏=0 ✓

𝑥 =0 𝑦=0

𝑎 := 𝑦2

𝑥 := 1
𝑏 := 𝑥1

𝑦 := 1

(b) 𝑎=𝑏=1 ✓

𝑥 =0 𝑦=0

𝑎 := 𝑦2

poll(2)
𝑥 := 1

𝑏 := 𝑥1

poll(1)
𝑦 := 1

(c) 𝑎=𝑏=1 ✗

𝑦=0 𝑥 =0

𝑥2 := 1
poll(2)
𝑎 := 𝑦

𝑦1 := 1
poll(1)
𝑏 := 𝑥

(d) 𝑎=𝑏=0 ✓*

𝑦=𝑤=0 𝑥=𝑧=0
𝑥2 := 1
𝑐 := 𝑧2

poll(2)
poll(2)
𝑎 := 𝑦

𝑦1 := 1
𝑑 := 𝑤1

poll(1)
poll(1)
𝑏 := 𝑥

(e) 𝑎=𝑏=0 ✗

Fig. 3. Concurrent RDMA litmus tests (excerpt). The annotations in the captions indicate the given outcome

is allowed by rdma
tso and observed in our empirical validation (✓), allowed by rdma

tso and not observable in
practice (✓*), or disallowed by rdma

tso and not observed in our validation (✗). That is, we have empirically

validated all outcomes shown, except that in (d), which is due to the underlying implementation explicitly

not utilising the weakness admitted by the specification – see §5 or §A for more details.

later NIC local write on 𝑥 (in 𝑥 := 𝑦2), and thus the order of these steps on 𝑥 is preserved; i.e. the
old value (1) of 𝑥 is written to 𝑧2 leading to the 𝑧 = 1 outcome, and the 𝑧 = 0 outcome is disallowed.
By contrast, in the Fig. 2h example, the earlier NIC local write on 𝑥 (in 𝑥 := 𝑦2) has a lower

precedence than the later NIC local read on 𝑥 (in 𝑧2 := 𝑥) and thus the two steps can be reordered.
Besides the SC outcome (𝑧 = 0), the program might execute the NIC local read on 𝑥 before the NIC
local write on 𝑥 , thereby reading the initial value 1 from 𝑥 and writing it to 𝑧 (outcome 𝑧 = 1).
As before, the reordering of the two remote operations in Fig. 2h can be prevented by polling

the first operation before the second operation. However, polling is costly as it leads to global
blocking: it blocks the current thread both on the CPU and the NIC towards all nodes (i.e. the
current thread cannot execute any remote operations on any node). Alternatively, we can use
a remote fence

3operation, rfence (𝑛), that blocks the current thread only on the NIC and only

towards node 𝑛. (i.e. the thread cannot execute any remote operations towards 𝑛, but can execute
both on the CPU as well as on the NIC towards nodes other than 𝑛). This in turn ensures that
earlier (in program order) remote operations by the thread towards 𝑛 (those before the fence) are
executed before later remote operations towards 𝑛 (those after the fence). This is illustrated in
Fig. 2i, obtained from Fig. 2h by inserting rfence (2) between the two remote operations towards
node 2, thereby ensuring that they are executed in order, and thus 𝑧 = 1 is no longer possible.

Concurrent (Multi-threaded) rdma
tso

Behaviours. The real power of RDMA comes from
multiple programs running on different nodes. This introduces a wide range of weak behaviours, as
we describe below. A network can comprise several nodes, each running several concurrent threads.
Here, we focus on a few examples each with two nodes, with each node comprising a single thread.
The store buffering behaviour due to the TSO model discussed in Fig. 1a is also possible in the

RDMA setting, i.e. when locations 𝑥 and𝑦 are on two different nodes, as shown in Fig. 3a. Moreover,
further weak behaviours not possible under TSO, e.g. load buffering in Fig. 1c, are permitted in
the RDMA setting, as shown in Fig. 3b. As before, this can be intuitively justified by conceptually
viewing the remote operations in each thread as being executed by a separately spawned thread.

Most weak behaviours such as load buffering in Fig. 3b can be prevented by polling the remote
operations as needed, as shown in Fig. 3c. Specifically, the poll operations in Fig. 3c await the
completion of the preceding get operations, and thus the earlier get operations cannot be reordered
after the later writes, thus prohibiting the weak behaviour 𝑎=𝑏=1. However, a notable exception
to this is the store buffering weak behaviour which cannot be prevented even when polling the

3For InfiniBand Verbs, this remote fence is not an independent operation but a flag that can be set on the later operation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:8 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

remote operations, as shown in Fig. 3d. This is because the specification of polling offers different
guarantees for get and put operations. Specifically, polling a get operation 𝑎 := 𝑥2 offers a strong
guarantee and behaves intuitively: polling ensures that the get operation is complete (i.e. the value
of 𝑥2 is fetched from node 2), and the executing thread performs the associated NIC local write on 𝑎
before marking the operation as complete and proceeding with the remainder of the execution. By
contrast, polling a put operation 𝑥2 := 1 offers a weaker guarantee: when sending value 1 towards
node 2 to be put in 𝑥2, the remote NIC merely acknowledges having received the data (value 1), but
this data may still reside in a buffer (i.e. the PCIe fabric) of the remote node, pending to be written
to the remote memory. Polling a put operation then simply awaits the acknowledgement of the
data receipt and not its full completion (the data being written to memory). As such, it is possible
to poll a put operation successfully before the associated remote write has fully completed. In the
case of store buffering in Fig. 3d, it is possible for both poll operations to complete before the values
of 𝑥 and 𝑦 are updated (to 1) in memory, and thus for the later reads to read their old values (0).
However, note that existing implementations on current hardware (including ones against which
we validated our model,) do not utilise this flexibility admitted by the specification. As such, the
weak behaviour in Fig. 3d is not observable in practice, and thus we could not observe them in
our validation effort (as indicated by ✓*) – see §5. Nevertheless, since our aim is to capture the
specification and not the implementation, we have modelled rdmatso to allow this weak behaviour.
The behaviours discussed thus far all hold of the general RDMA specification [IBTA 2022]

as well as the PCIe standard [PCI-SIG 2022]. However, in certain cases the PCIe standard offers
stronger guarantees than those delineated by the RDMA specification. In particular, PCIe does
not allow a read to fetch a pending value that has not yet been committed to memory. As such, a
NIC remote read flushes (commits) all pending NIC remote writes to memory, while a NIC local
read flushes all pending NIC local writes to memory. Interestingly, we can use this guarantee to
prevent weak behaviours such as store buffering (which, in theory, cannot be prevented even via
polling). Specifically, recall that polling a put only ensures that the data transmitted has reached the
remote node and may not have yet been committed to its memory. However, by polling a later get
(towards the same remote node) we can ensure the previous NIC remote writes (including that of
the recently polled put) have been committed to the remote memory. An example of this is shown
in Fig. 3e, obtained from Fig. 3d by adding additional gets (𝑐 := 𝑧2 and 𝑑 := 𝑤1) and subsequently
polling them. Reading from 𝑧2 and 𝑤2 in effect flushes the pending NIC remote writes on both
nodes, ensuring that the effects of the earlier puts (𝑥2 := 1 and 𝑦1 := 1) are committed to memory,
which in turn ensures that the later 𝑎 := 𝑦 and 𝑏 := 𝑥 reads observe the updates on 𝑦 and 𝑥 (value
1), thus prohibiting 𝑎=𝑏=0.

As mentioned above, this guarantee is PCIe-specific, and not mentioned by the RDMA standard.
However, as PCIe is the de facto standard for RDMA programming, and since all widely available
RDMA hardware is PCIe-compatible, here we opt to model this guarantee, resulting in a stronger
model. Nevertheless, in §3 and §4 we also describe how we can weaken our models by removing
this guarantee, both in our operational and declarative semantics.

Our aim here was to provide an overview of the weak RDMA behaviours both in the sequential
and concurrent settings. We refer the reader to §A for further examples of weak behaviours.

3 rdma
tso

Concrete and Simplified Operational Semantics

We begin with several preliminary concepts. We present an informal account of our concrete
semantics (§3.1), our formal concrete semantics (§3.2) and our equivalent simplified semantics (§3.3).

Nodes and Threads. We consider a system with 𝑁 nodes (machines) and 𝑀 threads in total
across all machines. Let Node = {1, . . . , 𝑁 } be the set of node identifiers, and Tid = {1, . . . , 𝑀} be

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:9

the set of thread identifiers. We use 𝑛 and 𝑡 to range over Node and Tid, respectively. Given a node
𝑛, we write 𝑛 to range over Node\ {𝑛}. Each thread 𝑡 ∈ Tid is associated with a node, written 𝑛(𝑡).
Note that multiple threads may run on the same node.

Memory Locations. Each node 𝑛 has a set of locations, Loc𝑛 , accessible by all nodes. We define
Loc ≜

⊎
𝑛 Loc𝑛 and Loc𝑛 ≜ Loc \Loc𝑛 . We use 𝑥𝑛, 𝑦𝑛, 𝑧𝑛 and 𝑥𝑛, 𝑦𝑛, 𝑧𝑛 to range over Loc𝑛 and Loc𝑛 ,

respectively. When the choice of 𝑛 is clear, we write 𝑥 for 𝑥𝑛 ; similarly for 𝑛. For clarity, we use
distinct location names across nodes, and thus write 𝑛(𝑥) for the unique 𝑛 ∈Node where 𝑥 ∈Loc𝑛 .

Values and Expressions. We assume a set of values, Val, with N ⊆ Val, and use 𝑣 to range over
Val. We assume a language of expressions over Val and Loc, and elide its exact syntax and semantics
(as these are standard). We denote by Exp the set of all expressions and use 𝑒 to range over Exp.
We write [[𝑒]] for the semantic evaluation of a closed expression 𝑒 (i.e. one without any locations),
elocs(𝑒) for the locations in an expression 𝑒 , and 𝑒 [𝑣/𝑥] for the expression obtained from 𝑒 after
substituting all occurrences of 𝑥 by 𝑣 . We use 𝑒𝑛 to range over expressions with elocs(𝑒𝑛) ⊆ Loc𝑛 .

Sequential Commands and Programs. Sequential programs running on node 𝑛 are described
by the C𝑛 grammar below and include primitive commands (c𝑛), sequential composition (C𝑛

1 ;C
𝑛
2),

non-deterministic choice (C𝑛
1 +C𝑛

2 , executing either C
𝑛
1 or C

𝑛
2) and non-deterministic loops (C𝑛∗,

executing C
𝑛 for a finite, possibly zero, number of iterations). A (concurrent) program, P, is a map

from thread identifiers to commands, associating each thread 𝑡 ∈Tid with a command on node 𝑛(𝑡).
Comm ∋ C

𝑛 ::= skip | c𝑛 | C𝑛
1 ;C

𝑛
2 | C𝑛

1 +C𝑛
2 | C𝑛∗

PComm ∋ c
𝑛 ::= cc

𝑛 | rc𝑛
CComm∋ cc𝑛 ::= 𝑥 :=𝑒𝑛 | assume(𝑥 = 𝑣) | assume(𝑥 ≠ 𝑣) | mfence | 𝑥 :=CAS(𝑦, 𝑒1, 𝑒2) | poll (𝑛)
RComm∋ rc𝑛 ::= 𝑥 := 𝑦 | 𝑦 := 𝑥 | rfence (𝑛)

Primitive commands include CPU (cc𝑛) and RDMA (rc𝑛) operations. A CPU operation on 𝑛

may be a no-op (skip), an assignment to a local location (𝑥 := 𝑒), an assumption on the value of
a local location (assume(𝑥 = 𝑣) and assume(𝑥 ≠ 𝑣)), a memory fence (mfence), an atomic CAS
(‘compare-and-set’) operation (𝑥 := CAS(𝑦, 𝑒1, 𝑒2)), or a ‘poll’, poll(𝑛), that awaits the completion
notification of the earliest put/get that is pending (not yet acknowledged). An RDMA operation
may be (i) a ‘get’, 𝑥 := 𝑦, reading from remote location 𝑦 and writing the result to local location 𝑥 ;
(ii) a ‘put’, 𝑦 := 𝑥 , reading from local location 𝑥 and writing the result to remote location 𝑦; or
(iii) an ‘RDMA fence’, rfence (𝑛), which ensures that all later (in program order) RDMA operations
towards 𝑛 will await the completion of all earlier RDMA operations towards 𝑛. Note that poll (𝑛)
is executed by the CPU and blocks its thread (and prevents the requests of later remote operations),
while rfence (𝑛) blocks the NIC for the execution of remote operations towards node 𝑛. In what
follows, we write 𝑥 := 1 as a shorthand for 𝑥 := 𝑎 for some local location 𝑎 containing value 1.

3.1 rdma
tso

Concrete Operational Semantics at a Glance

rdma
tso

Architecture and CPU Operations. Conceptually, the rdmatso architecture is as
shown at the top-right of Fig. 4, where for brevity we depict two nodes, each comprising (1)𝑚
threads and their associated FIFO (first-in-first-out) store buffers; (2) a network interface card (NIC)
and its PCIe root complex; and (3) the memory. Store buffers are used to model write-read reordering
on TSO, which account for the weak behaviour in Fig. 1a. Specifically, executing a write on TSO
comprises two steps: (i) when a thread issues a write, the write is only recorded in its store buffer;
(ii) writes in the buffer are debuffered (in FIFO order) and propagated to the local memory at a
later point. When a thread issues a read from a location 𝑥 , it first consults its own store buffer. If it
contains a write for 𝑥 , the thread reads the value of the latest such write; otherwise, the thread reads
the value of 𝑥 from its local memory. In other words, one can model the reordering of a write𝑤

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:10 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

Thread 1 ... Thread m NIC

PCIe
root

complexSB
uff

1

SB
uff

m

Memory

NIC

PCIe
root

complex

Thread 1 ... Thread m

SB
uff

1

SB
uff

m

Memory

SBuff

wbL

reqL inR

outRrspL

wbR

M
em

or
y

M
em

or
y

Queue grows this way

Fig. 4. rdma
tso

architecture overview (top, right); a possible RDMA network configuration with three nodes

and four thread (left); the queue-pair structure (below, right)

𝑦𝑛 := 𝑥𝑛 𝑦𝑛 := 𝑣 ackp 𝑥𝑛 := 𝑦𝑛 𝑥𝑛 := 𝑣 cn rfence 𝑛

b ∈ SBuff ✓ ✓ ✓ ✓
reqL ✓ ✓ ✓
inR ✓ ✓
wbR ✓
outR ✓ ✓ ✓
rspL ✓ ✓
wbL ✓ ✓

Fig. 5. The types of entries in the store buffers (b) of a thread on 𝑛 and its six buffers on the 𝑛-queue pair

after a later read 𝑟 by delaying the debuffering of𝑤 until after 𝑟 has executed. Moreover, executing
an mfence or a CAS debuffers all its delayed writes in the store buffer and propagates them to
memory (in FIFO order), thus preventing write-read reordering. That is, the only CPU operations
that a store buffer contains are delayed writes. We describe the execution of polls shortly.

Remote Operations and Queue Pairs. To model the communication between the nodes, each
thread 𝑡 has a distinct queue pair for each remote node whose memory 𝑡 accesses. For instance, the
network configuration in the left of Fig. 4 comprises three nodes with four threads and with the
queue pairs depicted as ‘horse-shoes’, where e.g. thread T2 in the bottom left node accesses the
memories of the other two nodes, and it does so through two distinct queue pairs shown underneath
T2. We refer to the queue pair of a thread towards node 𝑛 as its 𝑛-queue pair.

The details of a queue-pair structure is shown at the bottom-right of Fig. 4, where each queue
pair of thread 𝑡 is connected to the store buffer of 𝑡 . As shown, an 𝑛-queue pair comprises six
FIFO buffers—reqL, inR, wbR, outR, rspL, and wbL—that we describe below. A queue pair contains
pending operations if any of its inR, outR or rspL components is non-empty. The types of the entries
in each of the six buffers of a queue pair is also summarised in Fig. 5.

Recall that a remote operation rc
𝑛 may either be a get, put or remote fence instruction. When 𝑡

executes a remote operation rc
𝑛 towards node 𝑛, it adds rc𝑛 to its store buffer. That is, as well as

CPU (delayed) writes, a store buffer may contain remote (get, put and fence) operations. Once rc𝑛
is debuffered from the store buffer, it is forwarded to its 𝑛-queue pair, where it travels through the
queue-pair pipeline and is processed differently depending on the type of rc𝑛 , as we describe below.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:11

Request Buffers (reqL). The reqL is the entry point of the queue pair, containing remote requests
that are to be forwarded. It comprises a sequence of remote get, put and fence operations to be
handled by the local NIC. When an entry rc

𝑛 reaches the head of reqL, it is processed as follows.
(1) If rc𝑛 is a get, then it is simply forwarded to the remote inbox inR. (2) If rc𝑛 is a put 𝑥𝑛 := 𝑦, then
the value 𝑣 of 𝑦 is looked up in the local memory and 𝑥𝑛 := 𝑣 is forwarded to inR; i.e. 𝑦 in 𝑥𝑛 := 𝑦 is
replaced with its current in-memory value. (3) If rc𝑛 is a remote fence, then the execution on the
queue pair is blocked until it has no pending operations, i.e. inR, outR and rspL are all empty.

Inbox Buffers (inR). The inR contains requests forwarded by reqL that are to be processed by 𝑛,
i.e. each reqL entry is either a get or a put with a value (of the form 𝑦𝑛 := 𝑣). Processing a put
𝑦𝑛 := 𝑣 (once at inR head) forwards it to the remote write-back buffer wbR and also sends a put
acknowledgement, ackp, to outR. Processing a get 𝑥 := 𝑦𝑛 (once at inR head) does not immediately
fetch the 𝑦 value from the 𝑛 memory; rather, it forwards it to outR to be fulfilled later in outR.

Outbox Buffers (outR). The outR buffer contains requests processed or forwarded by inR, and
thus each entry in outR is either a put acknowledgement (ackp), a get operation 𝑥 := 𝑦𝑛 yet to be

fulfilled, or a fulfilled get 𝑥 := 𝑣 . An acknowledgement or a fulfilled get is processed when it reaches
the head of outR, whereupon it is simply forwarded to rspL. By contrast, a yet-to-be-fulfilled get
𝑥 := 𝑦𝑛 may be fulfilled at any time (before reaching the outR head), where the value 𝑣 of 𝑦 is
fetched from the memory of 𝑛, and 𝑥 := 𝑦𝑛 is transformed to the fulfilled get 𝑥 := 𝑣 and left in outR.
This fulfilled get is later processed once it reaches the head of outR, as described above.

Remote Write-Back Buffers (wbR). The wbR buffer contains requests forwarded by inR, and
thus each entry in wbR is a put operation with a value (of the form 𝑦𝑛 := 𝑣). Processing 𝑦𝑛 := 𝑣 (at
the head of wbR) simply removes it from wbR and writes 𝑣 to 𝑦 in the memory of 𝑛.

Response Buffers (rspL). The rspL buffer contains processed requests forwarded by outR,
and thus each entry in rspL is either an ackp, acknowledging a processed put, or a fulfilled get.
Processing each rspL entry (once at the head of rspL) generates a completion notification, cn, which
is used to serve poll requests, as we describe shortly. Specifically, processing ackp simply removes
it from rspL and forwards a completion notification to wbL. Analogously, processing a fulfilled get
𝑥 := 𝑣 simply forwards 𝑥 := 𝑣 together with a completion notification to wbL.

Local Write-Back Buffers (wbL). The wbL buffer contains processed requests forwarded by
rspL; i.e. each entry in wbL is either a completion notification (cn, associated with processed gets
and puts), or a fulfilled get (of the form 𝑥 := 𝑣). Processing a fulfilled get 𝑥 := 𝑣 simply removes
it and writes 𝑣 to 𝑥 in the local memory. A completion notification is left in the wbL and is only
removed when the associated get/put operation is polled, as we describe below.4

Poll Operations. Once a get enters reqL, it progresses through the pipeline as follows. (G1) it is
forwarded to inR; (G2) it is forwarded to outR without being fulfilled; (G3) it is fulfilled at some
point while in outR; (G4) it is forwarded to rspL; (G5) it is forwarded to wbL together with a
completion notification (cn); and (G6) it is removed from wbL and its effect is written to memory.
Similarly, once a put operation 𝑥𝑛 := 𝑦 enters the queue-pair pipeline it proceeds as follows.

(P1) it is simplified to 𝑥𝑛 := 𝑣 (where 𝑣 is the value of 𝑦 in the local memory) and forwarded to inR;
(P2) it is forwarded to wbR and simultaneously an acknowledgement ackp is forwarded to outR;
(P3) its wbR entry is eventually removed and applied to the remote memory; its associated ackp in
outR (P4) is forwarded to rspL; and (P5) later forwarded to wbL as cn.

4In some implementations, write-back buffers (wbL andwbR) of different queue pairs may physically use the same hardware
buffers in the PCIe fabric. This does not introduce any additional weak behaviours.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:12 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

Program transitions: Prog

Tid:Lab⊎{𝜀 }
−−−−−−−−−→ Prog Command transitions: Comm

Lab⊎{𝜀 }
−−−−−−−→ Comm

Lab ≜
⋃
𝑛
Lab𝑛 𝑙 ∈Lab𝑛 ≜

{
lW(𝑥𝑛, 𝑣), lR(𝑥𝑛, 𝑣), CASS(𝑥𝑛, 𝑣1, 𝑣2), CASF(𝑥𝑛, 𝑣),
F, P(𝑛), Get(𝑥𝑛, 𝑦𝑛), Put(𝑦𝑛, 𝑥𝑛), rF(𝑛)

𝑥,𝑦 ∈Loc,
𝑣, 𝑣1, 𝑣2 ∈Val

}
C1

𝑙−→ C
′
1

C1;C2
𝑙−→ C

′
1;C2 skip;C

𝜀−→ C

𝑖 ∈ {1, 2}

C1 + C2
𝜀−→ C

𝑛
𝑖 C

∗ 𝜀−→ skip C
∗ 𝜀−→ C;C∗

C { C
′

C

𝜀−→ C
′

elocs(𝑒) = ∅

𝑥 := 𝑒
lW(𝑥,[[𝑒]])
−−−−−−−−−→ skip

elocs(𝑒old) = elocs(𝑒new) = ∅ 𝑣 ≠ [[𝑒old]]

𝑧 := CAS(𝑥, 𝑒old, 𝑒new)
CASF(𝑥,𝑣)
−−−−−−−−→ 𝑧 := 𝑣

elocs(𝑒old) = elocs(𝑒new) = ∅

𝑧 := CAS(𝑥, 𝑒old, 𝑒new)
CASS(𝑥,[[𝑒old]],[[𝑒new]])−−−−−−−−−−−−−−−−−−−−→ 𝑧 := [[𝑒old]] mfence

F−→ skip 𝑥 := 𝑦
Get(𝑥,𝑦)
−−−−−−−→ skip

𝑦 := 𝑥
Put(𝑦,𝑥)
−−−−−−−→ skip rfence 𝑛

rF(𝑛)
−−−−−→ skip poll(𝑛)

P(𝑛)
−−−−→ skip

assume(𝑥 = 𝑣)
lR(𝑥,𝑣)
−−−−−−→ skip

𝑣 ≠ 𝑣 ′

assume(𝑥 ≠ 𝑣 ′)
lR(𝑥,𝑣)
−−−−−−→ skip

P(𝑡) 𝑙−→ C

P

𝑡 :𝑙−−→ P[𝑡 ↦→ C]

𝑥 := 𝑒 { assume(𝑦 = 𝑣);𝑥 := 𝑒 [𝑣/𝑦] for 𝑦 ∈ elocs(𝑒), 𝑣 ∈ Val

𝑧 := CAS(𝑥, 𝑒old, 𝑒new) { assume(𝑦 = 𝑣); 𝑧 := CAS(𝑥, 𝑒old [𝑣/𝑦], 𝑒new) for 𝑦 ∈ elocs(𝑒old), 𝑣 ∈ Val

𝑧 := CAS(𝑥, 𝑒old, 𝑒new) { assume(𝑦 = 𝑣); 𝑧 := CAS(𝑥, 𝑒old, 𝑒new [𝑣/𝑦]) for 𝑦 ∈ elocs(𝑒new), 𝑣 ∈ Val

Fig. 6. The rdma
tso

program and command transitions

That is, both get and put operations result in a completion notification (cn) when complete.
Indeed, this is precisely why we record an acknowledgement for each put: the ackp serves as a
placeholder for a processed put, so that we can generate an associated notification when complete.

Recall that poll(𝑛) awaits the completion of the earliest unpolled get/put towards 𝑛. To achieve
this, completion notifications are left in wbL until polled. Executing poll(𝑛) can proceed if the
head ofwbL of the 𝑛-queue pair is a cn entry, in which case this cn entry (the earliest in FIFO order)
is removed. If 𝑛-wbL is empty or its head is a write entry, then the execution of poll(𝑛) is blocked.

3.2 rdma
tso

Concrete Operational Semantics

We describe the rdmatso concrete operational semantics by separating the transitions of its program
and hardware subsystems. The former describe the steps in program execution, e.g. how a branching
program is reduced. The latter describe how the memory, store buffers and queue pairs evolve
throughout the execution, e.g. how remote puts reach the memory. The rdmatso operational
semantics is then defined by combining the transitions of its program and hardware subsystems.

Program Transitions. Program transitions in the middle of Fig. 6 are defined via the transitions
of their constituent commands. Command transitions are of the formC

𝑙−→ C
′, whereC,C′ ∈ Comm

are sequential commands and 𝑙 is a label. A label is either 𝜀 for silent transitions, or in Lab (defined
at the top of Fig. 6) for executing a primitive command. Labels are defined as the union of Lab𝑛
for all nodes 𝑛. A label in Lab𝑛 may be (1) lW(𝑥𝑛, 𝑣), for a CPU write on location 𝑥 with value 𝑣 ;
(2) lR(𝑥𝑛, 𝑣), for a CPU read on 𝑥 reading 𝑣 ; (3) CASS(𝑥𝑛, 𝑣1, 𝑣2), for a successful CAS reading the
expected value 𝑣1 from 𝑥 and updating it to 𝑣2; (4) CASF(𝑥𝑛, 𝑣), for a failed CAS where the expected

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:13

value does not match the value 𝑣 of 𝑥 in memory; (5) F, for a memory fence; (6) P(𝑛), for a poll on 𝑛;
(7) Get(𝑥𝑛, 𝑦𝑛), for 𝑥𝑛 := 𝑦𝑛 ; (8) Put(𝑦𝑛, 𝑥𝑛), for 𝑦𝑛 := 𝑥𝑛 ; or (9) rF(𝑛), for a remote fence on 𝑛.

Command transitions for sequential composition, choice and loops (the top line) are standard.
The next four transitions reduce assignments and CAS operations. As assignments and CAS involve
expressions, their transitions rewrite expressions step-by-step, as defined at the bottom of Fig. 6
(via{ transitions). Each rewrite step of assignment rewrites 𝑥 := 𝑒 as assume(𝑦 = 𝑣);𝑥 := 𝑒 [𝑣/𝑦],
replacing a location 𝑦 in 𝑒 with an arbitrary value 𝑣 and checking that 𝑣 matches the value of
𝑦 via assume(𝑦 = 𝑣). Note that value 𝑣 is unconstrained at this point and is later constrained
when connecting program transitions with memory ones. The two rewrite transitions for CAS
are analogous. Observe that when C { C

′, then C silently transitions to C′ (with label 𝜀). Once 𝑒
in 𝑥 := 𝑒 is closed (i.e. contains no locations), then it is reduced to skip with the corresponding
CPU write label for writing the value of [[𝑒]] to 𝑥 ; mutatis mutandis for CAS operations. The
other transitions reduce memory fences, gets, puts, remote fences, polls and assumes to skip with
matching labels. Finally, assume(𝑥 =𝑣) (resp. assume(𝑥 ≠𝑣 ′)) reduces to skip with a lR(𝑥, 𝑣) label
when the in-memory value 𝑣 of 𝑥 matches (resp. does not match) the assertion.

Program transitions are of the form P

𝑡 :𝑙−→ P
′, where P, P′ denote (concurrent) programs, 𝑡 is the

identifier of the executing thread, and 𝑙 is the transition label. Program transitions simply lift the
transitions of their constituent threads (the bottom right rule).

Hardware Transitions. The rdmatso hardware transitions, given in the middle of Fig. 7, are
of the form M,B,QP

𝑡 :𝑙−→ M
′,B′,QP′, where M,M′ are global memories, B,B′ are store-buffer maps

and QP,QP′ are queue-pair maps, defined at the top of Fig. 7. We model a memory as a map from
locations to values. A store-buffer map is a function mapping each thread 𝑡 to a store buffer on
its associated node 𝑛(𝑡). A store buffer b on node 𝑛 is a sequence of CPU writes and RDMA puts,
gets and fences, as described in §3.1 (see Fig. 5). A queue-pair map is a function mapping each
thread 𝑡 (on node 𝑛(𝑡)) to another function associating each non-𝑛(𝑡) node with a queue pair. That
is, each thread 𝑡 is associated with a set of queue pairs, one for each other node on the network.
A queue pair qp is a tuple of six buffers, reqL, inR, wbR, outR, rspL and wbL, as described in §3.1.
Each queue-pair buffer in turn is a sequence of entries as prescribed in Fig. 5. We write ‘qp.’ to
project components of qp and use a standard map update notation to modify these components.

The first five hardware transitions describe the execution of CPU operations, as described in §3.1.
Specifically, when a thread writes 𝑣 to 𝑥 , it records this write in its store buffer (first transition).
Recall that when a thread 𝑡 reads from 𝑥 , it first consults its own store buffer, followed by the
memory if no write to 𝑥 is found in the store buffer. This lookup chain is captured by M ◁ B(𝑡)
(second transition), defined below the hardware transitions in Fig. 7. The execution of a CAS or
mfence proceeds if the store buffer of the executing thread is empty (the next three transitions).

The next transition describes the debuffering of a CPU write and propagating it to the memory.
Similarly, the transition after describes debuffering a remote operation rc

𝑛 towards node 𝑛, where
it is removed from the store buffer and appended to the reqL component of the 𝑛-queue pair.
The next three transitions describe executing a remote get, put or fence operation, where a

corresponding entry is added to the store buffer. The penultimate transition describes executing
a poll on 𝑛, which removes the earliest completion notification in wbL of the 𝑛-queue pair. The
last transition describes how the queue-pair entries travel through its six buffers, captured by the
queue-pair transitions (→qp) defined at the bottom of Fig. 7 (ignoring highlights for now).

Recall from §3.1 that once a get operation enters a queue pair it travels through the queue-pair
pipeline in six steps, i.e. G1–G6 on p. 11. This is captured by the top→qp transition at the bottom
of Fig. 7, where for brevity we have combined these six steps into one transition with a disjunctive

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:14 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

M∈Mem ≜ Loc → Val B∈SBMap ≜ 𝜆𝑡 ∈ Tid.SBuff𝑛 (𝑡) QP∈QPMap ≜ 𝜆𝑡 .
(
𝜆𝑛(𝑡).QPair𝑛𝑛

)
b∈SBuff𝑛≜

{
𝑥𝑛:=𝑣,𝑦𝑛:=𝑥𝑛,𝑥𝑛:=𝑦𝑛,rfence 𝑛

}∗
qp∈QPair𝑛𝑛 ≜ Req

𝑛
𝑛 × In

𝑛
𝑛 ×WBR

𝑛
𝑛 ×Out

𝑛
𝑛 × Rsp

𝑛
𝑛 ×WBL

𝑛
𝑛

reqL ∈Req𝑛𝑛 ≜
{
𝑦𝑛 :=𝑥𝑛, 𝑥𝑛 :=𝑦𝑛, rfence 𝑛

}∗ inR ∈ In𝑛𝑛 ≜
{
𝑦𝑛 := 𝑣, 𝑥𝑛 := 𝑦𝑛

}∗ wbL ∈WBL
𝑛
𝑛 ≜

{
cn, 𝑥𝑛 := 𝑣

}∗
outR ∈Out𝑛𝑛 ≜

{
ackp, 𝑥

𝑛 := 𝑣, 𝑥𝑛 := 𝑦𝑛
}∗ rspL∈Rsp𝑛𝑛 ≜

{
ackp, 𝑥

𝑛 := 𝑣
}∗ wbR ∈WBR

𝑛
𝑛 ≜

{
𝑦𝑛 := 𝑣

}∗
B
′= B[𝑡 ↦→ (𝑥 := 𝑣) · B(𝑡)]

M,B,QP
𝑡 :lW(𝑥,𝑣)
−−−−−−−→ M,B′,QP

(M ◁ B(𝑡)) (𝑥) = 𝑣

M,B,QP
𝑡 :lR(𝑥,𝑣)
−−−−−−−→ M,B,QP

B(𝑡) = 𝜀 M(𝑥) = 𝑣1

M,B,QP
𝑡 :CASS(𝑥,𝑣1,𝑣2)−−−−−−−−−−−−→ M[𝑥 ↦→ 𝑣2],B,QP

B(𝑡) = 𝜀 M(𝑥) = 𝑣

M,B,QP
𝑡 :CASF(𝑥,𝑣)
−−−−−−−−−→ M,B,QP

B(𝑡) = 𝜀

M,B,QP
𝑡 :F−−→ M,B,QP

B(𝑡) = b · (𝑥 := 𝑣)

M,B,QP
𝑡 :𝜀−−→ M[𝑥 ↦→ 𝑣],B[𝑡 ↦→ b],QP

B(𝑡)=b·rc𝑛 rc
𝑛 ∈

{
𝑥 := 𝑦𝑛, 𝑦𝑛 := 𝑥, rfence 𝑛

}
QP(𝑡) (𝑛)=qp qp

′ = qp[reqL ↦→ rc
𝑛 · qp.reqL]

M,B,QP
𝑡 :𝜀−−→ M,B[𝑡 ↦→ b],QP[𝑡 ↦→ QP(𝑡) [𝑛 ↦→ qp

′]]

B
′ = B[𝑡 ↦→ (𝑥 := 𝑦) · B(𝑡)]

M,B,QP
𝑡 :Get(𝑥,𝑦)
−−−−−−−−−→ M,B′,QP

B
′ = B[𝑡 ↦→ (𝑦 := 𝑥) · B(𝑡)]

M,B,QP
𝑡 :Put(𝑦,𝑥)
−−−−−−−−−→ M,B′,QP

B
′ = B[𝑡 ↦→ (rfence 𝑛) · B(𝑡)]

M,B,QP
𝑡 :rF(𝑛)
−−−−−−→ M,B′,QP

QP(𝑡) (𝑛)=qp qp.wbL=𝛼 · cn qp
′=qp[wbL ↦→ 𝛼]

M,B,QP
𝑡 :P(𝑛)
−−−−→ M,B,QP[𝑡 ↦→ QP(𝑡) [𝑛 ↦→ qp

′]]

M,QP(𝑡) (𝑛) →qp M
′, qp

M,B,QP
𝑡 :𝜀−→ M

′,B,QP[𝑡 ↦→ QP(𝑡) [𝑛 ↦→ qp]]

with (M ◁ 𝛼) (𝑥) ≜
{
𝑣 if 𝛼 = 𝛽 · (𝑥 := 𝑣) · − ∧ ∀𝑣 ′ . 𝑥 := 𝑣 ′ ∉ 𝛽

M(𝑥) if ∀𝑣 . 𝑥 := 𝑣 ∉ 𝛼

qp.reqL = 𝛼 · (𝑥 :=𝑦) qp
′ = qp[reqL ↦→ 𝛼] [inR ↦→ (𝑥 :=𝑦) · qp.inR] M

′ = M

∨ qp.inR = 𝛼 · (𝑥 :=𝑦) qp
′ = qp[inR ↦→ 𝛼] [outR ↦→ (𝑥 :=𝑦) · qp.outR] M

′ = M

∨ qp.outR = 𝛼 · (𝑥 :=𝑦) · 𝛽 qp.wbR = 𝜀 qp
′ = qp[outR ↦→ 𝛼 · (𝑥 :=M(𝑦)) · 𝛽] M

′ = M

∨ qp.outR = 𝛼 · (𝑥 :=𝑣) qp
′ = qp[outR ↦→ 𝛼] [rspL ↦→ (𝑥 :=𝑣) · qp.rspL] M

′ = M

∨ qp.rspL = 𝛼 · (𝑥 :=𝑣) qp
′ = qp[rspL ↦→ 𝛼] [wbL ↦→ cn · (𝑥 :=𝑣) · qp.wbL] M

′ = M

∨ qp.wbL = 𝛼 · (𝑥 :=𝑣) · cn∗ qp
′ = qp[wbL ↦→ 𝛼 · cn∗] M

′ = M[𝑥 ↦→ 𝑣]
M, qp →qp M

′, qp′

qp.reqL = 𝛼 · (𝑦:=𝑥) qp.wbL = cn∗ qp
′ = qp[reqL ↦→ 𝛼] [inR ↦→ (𝑦:= M(𝑥)) · qp.inR] M

′ = M

∨ qp.inR = 𝛼 · (𝑦:=𝑣) qp
′ = qp[inR ↦→ 𝛼] [wbR ↦→ (𝑦:=𝑣) · qp.wbR] [outR ↦→ ackp · qp.outR] M

′ = M

∨ qp.wbR = 𝛼 · (𝑦:=𝑣) qp
′ = qp[wbR ↦→ 𝛼] M

′=M[𝑦 ↦→ 𝑣]
∨ qp.outR = 𝛼 · ackp qp

′ = qp[outR ↦→ 𝛼] [rspL ↦→ ackp · qp.rspL] M
′ = M

∨ qp.rspL = 𝛼 · ackp qp
′ = qp[rspL ↦→ 𝛼] [wbL ↦→ cn · qp.wbL] M

′ = M

M, qp →qp M
′, qp′

qp.reqL=𝛼 · (rfence 𝑛) qp.inR = qp.outR = qp.rspL = 𝜀 qp
′ = qp[reqL ↦→ 𝛼]

M, qp →qp M, qp′

Fig. 7. rdma
tso

hardware domains (above), hardware transitions (middle) and queue-pair transitions (below)

premise, with each disjunct corresponding to a step in G1–G6. That is, if any of the six disjuncts in
the premise of the rule hold, then the transition is enabled. Analogously, the second→qp transition
describes how a put operation proceeds through the queue-pair pipeline, with each of the five
disjuncts describing one of the five steps in P1–P5 (p. 11). Finally, the last →qp transition describes

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:15

P

𝑡 :𝜀−−→ P
′

P,M,B,QP ⇒ P
′,M,B,QP

M,B,QP
𝑡 :𝜀−−→ M

′,B′,QP′

P,M,B,QP ⇒ P,M′,B′,QP′
P

𝑡 :𝑙−→ P
′

M,B,QP
𝑡 :𝑙−→ M

′,B′,QP′

P,M,B,QP ⇒ P
′,M′,B′,QP′

Fig. 8. rdma
tso

operational semantics with the program and hardware transitions given in Fig. 6 and Fig. 7

the execution of a remote fence as described in §3.1, ensuring that it can only proceed if there are
no pending operations on the queue pair (i.e. qp.inR = qp.outR = qp.rspL = 𝜀).

rdma
tso

Combined Transitions. The rdmatso operational semantics is defined by combining
its program and hardware transitions as shown in Fig. 8. When the program subsystem takes a silent
step, then the hardware subsystem is unchanged (first transition); analogously, when the hardware
subsystem takes a silent step, then the program subsystem is unchanged (second transition). Finally,
when the program and hardware subsystems both take the same transition (with the same label
and by the same thread), then the transition effect is that of their combined effects.

Operational Semantics without PCIe. Recall from §2 (p. 8) that we model the PCIe-specific
guarantee where a NIC remote read propagates all pending NIC remote writes (in wbR) to memory,
while a NIC local read propagates all pending NIC local writes (inwbL) to memory. Nevertheless, we
can relax this as follows. For NIC remote reads, we can replace the highlighted premises of the get
queue-pair transition (top→qp transition) in Fig. 7 with qp′= qp[outR ↦→ 𝛼 · (𝑥 :=(M◁wbR) (𝑦)) ·𝛽].
That is, we no longer require wbR to be empty (i.e. there may be pending writes in wbR), and when
reading the value of 𝑦 we first check for pending writes on 𝑦 in wbR.
For NIC local reads, we can similarly replace the highlighted premises of the put queue-pair

transition (middle→qp transition) with qp
′= qp[reqL ↦→ 𝛼] [inR ↦→ (𝑦 := (M◁wbL) (𝑥)) · qp.inR].

That is, we no longer require wbL to contain only completion notifications (and allow it also to
contain pending writes), and we first check wbL for pending writes when reading the value of 𝑥 .

Observations. Given a thread 𝑡 and its store buffer b, all remote operations by 𝑡 also go through b.
Hence, as store buffers are FIFO, a CPU write cc in b before a remote operation rc in b always
reaches the memory before rc is debuffered, and thus cc is visible to rc. Moreover, as all six buffers
of the queue-pair pipeline are FIFO, remote operations maintain the order in which they were issued
as they go through the queue-pair pipeline. Therefore, a thread always receives the completion
notifications of get/put operations in the order they were submitted (i.e. the program order).

Observe that an rFence stipulates that only inR, outR and rspL be empty but not wbL and wbR.
As such, rFence cannot guarantee that the result of earlier put (resp. get) operations have reached
the remote (resp. local) memory: they can still be pending in wbR (resp. wbL). Moreover, rFence
has no bearing on CPU operations and does not block their execution. Hence, later CPU operations
(after rFence) may be visible to earlier get/put operations (those before rFence).

Recall that a put operation 𝑥𝑛 := 𝑦 comprises a local read from 𝑦 and a remote write to 𝑥 , and a
get operation 𝑥 := 𝑦𝑛 comprises a remote read from 𝑦 and a local write to 𝑥 . Note that the local read
of a put is fulfilled when it reaches the head of inR and is subsequently forwarded to outR. This
ensures that puts are executed in program order and that puts are executed before all later gets
(as in Fig. 2g). By contrast, the remote read of a get is fulfilled while in outR non-deterministically

(i.e. not necessarily when it is at the head of outR). This means that remote reads of gets can be
reordered with respect to one another, as well as with respect to the remote writes of puts (as in
Fig. 2h). Such reorderings can be prevented by adding an rFence after a get (as in Fig. 2i).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:16 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

Lastly, note that a poll retrieves the earliest cn in wbL (i.e. at its head). In the case of gets, the
result of the get (its local write) is sent to wbL before its associated cn. As such, if the head of wbL
is cn, then its result is guaranteed to have reached the memory of the local node when polling. By
contrast, in the case of puts, its remote write operation could still be inwbR when polling, and thus
polling a put cannot guarantee that the effect of the put has reached the remote memory.

3.3 rdma
tso

Simplified Operational Semantics

The concrete operational semantics in §3.2 reflects the structure of the underlying hardware,
namely that of the six buffers in a queue pair. However, since all four buffers (reqL, inR, outR, rspL)
in the middle are FIFO, we can simplify them by modelling them as a single buffer. Specifically,
we model a simple queue pair, sqp ∈ SQPair

𝑛
𝑛 ≜ Pipe

𝑛
𝑛 × WBR

𝑛
𝑛 × WBL

𝑛
𝑛 , as a tuple compris-

ing a pipe, as well as local and remote write-back buffers (as before). A pipe, pipe ∈ Pipe
𝑛
𝑛 ≜{

𝑦𝑛 := 𝑥𝑛, 𝑦𝑛 := 𝑣, ackp, 𝑥
𝑛 := 𝑦𝑛, 𝑥𝑛 := 𝑣, rfence 𝑛

}∗, is simply a sequence of puts, gets, simplified
puts and gets (with values), acknowledgements, and remote fences.
The program and command transitions of our simplified semantics is identical to those of the

concrete one (Fig. 6). Moreover, the hardware transitions of our simplified semantics are those of
the concrete semantics (Fig. 7), except that the queue-pair transitions at the bottom of Fig. 7 are
replaced with the simplified queue-pair transitions given in §B. As before, the simplified operational
semantics is obtained by combining its program and hardware transitions (Fig. 8).

Finally, we show that our concrete operational semantics is equivalent to the simplified one. We
have mechanised our proof in Coq, available in the supplementary material [Ambal et al. 2024],
with an overview of the proof available in §B.

Theorem 3.1. The concrete rdmatso operational semantics is equivalent to the simplified one.

4 rdma
tso

Declarative Semantics

Events and Executions. In the literature of declarative models, the traces of a program are
commonly represented as a set of executions, where an execution is a graph comprising: i) a set of
events (graph nodes); and ii) a number of relations on events (graph edges). Each event is associated
with the execution of a primitive command (in PComm) and is a tuple (𝜄, 𝑡, 𝑙), where 𝜄 is the (unique)
event identifier, 𝑡 ∈Tid identifies the executing thread, and 𝑙 ∈ELab is the event label, defined below.

Definition 4.1 (Labels and events). An event, e ∈ Event, is a triple (𝜄, 𝑡, 𝑙), where 𝜄 ∈ N, 𝑡 ∈ Tid

and 𝑙 ∈ ELab𝑛 (𝑡) . The set of event labels is ELab ≜
⋃

𝑛 ELab𝑛 for all nodes 𝑛. An event label of 𝑛,
𝑙 ∈ ELab𝑛 , is a tuple of one of the following forms:

• (CPU) local read: 𝑙 = lR(𝑥𝑛, 𝑣r)
• (CPU) local write: 𝑙 = lW(𝑥𝑛, 𝑣w)
• (CPU) CAS: 𝑙 = CAS(𝑥𝑛, 𝑣r, 𝑣w)
• (CPU) memory fence: 𝑙 = F
• (CPU) poll: 𝑙 = P(𝑛)

• NIC local read: 𝑙 = nlR(𝑥𝑛, 𝑣r, 𝑛)
• NIC remote write: 𝑙 = nrW(𝑦𝑛, 𝑣w)
• NIC remote read: 𝑙 = nrR(𝑦𝑛, 𝑣r)
• NIC local write: 𝑙 = nlW(𝑥𝑛, 𝑣w, 𝑛)
• NIC fence: 𝑙 = nF(𝑛)

Each event label denotes whether the associated primitive command is handled by the NIC (right
column, prefixed with n), or the CPU (left column). A poll instruction is handled by the CPU (it
simply awaits for a completion notification from the NIC). A put operation 𝑥𝑛 := 𝑦, which consists
of a NIC local read from 𝑦 and a NIC remote write to 𝑥 , is modelled as two events of type nlR (on 𝑦)
and nrW (on 𝑥). Similarly, a get 𝑥 := 𝑦𝑛 is modelled as two events of type nrR (on 𝑦) and nlW (on 𝑥).

Wewrite type(𝑙), loc(𝑙), 𝑣r (𝑙), 𝑣w (𝑙),𝑛(𝑙) and𝑛(𝑙) for the type (e.g. lR), location, read value, write
value, node and remote node of 𝑙 , where applicable; e.g. loc(nlR(𝑥𝑛, 𝑣r, 𝑛))=𝑥𝑛 ,𝑛(nlR(𝑥𝑛, 𝑣r, 𝑛))=𝑛

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:17

and 𝑛(nlR(𝑥𝑛, 𝑣r, 𝑛))=𝑛. We lift these functions to events as expected. We write 𝜄 (e), 𝑡 (e), 𝑙 (e) to
project the corresponding components of an event e = (𝜄, 𝑡, 𝑙).

Issue and Observation Points. In what follows we distinguish between when an instruction
is issued and when it is observed. Intuitively, an instruction is issued when it is processed by the
CPU or the NIC, and it is observed when its effect is propagated to the local or remote memory. As
such, since writes (be they by the CPU or NIC) are the only instructions that have an observable
effect on memory, the time points at which they are issued and observed may differ. A CPU write
is issued when it is added to the store buffer and is observed when it is debuffered and propagated
to memory. Similarly, the local (resp. remote) write of a get (resp. put) is issued when it is added to
wbL (resp. wbR), and observed when it is propagated to memory. By contrast, all other events are
instantaneous in that either they do not have an observable effect on memory and thus their issue
and observation points coincide, or their effect is written to memory immediately. In particular, CAS
operations are instantaneous. Note that the observation point of any instruction either coincides
with its issue point (instantaneous events) or it follows its issue point (write events).

Notation. Given a relation 𝑟 and a set 𝐴, we write 𝑟+ for the transitive closure of 𝑟 ; 𝑟−1 for the
inverse of 𝑟 ; 𝑟 |𝐴 for 𝑟 ∩ (𝐴×𝐴); and [𝐴] for the identity relation on𝐴, i.e. {(𝑎, 𝑎) | 𝑎 ∈ 𝐴}. We write
𝑟1; 𝑟2 for the relational composition of 𝑟1 and 𝑟2: {(𝑎, 𝑏) | ∃𝑐. (𝑎, 𝑐) ∈ 𝑟1 ∧ (𝑐, 𝑏) ∈ 𝑟2}. When 𝑟 is a
strict partial order, we write 𝑟 |imm for the immediate edges in 𝑟 , i.e. 𝑟 \ (𝑟 ; 𝑟). Given a set of events 𝐸
and a location 𝑥 , we write 𝐸𝑥 for {e ∈ 𝐸 | loc(e)=𝑥}. Given a set of events 𝐸 and a label type X, we
write 𝐸.X for {e ∈ 𝐸 | type(e) = X}, and define its sets of reads as 𝐸.R ≜ 𝐸.lR∪𝐸.CAS∪𝐸.nlR∪𝐸.nrR,
writes as 𝐸.W ≜ 𝐸.lW∪𝐸.CAS∪𝐸.nlW∪𝐸.nrW,NIC writes as 𝐸.nW ≜ 𝐸.nlW∪𝐸.nrW and instantaneous
events as 𝐸.Inst ≜ 𝐸 \ (𝐸.lW ∪ 𝐸.nlW ∪ 𝐸.nrW). Intuitively, the effects of CPU writes, NIC local
writes and NIC remote writes (labelled lW, nlW and nrW) are only visible when they respectively
leave the store buffer, wbL, and wbR, and are thus excluded from the set of instantaneous events.

The ‘same-location’ relation is sloc≜
{
(e, e′) ∈Event2 | loc(e)=loc(e′)

}
; the ‘same-thread’ rela-

tion is sthd≜
{
(e, e′) ∈Event2 | 𝑡 (e)=𝑡 (e′)

}
; and the ‘same-queue-pair’ relation is sqp≜ {(e, e′) ∈

Event
2 | 𝑡 (e) = 𝑡 (e′) ∧ 𝑛(e) = 𝑛(e′)}. Note that sqp ⊆ sthd and that sloc, sthd and sqp are all

symmetric. For a set of events 𝐸, we write 𝐸.sloc for sloc|𝐸 ; similarly for 𝐸.sthd and 𝐸.sqp.

Definition 4.2 (Pre-executions). A pre-execution is a tuple 𝐺 = ⟨𝐸, po, rf,mo, pf, nfo ⟩, where:
• 𝐸 ⊆ Event is the set of events and includes a set of initialisation events, 𝐸0 ⊆ 𝐸, comprising a
single write with label lW(𝑥, 0) for each 𝑥 ∈ Loc.

• po ⊆ 𝐸 × 𝐸 is the ‘program order’ relation defined as a disjoint union of strict total orders,
each ordering the events of one thread, with 𝐸0 × (𝐸 \ 𝐸0) ⊆ po.

• rf ⊆ 𝐸.W × 𝐸.R is the ‘reads-from’ relation on events of the same location with matching
values; i.e. (𝑎, 𝑏) ∈ rf ⇒ (𝑎, 𝑏) ∈ sloc ∧ 𝑣w (𝑎)=𝑣r (𝑏). Moreover, rf is total and functional on
its range: every read in 𝐸.R is related to exactly one write in 𝐸.W.

• mo ≜
⋃

𝑥∈Loc mo𝑥 is the ‘modification-order’, where each mo𝑥 is a strict total order on 𝐸.W𝑥

with 𝐸0𝑥 × (𝐸.W𝑥 \ 𝐸0𝑥) ⊆ mo𝑥 describing the order in which writes on 𝑥 reach the memory.
• pf ⊆ 𝐸.nW × 𝐸.P is the ‘polls-from’ relation, relating earlier (in program-order) NIC writes to
later poll operations on the same queue pair ; i.e. pf ⊆ po∩ sqp. Moreover, pf is functional on
its domain (every NIC write can be be polled at most once), and pf is total and functional on
its range (every poll in 𝐸.P polls from exactly one NIC write).

• nfo ⊆ 𝐸.sqp is the ‘NIC flush order’, such that for all (𝑎, 𝑏) ∈ 𝐸.sqp, if 𝑎 ∈ 𝐸.nlR, 𝑏 ∈ 𝐸.nlW,
then (𝑎, 𝑏) ∈nfo ∪ nfo

−1, and if 𝑎 ∈ 𝐸.nrR, 𝑏 ∈ 𝐸.nrW, then (𝑎, 𝑏) ∈ nfo ∪ nfo
−1.

Recall from §2 that we model the PCIe-specific guarantee where a NIC local read (nlR) propagates
all pending NIC local writes (nlW) in wbL (on the same queue pair) to memory, while a NIC remote

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:18 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

read (nrR) propagates all pending NIC remote writes (nrW) in wbR (on the same queue pair) to
memory. In other words, the issue point of an nlR event e𝑟 is totally ordered with respect to the
issue and observation points of any nlW event e𝑤 on the same queue pair. Specifically, either (1) e𝑤
had already been flushed before issuing e𝑟 (i.e. e𝑤 had already left wbL) and thus e𝑤 is issued and
observed before e𝑟 ; or (2) e𝑤 was in wbL before issuing e𝑟 , in which case we cannot issue e𝑟 until
wbL is emptied, propagating e𝑤 to memory, and thus e𝑤 is issued and observed before e𝑟 ; or (3) e𝑤
has not reachedwbL when we issue e𝑟 , in which case e𝑤 will reach and leavewbL (i.e. is issued and
observed) after e𝑟 . Similarly for nrR/nrW events. We model this total order through the nfo relation,
stipulating that all NIC local reads and writes (resp. all NIC remote reads and writes) on the same
queue pair be totally ordered. Later we describe how we can relax this PCIe guarantee (see p. 21).

Derived Relations. Given a pre-execution ⟨𝐸, po, rf,mo, pf, nfo⟩, we define the ‘reads-before’
relation as rb ≜ (rf−1;mo) \ [𝐸], relating each read 𝑟 to writes that are mo-after the write 𝑟 reads
from. We further define the rf-buffer relation as rfb ≜ [lW]; (rf ∩ sthd); [lR], including CPU rf

edges by the same thread (with access to the same store buffer). We define the rfb-complement as
rf
b
≜ rf \ rfb, including all other rf edges (i.e. by different threads or involving remote operations).

Intuitively, when𝑤
rfb−−→ 𝑟 , then 𝑟 may read from𝑤 before it is observable. Specifically, as CPU writes

are delayed in the store buffer and CPU reads first check the buffer, 𝑟 can read from𝑤 either when
(1)𝑤 is still in the thread’s store buffer (i.e.𝑤 is not yet observable); or (2)𝑤 is in the memory (i.e.𝑤

is observable). By contrast, when𝑤
rf
b−−→ 𝑟 , then 𝑟 reads from𝑤 only once it is observable (i.e. it has

reached the memory). Analogously, we define the rb-buffer relation as rbb ≜ [lR]; (rb∩ sthd); [lW].
Recall that we distinguish between the issue and observation points of an event. We thus define

the ‘issue-preserved program order’, ippo, as the subset of po edges (ippo ⊆ po) that must be
preserved when issuing instructions. That is, if two events are ippo-related, then they must be
issued in program order; otherwise they may be reordered and thus issued in either order. The table
at the top of Fig. 9 describes which po edges are included in ippo, where ✓ denotes that the two
instructions are ippo-related (i.e. their issue order is preserved and they must be issued in program
order), ✗ denotes that they are not ippo-related (i.e. their issue order is not preserved and they may
be issued out of order) and sqp denotes that they are ippo-related iff they are on the same queue
pair. For instance, when a CPU instruction is followed by a NIC one, then they are issued in order
(top-right quadrant of the table). By contrast, when a NIC instruction is followed by a CPU one,
then they may be reordered (bottom-left quadrant), as if the NIC instruction was executed in a
parallel thread (as discussed in §2), resulting in weak behaviours such as 𝑧=1 in Fig. 2b.

Analogously, we define the ‘observation-preserved program order’, oppo, as the subset of po edges
(oppo ⊆ po) that must be preserved when observing the effects of instructions. In other words, if
two events are oppo-related, then they become observable in program order; otherwise they may
be reordered and become observable in either order. The table at the bottom of Fig. 9 describes
which po edges are included in oppo, with ✓, ✗ and sqp interpreted in the same way as for ippo.

Observe that ippo and oppo only differ in four cells. In the case of B1 and B5, this is because
CPU writes (type lW) are delayed in the store buffer and may be reordered and thus become
observable after CPU operations that do not go through the store buffer, namely CPU reads and
polls. Analogously, in the case of G10 (resp. I10), this is because NIC remote (resp. local) writes are
delayed in wbR (resp. wbL), so a later remote fence do not ensure the writes have propagated to
memory.

From Programs to Executions. The semantics of a program P is a set of consistent executions
(defined shortly) of P, defined by induction on the structure of P. This definition is standard and
omitted (see §C). The executions produced by this construction are well-formed, as we define below.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:19

Later in Program Order

ippo

CPU NIC
1 2 3 4 5 6 7 8 9 10

lR lW CAS F P nlR nrW nrR nlW nF

Ea
rli
er

in
Pr
og

ra
m

O
rd
er

CP
U

A lR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B lW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C CAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N
IC

F nlR ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp
G nrW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp
H nrR ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp
I nlW ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp
J nF ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp

Later in Program Order

oppo

CPU NIC
1 2 3 4 5 6 7 8 9 10

lR lW CAS F P nlR nrW nrR nlW nF

Ea
rli
er

in
Pr
og

ra
m

O
rd
er

CP
U

A lR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B lW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

C CAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N
IC

F nlR ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp
G nrW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp ✗

H nrR ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp
I nlW ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp ✗

J nF ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp

Fig. 9. The rdma
tso

ordering constraints on ippo (above) and oppo (below), where ✓ denotes that instructions

are ordered (and cannot be reordered), ✗ denotes they are not ordered (and may be reordered), and sqp
denotes they are ordered iff they are on the same queue pair. Replacing sqp in the highlighted cells (G8-G9)

with ✗ would yield oppo for the weaker model without the PCIe guarantee of reads flushing buffers (p. 21).

Definition 4.3 (Executions). A pre-execution 𝐺 = ⟨𝐸, po, rf,mo, pf, nfo⟩ is well-formed if the fol-
lowing hold for all𝑤, 𝑟,𝑤1,𝑤2, 𝑝2:
(1) Poll events poll-from the oldest non-polled remote operation on the same queue pair:

if𝑤1 ∈ 𝐺.nW and𝑤1
po∩sqp
−−−−−→ 𝑤2

pf

−→ 𝑝2, then there exists 𝑝1 such that𝑤1
pf

−→ 𝑝1
po

−−→ 𝑝2.
(2) Each put (resp. get) operation corresponds to two events: a read and a write with the read

immediately preceding the write in po: (a) if 𝑟 ∈𝐺.nlR (resp. 𝑟 ∈𝐺.nrR), then (𝑟,𝑤) ∈po|imm
for some 𝑤 ∈𝐺.nrW (𝑤 ∈𝐺.nlW); and (b) if 𝑤 ∈𝐺.nrW (resp. 𝑤 ∈𝐺.nlW), then (𝑟,𝑤) ∈ po|imm
for some 𝑟 ∈𝐺.nlR (𝑟 ∈𝐺.nrR).

(3) Read and write events of a put (resp. get) have matching values:
if (𝑟,𝑤) ∈ 𝐺.po|imm, type(𝑟) ∈ {nlR, nrR} and type(𝑤) ∈ {nlW, nrW}, then 𝑣r (𝑟) = 𝑣w (𝑤).

An execution is a pre-execution (Def. 4.2) that is well-formed.

We use ‘𝐺.’ to project the components and (derived) relations of execution𝐺 ; e.g.𝐺.rf and𝐺.ippo.
When the choice of 𝐺 is clear, we simply write e.g. rf and ippo. See §C.1 for execution examples.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:20 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

Consistency. Note that the notion of an execution (Def. 4.3) imposes very few constraints on its
po, rf, mo, pf and nfo relations. Such restrictions and thus the permitted behaviours of a program
are determined by defining the set of consistent executions, defined below.

Definition 4.4 (rdma
tso

-consistency). An execution ⟨𝐸, po, rf,mo, pf, nfo⟩ is rdmatso-consistent iff
(1) ib is irreflexive; (2) ob is irreflexive; and (3) ([Inst]; ib; ob)+ is irreflexive, where:

ib ≜
(
ippo ∪ rf ∪ pf ∪ nfo ∪ rbb

)+ (‘issued-before’)

ob ≜
(
oppo ∪ rf

b
∪ ([nlW]; pf) ∪ nfo ∪ rb ∪mo

)+ (‘observed-before’)

The ib (resp. ob) relation is an extension of ippo (resp. oppo), describing the issue (resp. observa-
tion) order across the instructions of different threads and nodes. rdmatso-consistency requires
that ib and ob be irreflexive (i.e. yield strict partial orders as they are defined transitively).
The rf (resp. pf) component in ib states that if e reads from (resp. polls from) 𝑤 , then 𝑤 must

have been issued before e. Recall that nfo totally orders the nlR/nlW and nrR/nrW operations on
the same queue pair and is thus in ib. The rbb component in ib ensures that a CPU read 𝑟 by thread
𝑡 on location 𝑥 observes all earlier writes on 𝑥 by 𝑡 : if 𝑟 in 𝑡 reads from𝑤𝑟 (𝑤𝑟

rf−→ 𝑟), which is later
overwritten by 𝑤 in 𝑡 (𝑤𝑟

mo−−→ 𝑤 and (𝑤, 𝑟) ∈ sthd), i.e. 𝑟
rbb−−→ 𝑤 , then 𝑤 must have been issued

after 𝑟 , as otherwise 𝑟 should have read from the later𝑤 and not𝑤𝑟 . Note that this is not the case
for rb \ rbb: 𝑟 can be issued after a later write𝑤 and still not observe it because the effect of𝑤 has
not yet reached the memory (𝑤 is in wbL/wbR or the store buffer of another thread).
The rf

b
component in ob states that if a read 𝑟 reads from a write 𝑤 that passed through a

different buffer (i.e. either 𝑤 is part of an RDMA operation and went through wbL/wbR, or 𝑤 is
a CPU write by another thread and thus went through a different store buffer), then 𝑟 can only
read from𝑤 once it has reached the memory, i.e. only once𝑤 is observable, and thus𝑤 must have
become observable before 𝑟 . The [nlW]; pf component states that if 𝑝 polls from a NIC local write
𝑤 , then𝑤 must have left the wbL buffer and reached the memory. Note that this is not the case for
nrW events: polling an nrW event𝑤 succeeds when𝑤 is in wbR and𝑤 may not have yet reached
the memory. The nfo in ob can be justified as in the case of ib.
The rb component ensures that a read 𝑟 on location 𝑥 observes the latest write on 𝑥 that has

reached the memory: if𝑤𝑟

rf−→ 𝑟 and𝑤𝑟

mo−−→ 𝑤 , i.e. 𝑟
rb−→ 𝑤 , then𝑤 must have reached the memory

after 𝑟 was issued/observed, as otherwise 𝑟 should have read from this later𝑤 and not𝑤𝑟 . As mo

describes the order in which the writes on each location reach the memory, it is included in ob.
The third condition Def. 4.4 asks that ([Inst]; ib; ob)+ be irreflexive. Intuitively, if e1

ib−→ e2
ob−−→ e3,

then (1) e1 is issued before e2; (2) e2 is issued before it is observed; and (3) e2 is observed before e3.
If e1 and e3 are instantaneous events (i.e. their issue and observation points coincide) then e1
necessarily precedes e3, and thus the semantics prohibits creating a cycle from these dependencies.

Finally, we show that our rdmatso declarative semantics is equivalent to the simplified operational
semantics in §3, with the full proof given in §D. Note that as a corollary (of theorem 3.1), our
declarative semantics is also equivalent to the concrete operational semantics in §3.

Theorem 4.5. The rdmatso declarative semantics is equivalent to the simplified operational one.

Recall that rdmatso assumes x86-TSO CPUs (subject to TSO consistency). As such, rdmatso can
be seen as an extension of TSO [Alglave et al. 2014]. That is, as we show in the following theorem,
for programs without remote operations, rdmatso and TSO coincide (see §C.3 for the full proof).

Theorem 4.6. For programs without remote operations, TSO- and rdma
tso

-consistency coincide.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:21

Declarative Semantics without PCIe. To relax the PCIe-specific constraint (stipulating that
NIC local/remote reads propagates all pending NIC writes in wbL/wbR to memory), we adapt our
declarative model as follows: (1) we no longer need the nfo relation in Def. 4.2 and Def. 4.3 (as nfo
is used to capture the ‘NIC flush order’ under PCIe); (2) we replace sqp in cells G8 and G9 of the
oppo table (Fig. 9) with ✗ (as a later nrR/nlW no longer flushes wbR and thus may not observe an
earlier nrW); and (3) we redefine rfb and rbb as follows to include events on the same queue pair:

rfb ≜ ([lW]; (rf ∩ sthd); [lR]) ∪ (rf ∩ sqp) rbb ≜ ([lR]; (rb ∩ sthd); [lW]) ∪ (rb ∩ sqp)

Recall that𝑤
rfb−−→ 𝑟 (resp. 𝑟

rbb−−→ 𝑤) denotes 𝑟 reads from (resp. before)𝑤 before𝑤 is observable. In
the strong model with PCIe guarantee, NIC local/remote reads flush the wbL/wbR, and thus 𝑟 reads
from (resp. before)𝑤 only once𝑤 is observable. By contrast, in the relaxed model without PCIe
guarantee, NIC local/remote reads no longer flush the wbL/wbR, and thus 𝑟 can read from (resp.
before) 𝑤 while it is still in wbL/wbR (i.e. not yet observable). We thus expand the rfb (resp. rbb)
definition to account for the possibility of reading from (resp. before) a write before it is observable.

5 Validating the rdma
tso

Model

To complement our formal semantics, we conducted an extensive validation of litmus tests on two
distinct setups: InfiniBand (IB) and RDMA over Converged Ethernet (RoCE). In the IB setup, we
used Dell PowerEdge R740 x86-64 machines, Intel(R) Xeon(R) Gold 6132 CPUs (2.60GHz, 14 cores),
Ubuntu 22.04.2 LTS with Mellanox Technologies MT28908 Family [ConnectX-6] controller. In the
RoCE setup, we used machines with Intel(R) Xeon(R) E-2286G CPUs (4.00GHz, 14 cores), ran Linux
kernel version 4.18.0, Red Hat Enterprise Linux version 8 (477.27.1), with a Mellanox Technologies
MT27800 Family [ConnectX-5] controller. Each of our tests is written in C – see §A and the code in
the supplementary material [Ambal et al. 2024].

Litmus Tests and Outcomes. We focused our validation efforts on a set of 37 litmus tests
representative of a wide range of allowed and disallowed weak behaviours, including several
variants of well-known concurrent tests in the literature such as ‘store buffering’ (SB), ‘message
passing’ (MP), ‘load buffering’ (LB), ‘independent reads of independent writes’ (IRIW), parallel
writes (2+2W) and so forth. Our results corroborate our rdmatso model and confirm that (1) rdmatso
is not too strong (i.e. it does not prohibit behaviours exhibited by the hardware); and (2) rdmatso is
not too weak (i.e. it does not admit too many weak behaviours not exhibited by hardware). Indeed,
despite extensive testing we detected no behaviours prohibited by rdma

tso; and we observed almost

all behaviours allowed by rdmatso, with a few exceptions detailed below.

Bringing about Weak Behaviours. As with litmus testing for local (CPU-only) concurrency
for established models such as TSO, observing a weak behaviour relies on several factors, including
the order in which threads are scheduled and interleaved, as well as the timing of how writes are
propagated and made visible to different threads (e.g. when writes are removed from the store
buffer and propagated through the cache hierarchy and the memory). In the context of (RDMA)
programs with remote operations, there are additional factors at play such as the NIC workload.
As such, inducing weak behaviours necessitates creating suitable conditions, which may involve
stressing the NIC and/or the CPU in the background. Indeed, as shown by the work of Dan et al.
[2016], this is far from straightforward as they failed to observe any weak behaviours at all. To
remedy this, we used several techniques to elicit the weak behaviours permitted by the specification.
Specifically, since no testing tool currently exists for automatically overwhelming or decelerating
an RDMA system, in close consultation with NVIDIA experts we devised several techniques for
creating bottlenecks and fostering the emergence of weak behaviours, as outlined below:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:22 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

• NIC delays: We introduced delays on the Network Interface Card (NIC) by initiating numer-
ous flood RDMA read or write operations between the client and the server on the designated
queue pair (QP) at a specific juncture within the litmus test. As these operations still obey the
same ordering rules, they cause some of the other operations in the litmus test to be delayed
until they are successfully completed.

• CPU delays: We strategically injected CPU delays of random length into the litmus tests
at certain points. We did this by selecting a random duration from three possibilities: 0
nanoseconds, half of the round-trip time (RTT) and the full RTT, delaying the CPU execution
by the chosen duration. RTT represents the round-trip time between the client and the server,
capturing the duration it takes for a packet to travel from the sender to the receiver and back.
We implemented the delay functionality using a busy-wait loop, where the CPU remains
occupied, repeatedly polling the clock without executing additional tasks. Once the delay
duration has elapsed, the loop concludes, allowing the CPU to resume normal execution.
While such delays can bring about weak behaviours in certain tests, such as that in Fig. 2d or
LB2 in the technical appendix (Fig. 13 in §A.5), it may impede observing others such as that
in Fig. 2b, which requires no delay between 𝑧2 := 𝑥 and 𝑥 := 1. Therefore, by incorporating
random delays, we aimed to encompass the full spectrum of potential scenarios, ensuring
comprehensive coverage of behavioural variations across different tests. Interestingly, we
observed that even minimal delays introduced by printing variables for debugging purposes
can disrupt the manifestation of behaviours in certain tests (e.g. that in Fig. 2b), hence we
limited our use of print statements.

• High RDMA traffic loads: While introducing NIC delays as described above can sometimes
help induce certain interleavings, e.g. by delaying one node while letting another to continue,
in some cases delays do not help as both relevant operations are delayed by the same NIC
delay operation. In such cases, using background traffic on unrelated queue pairs allows
additional interleavings. Specifically, we generated concurrent high RDMA traffic loads on
the background using numerous queue pairs and utilising the zero-copy mode (transferring
data directly between the memory of the sender and receiver without intermediate copying).
This increased RDMA activity introduces competition for shared system resources such as
CPU cycles, memory bandwidth, network capacity and NIC processing capacity. This led to
contention amongst threads in a litmus test, potentially altering their scheduling behaviour.
This strategic approach proved pivotal in uncovering weak behaviours in several tests such
as MP3bis in the technical appendix (see Fig. 11 in §A.3), which might otherwise have gone
unnoticed. We observed that the number of queue pairs utilised to generate the traffic load
plays a crucial role in certain tests. For instance, in the case of GFP2 in Fig. 17 (§A.11 in the
technical appendix), we used 128 queue pairs to induce the weak behaviour.

• Synchronisation: As is common practice in validation via litmus testing, we employed
loops to bring about the desired weak behaviours. For instance, in order to ensure that a local
(resp. remote) load operation reads the desired value required by a given weak behaviour, we
place the operation within a loop (in effect replacing the single operation with multiple such
operations), iterating until the desired value is read. In other cases, we placed the entire litmus
test within a loop. Using loops this way can sometimes replace the CPU delay mechanism
discussed above, allowing it to pinpoint the delay needed to reproduce the behaviour.

Validation Results. Using the techniques above, we successfully confirmed almost all weak
behaviours allowed by rdmatso, including all ✓ examples in Figs. 1 to 3, as well as several variants
of MP, SB, LB, IRIW, 2+2W, and others, observed at varying frequencies (see §A for more details).
The frequency of observing these behaviours is influenced not only by the nuances of the litmus test

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:23

itself, but also by the infrastructure settings such as the network setup, switch configuration and
NIC capabilities. Moreover, dynamic and unpredictable factors such as network congestion, packet
drops, latency fluctuations, bandwidth utilisation and routing changes also significantly impact
the observations. An interesting phenomenon we encountered was the variability in behaviour
manifestation even within a specific test scenario. For example, in the case of GFP2 (Fig. 17, §A.11
in the technical appendix), the weak behaviour was observed at one of our test premises but not the
other (we had two test premises at two distinct geographical locations). This observation highlights
the intricacy and subtlety involved in inducing weak behaviours.
In 4 of the litmus tests, we did not observe the allowed weak behaviour because the hardware

implementation did not utilise the weakness permitted by the specification. As discussed in §2,
manifesting the weak behaviour in such cases relies on polling a put operation before the remote
NIC write completes, e.g. as in Fig. 3d. This weak behaviour is allowed by rdmatso because the
specification allows the remote NIC to return an acknowledgement before performing the associated
write. Nevertheless, according to NVIDIA experts, this weakness is not utilised by the hardware
implementations. To the best of our knowledge, these weak behaviours cannot be observed on
current hardware implementations, but they might emerge in future ones.

Limitations. The main limitation of our validation is that weak behaviours are only exposed by
hand-crafted techniques (discussed above) that stress the system in certain ways. This is currently
a difficult trial-and-error process that requires a high degree of knowledge of current hardware
implementations (which we acquired through close consultation with NVIDIA experts). As such,
executing RDMA tests is currently not amenable to mass automation as in the frameworks of
[Alglave et al. 2021, 2014; Raad et al. 2022]. To adapt these frameworks for RDMA, one would need
to develop systematic heuristics for automatically applying the techniques discussed above. We
leave this challenge to future work.

6 Related and Future Work

RDMA Semantics. To our knowledge, the only existing work on the formal semantics of RDMA
programs is that of coreRMA [Dan et al. 2016], which has several key limitations, as follows.
(1) Although Dan et al. [2016] attempted to validate coreRMA, they observed none of the weak
behaviours allowed by coreRMA in existing hardware implementations. This is in contrast to
our work, where we have observed almost all weak behaviours allowed by rdmatso in existing
implementations, and in the rare cases where we could not observe a behaviour, we have confirmed
that this is because existing implementations explicitly did not utilise the weakness allowed by
the specification. (2) coreRMA assumes that CPU concurrency is governed by the strong and
unrealistic SC model [Lamport 1979]. (3) coreRMA only presents a declarative (and not operational)
characterisation. (4) Most importantly, coreRMA departs from the RDMA specification [IBTA 2022]
in three important ways, as follows.

First, they do not model the poll operation, poll(𝑛), described in the specification. Instead, they
model a flush operation, flush(𝑛), whose behaviour does not match any operation defined in the
specification. Specifically, flush(𝑛) waits for all previous RDMA operations on the 𝑛-queue pair to
complete and further blocks later CPU operations and RDMA operations on the same queue pair. In
other words, flush(𝑛) is tantamount to rfence(𝑛) followed by mfence. However, flush(𝑛) does
not block later RDMA operations on different queue pairs, and hence under coreRMA there is no
clean way to enforce an order on two RDMA operations on different queue pairs.

For instance, to ensure that 𝑥 := 𝑦2; 𝑧3 := 𝑥 is executed in order (so that 𝑧 gets the updated value
of 𝑥), it is not enough to add a flush and write 𝑥 := 𝑦2; flush(2); 𝑧3 := 𝑥 . Instead, one must also

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:24 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

add a superfluous CPU operation and write e.g. 𝑥 := 𝑦2; flush(2);𝑎 := 𝑤 ; 𝑧3 := 𝑥 . This is because
flush(2) blocks the CPU operation 𝑎 := 𝑤 , which in turn blocks 𝑧3 := 𝑥 .
Second, rdmatso preserves the order between two NIC local reads and two NIC local writes

(cells F6 and I9 in Fig. 9), while coreRMA does not, violating the RDMA specification [IBTA 2022].
For instance, given 𝑦2 := 𝑥 ; 𝑧2 := 𝑤 , rdmatso guarantees 𝑥 is read before𝑤 , while there is no such
guarantee under coreRMA; i.e. in such scenarios coreRMA is weaker than the specification.
Finally, as per the RDMA specification, under rdmatso remote reads can be reordered with

respect to other remote operations on the same queue pair (cells H7 and H8), while under coreRMA
they cannot; i.e. in such scenarios coreRMA is stronger than the specification. Consequently, as
coreRMA is weaker than the specification in some scenarios and stronger in others, it is neither a
strict abstraction, nor a strict refinement of the specification.

Weak Memory Models. Existing literature includes several examples of weak consistency
models, both at hardware and software levels. On the hardware side, several works have formalised
the semantics of the x86 architecture [Abdulla et al. 2015; Alglave et al. 2014; Raad et al. 2022; Sewell
et al. 2010]. However, none of these works covered the consistency semantics of RDMA programs
in the context of x86 machines. Similarly, several works have formalised the semantics of the
ARMv8 and POWER architectures, both operationally and declaratively [Alglave et al. 2021, 2014;
Chakraborty and Vafeiadis 2019; Flur et al. 2016; Mador-Haim et al. 2012; Pulte et al. 2018; Sarkar
et al. 2011]. On the software side, there has been a number of formal models for C11 consistency
[Batty et al. 2011; Kang et al. 2017; Lahav et al. 2016, 2017; Lee et al. 2020; Nienhuis et al. 2016;
Pichon-Pharabod and Sewell 2016] with verified compilation schemes [Moiseenko et al. 2020;
Podkopaev et al. 2017, 2019], Java [Bender and Palsberg 2019; Manson et al. 2005], transactional
memory [Raad et al. 2018, 2019a; Xiong et al. 2020], the Linux kernel [Alglave et al. 2018] and
the ext4 filesystem [Kokologiannakis et al. 2021]. Additionally, there has been several works on
formalising the persistency semantics of programs in the context of non-volatile memory, describing
the behaviour of programs in case of crashes [Cho et al. 2021; Khyzha and Lahav 2021; Raad and
Vafeiadis 2018; Raad et al. 2020b, 2019b], as well as program logics for verifying such programs
[Bila et al. 2022; Raad et al. 2020a].

Future Work. We plan to build over our work presented here in several ways. First, we aim to
adapt existing methods for automatically generating litmus tests (e.g. [Alglave et al. 2021, 2014]) to
RDMA programs by developing heuristics for automatically applying the inducement/stressing
techniques discussed in §5 for bringing about weak behaviours. Second, we plan to formalise the
semantics of RDMA programs in the context of the ARMv8 hardware architecture (i.e. when CPU
concurrency is governed by ARMv8 rather than TSO). Third, we plan to verify existing RDMA
implementations such as those of the Verbs [linux-rdma 2018] and libfabric [OpenFabrics 2016] APIs.
Lastly, using our formal rdmatso semantics, we plan to develop manual reasoning techniques such
as program logics (underpinned by our operational semantics), as well as automated verification
techniques such as model checking (based on our declarative semantics) for RDMA.

Acknowledgments

We would like to thank Alexey Gotsman, Adam Morrison, Noam Rinetzky, and especially Yuri
Meshman, for starting this research and whose preliminary memory model underpins the results
presented here. Additional thanks to Yamin Friedman, Daniel Marcovitch and Liran Liss for sharing
their insights into the IBTA specifications and NVIDIA’s RDMA implementations. We also thank the
anonymous reviewers for their valuable feedback and Viktor Vafeiadis for many fruitful discussions.
Guillaume Ambal is supported by the EPSRC grant EP/X037029/1. Brijesh Dongol is supported

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:25

by VeTSS and EPSRC projects EP/Y036425/1, EP/X037142/1, EP/X015149/1, EP/V038915/1, and
EP/R025134/2. Ori Lahav is supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no. 851811) and the
Israel Science Foundation (grant number 814/22). Azalea Raad is supported by a UKRI fellowship
MR/V024299/1, by the EPSRC grant EP/X037029/1, and by VeTSS.

References

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. 2021. Deciding
Reachability under Persistent X86-TSO. Proc. ACM Program. Lang. 5, POPL, Article 56 (Jan. 2021), 32 pages. https:
//doi.org/10.1145/3434337

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Tuan-Phong Ngo. 2015. The Best of Both Worlds: Trading Efficiency and
Optimality in Fence Insertion for TSO. In Proceedings of the 24th European Symposium on Programming on Programming

Languages and Systems - Volume 9032. Springer-Verlag New York, Inc., New York, NY, USA, 308–332. https://doi.org/10.
1007/978-3-662-46669-8_13

Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe, and Igor Zablotchi. 2019. The Impact
of RDMA on Agreement. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC

2019, Toronto, ON, Canada, July 29 - August 2, 2019, Peter Robinson and Faith Ellen (Eds.). ACM, 409–418. https:
//doi.org/10.1145/3293611.3331601

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget. 2021. Armed Cats: Formal
Concurrency Modelling at Arm. ACM Trans. Program. Lang. Syst. 43, 2 (2021), 8:1–8:54. https://doi.org/10.1145/3458926

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. 2018. Frightening Small Children and
Disconcerting Grown-Ups: Concurrency in the Linux Kernel. SIGPLAN Not. 53, 2 (March 2018), 405–418. https:
//doi.org/10.1145/3296957.3177156

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining
for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. https://doi.org/10.1145/2627752

Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad. 2024. Project page for
Semantics of Remote Direct Memory Access. https://www.soundandcomplete.org/papers/OOPSLA2024/RDMA

Don Anderson. 1999. FireWire system architecture (2nd ed.): IEEE 1394a. Addison-Wesley Longman Publishing Co., Inc.,
USA.

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin,
Texas, USA) (POPL ’11). ACM, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394

John Bender and Jens Palsberg. 2019. A Formalization of Java’s Concurrent Access Modes. Proc. ACM Program. Lang. 3,
OOPSLA, Article 142 (Oct. 2019), 28 pages. https://doi.org/10.1145/3360568

Eleni Vafeiadi Bila, Brijesh Dongol, Ori Lahav, Azalea Raad, and JohnWickerson. 2022. View-Based Owicki–Gries Reasoning
for Persistent x86-TSO. In Programming Languages and Systems, Ilya Sergey (Ed.). Springer International Publishing,
Cham, 234–261.

M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D. Underwood, and R. C. Zak. 2015. Intel Omni-
Path Architecture: Enabling scalable, high performance fabrics. In 2015 IEEE 23rd Annual Symposium on High-Performance

Interconnects (HOTI) (HOTI 2015). 1–9. https://doi.org/10.1109/HOTI.2015.22
Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robustness against TSO. In ESOP

2013 (LNCS, Vol. 7792). Springer, 533–553. https://doi.org/10.1007/978-3-642-37036-6_29
Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air Reads with Event Structures. Proc. ACM Program.

Lang. 3, POPL, Article 70 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290383
Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang. 2021. Revamping Hardware Persistency Models:

View-Based and Axiomatic Persistency Models for Intel-X86 and Armv8. In Proceedings of the 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association
for Computing Machinery, New York, NY, USA, 16–31. https://doi.org/10.1145/3453483.3454027

Andrei Marian Dan, Patrick Lam, Torsten Hoefler, and Martin Vechev. 2016. Modeling and Analysis of Remote Memory
Access Programming. SIGPLAN Not. 51, 10 (oct 2016), 129–144. https://doi.org/10.1145/3022671.2984033

D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A.M. Merritt, E. Gronke, and C. Dodd. 1998. The
Virtual Interface Architecture. IEEE Micro 18, 2 (1998), 66–76. https://doi.org/10.1109/40.671404

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.
2016. Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association
for Computing Machinery, New York, NY, USA, 608–621. https://doi.org/10.1145/2837614.2837615

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

https://doi.org/10.1145/3434337
https://doi.org/10.1145/3434337
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1145/3458926
https://doi.org/10.1145/3296957.3177156
https://doi.org/10.1145/3296957.3177156
https://doi.org/10.1145/2627752
https://www.soundandcomplete.org/papers/OOPSLA2024/RDMA
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3022671.2984033
https://doi.org/10.1109/40.671404
https://doi.org/10.1145/2837614.2837615

341:26 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2018. Enabling Highly Scalable Remote Memory Access Program-
ming with MPI-3 One Sided. Commun. ACM 61, 10 (sep 2018), 106–113. https://doi.org/10.1145/3264413

IBTA. 2022. InfiniBand Architecture Specification Volume 1 Release 1.6. https://www.infinibandta.org/ibta-specification/.
InfiniBand Trade Association (IBTA). 2018. The RoCE Initiative. https://www.infinibandta.org/roce-initiative/ (Accessed:

July 2023).
Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

Memory Concurrency. SIGPLAN Not. 52, 1 (Jan. 2017), 175–189. https://doi.org/10.1145/3093333.3009850
Artem Khyzha and Ori Lahav. 2021. Taming X86-TSO Persistency. Proc. ACM Program. Lang. 5, POPL, Article 47 (Jan. 2021),

29 pages. https://doi.org/10.1145/3434328
Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis. 2021. PerSeVerE: Persistency Semantics for

Verification under Ext4. Proc. ACM Program. Lang. 5, POPL, Article 43 (jan 2021), 29 pages. https://doi.org/10.1145/3434324
Ori Lahav and Udi Boker. 2020. Decidable verification under a causally consistent shared memory. In PLDI 2020, Alastair F.

Donaldson and Emina Torlak (Eds.). ACM, 211–226. https://doi.org/10.1145/3385412.3385966
Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. SIGPLAN Not. 51, 1 (Jan.

2016), 649–662. https://doi.org/10.1145/2914770.2837643
Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA, 618–632. https://doi.org/10.
1145/3062341.3062352

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE
Trans. Computers 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.
2020. Promising 2.0: Global Optimizations in Relaxed Memory Concurrency. In Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing
Machinery, New York, NY, USA, 362–376. https://doi.org/10.1145/3385412.3386010

linux-rdma. 2018. RDMA core. https://github.com/linux-rdma/rdma-core/ (Accessed: Jul. 2023).
Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K.

Martin, Peter Sewell, and Derek Williams. 2012. An Axiomatic Memory Model for POWER Multiprocessors. In Computer

Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture Notes

in Computer Science, Vol. 7358), P. Madhusudan and Sanjit A. Seshia (Eds.). Springer, 495–512. https://doi.org/10.1007/978-
3-642-31424-7_36

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory Model. In Proceedings of the 32nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Long Beach, California, USA) (POPL ’05). Association for
Computing Machinery, New York, NY, USA, 378–391. https://doi.org/10.1145/1040305.1040336

Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian, and Viktor Vafeiadis. 2020. Reconciling Event Structures
with Modern Multiprocessors (Artifact). Dagstuhl Artifacts Series 6, 2 (2020), 4:1–4:3. https://doi.org/10.4230/DARTS.6.2.4

Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. 2016. An Operational Semantics for C/C++11 Concurrency. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing Machinery, New York, NY, USA,
111–128. https://doi.org/10.1145/2983990.2983997

Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris Grot. 2014. Scale-out NUMA. In Proceedings
of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems (Salt
Lake City, Utah, USA) (ASPLOS ’14). Association for Computing Machinery, New York, NY, USA, 3–18. https://doi.org/
10.1145/2541940.2541965

NVIDIA Corporation. 2021. NVIDIA BlueField-2 DPU. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf (Accessed: Jul. 2023).

OpenFabrics. 2016. RDMA core. https://ofiwg.github.io/libfabric/ (Accessed: Jul. 2023).
PCI-SIG. 2022. PCI Express Base Specification Revision 6.0 Version 1.0. https://pcisig.com/pci-express-6.0-specification.
Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics That Permits Optimisation

and Avoids Thin-Air Executions. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,
USA, 622–633. https://doi.org/10.1145/2837614.2837616

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2017. Promising Compilation to ARMv8 POP. In 31st European

Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 22:1–22:28. https:
//doi.org/10.4230/LIPIcs.ECOOP.2017.22

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

https://doi.org/10.1145/3264413
https://www.infinibandta.org/ibta-specification/
https://www.infinibandta.org/roce-initiative/
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/2914770.2837643
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3385412.3386010
https://github.com/linux-rdma/rdma-core/
https://doi.org/10.1007/978-3-642-31424-7_36
https://doi.org/10.1007/978-3-642-31424-7_36
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.4230/DARTS.6.2.4
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1145/2541940.2541965
https://doi.org/10.1145/2541940.2541965
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://ofiwg.github.io/libfabric/
https://pcisig.com/pci-express-6.0-specification
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.4230/LIPIcs.ECOOP.2017.22
https://doi.org/10.4230/LIPIcs.ECOOP.2017.22

Semantics of Remote Direct Memory Access 341:27

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap Between Programming Languages and Hardware
WeakMemoryModels. Proc. ACM Program. Lang. 3, POPL, Article 69 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290382

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM Concur-
rency: Multicopy-atomic Axiomatic and Operational Models for ARMv8. Proc. ACM Program. Lang. 2, POPL, Article 19
(Dec. 2018), 29 pages. https://doi.org/10.1145/3158107

Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and Chung-Kil Hur. 2019. Promising-ARM/RISC-V:
A Simpler and Faster Operational ConcurrencyModel. In Proceedings of the 40th ACMSIGPLANConference on Programming

Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York,
NY, USA, 1–15. https://doi.org/10.1145/3314221.3314624

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2018. On Parallel Snapshot Isolation and Release/Acquire Consistency. In
Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 940–967.

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2019a. On the Semantics of Snapshot Isolation. In Verification, Model Checking,

and Abstract Interpretation, Constantin Enea and Ruzica Piskac (Eds.). Springer International Publishing, Cham, 1–23.
Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2020a. Persistent Owicki-Gries Reasoning: A Program Logic for Reasoning

about Persistent Programs on Intel-X86. Proc. ACM Program. Lang. 4, OOPSLA, Article 151 (nov 2020), 28 pages.
https://doi.org/10.1145/3428219

Azalea Raad, Luc Maranget, and Viktor Vafeiadis. 2022. Extending Intel-X86 Consistency and Persistency: Formalising the
Semantics of Intel-X86 Memory Types and Non-Temporal Stores. Proc. ACM Program. Lang. 6, POPL, Article 22 (jan
2022), 31 pages. https://doi.org/10.1145/3498683

Azalea Raad and Viktor Vafeiadis. 2018. Persistence Semantics forWeakMemory: Integrating Epoch Persistencywith the TSO
Memory Model. Proc. ACM Program. Lang. 2, OOPSLA, Article 137 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276507

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020b. Persistency Semantics of the Intel-X86 Architecture.
Proc. ACM Program. Lang. 4, POPL, Article 11 (Dec. 2020), 31 pages. https://doi.org/10.1145/3371079

Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019b. Weak Persistency Semantics from the Ground Up: Formalising
the Persistency Semantics of ARMv8 and Transactional Models. Proc. ACM Program. Lang. 3, OOPSLA, Article 135 (Oct.
2019), 27 pages. https://doi.org/10.1145/3360561

Renato J. Recio, Paul R. Culley, Dave Garcia, Bernard Metzler, and Jeff Hilland. 2007. A Remote Direct Memory Access
Protocol Specification. RFC 5040. https://doi.org/10.17487/RFC5040

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER Multiprocessors.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose,
California, USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA, 175–186. https://doi.org/10.
1145/1993498.1993520

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. X86-TSO: A Rigorous
and Usable Programmer’s Model for x86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. https://doi.org/10.
1145/1785414.1785443

Alexander Shpiner, Eitan Zahavi, Omar Dahley, Aviv Barnea, Rotem Damsker, Gennady Yekelis, Michael Zus, Eitan Kuta,
and Dean Baram. 2017. RoCE Rocks without PFC: Detailed Evaluation. In Proceedings of the Workshop on Kernel-Bypass

Networks (Los Angeles, CA, USA) (KBNets ’17). Association for Computing Machinery, New York, NY, USA, 25–30.
https://doi.org/10.1145/3098583.3098588

SPARC. 1992. The SPARC Architecture Manual: Version 8. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
S. Van Doren. 2019. Abstract - HOTI 2019: Compute Express Link. In 2019 IEEE Symposium on High-Performance Interconnects

(HOTI) (HOTI 2019). 18–18. https://doi.org/10.1109/HOTI.2019.00017
Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast In-Memory Transaction Processing Using

RDMA and HTM. In Proceedings of the 25th Symposium on Operating Systems Principles (Monterey, California) (SOSP ’15).
Association for Computing Machinery, New York, NY, USA, 87–104. https://doi.org/10.1145/2815400.2815419

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner. 2020. Data Consistency in Transactional Storage Systems: A
Centralised Semantics. In 34th European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz International

Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, 21:1–21:31. https://doi.org/10.4230/LIPIcs.ECOOP.2020.21

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar
Raindel, Mohamad Haj Yahia, and Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication (London, United Kingdom)
(SIGCOMM ’15). Association for Computing Machinery, New York, NY, USA, 523–536. https://doi.org/10.1145/2785956.
2787484

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3428219
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.17487/RFC5040
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/3098583.3098588
https://doi.org/10.1109/HOTI.2019.00017
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787484

341:28 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

A Litmus Tests

In this section, we present a wide range of RDMA tests exhibiting different weak behaviours. We
always use at least two nodes, and do not discuss tests on CPU concurrency (such as the one of
Fig. 1) as they simply follow the known behaviours of the usual TSO concurrency.
By convention, 𝑎, 𝑏, 𝑐 , and 𝑑 can be seen as local locations and are not used by other threads.

There are always initialised to 0, even if not mentioned. We use names 𝑥 , 𝑦, 𝑧, 𝑣 , and𝑤 for locations
accessed by multiple threads.

In each example, we number threads T1, T2, T3, etc., and nodes N1, N2, etc., from left to right.
For each litmus test, we use the following check-marks to annotate the given behaviours:
✗ The behaviour is not allowed by the specification, and effectively we did not observe it in our
testing.

✓ The behaviour is allowed by the specification, and we did observe it in our testing.
✓* The behaviour is allowed by the specification, but we did not observe it in out testing. In

most cases, this is because modern hardware and setups do not allow it.

A.1 Limitations of Experimental Behaviours

While the RDMA semantics specification allows for a wide range of weak behaviours, current
hardware and setups do not take full advantage of this weakness.
The main offender is when polling a put operation (see e.g. test MP3). The semantics allows

for the write to be delayed after the return of the completion notification. In practice, wbR is part
of the PCIe domain and the write cannot be reordered with respect to other instructions, such as
completion notifications of queue pairs of the remote node. As such, we do not expect to observe
any behaviour using this feature of the specification.

A.2 Single-Threaded

ST1

𝑥 =0 𝑧=0

𝑥 := 1
𝑧2 := 𝑥

𝑧 = 0 ✗

ST2

𝑥 =0 𝑧=0

𝑧2 := 𝑥

𝑥 := 1

𝑧 = 1 ✓

ST3

𝑥 =0 𝑧=0

𝑧2 := 𝑥

poll(2)
𝑥 := 1

𝑧 = 1 ✗

ST4

𝑥 =0 𝑧=0
𝑧2 := 𝑥

𝑧2 := 𝑥

poll(2)
𝑥 := 1

𝑧 = 1 ✓

ST5

𝑥 =0 𝑧=1 𝑦=2

𝑥 := 𝑧2

𝑥 := 𝑦3

𝑥 = 1 ✓

ST6

𝑥 =0 𝑧=1 𝑦=2

𝑦3 := 𝑥

𝑥 := 𝑧2

𝑦 = 0 ✓

ST7

𝑥 =1 𝑦=𝑧=0

𝑧2 := 𝑥

𝑥 := 𝑦2

𝑧 = 0 ✗

ST8

𝑥 = 1 𝑦=𝑧=0

𝑥 := 𝑦2

𝑧2 := 𝑥

𝑧 = 1 ✓

ST9

𝑥 = 1 𝑦=𝑧=0
𝑥 := 𝑦2

rfence (2)
𝑧2 := 𝑥

𝑧 = 1 ✗

Fig. 10. Single-Threaded Litmus Tests.

Figure 10 contains a copy of the single-threaded examples of Fig. 2. All allowed behaviours are
observable in practice.

A.3 Message Passing

The examples are presented in Fig. 11.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:29

MP1

𝑥,𝑦 = 0

𝑥2 := 1
𝑦2 := 1

𝑎 := 𝑦

𝑏 := 𝑥

(𝑎, 𝑏) = (1, 0) ✗

MP2

𝑥 = 0 𝑦 = 0

𝑥 := 1
𝑦2 := 1

𝑎 := 𝑦

𝑏 := 𝑥1

(𝑎, 𝑏) = (1, 0) ✗

MP3

𝑦 = 0 𝑥 = 0

𝑥2 := 1
poll(2)
𝑦 := 1

𝑎 := 𝑦1

poll(1)
𝑏 := 𝑥

(𝑎, 𝑏) = (1, 0) ✓*

MP3bis

𝑦 = 0 𝑥 = 0

𝑥2 := 1
𝑦 := 1

𝑎 := 𝑦1

𝑏 := 𝑥

(𝑎, 𝑏) = (1, 0) ✓

MP4

𝑥,𝑦 = 0

𝑥 := 1
𝑦 := 1

𝑎 := 𝑦1

𝑏 := 𝑥1

(𝑎, 𝑏) = (1, 0) ✓*

MP4bis

𝑥,𝑦 = 0

𝑥 := 1
𝑦 := 1

𝑎 := 𝑦1

rfence (2)
𝑏 := 𝑥1

(𝑎, 𝑏) = (1, 0) ✗

Fig. 11. Message Passing Litmus Tests.

If 𝑥 is on T1 and 𝑦 on T2, the weak behaviour is not possible: both (𝑥 := 1) and (𝑎 := 𝑦) are local,
so one has to finish first before the remote operations can start. If both are in T2, local read order
and remote write order (on the same queue pair) are preserved so this is not possible.
If 𝑥 is on T2 and 𝑦 on T1 we can observe this behaviour (MP3bis) as remote operations can

be delayed after local ones. Following the semantics of the paper, even poll instructions cannot
prevent this (see testMP3), as they do not force a flush of the wbR buffer. We can block (𝑥2 := 1) in
wbR before executing (𝑦 := 1), (𝑎 := 𝑦1), and (𝑏 := 𝑥) in order. In practice, we do not expectMP3

to be observable.
This behaviour is also allowed for 𝑥 and 𝑦 both on T1 (testMP4), because we can reorder remote

reads. We first send both (𝑎 := 𝑦1) and (𝑏 := 𝑥1) to outR. Next, we read the value of 𝑥 to transform
the second instruction to (𝑏 := 0). Then we fully execute (𝑥 := 1) and (𝑦 := 1). We can finally read
𝑦 and execute (𝑎 := 1) and (𝑏 := 0). Note that, while we believe this behaviour should be possible
in practice, we did not yet observe it in our testing. This would require manipulating the packets of
the network and create a race between the answer packets and the resend of the work requests.

This behaviour can be prevented with an rfence or a poll instruction between the two remote
operations (e.g.,MP4bis).

A.4 Store Buffering

The examples are in Fig. 12.
If 𝑥 is on T1 and 𝑦 is on T2, this is not possible: both writing on 𝑥 and 𝑦 are local and one has to

finish first before the remote reads can start.
If 𝑥 and 𝑦 are on the same node, the remote read on 𝑥 flushes the remote write on 𝑦, so an mfence

can prevent the behaviour. However, the weak behaviour is possible without mfence.
If 𝑥 is on T2 and 𝑦 is on T1, even poll instructions are not enough to prevent this, as they do

not flush remote writes. Once again, we do not expect SB3 to be observable in practice.

A.5 Load Buffering

The examples are in Fig. 13.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:30 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

SB1

𝑥 = 0 𝑦 = 0

𝑥 := 1
𝑎 := 𝑦2

𝑦 := 1
𝑏 := 𝑥1

(𝑎, 𝑏) = (0, 0) ✗

SB2

𝑥,𝑦 = 0

𝑥 := 1
mfence
𝑎 := 𝑦

𝑦1 := 1
𝑏 := 𝑥1

(𝑎, 𝑏) = (0, 0) ✗
same for the symmetric

SB3

𝑦 = 0 𝑥 = 0

𝑥2 := 1
poll(2)
𝑎 := 𝑦

𝑦1 := 1
poll(1)
𝑏 := 𝑥

(𝑎, 𝑏) = (0, 0) ✓*

SB3bis

𝑦 = 0 𝑥 = 0

𝑥2 := 1
𝑎 := 𝑦

𝑦1 := 1
𝑏 := 𝑥

(𝑎, 𝑏) = (0, 0) ✓

Fig. 12. Store Buffering Litmus Tests.

LB1

𝑦 = 0 𝑥 = 0

𝑎 := 𝑦

𝑥2 := 1
𝑏 := 𝑥

𝑦1 := 1

(𝑎, 𝑏) = (1, 1) ✗

LB2

𝑥,𝑦 = 0

𝑎 := 𝑦

𝑥 := 1
𝑏 := 𝑥1

𝑦1 := 1

(𝑎, 𝑏) = (1, 1) ✓
same for the symmetric

LB3

𝑥 = 0 𝑦 = 0

𝑎 := 𝑦2

𝑥 := 1
𝑏 := 𝑥1

𝑦 := 1

(𝑎, 𝑏) = (1, 1) ✓

LB3bis

𝑥 = 0 𝑦 = 0

𝑎 := 𝑦2

poll(2)
𝑥 := 1

𝑏 := 𝑥1

poll(1)
𝑦 := 1

(𝑎, 𝑏) = (1, 1) ✗

Fig. 13. Load Buffering Litmus Tests.

If 𝑥 is on T2 and 𝑦 is on T1, this is not possible: both reads on 𝑥 and 𝑦 are local and one has to
finish first before the remote reads can start. The other 3 cases can present this behaviour.

If 𝑥 and 𝑦 are on the same process (wlog, let us assume T1), we can launch the get (𝑏 := 𝑥1) and
make it wait in the outR buffer. Then we can make (𝑦1 := 1), (𝑎 := 𝑦), and (𝑥 := 1) fully execute
in order, before finally reading (𝑥 = 1) to write (𝑏 = 1). This happens because remote write can
take effect before a previous remote read. Note that adding an rfence (1) instruction on T2 would
prevent this behaviour.
If 𝑥 is on T1 and 𝑦 on T2, we can proceed similarly. We can even observe this behaviour with

one poll instruction. We make (𝑏 := 𝑥1) wait in outR, which does not prevent the local instruction
(𝑦 := 1) from executing, and we can finish as previously. Using two poll instructions would
prevent the behaviour.

A.6 Independent Reads of Independent Writes

The threads T2 and T3 will always agree on the values of 𝑥 and 𝑦. To obtain this behaviour, we
thus need to reorder the read operations. This can be done as long as one of T2/T3 makes a remote
read followed by a local read. The strategy is similar to the one for Load Buffering above, and it can
resist one poll instruction. See IRIW1 in Fig. 14 as an example.
We start with (𝑐 := 𝑥1) and let the operation stuck in outR. Then we fully execute (𝑑 := 𝑦),

(𝑦 := 1), (𝑎 := 𝑦2), (𝑏 := 𝑥), and (𝑥 := 1). Finally, we can terminate the operation (𝑐 := 𝑥1) and get
the desired behaviour. Similarly to previous tests, placing poll operations between remote and
local operations would prevent this behaviour (see IRIW2).

A.7 2+2W

The examples are in Fig. 15.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:31

IRIW1

𝑥 = 0 𝑦 = 0

𝑥 := 1 𝑎 := 𝑦2

𝑏 := 𝑥

𝑐 := 𝑥1

𝑑 := 𝑦
𝑦 := 1

(𝑎, 𝑏, 𝑐, 𝑑) = (1, 0, 1, 0) ✓

IRIW2

𝑥 = 0 𝑦 = 0

𝑥 := 1
𝑎 := 𝑦2

poll(2)
𝑏 := 𝑥

𝑐 := 𝑥1

poll(1)
𝑑 := 𝑦

𝑦 := 1

(𝑎, 𝑏, 𝑐, 𝑑) = (1, 0, 1, 0) ✗

Fig. 14. IRIW Litmus Tests.

2+2W1

𝑥,𝑦 = 0

𝑥 := 2
𝑦 := 1

𝑦1 := 2
𝑥1 := 1

(𝑥,𝑦) = (2, 2) ✗
same for the symmetric

2+2W2

𝑥 = 0 𝑦 = 0

𝑥 := 2
𝑦2 := 1

𝑦 := 2
𝑥1 := 1

(𝑥,𝑦) = (2, 2) ✗

2+2W3

𝑦 = 0 𝑥 = 0

𝑥2 := 2
poll(2)
𝑦 := 1

𝑦1 := 2
poll(1)
𝑥 := 1

(𝑥,𝑦) = (2, 2) ✓*

2+2W3bis

𝑦 = 0 𝑥 = 0

𝑥2 := 2
𝑦 := 1

𝑦1 := 2
𝑥 := 1

(𝑥,𝑦) = (2, 2) ✓

Fig. 15. 2+2 Writes Litmus Tests.

Note that the tests assume that everything that can be executed is executed. For instance, on the
first test 2+2W1, we could have (𝑥 = 2 ∧ 𝑦 = 2) for a long time if the remote write 𝑥1 := 1 takes
time to leave wbR and be committed to memory.

If 𝑥 and 𝑦 are on the same thread, this cannot happen because both local write order and remote
write order (on the same queue pair) are preserved. If 𝑥 is on T1 and 𝑦 is on T2, this cannot happen:
one of the local writes (_ := 2) has to finish before the remote operations can start.

If 𝑥 is on T2 and 𝑦 on T1, the behaviour can be observed, even with two poll instructions. Once
again, polling does not force a message to arrive, so both remote writes can get stuck in the wbR
buffers long enough for both local writes to take effect. We expect 2+2W3bis to be observable in
practice, but not 2+2W3.

A.8 Reordering different QP same node

In the semantics presented in this paper, each thread uses its own queue pair for each remote node.
The semantics restricts reordering within a single queue pair, but does not limit reorderings on two
queue pairs going from and to the same nodes.

QP1

𝑦 = 0 𝑥, 𝑧 = 0

𝑥2 := 1
poll(2)
𝑦 := 1

𝑎 := 𝑦

𝑧2 := 1
𝑏 := 𝑧

𝑐 := 𝑥

(𝑎, 𝑏, 𝑐) = (1, 1, 0) ✓*

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:32 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

In this example, if (𝑎 = 1) at the end, then the operation (𝑥2 := 1) was sent to a wbR buffer on
N2 before (𝑧2 := 1) was sent to the beginning of the (T2/N2) queue pair. Then, (𝑏, 𝑐) = (1, 0) asserts
that (𝑧2 := 1) took effect before (𝑥2 := 1), which is allowed by our semantics.
In practice, the (T1/N2) and (T2/N2) queue pairs would very likely use the same NIC and the

operations of the twowbR buffers cannot be reordered, which would prevent this behaviour allowed
by the specification.

A.9 Read From Future

A remote write can overtake a remote read. But it then has to overtake all previous pending remote
reads. If a get looks up a value from a future put, then other gets executed after have to consider
puts up to this future.

RFF1

𝑧 = 0 𝑥,𝑦 = 0
𝑧 := 𝑥2

𝑎 := 𝑦2

𝑦2 := 2
𝑥2 := 1

𝑦 := 𝑧1

poll(1)
𝑏 := 𝑦

(𝑎, 𝑏) = (1, 1) ✓ (𝑎, 𝑏) = (1, 2) ✗

In this example, (𝑎 = 1) means that (𝑧 := 𝑥2) and (𝑦 := 𝑧1) executed before (𝑎 := 𝑦2). Since
(𝑧 := 𝑥2) read from the future operation (𝑥2 := 1), necessarily (𝑎 := 𝑦2) has to consider (𝑦2 := 2).
(𝑎 = 1) thus implies that (𝑦2 := 2) executed before (𝑦 := 𝑧1), and that the final value of 𝑦 is 1.

A.10 coreRMA comparison

coreRMA from Dan et al. [2016] does not allow for behaviours SB3 and 2+2W3, even without their
In-Order Routing (IOR) axiom. These two examples rely on the fact that poll operations do not
wait forwbR to be empty. coreRMA also does not allow for behaviours such asMP4, where remote
reads are reordered.
On the other hand, unlike our semantics, coreRMA allows (even with IOR) for the following

three behaviours of Fig. 16, as discussed in Section 6.

RRPR3

𝑥,𝑦 = 1 𝑧 = 0
𝑥 := 𝑧2

𝑦 := 𝑧2

𝑎 := 𝑦

𝑏 := 𝑥

(𝑎, 𝑏) = (0, 1) ✗

CRMA1

𝑥 = 0 𝑦 = 0 𝑧 = 0
𝑥 := 𝑦2

flush(2)
𝑧3 := 𝑥

𝑎 := 𝑥

𝑦 := 2 𝑧 := 1
𝑏 := 𝑧

(𝑎, 𝑏) = (2, 0) ✗

CRMA2

𝑥,𝑦 = 0 𝑧,𝑤 = 0
𝑧2 := 𝑥

𝑤2 := 𝑦

𝑦 := 2
𝑥 := 2

𝑤 := 1
𝑎 := 𝑧

𝑏 := 𝑤

(𝑎, 𝑏) = (2, 0) ✗

Fig. 16. coreRMA Valid Litmus Tests.

In RRPR3, coreRMA allows the local writes on 𝑥 and 𝑦 to be reordered, while in our semantics
they must occur in order.
In CRMA1, coreRMA allows (𝑧3 := 𝑥) to be performed before (𝑥 := 𝑦2), while in our semantics

(if we replace flush(2) with poll(2)) we can stop the reordering.
In CRMA2, coreRMA allows the local read parts of (𝑧2 := 𝑥) and (𝑤2 := 𝑦) to be reordered, while

rdmatso does not.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:33

A.11 Observing pending writes in wbL and wbR
NIC reads flush their corresponding wbL or wbR buffer. Intuitively, one could think that this would
be enough to stop weak behaviours related to these buffers. But it is possible to observe events
in-between the moment a write is sent to these buffers and before it is committed to memory.

GFP1

𝑥 = 0 𝑦, 𝑧 = 0
𝑥 := 𝑧2

rfence (2)
𝑡 := 1
𝑦2 := 𝑡

𝑏 := 𝑥

𝑐 := 𝑥

𝑎 := 𝑦

𝑥1 := 2

(𝑎, 𝑏, 𝑐) = (1, 2, 0) ✗

GFP2

𝑥 = 0 𝑦, 𝑧 = 0

𝑥 := 𝑧2

rfence (2)
𝑦2 := 1
𝑏 := 𝑥

𝑐 := 𝑥

𝑎 := 𝑦

𝑥1 := 2

(𝑎, 𝑏, 𝑐) = (1, 2, 0) ✓

GFG

𝑥,𝑦 = 0 𝑤, 𝑧 = 0
𝑥 := 𝑧2

rfence (2)
𝑦 := 𝑤2

𝑎 := 𝑥

𝑏 := 𝑥

𝑐 := 𝑦

𝑤 := 1
𝑤 := 2
𝑥1 := 3

(𝑎, 𝑏, 𝑐) = (3, 0, 1) ✓*

Fig. 17. Observing wbR and wbL Litmus Tests.

As explained in the overview—notably with the example of Fig. 3d—a poll operation does not
flush the wbR buffer, which explain why modelling it is required. But the rFence operation does
not flush the wbL buffer either. The examples of Fig. 17 show some possible weak behaviours,
explaining the need to model wbL.
The behaviour GFP1 is not allowed, because the NIC local read of (𝑦2 := 𝑡) flushes the write

on 𝑧.
However, if we assume that (𝑦2 := 1) does not perform a NIC read (i.e., inlining the data, which is

allowed but not part of the definitions of this paper), then GFP2 shows that, even with the remote
fence, the later operation can fully execute before (𝑥 := 0) is committed to memory.

Similarly, GFG shows that the remote read on𝑤2 can still happen before (𝑥 := 0) is committed
to memory. While allowed in theory, we did not manage to exhibit this behaviour in our testing.

A.12 Propensity of weak behaviours

Most of the weak behaviours presented in this appendix do not occur unless the whole system is
stressed in specific ways. Table 18 summarises the techniques we employed for each test and how
often we observe the weak behaviours once the setup has been adapted for this specific test.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:34 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

Litmus test Rate Notes and techniques used
ST2 ∼ 02% No delay between the two operations
ST4 ∼ 68% Requires stress load (ib_write_bw)
ST5 ∼ 02% No need for stress load
ST6 ∼ 40% Had to stress the Completion Queues of both nodes
ST8 ∼ 65% Need random delay between the two operations
MP3 0% This behaviour does not occur on current hardware.

MP3bis ∼ 100% Systematic with background load on the system
MP4 0% Have not observed it yet...
SB3 0% This behaviour does not occur on current hardware.

SB3bis ∼ 100% Systematic with stress load (ib_write_bw)
LB2 ∼ 03% Observed with random CPU delays combined with background load
LB3 ∼ 98% Very frequent with stress load (ib_write_bw)

IRIW1 ∼ 05% Occurs sometimes even without background load
2+2W3 0% This behaviour does not occur on current hardware.

2+2W3bis ∼ 90% Requires background load
QP1 0% This behaviour does not occur on current hardware.
RFF1 < 0.5% Occurs (rarely) even without background load
GFP2 rare Observed on only one of our two setups, using 128 Queue Pairs
GFG 0% Have not observed it yet...

Fig. 18. Occurrence rates of weak behaviours and testing notes

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:35

B Simplified Operational Semantics

As presented in §3.2, all six buffers of the queue-pair pipeline are FIFO (entries are processed when
they reach the head of a buffer) and they simply forward entries in order. While this structure
closely mimics the hardware implementation, conceptually it is rather elaborate; indeed, equivalent
semantics can be achieved with a simpler pipeline. In this section, we show an equivalent simplified
operational semantics.

B.1 Definitions

sqp.pipe = 𝛼 · (rfence 𝑛)
M, sqp →sqp M, sqp[pipe ↦→ 𝛼]

sqp.pipe = 𝛼 · (𝑦 := 𝑥) · 𝛽 wbL ∈
{
cn

}∗
𝛽 ∈

{
𝑦′ := 𝑣 ′, 𝑥 ′ := 𝑦′, 𝑥 ′ := 𝑣 ′, ackp

}∗
M, sqp →sqp M, sqp[pipe ↦→ 𝛼 · (𝑦 := M(𝑥)) · 𝛽]

sqp.pipe = 𝛼 · (𝑦 := 𝑣) · 𝛽 𝛽 ∈
{
𝑥 ′ := 𝑦′, 𝑥 ′ := 𝑣 ′, ackp

}∗
sqp′= sqp[pipe ↦→ 𝛼 · ackp · 𝛽] [wbR ↦→ (𝑦 := 𝑣) · sqp.wbR]

M, sqp →sqp M, sqp′
sqp.wbR = 𝛼 · (𝑦 := 𝑣)

M, sqp →sqp M[𝑦 ↦→ 𝑣], sqp[wbR ↦→ 𝛼]

sqp.pipe = 𝛼 · ackp
sqp′= sqp[pipe ↦→ 𝛼] [wbL ↦→ cn · sqp.wbL]

M, sqp →sqp M, sqp′

sqp.pipe=𝛼 · (𝑥 := 𝑦) ·𝛽 𝛽 ∈
{
𝑥 ′ := 𝑦′, 𝑥 ′ := 𝑣 ′, ackp

}∗
sqp.wbR=𝜀 sqp′=sqp[pipe ↦→ 𝛼 · (𝑥 := M(𝑦)) ·𝛽]

M, sqp →sqp M, sqp′

sqp.pipe = 𝛼 · (𝑥 := 𝑣)
sqp′= sqp[pipe ↦→ 𝛼] [wbL ↦→ cn · (𝑥 := 𝑣) · sqp.wbL]

M, sqp →sqp M, sqp′

sqp.wbL = 𝛼 · (𝑥 := 𝑣) · 𝛽 𝛽 ∈
{
cn

}∗
sqp′= sqp[wbL ↦→ 𝛼 · 𝛽]

M, sqp →sqp M[𝑥 ↦→ 𝑣], sqp′

Fig. 19. Queue-pair transitions of the simplified rdma
tso

operational semantics

We replace the four buffers in the middle of a queue pair, namely reqL, inR, outR and rspL, with
a single buffer, pipe, resulting in a queue pair comprising pipe, wbL and wbR. We retain wbL and
wbR as separate entities to model the delayed propagation of NIC local (in wbL) and remote (in
wbR) writes.

We note Pipe𝑛𝑛 ≜
{
𝑦𝑛 := 𝑥𝑛, 𝑦𝑛 := 𝑣, ackp, 𝑥

𝑛 := 𝑦𝑛, 𝑥𝑛 := 𝑣, rfence 𝑛
}∗ the type of pipe buffers

from a node 𝑛 towards a remote note 𝑛. A pipe buffer can contain puts, gets, simplified puts and
gets (with values), acknowledgements, and remote fences.

A simple queue pair is then modeled as a tuple sqp ∈ SQPair
𝑛
𝑛 ≜ Pipe

𝑛
𝑛 ×WBR

𝑛
𝑛 ×WBL

𝑛
𝑛 .

Given a sequence 𝛼 and a set 𝑆 , we write 𝛼 ∈ 𝑆∗ to denote that all entries in 𝛼 are drawn from 𝑆 .
The simplified queue-pair transitions in Fig. 19 operate on simplified queue pairs and describe the
progress of remote operations through the simplified pipeline. Specifically, as inR, outR and rspL
are now captured by pipe, we process an rFence by simply removing it when it is at the head of
pipe (first transition). The next four transitions describe how a put 𝑦 := 𝑥 is processed by obtaining
the value of 𝑥 (second transition, capturing step P1), forwarding it to wbR (third transition, step
P2), propagating it to the memory (fourth transition, steps P3–P4), and producing its completion
notification (fifth transition, step P5). Analogously, the next three transitions describe how a get
𝑥 := 𝑦 is processed by fulfilling the value of 𝑦 (sixth transition, capturing steps G1–G4), forwarding
it to wbL (penultimate transition, step G5) and propagating its result to memory (last transition,
step G6).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:36 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

M∈Mem ≜ Loc → Val B∈SBMap ≜ 𝜆𝑡 ∈ Tid.SBuff𝑛 (𝑡)
QP∈SQPMap ≜ 𝜆𝑡 .

(
𝜆𝑛(𝑡) .SQPair𝑛𝑛

)
b∈SBuff𝑛≜

{
𝑥𝑛:=𝑣,𝑦𝑛:=𝑥𝑛,𝑥𝑛:=𝑦𝑛,rfence 𝑛

}∗
sqp ∈ SQPair

𝑛
𝑛 ≜ Pipe

𝑛
𝑛 ×WBR

𝑛
𝑛 ×WBL

𝑛
𝑛 wbR ∈WBR

𝑛
𝑛 ≜

{
𝑦𝑛 := 𝑣

}∗
pipe ∈ Pipe

𝑛
𝑛 ≜

{
𝑦𝑛 := 𝑥𝑛, 𝑦𝑛 := 𝑣, ackp, 𝑥

𝑛 := 𝑦𝑛, 𝑥𝑛 := 𝑣, rfence 𝑛
}∗ wbL ∈WBL

𝑛
𝑛 ≜

{
cn, 𝑥𝑛 := 𝑣

}∗
B
′= B[𝑡 ↦→ (𝑥 := 𝑣) · B(𝑡)]

M,B,QP
𝑡 :lW(𝑥,𝑣)
−−−−−−−→ M,B′,QP

(M ◁ B(𝑡)) (𝑥) = 𝑣

M,B,QP
𝑡 :lR(𝑥,𝑣)
−−−−−−−→ M,B,QP

B(𝑡) = 𝜀 M(𝑥) = 𝑣1

M,B,QP
𝑡 :CASS(𝑥,𝑣1,𝑣2)−−−−−−−−−−−−→ M[𝑥 ↦→ 𝑣2],B,QP

B(𝑡) = 𝜀 M(𝑥) = 𝑣

M,B,QP
𝑡 :CASF(𝑥,𝑣)
−−−−−−−−−→ M,B,QP

B(𝑡) = 𝜀

M,B,QP
𝑡 :F−−→ M,B,QP

B(𝑡) = b · (𝑥 := 𝑣)

M,B,QP
𝑡 :𝜀−−→ M[𝑥 ↦→ 𝑣],B[𝑡 ↦→ b],QP

B(𝑡)=b·rc𝑛

rc
𝑛 ∈

{
𝑥 := 𝑦𝑛, 𝑦𝑛 := 𝑥, rfence 𝑛

}
QP(𝑡) (𝑛)=sqp sqp′ = sqp[pipe ↦→ rc

𝑛 · sqp.pipe]

M,B,QP
𝑡 :𝜀−−→ M,B[𝑡 ↦→ b],QP[𝑡 ↦→ QP(𝑡) [𝑛 ↦→ sqp′]]

B
′ = B[𝑡 ↦→ (𝑥 := 𝑦) · B(𝑡)]

M,B,QP
𝑡 :Get(𝑥,𝑦)
−−−−−−−−−→ M,B′,QP

B
′ = B[𝑡 ↦→ (𝑦 := 𝑥) · B(𝑡)]

M,B,QP
𝑡 :Put(𝑦,𝑥)
−−−−−−−−−→ M,B′,QP

B
′ = B[𝑡 ↦→ (rfence 𝑛) · B(𝑡)]

M,B,QP
𝑡 :rF(𝑛)
−−−−−−→ M,B′,QP

QP(𝑡) (𝑛)=sqp sqp.wbL=𝛼 · cn sqp′=sqp[wbL ↦→ 𝛼]

M,B,QP
𝑡 :P(𝑛)
−−−−→ M,B,QP[𝑡 ↦→ QP(𝑡) [𝑛 ↦→ sqp′]]

M,QP(𝑡) (𝑛) →sqp M
′, sqp (Fig. 19)

M,B,QP
𝑡 :𝜀−→ M

′,B,QP[𝑡 ↦→ QP(𝑡) [𝑛 ↦→ sqp]]

with (M ◁ 𝛼) (𝑥) ≜
{
𝑣 if 𝛼 = 𝛽 · (𝑥 := 𝑣) · − ∧ ∀𝑣 ′ . 𝑥 := 𝑣 ′ ∉ 𝛽

M(𝑥) if ∀𝑣 . 𝑥 := 𝑣 ∉ 𝛼

Fig. 20. rdma
tso

simplified hardware domains (above) and hardware transitions (below)

We keep the program transitions from the concrete operational semantics (Fig. 6). The hardware
transitions of our simplified semantics, in Fig. 20, is almost identical to the previous one (Fig. 7).
The only two differences are: (1) we use the simplified queue-pair transitions from Fig. 19; (2) new
remote operations are added to the beginning of pipe (middle rule), since reqL no longer exists.

The simplified operational semantics then simply combines the program and hardware transition,
similarly to Fig. 8.

B.2 Equivalence Proof

The simplified semantics described above, using the new queue-pair transitions (Fig. 19), is equiv-
alent to the semantics defined in Section 3.2. The proof has been formalised in the Coq proof
assistant. In this section, we provide an overview of the equivalence proof.

We split the previous queue-pair semantics (from Fig. 7) into two sets of rules in Fig. 21. (→s) is
used when an action is moved from the end of a buffer to the beginning of the next. (→u) is used
for visible actions: reads, writes, and actions of the wbR and wbL buffers. Since shifting rules do
not modify the memory, we simplify them into a relation from queue pair to queue pair.

Definition B.1. We say that a 6-buffers queue pair ⟨reqL, inR,wbR, outR, rspL,wbL⟩ is well-formed
if the four main buffers respect the conditions of Figure 5. I.e.:

• reqL ∈
{
𝑦 := 𝑥, 𝑥 := 𝑦, rfence 𝑛

}∗
• inR ∈

{
𝑦 := 𝑣, 𝑥 := 𝑦

}∗
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:37

Internal Shifting Steps

reqL = req′L · (𝑥 := 𝑦) in′R = (𝑥 := 𝑦) · inR
⟨reqL, inR,wbR, outR, rspL,wbL⟩ →s ⟨req′L, in′R,wbR, outR, rspL,wbL⟩

inR = in′R · (𝑥 := 𝑦) out′R = (𝑥 := 𝑦) · outR
⟨reqL, inR,wbR, outR, rspL,wbL⟩ →s ⟨reqL, in′R,wbR, out′R, rspL,wbL⟩

outR = out′R · (𝑥 := 𝑣) rsp′L = (𝑥 := 𝑣) · rspL
⟨reqL, inR,wbR, outR, rspL,wbL⟩ →s ⟨reqL, inR,wbR, out′R, rsp

′
L,wbL⟩

outR = out′R · (ackp) rsp′L = (ackp) · rspL
⟨reqL, inR,wbR, outR, rspL,wbL⟩ →s ⟨reqL, inR,wbR, out′R, rsp

′
L,wbL⟩

Visible Steps

reqL = req′L · (rfence 𝑛) inR = outR = rspL = 𝜀

M, ⟨reqL, inR,wbR, outR, rspL,wbL⟩ →u M, ⟨req′L, inR,wbR, outR, rspL,wbL⟩

reqL = req′L · (𝑦 := 𝑥) in′R = (𝑦 := M(𝑥)) · inR wbL ∈
{
cn

}∗
M, ⟨reqL, inR,wbR, outR, rspL,wbL⟩ →u M, ⟨req′L, in′R,wbR, outR, rspL,wbL⟩

inR = in′R · (𝑦 := 𝑣) wb′R = (𝑦 := 𝑣) ·wbR out′R = (ackp) · outR
M, ⟨reqL, inR,wbR, outR, rspL,wbL⟩ →u M, ⟨reqL, in′R,wb′R, out

′
R, rspL,wbL⟩

wbR = wb′R · (𝑦 := 𝑣)
M, ⟨reqL, inR,wbR, outR, rspL,wbL⟩ →u M[𝑦 ↦→ 𝑣], ⟨reqL, inR,wb′R, outR, rspL,wbL⟩

rspL = rsp′L · (ackp) wb′L = cn ·wbL
M, ⟨reqL, inR,wbR, outR, rspL,wbL⟩ →u M, ⟨reqL, inR,wbR, outR, rsp′L,wb′L⟩

outR = 𝛼 · (𝑥 := 𝑦) · 𝛽 wbR = 𝜀 out′R = 𝛼 · (𝑥 := M(𝑦)) · 𝛽
M, ⟨reqL, inR,wbR, outR, rspL,wbL⟩ →u M, ⟨reqL, inR,wbR, out′R, rspL,wbL⟩

rspL = rsp′L · (𝑥 := 𝑣) wb′L = cn · (𝑥 := 𝑣) ·wbL
M, ⟨reqL, inR,wbR, outR, rspL,wbL⟩ →u M, ⟨reqL, inR,wbR, outR, rsp′L,wb′L⟩

wbL = 𝛼 · (𝑥 := 𝑣) · 𝛽 𝛽 ∈
{
cn

}∗ wb′L = 𝛼 · 𝛽
M, ⟨reqL, inR,wbR, outR, rspL,wbL⟩ →u M[𝑥 ↦→ 𝑣], ⟨reqL, inR,wbR, outR, rspL,wb′L⟩

Fig. 21. 6 Buffers NIC Semantics

• outR ∈
{
𝑥 := 𝑦, 𝑥 := 𝑣, ackp

}∗
• rspL ∈

{
𝑥 := 𝑣, ackp

}∗
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:38 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

We also say that a queue-pair map (and other structures) is well-formed if it only contains well-
formed queue pairs.

Lemma B.2. Empty queue pairs (maps mapping only to empty queue pairs) are well-formed.

Proof. trivial □

Lemma B.3. The different relations presented in this document preserve well-formedness. E.g., if

P,M,B,QP ⇒ P
′,M′,B′,QP′ and QP is well-formed, then QP

′
is well-formed.

Proof. By cases analysis on every induction rule. □

Definition B.4. We note [[qp]] the merging of the 6-buffers queue pair into its 3-buffers counter-
part. I.e., [[⟨reqL, inR,wbR, outR, rspL,wbL⟩]] ≜ ⟨reqL · inR · outR · rspL,wbR,wbL⟩.
We reuse the notation for maps ([[QP]]) when merging all their queue pairs at the same time.

Definition B.5. We note unmerge(sqp) the reverse operation, turning a 3-buffer queue pair
into its 6-buffers counterpart. wbR and wbL are left unchanged. The pipe buffer is split into
(reqL, inR, outR, rspL). To proceed, we consider each element of pipe one-by-one in reverse order
(right to left). We put as many elements as possible in rspL. as soon as one element 𝑒 cannot be
put in rspL (i.e., 𝑒 ∉ {𝑥 := 𝑣, ackp}), we start putting as many elements as possible in outR. Once
again, when we cannot (𝑒 ∉ {𝑥 := 𝑦, 𝑥 := 𝑣, ackp}) we start filling inR. And when we cannot
(𝑒 ∉ {𝑦 := 𝑣, 𝑥 := 𝑦}), we put the remaining elements in reqL.

Lemma B.6. For all 3-buffer queue pairs sqp, [[unmerge(sqp)]] = sqp.

Proof. trivial □

Lemma B.7. For all queue pairs qp and qp
′
, if qp →s qp

′
then [[qp]] = [[qp′]].

Proof. trivial □

Lemma B.8. For all memories M and M
′
and well-formed queue pairs qp and qp

′
,

if M, qp →u M
′, qp′ thenM, [[qp]] →sqp M

′, [[qp′]].
Proof. For each possible rule of Figure 21, we need to show that the conditions are met to apply

the corresponding rule from Figure 19.
• If M, ⟨reqL · (rfence 𝑛), 𝜀,wbR, 𝜀, 𝜀,wbL⟩ →u M, ⟨reqL, 𝜀,wbR, 𝜀, 𝜀,wbL⟩,
then [[qp]] = ⟨reqL · (rfence 𝑛),wbR,wbL⟩ and [[qp′]] = ⟨reqL,wbR,wbL⟩. We can apply
the first rule of Figure 19 to deriveM, [[qp]] →sqp M, [[qp′]]

• If M, ⟨𝛼 · (𝑦 := 𝑥), inR,wbR, outR, rspL, 𝜀⟩ →u M, ⟨𝛼, (𝑦 := M(𝑥)) · inR,wbR, outR, rspL, 𝜀⟩,
then we can apply the second rule. The condition to check is
inR · outR · rspL ∈

{
𝑦 := 𝑣, 𝑥 := 𝑦, 𝑥 := 𝑣, ackp

}∗, which comes from Definition B.1.
• Similarly to case 2
• If M, ⟨reqL, inR, 𝛼 · (𝑦 := 𝑣), outR, rspL,wbL⟩ →u M[𝑦 ↦→ 𝑣], ⟨reqL, inR, 𝛼, outR, rspL,wbL⟩,
then we similarly haveM, ⟨pipe, 𝛼 · (𝑦 := 𝑣),wbL⟩ →sqp M[𝑦 ↦→ 𝑣], ⟨pipe, 𝛼,wbL⟩ with the
fourth rule of Figure 19, with pipe = reqL · inR · outR · rspL.

• Similarly to case 2
• Similarly to case 2
• Similarly to case 4

□

Theorem B.9. For all well-formed queue-pair mapQP, if P,M,B,QP ⇒ P
′,M′,B′,QP′, then either

P = P
′
, M = M

′
, B = B

′
, and [[QP]] = [[QP′]] (zero steps), or P,M,B, [[QP]] ⇒ P

′,M′,B′, [[QP′]]
(one step).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:39

Proof. If it comes from an NIC reduction →s, we use Lemma B.7. If it comes from an NIC
reduction→u, we use Lemma B.8. Otherwise, other reduction rules are similar in the simplified
semantics and can be mapped one to one. □

Theorem B.9 above show that the simplified 3-buffers semantics preserves the behaviours of the
previous 6-buffers semantics. Now, we need to show the converse.

Lemma B.10. For all well-formed queue pairs qp, qp →∗
s unmerge([[qp]]).

Proof. let qp = ⟨reqL, inR,wbR, outR, rspL,wbL⟩ and
unmerge([[qp]]) = ⟨req′L, in′R,wbR, out′R, rsp

′
L,wbL⟩. We proceed by successive induction on (the

last element of) rspL, outR, inR, and reqL. Unmerging pushes elements as far down the queue pair
as possible. As soon as there is a mismatch, it means that unmerging places the element further, e.g.
in rsp′L while the element comes from outR. In each case, we check that we have the appropriate
inference rule to shift this element. □

Lemma B.11. For all well-formed queue pair qp, 3-buffers queue pair sqp′, memories M and M
′
, if

M, [[qp]] →sqp M
′, sqp′ then there exists qp

′
such that [[qp′]] = sqp′ and

M,unmerge([[qp]]) →u M
′, qp′.

Proof. Let us noteunmerge([[qp]]) = ⟨reqL, inR,wbR, outR, rspL,wbL⟩ and sqp′ = ⟨pipe,wb′R,wb′L⟩.
Note that [[qp]] = [[unmerge([[qp]])]] by Lemma B.6.

• IfM, [[qp]] →sqp M
′, sqp′ comes from the first rule, then reqL · inR · outR · rspL is of the form

𝛼 · (rfence 𝑛), and pipe = 𝛼 , wbR = wb′R, and wbL = wb′L. By Definition B.5 for unmerging,
reqL = 𝛼 · (rfence 𝑛), and inR = outR = rspL = 𝜀. We use qp

′ = ⟨𝛼, 𝜀,wbR, 𝜀, 𝜀,wbL⟩.
[[qp′]] = sqp′ holds, and we haveM, qp →u M

′, qp′ using the rule for rfence 𝑛.
• IfM, [[qp]] →sqp M

′, sqp′ comes from the second rule, then reqL ·inR ·outR ·rspL is of the form
𝛼 ·(𝑦 := 𝑥)·𝛽 , with 𝛽 ∈

{
𝑦′ := 𝑣 ′, 𝑥 ′ := 𝑦′, 𝑥 ′ := 𝑣 ′, ackp

}∗, and pipe = 𝛼 ·(𝑦 := M(𝑥))·𝛽 ,wbR =

wb′R, and wbL = wb′L ∈
{
cn

}∗. By Definition B.5 for unmerging, we necessarily have reqL =

𝛼 · (𝑦 := 𝑥) and 𝛽 = inR ·outR ·rspL. We use qp′ = ⟨𝛼, (𝑦 := M(𝑥)) · inR,wbR, outR, rspL,wbL⟩.
[[qp′]] = sqp′ holds, and we haveM, qp →u M

′, qp′ using the rule for (𝑦 := 𝑥).
• Similarly to case 2
• IfM, [[qp]] →sqp 𝑀𝑒𝑚′, sqp′ comes from the fifth rule, then wbR is of the form 𝛼 · (𝑦 := 𝑣),
with M

′ = M[𝑦 ↦→ 𝑣] and sqp′ = reqL · inR · outR · rspL and wb′R = 𝛼 . We simply choose
qp

′ = ⟨reqL, inR, 𝛼, outR, rspL,wbL⟩. [[qp′]] = sqp′ holds, and we have M, qp →u M
′, qp′

using the rule for wbR.
• Similarly to case 2
• Similarly to case 2
• Similarly to case 4

□

Theorem B.12. For all well-formed queue-pair map QP (of the concrete semantics) and merged

queue-pair map QP
′′
(of the simplified semantics), if P,M,B, [[QP]] ⇒ P

′,M′,B′,QP′′, then there

exists QP
′
such that [[QP′]] = QP

′′
and P,M,B,QP ⇒∗

P
′,M′,B′,QP′.

Proof. By case analysis on the rule used. If it comes from an NIC reduction →sqp, we use both
Lemmas B.10 and B.11. Otherwise, other cases of the simplified semantics can be matched by a
similar step of the main semantics. □

All of the results above are formalised in the Coq proof assistant and are available in the
Supplementary Material.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:40 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

C Appendix to the Declarative Semantics

C.1 Example Execution Graph

nrR(𝑦2, 1)

nlW(𝑎, 1, 𝑛2)

lW(𝑥, 1)

nrR(𝑥1, 1)

nlW(𝑏, 1, 𝑛1)

lW(𝑦, 1)

ippo, oppo ib, ob

po

ippo, oppoib, ob

porf
b
,

ib, ob

(a) An execution of Fig. 3b with outcome 𝑎=𝑏=1

nrR(𝑦2, 1)

nlW(𝑎, 1, 𝑛2)

poll(𝑛2)

lW(𝑥, 1)

nrR(𝑥1, 1)

nlW(𝑏, 1, 𝑛1)

poll(𝑛1)

lW(𝑦, 1)

ippo, oppo ib, ob

po, pf ib, ob

ippo, oppo ib, ob

ippo, oppoib, ob

ib, ob po, pf

ib, ob ippo, oppo

rf
b
,

ib, ob

(b) An execution of Fig. 3c with outcome 𝑎=𝑏=1

Fig. 22. Examples of consistent (a) and inconsistent (b) execution graphs

Example Executions. We depict two example executions in Fig. 22, where each event is rep-
resented as a rectangle with the corresponding label, and each column represents the events of
one thread. Specifically, Fig. 22a shows the execution of Fig. 3b with outcome 𝑎 = 𝑏 = 1, and
Fig. 22b shows the execution of Fig. 3c with outcome 𝑎 = 𝑏 = 1. Note that each get/put operation is
represented as two events. Each edge is labelled with one or more relations; e.g. the top-left NIC
remote read in Fig. 22a (labelled nrR, associated with the 𝑎 := 𝑦2 get) is related to the subsequent
NIC local write (labelled nlW, also associated with 𝑎 := 𝑦2) via ippo, oppo, ib and ob. For brevity, we
have omitted the po labels when they are also either ippo- or oppo-related (as oppo ⊆ ippo ⊆ po).
Note that both graphs in Fig. 22 are valid executions according to Def. 4.3. However, while

Fig. 22a is a consistent execution, the one in Fig. 22b is not. Specifically, the execution in Fig. 22b is
not consistent as both relations ib and ob contain a cycle.

C.2 Event Sequence Construction

𝐶 { 𝐶′ 𝐶′ ↣ 𝑠

𝐶 ↣ 𝑠

𝐶1↣ 𝑠1 𝐶2↣ 𝑠2

𝐶1;𝐶2↣ 𝑠1, 𝑠2

elocs(𝑒) = ∅
𝑥 := 𝑒 ↣ lW(𝑥, [[𝑒]])

elocs(𝑒old) = elocs(𝑒new) = ∅
𝑧 := [[𝑒old]] ↣ 𝑠

𝑧 := CAS(𝑥, 𝑒old, 𝑒new)↣ CAS(𝑥, [[𝑒old]], [[𝑒new]]), 𝑠

elocs(𝑒old) = elocs(𝑒new) = ∅
𝑣 ≠ [[𝑒old]] 𝑧 := 𝑣 ↣ 𝑠

𝑧 := CAS(𝑥, 𝑒old, 𝑒new)↣ F, lR(𝑥, 𝑣), 𝑠

mfence↣ F assume(𝑥 = 𝑣)↣ lR(𝑥, 𝑣)
𝑣 ′ ≠ 𝑣

assume(𝑥 ≠ 𝑣)↣ lR(𝑥, 𝑣 ′)

𝑥 := 𝑦𝑛 ↣ nrR(𝑦𝑛, 𝑣), nlW(𝑥, 𝑣, 𝑛) 𝑦𝑛 := 𝑥 ↣ nlR(𝑥, 𝑣, 𝑛), nrW(𝑦𝑛, 𝑣)

rfence (𝑛)↣ nF(𝑛) poll(𝑛)↣ P(𝑛) skip↣ 𝜖

Fig. 23. Label Sequences Construction

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:41

We define the following process to build and compose event graphs:

• For a thread identifier 𝑡 ∈ Tid and a sequence of labels 𝑙1, . . . , 𝑙𝑛 ∈ ELab, we define𝐺𝑡 (𝑙1, . . . , 𝑙𝑛)
as the set of all event graphs of the form ({e1, . . . , e𝑛} , po) respecting the following conditions:
– 𝑙 (e𝑖) = 𝑙𝑖 for every 1 ≤ 𝑖 ≤ 𝑛;
– 𝜄 (e𝑖) ≠ 𝜄 (e𝑗) for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑛;
– 𝑡 (e𝑖) = 𝑡 for every 1 ≤ 𝑖 ≤ 𝑛;
– po =

{
(e𝑖 , e𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}
.

• The sequential composition of two event graphs𝐺1 and𝐺2, denoted𝐺1;𝐺2, is the event graph
given by (𝐺1.Event ⊎ 𝐺2.Event,𝐺1.po ∪ 𝐺2.po ∪ 𝐺1.Event × 𝐺2 .Event). Note that 𝐺1;𝐺2 is
only defined if 𝐺1.Event and 𝐺2 .Event are disjoint, and we assume a disjoint set of event
identifiers.

• The parallel composition of two event graphs 𝐺1 and 𝐺2, denoted 𝐺1 ∥ 𝐺2, is the event
graph given by (𝐺1 .Event ⊎𝐺2.Event,𝐺1.po ∪𝐺2 .po). Note that 𝐺1 ∥ 𝐺2 is only defined if
𝐺1.Event and 𝐺2.Event are disjoint, and we assume a disjoint set of event identifiers. Parallel
composition (which is commutative and associative) is generalised to apply on sets of event
graphs (e.g., ∥𝑖∈𝐼 G𝑖) in the obvious way.

For a set Loc of locations, we say that𝐺init = (Event0, ∅) is an initial event graph if Event0 is a set
of initialisation events, with different event identifiers, with one label lW(𝑥, 0) per location 𝑥 ∈ Loc.

We say that𝐺 is generated by a program P if𝐺 = 𝐺init; (∥𝑡 ∈Tid 𝐺𝑡) and there is sequences 𝑠𝑡 such
that: 𝐺init is an initial event graph; P[𝑡] ↣ 𝑠𝑡 for every 𝑡 ∈ Tid; and 𝐺𝑡 ∈ 𝐺𝑡 (𝑠𝑡) for every 𝑡 ∈ Tid.
We note 𝐶 ↣ 𝑠 to relate sequential program 𝐶 with a possible sequence 𝑠 of labels that it

generates. This construction, defined in Fig. 23, is standard. Most operations are transformed as
expected. Note that a fail compare-and-set produces both a fence and a read label. The new remote
operations put/get generate two labels, since they perform a read followed by a write. For instance,
we have 𝑥 := 𝑦𝑛 ↣ nrR(𝑦𝑛, 𝑣), nlW(𝑥, 𝑣, 𝑛) for any arbitrary value 𝑣 .

C.3 Extension of TSO Declarative Semantics

Definition C.1 (TSO-consistency). An execution ⟨𝐸, po, rf⟩ is TSO-consistent (From [Lahav et al.
2016]) iff there exists a total store order tso such that:

(1) tso is a strict partial order on 𝐸 that is total on 𝐸.W;
(2) ppo ≜ (po \ 𝐸.lW × 𝐸.lR) ⊆ tso;
(3) rfe ≜ (rf \ po) ⊆ tso; and
(4) if (𝑤, 𝑟) ∈ rf, (𝑤 ′, 𝑟) ∈ (tso ∪ po),𝑤 ′ ∈ W, and loc(𝑤) = loc(𝑤 ′), then (𝑤,𝑤 ′) ∉ tso.

For programs without remote operations, the declarative semantics presented in Section 4 can
be greatly simplified. The only relevant events are lW, lR, CAS, and F. In Fig. 9, only the first
four lines and columns are useful, and we see that ippo simplifies to po, while oppo simplifies to
ppo ≜ po \ (lW × lR). The relations pf and nfo are empty and no longer relevant.

Theorem C.2. For programs without remote operations, rdma
tso

-consistency (Def. 4.4) implies

TSO-consistency (Def. C.1).

Proof. After the simplifications detailed above, we assume ib = (po ∪ rf ∪ rbb)+ and ob =

(ppo ∪ rf
b
∪ rb ∪mo)+ to be irreflexive. ob is a strict partial order (irreflexive and transitive), and

can be extended into a total order. So for tso we can choose any extension of ob that is total on
(lW ∪ CAS), satisfying the first point.
The second point comes directly from ppo ⊆ ob ⊆ tso.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:42 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

For the third point, it is enough to show (rf \ po) ⊆ rf
b
, since rf

b
⊆ ob ⊆ tso. Since rf

b
= rf \ rfb,

we want to show that rfb = [lW]; (rf ∩ sthd); [lR] ⊆ po. Since sthd = po ∪ po
−1, it is enough to

show that rf ∩ po
−1 is empty, which comes from the fact that ib is irreflexive.

For the last point, let assume assume (𝑤, 𝑟) ∈ rf, (𝑤 ′, 𝑟) ∈ (tso ∪ po), 𝑤 ′ ∈ W = (lW ∪ CAS),
and loc(𝑤) = loc(𝑤 ′). Since mo is total on write events on loc(𝑤), either (𝑤,𝑤 ′) ∈ tso or
(𝑤 ′,𝑤) ∈ tso, and we want to show (𝑤 ′,𝑤) ∈ tso. Let us assume (𝑤,𝑤 ′) ∈ tso and find a
contradiction. By definition, we then have 𝑟

rb−→ 𝑤 ′.
If (𝑤 ′, 𝑟) ∈ (po \ ppo) = [lW]; po; [lR], then 𝑟

rbb−−→ 𝑤 ′ po

−−→ 𝑟 which creates an illegal cycle in ib.
Otherwise, (𝑤 ′, 𝑟) ∈ (tso∪ ppo) = tso, and we have 𝑟

rb−→ 𝑤 ′ tso−−→ 𝑟 which creates an illegal cycle
in tso since rb ⊆ ob ⊆ tso. □

Note that the proof of theorem C.2 does not make use of the third condition of Def. 4.4. This is
because it is redundant for programs without remote operations.

Theorem C.3. For programs without remote operations, TSO-consistency (Def. C.1) implies rdma
tso

-

consistency (Def. 4.4).

Proof. We assume ⟨𝐸, po, rf⟩ and a relation tso satisfying the conditions of Def. C.1. We define
mo𝑥 ≜ tso|W𝑥

total on writes on location 𝑥 , and mo ≜
⋃

𝑥∈Loc mo𝑥 . Then ⟨𝐸, po, rf,mo, ∅, ∅⟩
satisfies the conditions of a pre-execution (Def. 4.2). We now also have the derived relation rb, rfb,
rf
b
, and rbb.

• We need to show that ib = (po ∪ rf ∪ rbb)+ is irreflexive.
First, let us show that rbb = [lR]; (rb∩ sthd); [lW] ⊆ po. It is enough to check that rb∩ po

−1

is empty. By contradiction, if 𝑟
rb−→ 𝑤 ′ po

−−→ 𝑟 , then by definition of rb there exists𝑤 such that
loc(𝑤) = loc(𝑤 ′), (𝑤, 𝑟) ∈ rf, and (𝑤,𝑤 ′) ∈ mo ⊆ tso, which contradicts TSO-consistency
condition 4.
It is then enough to show that (po ∪ rfe)+ is irreflexive. By contradiction, let us assume a
minimal cycle in (po∪ rfe). Since po is transitive, we can assume there is no two consecutive
po edges in this cycle. Thus the left-side event of each po edge corresponds to the right-side
event of an rf edge, and cannot be a local write event (lW). Thus each po edge is also a ppo
edge, and we have a cycle in (ppo ∪ rfe) ⊆ tso (by TSO-consistency conditions 2 and 3),
which is not allowed (by TSO-consistency condition 1).

• We need to show that ob = (ppo ∪ rf
b
∪ rb ∪mo)+ is irreflexive.

First, let us show ob ⊆ (tso ∪ rb)+. Since ppo ⊆ tso (by TSO-consistency condition 2),
rfe = (rf \ po) ⊆ tso (by TSO-consistency condition 3), and mo ⊆ tso (by definition of
mo), it is enough to show that rf

b
⊆ (ppo ∪ rfe), i.e., that (rf

b
∩ po) ⊆ ppo. By definition,

rf
b
= rf \ ([lW]; (po ∪ po

−1); [lR]), so (lW × lR) ∩ (rf
b
∩ po) = ∅, and (rf

b
∩ po) ⊆ ppo.

Second, we show that (tso ∪ rb)+ is irreflexive. By contradiction, let us assume a minimal
cycle in (tso ∪ rb), and that edges labelled rb are in fact in (rb \ tso).
– Since tso is transitive and irreflexive, this minimal cycle has at least one rb edge, and never
two consecutive tso edges.

– It cannot contain two consecutive rb edges: If 𝑟1
rb−→ 𝑤1

rb−→ 𝑤2 → · · · 𝑟1 then either
(𝑤1,𝑤2) ∈ tso and the second edge can be labelled tso, or (𝑤2,𝑤1) ∈ tso and we have a
shorter cycle𝑤1

rb−→ 𝑤2
tso−−→ 𝑤1.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:43

– It cannot contain two non-consecutive rb edges: If 𝑟1
rb−→ 𝑤1

tso−−→ 𝑟2
rb−→ 𝑤2 → · · · 𝑟1

then either (𝑤1,𝑤2) ∈ tso and we have a shorter cycle 𝑟1
rb−→ 𝑤1

tso−−→ 𝑤2 → · · · 𝑟1, or
(𝑤2,𝑤1) ∈ tso and (𝑤2, 𝑟2) ∈ tso and we have a shorter cycle 𝑟2

rb−→ 𝑤2
tso−−→ 𝑟2.

Thus we can assume a cycle of the form 𝑟
rb−→ 𝑤 ′ tso−−→ 𝑟 . By definition of rb there exists

𝑤 such that loc(𝑤) = loc(𝑤 ′), (𝑤, 𝑟) ∈ rf, and (𝑤,𝑤 ′) ∈ mo ⊆ tso, which contradicts
TSO-consistency condition 4.
So (tso ∪ rb)+ is irreflexive and ob is irreflexive.

• Lastly, we need to show that ([Inst]; ib; ob)+ is irreflexive.
As seen before, ib can be simplified to (po∪ rfe)+. Since po is transitive, we have [Inst]; ib =(
[Inst]; rf+

e
; (po; rf+

e
)∗; po?

)
∪

(
[Inst]; po; (rf+

e
; po)∗; rf∗

e

)
. As previously, each po edge cannot

start with a local write (lW) and is also a ppo edge. Thus [Inst]; ib ⊆ (ppo ∪ rfe)+ ⊆ tso.
Since ob ⊆ (tso ∪ rb)+, then we also have ([Inst]; ib; ob)+ ⊆ (tso ∪ rb)+ irreflexive.

□

C.4 Equivalent Declarative Semantics

Equivalently, the consistency conditions of Def. 4.4 can be restated with recursive definitions of ib
and ob as follows. In this case, (ob; [Inst]) is included in ib while ([Inst]; ib) is included in ob,
and there is no need for the third condition.

Definition C.4 (recursive-rdma
tso

-consistency). An execution ⟨𝐸, po, rf,mo, pf, nfo⟩ is rdmatso-
consistent iff (1) ib is irreflexive; and (2) ob is irreflexive where:

ib ≜
(
ippo ∪ rf ∪ pf ∪ nfo ∪ rbb ∪ (ob; [Inst])

)+ (‘issued-before’)

ob ≜
(
oppo ∪ rf

b
∪ ([nlW]; pf) ∪ nfo ∪ rb ∪mo ∪ ([Inst]; ib)

)+ (‘observed-before’)

Let us show that the two consistency definitions are equivalent. The definitions of ib and ob

above can more formally be defined using limits as follows, where ib0 and ob
0 correspond to the

non-recursive definition of Def. 4.4.

ib
0 ≜ (ippo ∪ rf ∪ pf ∪ rbb ∪ nfo)+

ob
0 ≜

(
oppo ∪ rf

b
∪ [nlW]; pf ∪ rb ∪ nfo ∪ mo

)+
ib

𝑛+1 ≜ (ib𝑛 ∪ ob
𝑛 ; [Inst])+

ob
𝑛+1 ≜ (ob𝑛 ∪ [Inst]; ib𝑛)+

ib ≜ lim
𝑛→∞

ib
𝑛

ob ≜ lim
𝑛→∞

ob
𝑛

Theorem C.5. recursive-rdmatso-consistency (Def. C.4) implies rdma
tso

-consistency (Def. 4.4).

Proof. By contradiction, this amounts to showing that a cycle in either ib0, ob0, or ([Inst]; ib0; ob0)+
implies a cycle in ib or ob. This is trivial since ib0 ⊆ ib, ob0 ⊆ ob, and ([Inst]; ib0; ob0)+ ⊆ ob □

Theorem C.6. rdmatso-consistency (Def. 4.4) implies recursive-rdma
tso

-consistency (Def. C.4).

Proof. Let us assume that there is no cycle in ib
0, ob0, and ([Inst]; ib0; ob0)+.

Let us define A𝑛 ≜ ([Inst]; ib𝑛 ; [Inst] ∪ [Inst]; ob𝑛 ; [Inst] ∪ [Inst]; ib𝑛 ; ob𝑛 ; [Inst])+.
Since ib𝑛 and ob

𝑛 are transitive, it is clear that a cycle in A
𝑛 implies a cycle in either ib𝑛 , ob𝑛 , or

([Inst]; ib𝑛 ; ob𝑛)+. A corollary is that there is no cycle in A
0.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:44 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

By contradiction, let us assume there is a cycle in either ib, ob, or lim𝑛→∞ A
𝑛 . Let 𝑛 be the highest

integer such that ib𝑛 , ob𝑛 , and A
𝑛 have no cycle.

If there is a cycle in ib
𝑛+1 ≜ (ib𝑛 ∪ ob

𝑛 ; [Inst])+, and there is no cycle in ib
𝑛 , then the cycle is of

the form (ib𝑛)?; (ob𝑛 ; [Inst]; ib𝑛)∗; ob𝑛 ; [Inst]; (ib𝑛)? ⊆ A
𝑛 , so we have a contradiction. Similarly

a cycle in ob
𝑛+1 leads to the same contradiction.

Then let us assume a cycle in A
𝑛+1. As explained previously, this implies a cycle in either ib𝑛+1,

ob
𝑛+1, or ([Inst]; ib𝑛+1; ob𝑛+1)+. The first two cases have been explored and lead to a contradiction,

so we can assume a cycle in (([Inst]; ib𝑛+1); (ob𝑛+1; [Inst]))+.
Using the fact that ib𝑛 and ob

𝑛 are transitive, we have:

[Inst]; ib𝑛+1 = [Inst]; (ib𝑛 ∪ ob
𝑛 ; [Inst])+

= ([Inst]; ib𝑛) ∪
(
[Inst]; (ib𝑛)?; (ob𝑛 ; [Inst]; ib𝑛)∗; ob𝑛 ; [Inst]; (ib𝑛)?

)
⊆ ([Inst]; ib𝑛) ∪ A

𝑛 ; ([Inst]; ib𝑛)?

Similarly, (ob𝑛+1; [Inst]) ⊆ (ob𝑛 ; [Inst]) ∪ (ob𝑛 ; [Inst])?;A𝑛 .
Plugging the two halves together and simplifying the different cases, we see that we have

([Inst]; ib𝑛+1); (ob𝑛+1; [Inst]) ⊆ A
𝑛 . Thus we have a cycle inA𝑛 , which contradicts our hypothesis.

□

Note that the proof does not rely on the content of ib0 and ob
0, so this recursive equivalent

definition is also available when we do not assume the PCIe guarantees.
Similarly, the following definition is also equivalent:

Definition C.7 (rdma
tso

-consistency). An execution ⟨𝐸, po, rf,mo, pf, nfo⟩ is rdmatso-consistent iff
(1) ib is irreflexive; and (2) ob is irreflexive where:

ib ≜
(
ippo ∪ rf ∪ pf ∪ nfo ∪ rbb

)+ (‘issued-before’)

ob ≜
(
oppo ∪ rf

b
∪ ([nlW]; pf) ∪ nfo ∪ rb ∪mo ∪ ([Inst]; ib)

)+ (‘observed-before’)

I.e., we extend ob with ([Inst]; ib) but we do not extend ib. Clearly, Def. C.4 implies Def. C.7
which implies Def. 4.4, so the three definitions are equivalent.

In the rest of the appendices, we use the recursive definition of consistency (Def. C.4 above), as
it is easier to manipulate stronger ib/ob relations with fewer conditions.

C.5 Counter-example without explicit NIC buffer order

As explained, an NIC local (resp. remote) read flushes previous NIC local (resp. remote) writes on
the same buffer. In Section 4, we ask for an explicit ordering nfo. If we do note require an ordering,
but simply assert that no interleaving is allowed, then we need rules saying that ib and ob have to
agree in these cases:

ib ≜
©­«
ippo ∪ rf ∪ pf ∪ rbb ∪ ob; [Inst]
∪ [nlR]; (ob ∩ sqp); [nlW]
∪ [nrR]; (ob ∩ sqp); [nrW]

ª®¬
+

(issued before)

ob ≜
©­«
oppo ∪ rf

b
∪ [nlW]; pf ∪ rb ∪ mo ∪ [Inst]; ib

∪ [nlW]; (ib ∩ sqp); [nlR]
∪ [nrW]; (ib ∩ sqp); [nrR]

ª®¬
+

(observed before)

The problem is that the two consistency conditions (ib and ob irreflexive) do not seem to be
enough to recover a valid operational semantics execution.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:45

𝜄1, 𝜏1,
nrW(𝑥1, 1)

𝜄2, 𝜏1,
nrR(𝑦1, 1)

𝜄3, 𝜏2,
nrW(𝑧2, 2)

𝜄4, 𝜏2,
nrR(𝑤2, 2)

𝜄5, 𝜏3,
nrW(𝑠3, 3)

𝜄6, 𝜏3,
nrR(𝑡3, 3)

𝜄7, 𝜏4,
nrW(𝑢4, 4)

𝜄8, 𝜏4,
nrR(𝑣4, 4)

𝜄9, 𝜏5,
lR(𝑎, 0)

𝜄0, 𝜏6,
lR(𝑏, 0)

sqp

sqp

sqp

sqp

ib

ib

ib

ib

ib/ob

ib/ob

ib/ob

ib/ob

obob

obob

Fig. 24. Example of a consistent graph where ib and ob cannot be extended into total orders.

For instance, with the dummy example of Fig. 24, the consistency conditions are respected5, but
we quickly see that we cannot extend ib and ob into total orders respecting the recursive inclusions
above.

Without loss of generality, if we decide that the first issued event is the one with label 𝜄1, i.e. we
extend ib such that 𝜄1

ib−→ 𝜄2, then the same-queue-pair condition implies 𝜄1
ob−−→ 𝜄2. By transitivity

we have 𝜄4
ob−−→ 𝜄3 which implies 𝜄4

ib−→ 𝜄3. On the other side of the graph, by transitivity we have
𝜄5

ib−→ 𝜄6 and 𝜄7
ib−→ 𝜄8, and the same-queue-pair condition forces 𝜄5

ob−−→ 𝜄6 and 𝜄7
ob−−→ 𝜄8. We thus have

an ob cycle 𝜄5
ob−−→ 𝜄6

ob−−→ 𝜄7
ob−−→ 𝜄8

ob−−→ 𝜄5.
While it is unclear if such a declarative semantics would allow for more behaviours than the

operational semantics, we rely on the explicit ordering nfo to prove the equivalence between our
two semantics.

5we should also add an arbitrary ordering on NIC remote writes because of mo, but it does not break consistency.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:46 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

D Annotated Semantics

D.1 Annotated Labels and Inference Rules

On top of the 10 labels presented in Section 4, we create four new labels: Put(𝑦, 𝑥), Get(𝑥,𝑦),
nlEX(𝑛), and nrEX(𝑛). These labels can also be used to create events (when bundled with an event
identifier and a thread identifier).

We note 𝐸ext the extended set of all events, including the four new labels.
Recall that R = lR ∪ CAS ∪ nlR ∪ nrR ⊆ 𝐸ext and W = lW ∪ CAS ∪ nlW ∪ nrW ⊆ 𝐸ext. We also

note nEX = nlEX ∪ nrEX.

ALabel ∋ 𝜆 ≜ | lR⟨𝑟,𝑤⟩ where 𝑟 ∈ lR,𝑤 ∈ W, eqloc&v (𝑟,𝑤)
| lW⟨𝑤⟩ where 𝑤 ∈ lW

| CAS⟨𝑢,𝑤⟩ where 𝑢 ∈ CAS,𝑤 ∈ W, eqloc&v (𝑢,𝑤)
| F⟨𝑓 ⟩ where 𝑓 ∈ F

| Push⟨𝑎⟩ where 𝑎 ∈ (Put ∪ Get ∪ nF)
| NIC⟨𝑎⟩ where 𝑎 ∈ (Put ∪ Get ∪ nF)
| nlR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ where 𝑟 ∈ nlR,𝑤 ∈ W, 𝑎 ∈ Put,𝑤 ′ ∈ nrW, eqloc&v (𝑟,𝑤),

loc𝑟 (𝑎) = loc(𝑟), loc𝑤 (𝑎) = loc(𝑤 ′), 𝑣r (𝑟) = 𝑣w (𝑤 ′)
| nrR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ where 𝑟 ∈ nrR,𝑤 ∈ W, 𝑎 ∈ Get,𝑤 ′ ∈ nlW, eqloc&v (𝑟,𝑤),

loc𝑟 (𝑎) = loc(𝑟), loc𝑤 (𝑎) = loc(𝑤 ′), 𝑣r (𝑟) = 𝑣w (𝑤 ′)
| nlW⟨𝑤, 𝑒⟩ where 𝑤 ∈ nlW, 𝑒 ∈ nlEX, sameqp(𝑤, 𝑒)
| nrW⟨𝑤, 𝑒⟩ where 𝑤 ∈ nrW, 𝑒 ∈ nrEX, sameqp(𝑤, 𝑒)
| CN⟨𝑒⟩ where 𝑒 ∈ nrEX

| P⟨𝑝, 𝑒⟩ where 𝑝 ∈ P, 𝑒 ∈ nEX, sameqp(𝑝, 𝑒)
| nF⟨𝑓 ⟩ where 𝑓 ∈ nF

| B⟨𝑤⟩ where 𝑤 ∈ W
| E⟨𝑡⟩ where 𝑡 ∈ Tid

eqloc&v (𝑟,𝑤) ≜ loc(𝑟) = loc(𝑤) ∧ 𝑣r (𝑟) = 𝑣w (𝑤)
sameqp(𝑒, 𝑒′) ≜ 𝑡 (𝑒) = 𝑡 (𝑒′) ∧ 𝑛(𝑒) = 𝑛(𝑒′)

Fig. 25. Annotated Labels

For annotated labels, we reuse most names from labels, but they are different entities. For instance
we note 𝑟 ∈ lR for an event with label lR, while 𝜆 = lR⟨. . .⟩ is an annotated label.

We use type(𝜆) to denote the type of the annotated label (lR, lW, CAS, F, Push, NIC, nlR, nrR,
nlW, nrW, CN, P, nF, B, E). We use 𝑟 (𝜆),𝑤 (𝜆), 𝑢 (𝜆), 𝑎(𝜆), 𝑓 (𝜆), 𝑝 (𝜆), 𝑒 (𝜆), . . . to access the elements
of a 𝜆 ∈ ALabel where applicable. Also, we note 𝑡 (𝜆) for the thread of the first argument of 𝜆.
The annotated program transitions (Fig. 26) use an additional annotated label CASF⟨𝑟,𝑤⟩ with

𝑟 ∈ lR and𝑤 ∈ W to represent a failed CAS operation. This case is then translated into two labels
(a memory fence and a local read) when creating a path in §D.2. Also, note that the annotated
domains (e.g. the store buffers and the queue pairs) contain events, not annotated labels.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:47

Program transitions: Prog

ALabel⊎{CASF}
−−−−−−−−−−−−−→ Prog Command transitions: Comm

ALabel⊎{CASF}
−−−−−−−−−−−−−→ Comm

C1
𝜆−→ C

′
1

C1;C2
𝜆−→ C

′
1;C2 skip;C

E⟨𝑡 ⟩
−−−−→ C

𝑖 ∈ {1, 2}

C1 + C2
E⟨𝑡 ⟩
−−−−→ C

𝑛
𝑖 C

∗ E⟨𝑡 ⟩
−−−−→ skip

C
∗ E⟨𝑡 ⟩
−−−−→ C;C∗

C { C
′

C

E⟨𝑡 ⟩
−−−−→ C

′

elocs(𝑒) = ∅ 𝑤 = (𝜄, 𝑡, lW(𝑥, [[𝑒]]))

𝑥 := 𝑒
lW⟨𝑤⟩
−−−−−→ skip

elocs(𝑒old) = elocs(𝑒new) = ∅ 𝑣 ≠ [[𝑒old]] 𝑟 = (𝜄, 𝑡, lR(𝑥, 𝑣))

𝑧 := CAS(𝑥, 𝑒old, 𝑒new)
CASF⟨𝑟,𝑤⟩
−−−−−−−−−→ 𝑧 := 𝑣

elocs(𝑒old) = elocs(𝑒new) = ∅ 𝑢 = (𝜄, 𝑡, CAS(𝑥, [[𝑒old]], [[𝑒new]]))

𝑧 := CAS(𝑥, 𝑒old, 𝑒new)
CAS⟨𝑢,𝑤⟩
−−−−−−−−→ 𝑧 := [[𝑒old]]

𝑓 = (𝜄, 𝑡, F)

mfence
F⟨𝑓 ⟩
−−−−→ skip

𝑎 = (𝜄, 𝑡, Get(𝑥,𝑦))

𝑥 := 𝑦
Push⟨𝑎⟩
−−−−−−−→ skip

𝑎 = (𝜄, 𝑡, Put(𝑦, 𝑥))

𝑦 := 𝑥
Push⟨𝑎⟩
−−−−−−−→ skip

𝑎 = (𝜄, 𝑡, nF(𝑛))

rfence 𝑛
Push⟨𝑎⟩
−−−−−−−→ skip

𝑝 = (𝜄, 𝑡, P(𝑛))

poll(𝑛)
P⟨𝑝,𝑒 ⟩
−−−−−→ skip

𝑟 = (𝜄, 𝑡, lR(𝑥, 𝑣))

assume(𝑥 = 𝑣)
lR⟨𝑟,𝑤⟩
−−−−−−−→ skip

𝑣 ≠ 𝑣 ′ 𝑟 = (𝜄, 𝑡, lR(𝑥, 𝑣 ′))

assume(𝑥 ≠ 𝑣)
lR⟨𝑟,𝑤⟩
−−−−−−−→ skip

P(𝑡 (𝜆)) 𝜆−→ C

P

𝜆−→ P[𝑡 (𝜆) ↦→ C]

Fig. 26. rdma
tso

program and command transitions for the annotated semantics

initialisation. Given a program P, let
M0 ∈ AMem s.t. ∀𝑥 ∈ Loc. M0 (𝑥) = 𝑖𝑛𝑖𝑡𝑥 with 𝑙 (𝑖𝑛𝑖𝑡𝑥) ≜ lW(𝑥, 0)
b0 ∈ ASBuff b0 ≜ 𝜀

B0 ∈ ASBMap B0 ≜ 𝜆𝑡 .b0
qp0 ∈ AQPair qp0 ≜ ⟨𝜀, 𝜀, 𝜀⟩
QP0 ∈ AQPMap QP0 ≜ 𝜆𝑡 .𝜆𝑛.qp0

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:48 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

M ∈ AMem ≜ {𝑚 ∈ Loc → W | ∀𝑥 ∈ Loc.loc(𝑚[𝑥]) = 𝑥} B ∈ ASBMap ≜ Tid → ASBuff

QP ∈ AQPMap ≜ Tid → (Node → AQPair) b ∈ ASBuff ≜ (lR ∪ Get ∪ Put ∪ nF)∗
sqp ∈ AQPair ≜ APipe × AWBR × AWBL pipe ∈ APipe ≜ (Get ∪ Put ∪ nF ∪ nrW ∪ nrEX ∪ nlW)∗

wbR ∈ AWBR ≜ nrW∗ wbL ∈ AWBR ≜ (nlW ∪ nlEX ∪ nrEX)∗

B
′ = B[𝑡 (𝑤) ↦→ 𝑤 · B(𝑡 (𝑤))]

M,B,QP
lW⟨𝑤⟩
−−−−−→ M,B′,QP

(M ◀ B(𝑡 (𝑟))) (loc(𝑟)) = 𝑤 𝑣r (𝑟) = 𝑣w (𝑤)

M,B,QP
lR⟨𝑟,𝑤⟩
−−−−−−−→ M,B,QP

B(𝑡 (𝑢)) = 𝜀 M(loc(𝑢)) = 𝑤 𝑣r (𝑢) = 𝑣w (𝑤)

M,B,QP
CAS⟨𝑢,𝑤⟩
−−−−−−−−→ M[𝑥 ↦→ 𝑢],B,QP

B(𝑡 (𝑓)) = 𝜀

M,B,QP
F⟨𝑓 ⟩
−−−−→ M,B,QP

B
′ = B[𝑡 (𝑎) ↦→ 𝑎 · B(𝑡 (𝑎))]

M,B,QP
Push⟨𝑎⟩
−−−−−−−→ M,B′,QP

B(𝑡 (𝑤)) = b ·𝑤 𝑤 ∈ lW

M,B,QP
B⟨𝑤⟩
−−−−→ M[𝑥 ↦→ 𝑤],B[𝑡 (𝑤) ↦→ b],QP

B(𝑡 (𝑎)) = b · 𝑎 𝑎 ∉ lW QP(𝑡 (𝑎)) (𝑛(𝑎)) = qp qp
′ = qp[pipe ↦→ 𝑎 · qp.pipe]

M,B,QP
NIC⟨𝑎⟩
−−−−−−→ M,B[𝑡 (𝑎) ↦→ b],QP[𝑡 (𝑎) ↦→ QP(𝑡 (𝑎)) [𝑛(𝑎) ↦→ qp

′]]

QP(𝑡 (𝑝)) (𝑛(𝑝)) = qp qp.wbL = 𝛼 · 𝑒 𝑒 ∈ nEX qp
′ = qp[wbL ↦→ 𝛼]

M,B,QP
P⟨𝑝,𝑒 ⟩
−−−−−→ M,B,QP[𝑡 (𝑝) ↦→ QP(𝑡 (𝑝)) [𝑛(𝑝) ↦→ qp

′]]

M,QP(𝑡 (𝜆)) (𝑛) 𝜆−→sqp M
′, qp

M,B,QP
𝜆−→ M

′,B,QP[𝑡 (𝜆) ↦→ QP(𝑡 (𝜆)) [𝑛 ↦→ qp]]

with (M ◀ 𝛼) (𝑥) =


M[𝑥] 𝛼 = 𝜀

𝑤 𝛼 = 𝑤 · 𝛽 ∧𝑤 ∈ W ∧ loc(𝑤) = 𝑥

(M ◀ 𝛽) (𝑥) 𝛼 = 𝑒 · 𝛽 ∧ (𝑒 ∉ W ∨ loc(𝑒) ≠ 𝑥)

Fig. 27. rdma
tso

hardware domains and hardware transitions for the annotated semantics

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:49

pipe = 𝛼 · 𝑓 𝑓 = (𝜄, 𝑡, nF(𝑛))

M, ⟨pipe,wbR,wbL⟩
nF⟨𝑓 ⟩
−−−−→sqp M, ⟨𝛼,wbR,wbL⟩

pipe = 𝛼 · 𝑎 · 𝛽 𝑎 = (𝜄𝑎, 𝑡, Put(𝑦, 𝑥)) M(𝑥) = 𝑤 𝑟 = (𝜄𝑟 , 𝑡, nlR(𝑥, 𝑣w (𝑤), 𝑛(𝑦)))
𝑤 ′ = (𝜄𝑤′ , 𝑡, nrW(𝑦, 𝑣w (𝑤))) 𝛽 ∈ (nrW ∪ Get ∪ nlW ∪ nrEX)∗ wbL ∈ nEX∗

M, ⟨pipe,wbR,wbL⟩
nlR⟨𝑟,𝑤,𝑎,𝑤′ ⟩
−−−−−−−−−−→sqp M, ⟨𝛼 ·𝑤 ′ · 𝛽,wbR,wbL⟩

pipe = 𝛼 ·𝑤 · 𝛽
𝑤 = (𝜄𝑤, 𝑡, nrW(𝑦, 𝑣)) 𝑒 = (𝜄𝑒 , 𝑡, nrEX(𝑛(𝑦))) 𝛽 ∈ (Get ∪ nlW ∪ nrEX)∗

M, ⟨pipe,wbR,wbL⟩
nrW⟨𝑤,𝑒 ⟩
−−−−−−−→sqp M, ⟨𝛼 · 𝑒 · 𝛽,𝑤 ·wbR,wbL⟩

wbR = 𝛼 ·𝑤 𝑤 ∈ nrW

M, ⟨pipe,wbR,wbL⟩
B⟨𝑤⟩
−−−−→sqp M[𝑣w (𝑤) ↦→ 𝑤], ⟨pipe, 𝛼,wbL⟩

pipe = 𝛼 · 𝑎 · 𝛽 𝑎 = (𝜄𝑎, 𝑡, Get(𝑥,𝑦)) M(𝑦) = 𝑤 𝑟 = (𝜄𝑟 , 𝑡, nrR(𝑦, 𝑣w (𝑤)))
𝑤 ′ = (𝜄𝑤′ , 𝑡, nlW(𝑥, 𝑣w (𝑤), 𝑛(𝑦))) 𝛽 ∈ (Get ∪ nlW ∪ nrEX)∗ wbR = 𝜀

M, ⟨pipe,wbR,wbL⟩
nrR⟨𝑟,𝑤,𝑎,𝑤′ ⟩
−−−−−−−−−−→sqp M, ⟨𝛼 ·𝑤 ′ · 𝛽,wbR,wbL⟩

pipe = 𝛼 ·𝑤 𝑤 = (𝜄𝑤, 𝑡, nlW(𝑥, 𝑣, 𝑛)) 𝑒 = (𝜄𝑒 , 𝑡, nlEX(𝑛))

M, ⟨pipe,wbR,wbL⟩
nlW⟨𝑤,𝑒 ⟩
−−−−−−−→sqp M, ⟨𝛼,wbR, 𝑒 ·𝑤 ·wbL⟩

pipe = 𝛼 · 𝑒 𝑒 ∈ nrEX

M, ⟨pipe,wbR,wbL⟩
CN⟨𝑒 ⟩
−−−−−→sqp M, ⟨𝛼,wbR, 𝑒 ·wbL⟩

wbL = 𝛼 ·𝑤 · 𝛽 𝑤 ∈ nlW 𝛽 ∈ nEX∗

M, ⟨pipe,wbR,wbL⟩
B⟨𝑤⟩
−−−−→sqp M[𝑣w (𝑤) ↦→ 𝑤], ⟨pipe,wbR, 𝛼 · 𝛽⟩

Fig. 28. Annotated 3 Buffers NIC Semantics

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:50 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

D.2 Paths, Gluing, and Other Definitions

We define a path as: 𝜋 ∈ Path ≜ (ALabel \ E⟨𝑡⟩)∗
We define Annotated Operational Semantics Gluing with the following rules.

P

E⟨𝑡 ⟩
−−−→ P

′

P,M,B,QP, 𝜋 ⇒ P
′,M,B,QP, 𝜋

P

𝜆−→ P
′

M,B,QP
𝜆−→ M

′,B′,QP′ 𝜆 ∈ (lR ∪ lW ∪ CAS ∪ F ∪ Push ∪ P) fresh(𝜆, 𝜋)
P,M,B,QP, 𝜋 ⇒ P

′,M′,B′,QP′, 𝜆 · 𝜋

M,B,QP
𝜆−→ M

′,B′,QP′ 𝜆 ∈ (NIC ∪ nlR ∪ nrR ∪ nlW ∪ nrW ∪ CN ∪ nF ∪ B) fresh(𝜆, 𝜋)
P,M,B,QP, 𝜋 ⇒ P,M′,B′,QP′, 𝜆 · 𝜋

P

CASF⟨𝑟,𝑤⟩
−−−−−−−−→ P

′ 𝜆1 = F⟨(𝜄, 𝑡 (𝑟), F)⟩
𝜆2 = lR⟨𝑟,𝑤⟩ M,B,QP

𝜆1−→ M,B,QP
𝜆2−→ M,B,QP fresh(𝜆1, 𝜋) fresh(𝜆2, 𝜋)

P,M,B,QP, 𝜋 ⇒ P
′,M,B,QP, 𝜆2 · 𝜆1 · 𝜋

Two annotated labels are non-conflicting (𝜆1 ⊲⊳ 𝜆2) if they are of a different type or if their
relevant arguments are disjoints. An annotated label is fresh if it does not conflict with any previous
annotated label.

Relevant : ALabel → 2𝐸
ext

Relevant(lR⟨𝑟, _⟩) ≜ {𝑟 }
Relevant(lW⟨𝑤⟩) ≜ {𝑤}

Relevant(CAS⟨𝑢, _⟩) ≜ {𝑢}
Relevant(F⟨𝑓 ⟩) ≜ {𝑓 }

Relevant(Push⟨𝑎⟩) ≜ {𝑎}
Relevant(NIC⟨𝑎⟩) ≜ {𝑎}

Relevant(nlR⟨𝑟, _, 𝑎,𝑤 ′⟩) ≜ {𝑟, 𝑎,𝑤 ′}
Relevant(nrR⟨𝑟, _, 𝑎,𝑤 ′⟩) ≜ {𝑟, 𝑎,𝑤 ′}

Relevant(nlW⟨𝑤, 𝑒⟩) ≜ {𝑤, 𝑒}
Relevant(nrW⟨𝑤, 𝑒⟩) ≜ {𝑤, 𝑒}

Relevant(CN⟨𝑒⟩) ≜ {𝑒}
Relevant(P⟨𝑝, 𝑒⟩) ≜ {𝑝, 𝑒}
Relevant(nF⟨𝑓 ⟩) ≜ {𝑓 }
Relevant(B⟨𝑤⟩) ≜ {𝑤}
Relevant(E⟨_⟩) ≜ {}

𝜆1 ⊲⊳ 𝜆2 ≜ type(𝜆1) ≠ type(𝜆2) ∨ Relevant(𝜆1) ∩ Relevant(𝜆2) = ∅
fresh(𝜆, 𝜋) ≜ ∀𝜆′ ∈ 𝜋, 𝜆 ⊲⊳ 𝜆′

nodup(𝜋) ≜ ∀𝜋2, 𝜆, 𝜋1. 𝜋 = 𝜋2 · 𝜆 · 𝜋1 =⇒ fresh(𝜆, 𝜋1)
Relevant(𝜆) are the arguments that are important to consider to avoid duplicating events. The

excluded events are the write operations we lookup when reading. For instance:
• Having both lR⟨𝑟1,𝑤⟩ and lR⟨𝑟2,𝑤⟩ during an execution is fine, since 𝑤 can be looked up
any number of time.

• Having both nlR⟨𝑟1,𝑤1, 𝑎, 𝑒1⟩ and nlR⟨𝑟2,𝑤2, 𝑎, 𝑒2⟩ during an execution is problematic, since
it means the put operation 𝑎 is being run twice.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:51

complete(𝜋) ≜ ∀𝑎,𝑤 ′, 𝑒, 𝑟,𝑤, 𝑓 .

lW⟨𝑤⟩ ∈ 𝜋 =⇒ B⟨𝑤⟩ ∈ 𝜋

∧ Push⟨𝑎⟩ ∈ 𝜋 =⇒ NIC⟨𝑎⟩ ∈ 𝜋

∧ NIC⟨𝑓 ⟩ ∈ 𝜋 ∧ 𝑓 ∈ nF =⇒ nF⟨𝑓 ⟩ ∈ 𝜋

∧ NIC⟨𝑎⟩ ∈ 𝜋 ∧ 𝑎 ∈ Put =⇒ ∃𝑟,𝑤,𝑤 ′ . nlR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ∈ 𝜋

∧ NIC⟨𝑎⟩ ∈ 𝜋 ∧ 𝑎 ∈ Get =⇒ ∃𝑟,𝑤,𝑤 ′ . nrR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ∈ 𝜋

∧ nlR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ∈ 𝜋 =⇒ ∃𝑒. nrW(𝑤 ′, 𝑒) ∈ 𝜋

∧ nrR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ∈ 𝜋 =⇒ ∃𝑒. nlW(𝑤 ′, 𝑒) ∈ 𝜋

∧ nlW⟨𝑤, 𝑒⟩ ∈ 𝜋 =⇒ B⟨𝑤⟩ ∈ 𝜋

∧ nrW⟨𝑤, 𝑒⟩ ∈ 𝜋 =⇒ B⟨𝑤⟩ ∈ 𝜋 ∧ CN⟨𝑒⟩ ∈ 𝜋

Informal: every pending operation is done and (most) buffers are empty. Note that some nEX (i.e.,
completion notifications) might still be in wbL.
For a path 𝜋 without duplicate (e.g. if nodup(𝜋) holds), we define the total ordering of its

annotated labels as follows. Note that the early part of the path is on the right.

𝜆1 ≺𝜋 𝜆2 ≜ ∃𝜋1, 𝜋2, 𝜋3 s.t. 𝜋 = 𝜋3 · 𝜆2 · 𝜋2 · 𝜆1 · 𝜋1

backward completeness, with ordering.

backComp(𝜋) ≜ ∀𝑎,𝑤 ′, 𝑒, 𝑟,𝑤, 𝑓 , 𝑝.

B⟨𝑤⟩ ∈ 𝜋 =⇒ ©­«
lW⟨𝑤⟩ ≺𝜋 B⟨𝑤⟩

∨ ∃𝑒.nlW⟨𝑤, 𝑒⟩ ≺𝜋 B⟨𝑤⟩
∨ ∃𝑒.nrW⟨𝑤, 𝑒⟩ ≺𝜋 B⟨𝑤⟩

ª®¬
∧ NIC⟨𝑎⟩ ∈ 𝜋 =⇒ Push⟨𝑎⟩ ≺𝜋 NIC⟨𝑎⟩
∧ nF⟨𝑓 ⟩ ∈ 𝜋 =⇒ NIC⟨𝑓 ⟩ ≺𝜋 nF⟨𝑓 ⟩
∧ nlR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ∈ 𝜋 =⇒ NIC⟨𝑎⟩ ≺𝜋 nlR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩
∧ nrR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ∈ 𝜋 =⇒ NIC⟨𝑎⟩ ≺𝜋 nrR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩
∧ nrW⟨𝑤 ′, 𝑒⟩ ∈ 𝜋 =⇒ ∃𝑟,𝑤, 𝑎. nlR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ≺𝜋 nrW⟨𝑤 ′, 𝑒⟩
∧ nlW⟨𝑤 ′, 𝑒⟩ ∈ 𝜋 =⇒ ∃𝑟,𝑤, 𝑎. nrR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ≺𝜋 nrW⟨𝑤 ′, 𝑒⟩
∧ CN⟨𝑒⟩ ∈ 𝜋 =⇒ ∃𝑤. nrW⟨𝑤, 𝑒⟩ ≺𝜋 CN⟨𝑒⟩

∧ P⟨𝑝, 𝑒⟩ ∈ 𝜋 =⇒
(

∃𝑤. nlW⟨𝑤, 𝑒⟩ ≺𝜋 B⟨𝑤⟩ ≺𝜋 P⟨𝑝, 𝑒⟩
∨ CN⟨𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩

)
Flush order

bufFlushOrd(𝜋) ≜

∀𝑤1,𝑤2 ∈ lW.

(
𝑡 (𝑤1) = 𝑡 (𝑤2) =⇒
(B⟨𝑤2⟩ ∈ 𝜋 ∧ lW⟨𝑤1⟩ ≺𝜋 lW⟨𝑤2⟩) ⇐⇒ B⟨𝑤1⟩ ≺𝜋 B⟨𝑤2⟩

)
∧ ∀𝑎1, 𝑎2 ∈ (Get ∪ Put ∪ nF).

(
𝑡 (𝑎1) = 𝑡 (𝑎2) =⇒
(NIC⟨𝑎2⟩ ∈ 𝜋 ∧ Push⟨𝑎1⟩ ≺𝜋 Push⟨𝑎2⟩) ⇐⇒ NIC⟨𝑎1⟩ ≺𝜋 NIC⟨𝑎2⟩

)
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:52 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

∧ ∀𝑎1 ∈ (Get ∪ Put ∪ nF),𝑤2 ∈ lW.
©­«
𝑡 (𝑎1) = 𝑡 (𝑤2) =⇒
(B⟨𝑤2⟩ ∈ 𝜋 ∧ Push⟨𝑎1⟩ ≺𝜋 lW⟨𝑤2⟩) ⇐⇒ NIC⟨𝑎1⟩ ≺𝜋 B⟨𝑤2⟩

∧ (NIC⟨𝑎1⟩ ∈ 𝜋 ∧ lW⟨𝑤2⟩ ≺𝜋 Push⟨𝑎1⟩) ⇐⇒ B⟨𝑤2⟩ ≺𝜋 NIC⟨𝑎1⟩
ª®¬

∧ ∀𝑤1,𝑤2 ∈ nlW.

(
sameqp(𝑤1,𝑤2) =⇒
(B⟨𝑤2⟩ ∈ 𝜋 ∧ nlW⟨𝑤1⟩ ≺𝜋 nlW⟨𝑤2⟩) ⇐⇒ B⟨𝑤1⟩ ≺𝜋 B⟨𝑤2⟩

)
∧ ∀𝑤1,𝑤2 ∈ nrW.

(
sameqp(𝑤1,𝑤2) =⇒
(B⟨𝑤2⟩ ∈ 𝜋 ∧ nrW⟨𝑤1⟩ ≺𝜋 nrW⟨𝑤2⟩) ⇐⇒ B⟨𝑤1⟩ ≺𝜋 B⟨𝑤2⟩

)
∧ ∀𝑤 ∈ lW, 𝑓 ∈ F. lW⟨𝑤⟩ ≺𝜋 F⟨𝑓 ⟩ ∧ 𝑡 (𝑤) = 𝑡 (𝑓) =⇒ B⟨𝑤⟩ ≺𝜋 F⟨𝑓 ⟩
∧ ∀𝑤 ∈ lW, 𝑢 ∈ CAS. lW⟨𝑤⟩ ≺𝜋 CAS⟨𝑢, _⟩ ∧ 𝑡 (𝑤) = 𝑡 (𝑢) =⇒ B⟨𝑤⟩ ≺𝜋 CAS⟨𝑢, _⟩
∧ ∀𝑤 ∈ nlW, 𝑟 ∈ nlR. (nlW⟨𝑤, _⟩ ≺𝜋 nlR⟨𝑟, _, _, _⟩ ∧ sameqp(𝑤, 𝑟)) =⇒ B⟨𝑤⟩ ≺𝜋 nlR⟨𝑟, _, _, _⟩
∧ ∀𝑤 ∈ nrW, 𝑟 ∈ nrR. (nrW⟨𝑤, _⟩ ≺𝜋 nrR⟨𝑟, _, _, _⟩ ∧ sameqp(𝑤, 𝑟)) =⇒ B⟨𝑤⟩ ≺𝜋 nrR⟨𝑟, _, _, _⟩

Poll order

pollOrder(𝜋) ≜ ∀𝑒1, 𝑒2.
©­­­­­«

sameqp(𝑒1, 𝑒2)
∧ 𝜆1 ∈ {nlW⟨_, 𝑒1⟩,CN⟨𝑒1⟩}
∧ 𝜆2 ∈ {nlW⟨_, 𝑒2⟩,CN⟨𝑒2⟩}
∧ 𝜆1 ≺𝜋 𝜆2
∧ P⟨_, 𝑒2⟩ ∈ 𝜋

ª®®®®®¬
=⇒ P⟨_, 𝑒1⟩ ≺𝜋 P⟨_, 𝑒2⟩

NIC order

nicActOrder(𝜋) ≜ ∀𝑎1, 𝑎2. NIC⟨𝑎1⟩ ≺𝜋 NIC⟨𝑎2⟩ ∧ sameqp(𝑎1, 𝑎2) =⇒
(𝑎1 ∈ nF ∧ 𝑎2 ∈ Get ∧ nrR⟨_, _, 𝑎2, _⟩ ∈ 𝜋 =⇒ nF⟨𝑎1⟩ ≺𝜋 nrR⟨_, _, 𝑎2, _⟩)

∧ (𝑎1 ∈ nF ∧ 𝑎2 ∈ Put ∧ nlR⟨_, _, 𝑎2, _⟩ ∈ 𝜋 =⇒ nF⟨𝑎1⟩ ≺𝜋 nlR⟨_, _, 𝑎2, _⟩)
∧ (𝑎1 ∈ nF ∧ 𝑎2 ∈ nF ∧ nF⟨𝑎2⟩ ∈ 𝜋 =⇒ nF⟨𝑎1⟩ ≺𝜋 nF⟨𝑎2⟩)
∧ (𝑎1 ∈ Get ∧ 𝑎2 ∈ nF ∧ nF⟨𝑎2⟩ ∈ 𝜋 =⇒ nrR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋 nlW⟨𝑤1, _⟩ ≺𝜋 nF⟨𝑎2⟩)

∧
(
𝑎1 ∈ Put ∧ 𝑎2 ∈ nF ∧ nF⟨𝑎2⟩ ∈ 𝜋

=⇒ nlR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋 nrW⟨𝑤1, 𝑒1⟩ ≺𝜋 CN⟨𝑒1⟩ ≺𝜋 nF⟨𝑎2⟩

)
∧

(
𝑎1 ∈ Get ∧ 𝑎2 ∈ Get ∧ nrR⟨_, _, 𝑎2,𝑤2⟩ ≺𝜋 nlW⟨𝑤2, _⟩
=⇒ nrR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋 nlW⟨𝑤1, _⟩ ≺𝜋 nlW⟨𝑤2, _⟩

)
∧

(
𝑎1 ∈ Get ∧ 𝑎2 ∈ Put ∧ nlR⟨_, _, 𝑎2,𝑤2⟩ ≺𝜋 nrW⟨𝑤2, 𝑒2⟩ ≺𝜋 CN⟨𝑒2⟩
=⇒ nrR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋 nlW⟨𝑤1, _⟩ ≺𝜋 CN⟨𝑒2⟩

)
∧

(
𝑎1 ∈ Put ∧ 𝑎2 ∈ Get ∧ nrR⟨_, _, 𝑎2, _⟩ ∈ 𝜋

=⇒ nlR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋 nrW⟨𝑤1, _⟩ ≺𝜋 nrR⟨_, _, 𝑎2, _⟩

)
∧

(
𝑎1 ∈ Put ∧ 𝑎2 ∈ Get ∧ nrR⟨_, _, 𝑎2,𝑤2⟩ ≺𝜋 nlW⟨𝑤2, _⟩
=⇒ nlR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋 nrW⟨𝑤1, 𝑒1⟩ ≺𝜋 CN⟨𝑒1⟩ ≺𝜋 nlW⟨𝑤2⟩

)
∧ (𝑎1 ∈ Put ∧ 𝑎2 ∈ Put ∧ nlR⟨_, _, 𝑎2, _⟩ ∈ 𝜋 =⇒ nlR⟨_, _, 𝑎1, _⟩ ≺𝜋 nlR⟨_, _, 𝑎2, _⟩)

∧
(
𝑎1 ∈ Put ∧ 𝑎2 ∈ Put ∧ nlR⟨_, _, 𝑎2,𝑤2⟩ ≺𝜋 nrW⟨𝑤2, _⟩
=⇒ nlR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋 nrW⟨𝑤1, _⟩ ≺𝜋 nrW⟨𝑤2, _⟩

)
∧

(
𝑎1 ∈ Put ∧ 𝑎2 ∈ Put ∧ nlR⟨_, _, 𝑎2,𝑤2⟩ ≺𝜋 nrW⟨𝑤2, 𝑒2⟩ ≺𝜋 CN⟨𝑒2⟩
=⇒ nlR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋 nrW⟨𝑤1, 𝑒1⟩ ≺𝜋 CN⟨𝑒1⟩ ≺𝜋 CN⟨𝑒2⟩

)
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:53

Read order

wfrd(𝜋) ≜ ∀𝜋2, 𝑟 ,𝑤, 𝜋1. 𝜋 = 𝜋2 · lR⟨𝑟,𝑤⟩ · 𝜋1 =⇒ wfrdCPU(𝑟,𝑤, 𝜋1)
∧ ∀𝜋2, 𝑢,𝑤, 𝜋1. 𝜋 = 𝜋2 · CAS⟨𝑢,𝑤⟩ · 𝜋1 =⇒ wfrdCPU(𝑢,𝑤, 𝜋1)
∧ ∀𝜋2, 𝑟 ,𝑤, 𝜋1 . 𝜋 = 𝜋2 · nlR⟨𝑟,𝑤, _, _⟩ · 𝜋1 =⇒ wfrdNIC(𝑟,𝑤, 𝜋1)
∧ ∀𝜋2, 𝑟 ,𝑤, 𝜋1. 𝜋 = 𝜋2 · nrR⟨𝑟,𝑤, _, _⟩ · 𝜋1 =⇒ wfrdNIC(𝑟,𝑤, 𝜋1)

wfrdCPU(𝑟,𝑤, 𝜋) ≜
©­­­­­«
∃𝜋2, 𝜆, 𝜋1 . 𝜋 = 𝜋2 · 𝜆 · 𝜋1
∧ 𝜆 ∈ {B⟨𝑤⟩, CAS⟨𝑤, _⟩}
∧ {B⟨𝑤 ′⟩, CAS⟨𝑤 ′, _⟩ ∈ 𝜋2 | loc(𝑤 ′) = loc(𝑟)} = ∅

∧
{
𝑤 ′

���� lW⟨𝑤 ′⟩ ∈ 𝜋 ∧ B⟨𝑤 ′⟩ ∉ 𝜋 ∧
loc(𝑤 ′) = loc(𝑟) ∧ 𝑡 (𝑤 ′) = 𝑡 (𝑟)

}
= ∅

ª®®®®®¬
∨ ©­«

∃𝜋2, 𝜆, 𝜋1. 𝜋 = 𝜋2 · 𝜆 · 𝜋1
∧ 𝜆 = lW⟨𝑤⟩ ∧ 𝑡 (𝑤) = 𝑡 (𝑟) ∧ B⟨𝑤⟩ ∉ 𝜋2
∧ {lW⟨𝑤 ′⟩ ∈ 𝜋2 | loc(𝑤 ′) = loc(𝑟) ∧ 𝑡 (𝑤 ′) = 𝑡 (𝑟)} = ∅

ª®¬
∨ ©­«

𝑤 = 𝑖𝑛𝑖𝑡loc(𝑤)∧{
B⟨𝑤 ′⟩, CAS⟨𝑤 ′, _⟩ ∈ 𝜋,

lW⟨𝑤 ′′⟩ ∈ 𝜋

���� loc(𝑤 ′) = loc(𝑟) ∧
loc(𝑤 ′′) = loc(𝑟) ∧ 𝑡 (𝑤 ′′) = 𝑡 (𝑟)

}
= ∅

ª®¬
wfrdNIC(𝑟,𝑤, 𝜋) ≜ ©­«

∃𝜋2, 𝜆, 𝜋1 . 𝜋 = 𝜋2 · 𝜆 · 𝜋1
∧ 𝜆 ∈ {B⟨𝑤⟩, CAS⟨𝑤, _⟩}
∧ {B⟨𝑤 ′⟩, CAS⟨𝑤 ′, _⟩ ∈ 𝜋2 | loc(𝑤 ′) = loc(𝑟)} = ∅

ª®¬
∨

(
𝑤 = 𝑖𝑛𝑖𝑡loc(𝑤)∧
{B⟨𝑤 ′⟩, CAS⟨𝑤 ′, _⟩ ∈ 𝜋 | loc(𝑤 ′) = loc(𝑟)} = ∅

)
Well-formed path

wfp(𝜋) ≜ nodup(𝜋)
∧ backComp(𝜋)
∧ bufFlushOrd(𝜋)
∧ pollOrder(𝜋)
∧ nicActOrder(𝜋)
∧ wfrd(𝜋)

Definition D.1.

wf (M,B,QP, 𝜋) ≜ wfp(𝜋)
∧ ∀𝑥 ∈ Loc. M(𝑥) = read(𝜋, 𝑥)
∧ ∀𝑡 ∈ Tid.B(𝑡) = mksbuff(𝜀, 𝑡, 𝜋)

∧ ∀𝑡 ∈ Tid.∀𝑛 ∈ (Node \ {𝑛(𝑡)}). ©­«
QP(𝑡) (𝑛).pipe = mkpipe(𝜀, 𝑡, 𝑛, 𝜋)
QP(𝑡) (𝑛).wbR = mkwbR(𝜀, 𝑡, 𝑛, 𝜋)
QP(𝑡) (𝑛).wbL = mkwbL(𝜀, 𝑡, 𝑛, 𝜋)

ª®¬
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:54 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

Where, the functions read, mksbuff, mkpipe, mkwbR, and mkwbL are defined below.

read(𝜆·𝜋, 𝑥) ≜
{
𝑤 𝜆 ∈ {B⟨𝑤⟩, CAS⟨𝑤, _⟩} ∧ loc(𝑤) = 𝑥

read(𝜋, 𝑥) otherwise
read(𝜀, 𝑥) ≜ 𝑖𝑛𝑖𝑡𝑥

mksbuff(b, 𝑡, 𝜀) ≜ b

mksbuff(b, 𝑡, 𝜋 ·𝜆) ≜


mksbuff(𝑤 ·b, 𝑡, 𝜋) 𝜆 = lW⟨𝑤⟩ ∧ 𝑡 (𝑤) = 𝑡 ∧ B⟨𝑤⟩ ∉ 𝜋

mksbuff(𝑎·b, 𝑡, 𝜋) 𝜆 = Push⟨𝑎⟩ ∧ NIC⟨𝑎⟩ ∉ 𝜋 ∧ 𝑡 (𝑎) = 𝑡

mksbuff(b, 𝑡, 𝜋) otherwise

mkpipe(pipe, 𝑡, 𝑛, 𝜀) ≜ pipe

mkpipe(pipe, 𝑡, 𝑛, 𝜋 ·𝜆) ≜



mkpipe(𝑎·pipe, 𝑡, 𝑛, 𝜋) if
©­­«
𝑡 (𝜆) = 𝑡 ∧ 𝑛(𝜆) = 𝑛 ∧ 𝜆 = NIC⟨𝑎⟩
∧ nlR⟨_, _, 𝑎, _⟩ ∉ 𝜋 ∧ nrR⟨_, _, 𝑎, _⟩ ∉ 𝜋

∧ nF⟨𝑎⟩ ∉ 𝜋

ª®®¬
mkpipe(𝑤 ·pipe, 𝑡, 𝑛, 𝜋) if

(
𝑡 (𝜆) = 𝑡 ∧ 𝑛(𝜆) = 𝑛 ∧ 𝜆 = NIC⟨𝑎⟩
∧ nlR⟨_, _, 𝑎,𝑤⟩ ∈ 𝜋 ∧ nrW⟨𝑤, _⟩ ∉ 𝜋

)
mkpipe(𝑒 ·pipe, 𝑡, 𝑛, 𝜋) if

©­­«
𝑡 (𝜆) = 𝑡 ∧ 𝑛(𝜆) = 𝑛 ∧ 𝜆 = NIC⟨𝑎⟩
∧ nlR⟨_, _, 𝑎,𝑤⟩ ∈ 𝜋 ∧ nrW⟨𝑤, 𝑒⟩ ∈ 𝜋

∧ CN⟨𝑒⟩ ∉ 𝜋

ª®®¬
mkpipe(𝑤 ·pipe, 𝑡, 𝑛, 𝜋) if

(
𝑡 (𝜆) = 𝑡 ∧ 𝑛(𝜆) = 𝑛 ∧ 𝜆 = NIC⟨𝑎⟩
∧ nrR⟨_, _, 𝑎,𝑤⟩ ∈ 𝜋 ∧ nlW⟨𝑤, _⟩ ∉ 𝜋

)
mkpipe(pipe, 𝑡, 𝑛, 𝜋) otherwise

mkwbR(wbR, 𝑡, 𝑛, 𝜀) ≜ wbR

mkwbR(wbR, 𝑡, 𝑛, 𝜋 ·𝜆) ≜
{
mkwbR(𝑤 ·wbR, 𝑡, 𝑛, 𝜋) 𝑡 (𝜆) = 𝑡 ∧ 𝑛(𝜆) = 𝑛 ∧ 𝜆 = nrW⟨𝑤, _⟩ ∧ B⟨𝑤⟩ ∉ 𝜋

mkwbR(wbR, 𝑡, 𝑛, 𝜋) otherwise

mkwbL(wbL, 𝑡, 𝑛, 𝜀) ≜ wbL

mkwbL(wbL, 𝑡, 𝑛, 𝜋 ·𝜆) ≜



mkwbL(𝑒 ·𝑤 ·wbL, 𝑡, 𝑛, 𝜋) if

(
𝑡 (𝜆) = 𝑡 ∧ 𝑛(𝜆) = 𝑛 ∧ 𝜆 = nlW⟨𝑤, 𝑒⟩
∧ B⟨𝑤⟩ ∉ 𝜋 ∧ P⟨_, 𝑒⟩ ∉ 𝜋

)
mkwbL(𝑒 ·wbL, 𝑡, 𝑛, 𝜋) if

(
𝑡 (𝜆) = 𝑡 ∧ 𝑛(𝜆) = 𝑛 ∧ 𝜆 = nlW⟨𝑤, 𝑒⟩
∧ B⟨𝑤⟩ ∈ 𝜋 ∧ P⟨_, 𝑒⟩ ∉ 𝜋

)
mkwbL(𝑒 ·wbL, 𝑡, 𝑛, 𝜋) if

(
𝑡 (𝜆) = 𝑡 ∧ 𝑛(𝜆) = 𝑛 ∧ 𝜆 = CN⟨𝑒⟩
∧ P⟨_, 𝑒⟩ ∉ 𝜋

)
mkwbL(wbL, 𝑡, 𝑛, 𝜋) otherwise

Theorem D.2. For all P, P′,M,M′,B,B′,QP,QP′, 𝜋, 𝜋 ′
:

• wf (M0,B0,QP0, 𝜀);
• if P,M,B,QP, 𝜋 ⇒ P

′,M′,B′,QP′, 𝜋 ′
and wf (M,B,QP, 𝜋) then wf (M′,B′,QP′, 𝜋 ′);

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:55

• if P,M0,B0,QP0, 𝜀 ⇒∗ (𝜆𝑡 .skip),M,B0,QP, 𝜋 such that forall 𝑡, 𝑛 we have QP(𝑡) (𝑛) =

⟨𝜀, 𝜀, nEX∗⟩, then wf (M,B0,QP, 𝜋) and complete(𝜋).

The proof of the first part follows trivially from the definitions of M0, B0, and QP0. The second
part is proved by induction on the structure of ⇒. The last part follows from the previous two
parts and induction on the length of⇒∗, as well as how the definition of wf on empty store buffers
and queue pairs (regardless of nEX in wbL) implies complete(𝜋).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:56 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

D.3 From Annotated Semantics to Declarative Semantics

We define

getEG(𝜋) ≜
{
(Event, po, rf, pf,mo, nfo) if wfp(𝜋) ∧ complete(𝜋)
undefined otherwise

with

Event ≜ Event0 ∪ {getA(𝜆) | 𝜆 ∈ 𝜋}
Recall that Event0 is the set of initialisation events {𝑖𝑛𝑖𝑡𝑥 | 𝑥 ∈ Loc}, where 𝑙 (𝑖𝑛𝑖𝑡𝑥) = lW(𝑥, 0)

getA : ALabel ⇀ Event

getA(lR⟨𝑟, _⟩) ≜ 𝑟

getA(lW⟨𝑤⟩) ≜ 𝑤
getA(CAS⟨𝑢, _⟩) ≜ 𝑢

getA(F⟨𝑓 ⟩) ≜ 𝑓

getA(nlR⟨𝑟, _, _, _⟩) ≜ 𝑟

getA(nrR⟨𝑟, _, _, _⟩) ≜ 𝑟

getA(nlW⟨𝑤, _⟩) ≜ 𝑤
getA(nrW⟨𝑤, _⟩) ≜ 𝑤

getA(P⟨𝑝, _⟩) ≜ 𝑝

getA(nF⟨𝑓 ⟩) ≜ 𝑓

getA(B⟨𝑤⟩) ≜ 𝑤
getA(Push⟨_⟩) is undefined
getA(NIC⟨_⟩) is undefined
getA(CN⟨_⟩) is undefined
getA(E⟨_⟩) is undefined

We define getI𝜆(_, 𝜋) and getO𝜆(_, 𝜋) to perform the reverse operation of getA. In the case of
write events, getI𝜆(_, 𝜋) retrieves the first label sending the write to the buffer, while getO𝜆(_, 𝜋)
retrieves the second label committing the write to memory.

getI𝜆(_, 𝜋), getO𝜆(_, 𝜋) : {getA(𝜆) | 𝜆 ∈ 𝜋} → ALabel

For all 𝜆 ∈ 𝜋 :
• if type(𝜆) ∈ {lR, CAS, F, P, nlR, nrR, nF}, then getI𝜆(getA(𝜆), 𝜋) ≜ getO𝜆(getA(𝜆), 𝜋) ≜ 𝜆;
• if type(𝜆) ∈ {lW, nlW, nrW}, then getI𝜆(getA(𝜆), 𝜋) ≜ 𝜆while getO𝜆(getA(𝜆), 𝜋) ≜ B⟨loc(𝜆)⟩.
• if 𝜆 = B⟨𝑤⟩, then from backComp(𝜋) there is 𝜆′ ≺𝜋 𝜆 such that type(𝜆) ∈ {lW, nlW, nrW}
and getA(𝜆′) = getA(𝜆) = 𝑤 . From the previous case, we have getI𝜆(𝑤, 𝜋) ≜ 𝜆′ and
getO𝜆(𝑤, 𝜋) ≜ 𝜆.

From this we define two relations IB and OB on Event total on all meaningful events by copying
the ordering in 𝜋 .

IB ≜ {(𝑒1, 𝑒2) | getI𝜆(𝑒1, 𝜋) ≺𝜋 getI𝜆(𝑒2, 𝜋)} ∪ (Event0 × (Event \ Event0))
OB ≜ {(𝑒1, 𝑒2) | getO𝜆(𝑒1, 𝜋) ≺𝜋 getO𝜆(𝑒2, 𝜋)} ∪ (Event0 × (Event \ Event0))

From wfp(𝜋), IB and OB are transitive and irreflexive. Note: we could make IB and OB total by
adding an arbitrary total order on Event0.

rf ≜ {(𝑤, 𝑟) | lR⟨𝑟,𝑤⟩ ∈ 𝜋 ∨ nlR⟨𝑟,𝑤, _, _⟩ ∈ 𝜋 ∨ nrR⟨𝑟,𝑤, _, _⟩ ∈ 𝜋 ∨ CAS⟨𝑟,𝑤⟩ ∈ 𝜋}

pf ≜ {(𝑤, 𝑝) | nlW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩} ∪ {(𝑤, 𝑝) | nrW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:57

𝜆 generates 𝑒 in 𝜋 ≜

©­­­­­«
𝜆 ∈ {lR⟨𝑒, _⟩, lW⟨𝑒⟩, CAS⟨𝑒, _⟩, Push⟨𝑒⟩, P⟨𝑒, _⟩, F⟨𝑒⟩}

∨ 𝜆 = Push⟨𝑎⟩ ∧
©­­­«

𝜆 ≺𝜋 nlR⟨𝑒, _, 𝑎, _⟩
∨ 𝜆 ≺𝜋 nlR⟨_, _, 𝑎, 𝑒⟩
∨ 𝜆 ≺𝜋 nrR⟨𝑒, _, 𝑎, _⟩
∨ 𝜆 ≺𝜋 nrR⟨_, _, 𝑎, 𝑒⟩

ª®®®¬
ª®®®®®¬

po ≜ Event0×(Event\Event0)∪
(𝑒1, 𝑒2)

������ 𝜆1 ≺𝜋 𝜆2 ∧ 𝑡 (𝜆1) = 𝑡 (𝜆2)
∧ 𝜆1 generates 𝑒1 in 𝜋

∧ 𝜆2 generates 𝑒2 in 𝜋

∪
{
(𝑟,𝑤)

���� nlR⟨𝑟, _, _,𝑤⟩ ∈ 𝜋

∨ nrR⟨𝑟, _, _,𝑤⟩ ∈ 𝜋

}

mo ≜

(𝑤1,𝑤2)

������ 𝑤1 = 𝑖𝑛𝑖𝑡𝑥
∧ (B⟨𝑤2⟩ ∈ 𝜋 ∨ CAS⟨𝑤2, _⟩ ∈ 𝜋)
∧ loc(𝑤1) = 𝑥 = loc(𝑤2)

∪
(𝑤1,𝑤2)

��������
𝜆1 ≺𝜋 𝜆2

∧ 𝜆1 ∈ {B⟨𝑤1⟩, CAS⟨𝑤1, _⟩}
∧ 𝜆2 ∈ {B⟨𝑤2⟩, CAS⟨𝑤2, _⟩}
∧ loc(𝑤1) = loc(𝑤2)


nfo ≜

©­­­«
{(𝑟1,𝑤2) | sameqp(𝑟1,𝑤2) ∧ nlR⟨𝑟1, _, _, _⟩ ≺𝜋 nlW⟨𝑤2, _⟩ ≺𝜋 B⟨𝑤2⟩}

∪ {(𝑟1,𝑤2) | sameqp(𝑟1,𝑤2) ∧ nrR⟨𝑟1, _, _, _⟩ ≺𝜋 nrW⟨𝑤2, _⟩ ≺𝜋 B⟨𝑤2⟩}
∪ {(𝑤1, 𝑟2) | sameqp(𝑤1, 𝑟2) ∧ nlW⟨𝑤1, _⟩ ≺𝜋 B⟨𝑤1⟩ ≺𝜋 nlR⟨𝑟2, _, _, _⟩}
∪ {(𝑤1, 𝑟2) | sameqp(𝑤1, 𝑟2) ∧ nrW⟨𝑤1, _⟩ ≺𝜋 B⟨𝑤1⟩ ≺𝜋 nrR⟨𝑟2, _, _, _⟩}

ª®®®¬
From an execution graph 𝐸 = getEG(𝜋), we use the definitions of the paper to define oppo, ippo,

rfb, rf
b
, rb, rbb, ob, and ib.

Theorem D.3. getEG(𝜋) is well-formed.

Proof. We need to check the conditions of a pre-execution (Def. 4.2) and of well-formedness
(Def. 4.3). For the pre-execution conditions:

• Checking Event0 × (Event \ Event0) ⊆ po:
by definition.

• Checking po is a union of strict partial orders each on one thread:
If 𝑡 (e1) ≠ 𝑡 (e2), then (e1, e2) ∉ po and (e2, e1) ∉ po by definition. If 𝑡 (e1) = 𝑡 (e2), then either
(e1, e2) ∈ po or (e2, e1) ∈ po. This comes from the second case of the definition of po: if there
is 𝜆1 and 𝜆2 such that 𝜆𝑖 generates e𝑖 in 𝜋 , then either 𝜆1 ≺𝜋 𝜆2 or 𝜆2 ≺𝜋 𝜆1.

• Checking that rf is functional on its range:
If 𝑟 ∈ R ⊆ {getA(𝜆) | 𝜆 ∈ 𝜋}, then we have either lR⟨𝑟, _⟩, nlR⟨𝑟, _, _, _⟩, or nrR⟨𝑟, _, _, _⟩ in
𝜋 , and 𝑟 have at least one antecedent.
If (𝑤, 𝑟) ∈ rf, let us assume 𝑟 ∈ nlR, then by definition nlR⟨𝑟,𝑤, _, _⟩ ∈ 𝜋 . Since nodup(𝜋),
for all 𝑤 ′ ≠ 𝑤 , we have nlR⟨𝑟,𝑤 ′, _, _⟩ ∉ 𝜋 , and syntactically we cannot write lR⟨𝑟, _⟩ or
nrR⟨𝑟, _, _, _⟩, so (𝑤 ′, 𝑟) ∉ rf. Similarly, 𝑟 ∈ lR or 𝑟 ∈ nrR only have one antecedent.

• Checking that rf relates events on the same location with matching values:
By syntactic definition of the annotated labels lR, nlR, and nrR, e.g., lR⟨𝑟,𝑤⟩ =⇒ eqloc&v (𝑟,𝑤).

• Checking that mo is a union of strict total orders for writes on each variables:
By definition of mo, given that we have complete(𝜋), e.g., if lW⟨𝑤⟩ ∈ 𝜋 then B⟨𝑤⟩ ∈ 𝜋 .

• Checking that pf ⊆ po ∩ sqp:
If (𝑤, 𝑝) ∈ pf with 𝑤 ∈ nlW (resp. nrW), then we have nlW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩. There is 𝜆 such
that 𝜆 generates𝑤 in 𝜋 , and we have 𝜆 ≺𝜋 nlW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩. Also, 𝑡 (𝑝) = 𝑡 (𝑤) and
𝑛(𝑝) = 𝑛(𝑒) = 𝑛(𝑤), so we have (𝑤, 𝑝) ∈ po and (𝑤, 𝑝) ∈ sqp.

• Checking that pf is functional on its domain:
If (𝑤, 𝑝) ∈ pf with𝑤 ∈ nlW (resp. nrW), then we have nlW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩. From nodup(𝜋),
for all 𝑝′ ≠ 𝑝 we have P⟨𝑝, 𝑒⟩ ∉ 𝜋 , so𝑤 has at most one image.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:58 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

• Checking that pf is total and functional on its range:
If 𝑝 ∈ Event, then there is 𝑒 ∈ nlEX (resp. nrEX) such that P⟨𝑝, 𝑒⟩ ∈ 𝜋 . From backComp(𝜋)
there is 𝑤 ∈ nlW (resp. nrW) such that nlW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩, and so (𝑤, 𝑝) ∈ pf. From
nodup(𝜋), 𝑒 cannot be used in another nlW (resp. nrW) annotated label, and 𝑝 has exactly one
antecedent.

• Check that for all (𝑎, 𝑏) ∈ sqp, 𝑎 ∈ nrR, 𝑏 ∈ nrW, (resp. nlR/nlW) then (𝑎, 𝑏) ∈ nfo ∪ nfo
−1:

By definition of nfo, given that bufFlushOrd(𝜋) forbids the interleaving nrW⟨𝑤, _⟩ ≺𝜋

nrR⟨𝑟, _, _, _⟩ ≺𝜋 B⟨𝑤⟩ (resp. nlW and nlR) when sameqp(𝑟,𝑤).
For the well-formedness conditions:
(1) Let us assume (𝑤1,𝑤2) ∈ po∩sqp and (𝑤2, 𝑝2) ∈ pf. The three events are on the same thread

and queue pair.
If𝑤1 ∈ nlW, then by complete(𝜋) there is a chain Push⟨𝑎1⟩ ≺𝜋 NIC⟨𝑎1⟩ ≺𝜋 nrR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋

nlW⟨𝑤1, 𝑒1⟩; if𝑤1 ∈ nrW, there is instead a chain Push⟨𝑎1⟩ ≺𝜋 NIC⟨𝑎1⟩ ≺𝜋 nlR⟨_, _, 𝑎1,𝑤1⟩ ≺𝜋

nrW⟨𝑤1, 𝑒1⟩ ≺𝜋 CN⟨𝑒1⟩. Similarly there is a chain for𝑤2. By (𝑤1,𝑤2) ∈ powehave Push⟨𝑎1⟩ ≺𝜋

Push⟨𝑎2⟩, and by bufFlushOrd(𝜋) we have NIC⟨𝑎1⟩ ≺𝜋 NIC⟨𝑎2⟩.
Let us call 𝜆1 the last annotated label on the chain for𝑤1, i.e., either nlW⟨𝑤1, 𝑒1⟩ or CN⟨𝑒1⟩.
Similarly, 𝜆2 is the last annotated label on the chain for𝑤2. There is four cases to consider,
but in all four nicActOrder(𝜋) implies 𝜆1 ≺𝜋 𝜆2.
Then, from pollOrder(𝜋), there is 𝑝1 such that P⟨𝑝1, 𝑒1⟩ ≺𝜋 P⟨𝑝2, 𝑒2⟩. By definitions, we have
both (𝑤1, 𝑝1) ∈ pf and (𝑝1, 𝑝2) ∈ po.

(2) If 𝑟 ∈ nlR, then there is𝑤 ∈ nrW (taken from nlR⟨𝑟, _, _,𝑤⟩) such that (𝑟,𝑤) ∈ po|imm. This is
by the last case of definition of po, since there is 𝜆𝑎 such that we have both 𝜆𝑎 generates 𝑟 in 𝜋

and 𝜆𝑎 generates𝑤 in 𝜋 .
Similarly for nrR/nlW, nrW/nlR, and nlW/nrR.

(3) If (𝑟,𝑤) ∈ po|imm, type(𝑟) ∈ {nlR, nrR}, and type(𝑤) ∈ {nlW, nrW}, then (𝑟,𝑤) ∈ po comes
from the last case of the definition of po, and we have either nlR⟨𝑟, _, _,𝑤⟩ or nrR⟨𝑟, _, _,𝑤⟩
in 𝜋 . In both cases, we have 𝑣r (𝑟) = 𝑣w (𝑤) by syntactic definition of the annotated labels.

□

Lemma D.4. OB; [Inst] ⊆ IB and [Inst]; IB ⊆ OB.

Proof. If (𝑒1, 𝑒2) ∈ OB; [Inst], then getO𝜆(𝑒1, 𝜋) ≺𝜋 getO𝜆(𝑒2, 𝜋) = getI𝜆(𝑒2, 𝜋).
• If 𝑒1 ∈ Inst, then getO𝜆(𝑒1, 𝜋) = getI𝜆(𝑒1, 𝜋), so we have getI𝜆(𝑒1, 𝜋) ≺𝜋 getI𝜆(𝑒2, 𝜋) and
(𝑒1, 𝑒2) ∈ IB.

• If 𝑒1 ∈ {lW, nlW, nrW}, there is 𝜆 such that type(𝜆) ∈ {lW, nlW, nrW}, getA(𝜆) = 𝑒1, and
getI𝜆(𝑒1, 𝜋) = 𝜆 ≺𝜋 B⟨𝑒1⟩ = getO𝜆(𝑒1, 𝜋). By transitivity we again have getI𝜆(𝑒1, 𝜋) ≺𝜋

getI𝜆(𝑒2, 𝜋) and (𝑒1, 𝑒2) ∈ IB.
With a similar reasoning, we can see that [Inst]; IB ⊆ OB.

□

Theorem D.5. getEG(𝜋) is consistent.

Proof. From Definition C.4, we need to check that both ib and ob are irreflexive. Note that we
still use the recursive definition given in Appendix C.4. Since IB and OB are irreflexive, it is enough
to show that ib ⊆ IB and ob ⊆ OB.
The explicit definition using limits is the following (where rf

b
≜ (rf \ rfb) includes (rf ∩ sqp)

since we assume the PCIe guarantees hold):

ib
0 ≜ (ippo ∪ rf ∪ pf ∪ rbb ∪ nfo)+

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:59

ob
0 ≜

(
oppo ∪ rf

b
∪ [nlW]; pf ∪ rb ∪ nfo ∪ mo

)+
ib

𝑛+1 ≜ (ib𝑛 ∪ ob
𝑛 ; [Inst])+

ob
𝑛+1 ≜ (ob𝑛 ∪ [Inst]; ib𝑛)+

ib ≜ lim
𝑛→∞

ib
𝑛

ob ≜ lim
𝑛→∞

ob
𝑛

It is then enough to show that ib0 ⊆ IB and ob
0 ⊆ OB. Using Lemma D.4 above, we can check

the induction case:

ib
𝑛+1 = (ib𝑛 ∪ ob

𝑛 ; [Inst])+ ⊆ (ib𝑛 ∪OB; [Inst])+ ⊆ (IB ∪ IB)+ = IB

ob
𝑛+1 = (ob𝑛 ∪ [Inst]; ib𝑛)+ ⊆ (ob𝑛 ∪ [Inst]; IB)+ ⊆ (OB ∪OB)+ = OB

Since IB and OB are transitive, we need to check the components of ib0 and ob0. There is eleven
cases to verify.

• Checking ippo ⊆ IB.
Let 𝐸cpu = {lR, lW, CAS, F, P} and 𝐸nic = {nlR, nrR, nlW, nrW, nF}. [𝐸cpu]; po ⊆ IB by definition
of po and IB: 𝐸cpu are the events for which the same annotated label is used to define po and
IB, i.e., ∀𝑒 ∈ 𝐸cpu, getI𝜆(𝑒, 𝜋) generates 𝑒 in 𝜋 .
To check that [𝐸nic]; ippo; [𝐸nic] ⊆ IB, there is 18 cases to consider. They are all trivially
satisfied by nicActOrder(𝜋).

• Checking oppo ⊆ OB.
From above we have [Inst]; oppo ⊆ [Inst]; ippo ⊆ [Inst]; IB ⊆ OB.
[lW]; po; [Event \ (lR ∪ P)] ⊆ OB by using bufFlushOrd(𝜋).
For the remaining four cases:

(I9) [nlW]; (po ∩ sqp); [nlW] ⊆ OB comes from nicActOrder(𝜋) (i.e., nlW⟨. . .⟩ ≺𝜋 nlW⟨. . .⟩)
and bufFlushOrd(𝜋) (i.e., B⟨. . .⟩ ≺𝜋 B⟨. . .⟩).

(G7) [nrW]; (po ∩ sqp); [nrW] ⊆ OB comes from nicActOrder(𝜋) (i.e., nrW⟨. . .⟩ ≺𝜋 nrW⟨. . .⟩)
and bufFlushOrd(𝜋) (i.e., B⟨. . .⟩ ≺𝜋 B⟨. . .⟩).

(G8) [nrW]; (po ∩ sqp); [nrR] ⊆ OB comes from nicActOrder(𝜋) (i.e., nrW⟨. . .⟩ ≺𝜋 nrR⟨. . .⟩)
and bufFlushOrd(𝜋) (i.e., nrW⟨. . .⟩ ≺𝜋 B⟨. . .⟩ ≺𝜋 nrR⟨. . .⟩).

(G9) If 𝑒1 ∈ nrW, 𝑒3 ∈ nlW, and (𝑒1, 𝑒3) ∈ (po∩sqp), then from Def. 4.3 there is 𝑒2 ∈ nrR such that
(𝑒2, 𝑒3) ∈ po|imm and thus (𝑒1, 𝑒2) ∈ (po∩ sqp). From case G8 above, we have (𝑒1, 𝑒2) ∈ OB.
From backComp(𝜋), we have (𝑒2, 𝑒3) ∈ [Inst]; IB ⊆ OB. Thus [nrW]; (po∩ sqp); [nlW] ⊆
OB.

• Checking rf
b
⊆ OB.

If (𝑤, 𝑟) ∈ rf
b
, there is 𝜋1 and 𝜋2 such that 𝜋 = 𝜋2 · getO𝜆(𝑟, 𝜋) · 𝜋1, and we use wfrd(𝜋).

– If 𝑟 ∈ lR, we have wfrdCPU(𝑟,𝑤, 𝜋1). The definition allow for three different cases. In
the first case, 𝜆 ∈ {B⟨𝑤⟩, CAS⟨𝑤, _⟩} is in 𝜋1; we have 𝜆 = getO𝜆(𝑤, 𝜋) ≺𝜋 getO𝜆(𝑟, 𝜋)
and so (𝑤, 𝑟) ∈ OB. In the second case, we have 𝜆 = lW⟨𝑤⟩ and 𝑡 (𝑤) = 𝑡 (𝑟); so (𝑤, 𝑟) ∈
[lW]; (rf ∩ sthd); [lR] = rfb, which contradicts (𝑤, 𝑟) ∈ rf

b
= rf \ rfb. In the third case,

𝑤 = 𝑖𝑛𝑖𝑡𝑥 for some location 𝑥 , so (𝑤, 𝑟) ∈ Event0 × (Event \ Event0) ⊆ OB.
– If 𝑟 ∈ CAS, similarly to above, except the second case of wfrdCPU(𝑟,𝑤, 𝜋1) is not possible
because of bufFlushOrd(𝜋): B⟨𝑤⟩ ∉ 𝜋1 while CAS acts as a memory fence.

– If 𝑟 ∈ nlR, we have wfrdNIC(𝑟,𝑤, 𝜋1), with two possibilities. In the first case, 𝜆 ∈
{B⟨𝑤⟩, CAS⟨𝑤, _⟩} is in 𝜋1; we have 𝜆 = getO𝜆(𝑤, 𝜋) ≺𝜋 getO𝜆(𝑟, 𝜋) and so (𝑤, 𝑟) ∈ OB. In
the second case,𝑤 = 𝑖𝑛𝑖𝑡𝑥 for some location 𝑥 , so (𝑤, 𝑟) ∈ Event0 × (Event \Event0) ⊆ OB.

– If 𝑟 ∈ nrR, similarly to above.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:60 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

• Checking rf ⊆ IB.
From above we have rf

b
= rf

b
; [Inst] ⊆ OB; [Inst] ⊆ IB.

If (𝑤, 𝑟) ∈ rfb ⊆ [lW]; rf; [lR], then there is lR⟨𝑟,𝑤⟩ ∈ 𝜋 . There is 𝜋1 and 𝜋2 such that 𝜋 =

𝜋2 ·lR⟨𝑟,𝑤⟩ ·𝜋1. So bywfrd(𝜋) we havewfrdCPU(𝑟,𝑤, 𝜋1) which implies lW⟨𝑤⟩ ≺𝜋 lR⟨𝑟,𝑤⟩
and (𝑤, 𝑟) ∈ IB.

• Checking [nlW]; pf ⊆ OB.
If (𝑤, 𝑝) ∈ pf with 𝑤 ∈ nlW, then there exists 𝑒 such that nlW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩. From
backComp(𝜋), we have nlW⟨𝑤, 𝑒⟩ ≺𝜋 B⟨𝑤⟩ ≺𝜋 P⟨𝑝, 𝑒⟩ and so (𝑤, 𝑝) ∈ OB.

• Checking pf ⊆ IB.
If (𝑤, 𝑝) ∈ pf, then there exists 𝑒 such that either nlW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩ or nrW⟨𝑤, 𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩.
In both cases we immediately have (𝑤, 𝑝) ∈ IB.

• Checking rbb ⊆ IB.
If (𝑟,𝑤 ′) ∈ rbb then 𝑟 ∈ lR, 𝑤 ′ ∈ lW, 𝑡 (𝑟) = 𝑡 (𝑤 ′), and there exists 𝑤 such that (𝑤, 𝑟) ∈ rf

and (𝑤,𝑤 ′) ∈ mo. There is 𝜋4 and 𝜋3 such that 𝜋 = 𝜋4 · lR⟨𝑟,𝑤⟩ · 𝜋3. So by wfrd(𝜋) we have
wfrdCPU(𝑟,𝑤, 𝜋3), and there is three cases to consider.
– In the first case, 𝜋3 = 𝜋2 · 𝜆𝑤 · 𝜋1, with 𝜆𝑤 ∈ {B⟨𝑤⟩, CAS⟨𝑤, _⟩}, and B⟨𝑤 ′⟩ ∉ 𝜋2. Since
(𝑤,𝑤 ′) ∈ mo we have B⟨𝑤 ′⟩ ∉ 𝜋1, an so B⟨𝑤 ′⟩ ∉ 𝜋3. The last condition of the first case
then gives us lW⟨𝑤 ′⟩ ∉ 𝜋3, which implies (𝑟,𝑤 ′) ∈ IB.

– In the second case, 𝜋3 = 𝜋2·𝜆𝑤 ·𝜋1, with 𝜆𝑤 = lW⟨𝑤⟩, thread(𝑤) = thread(𝑟), andB⟨𝑤⟩ ∉ 𝜋3.
Then 𝑤 and 𝑤 ′ are on the same thread, and by bufFlushOrd(𝜋) and (𝑤,𝑤 ′) ∈ mo we
have lW⟨𝑤⟩ ≺𝜋 lW⟨𝑤 ′⟩ and lW⟨𝑤 ′⟩ ∉ 𝜋1. The last condition of the second case gives us
lW⟨𝑤 ′⟩ ∉ 𝜋2, so lW⟨𝑤 ′⟩ ∉ 𝜋3 and (𝑟,𝑤 ′) ∈ IB.

– In the last case,𝑤 = 𝑖𝑛𝑖𝑡𝑥 for some location 𝑥 , and we immediately get lW⟨𝑤 ′⟩ ∉ 𝜋3, which
implies (𝑟,𝑤 ′) ∈ IB.

• Checking rb ⊆ OB.
If (𝑟,𝑤 ′) ∈ rb, then there exists𝑤 such that (𝑤, 𝑟) ∈ rf and (𝑤,𝑤 ′) ∈ mo. By definition of rf,
there is𝜋4 and𝜋3 such that𝜋 = 𝜋4·𝜆𝑟 ·𝜋3, with 𝜆𝑟 ∈ {lR⟨𝑟,𝑤⟩, CAS⟨𝑟,𝑤⟩, nlR⟨𝑟,𝑤, _, _⟩, nrR⟨𝑟,𝑤, _, _⟩}.
So by wfrd(𝜋) we have either wfrdNIC(𝑟,𝑤, 𝜋3) or wfrdCPU(𝑟,𝑤, 𝜋3), and there is five cases
to consider.
– In the first case ofwfrdNIC(𝑟,𝑤, 𝜋3), 𝜋3 = 𝜋2 ·getO𝜆(𝑤, 𝜋)·𝜋1, and getO𝜆(𝑤 ′, 𝜋) ∉ 𝜋2. Since
(𝑤,𝑤 ′) ∈ mo we have getO𝜆(𝑤 ′, 𝜋) ∉ 𝜋1, and thus getO𝜆(𝑤 ′, 𝜋) ∉ 𝜋3. So getO𝜆(𝑤 ′, 𝜋) ∈
𝜋4 and (𝑟,𝑤 ′) ∈ OB.

– In the last case wfrdNIC(𝑟,𝑤, 𝜋3),𝑤 = 𝑖𝑛𝑖𝑡𝑥 for some location 𝑥 , and we immediately have
getO𝜆(𝑤 ′, 𝜋) ∉ 𝜋3, which implies (𝑟,𝑤 ′) ∈ OB.

– For the first case of wfrdCPU(𝑟,𝑤, 𝜋3), same reasoning as for the first case of wfrdNIC.
– For the second case of wfrdCPU(𝑟,𝑤, 𝜋3), 𝜋3 = 𝜋2 · getI𝜆(𝑤, 𝜋) · 𝜋1, with thread(𝑤) =

thread(𝑟), and getO𝜆(𝑤, 𝜋) ∉ 𝜋3. So getO𝜆(𝑤, 𝜋) ∈ 𝜋4, and since (𝑤,𝑤 ′) ∈ mo we have
getO𝜆(𝑤 ′, 𝜋) ∈ 𝜋4 as well, and (𝑟,𝑤 ′) ∈ OB.

– For the last case of wfrdCPU(𝑟,𝑤, 𝜋3), same reasoning as for the last case of wfrdNIC.
• Checking nfo ⊆ IB.
By definition of nfo.

• Checking nfo ⊆ OB.
By definition of nfo.

• Checking mo ⊆ OB.
By definition of mo, as what matters are the 𝑖𝑛𝑖𝑡𝑥 , B⟨𝑤⟩, and CAS⟨𝑤, _⟩ events.

□

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:61

D.4 From Declarative Semantics to Annotated Semantics

From a program P and a well-formed consistent execution graph 𝐺 = (Event, po, rf, pf,mo, nfo),
where (Event, po) is generated by P, we want to reconstruct an annotated semantics execution.

Theorem D.6. ib and ob can be extended into total relations IB and OB on Event such that:

• IB and OB are irreflexive and transitive;

• OB; [Inst] ⊆ IB and [Inst]; IB ⊆ OB.

Proof. We show that if ib is not already total we can extend it (and maybe ob) into a strictly
bigger relation satisfying the constraints of the theorem. Let us assume that there is (𝑎, 𝑏) ∈ Event

2

such that (𝑎, 𝑏) ∉ ib and (𝑏, 𝑎) ∉ ib. We arbitrarily decide to include (𝑎, 𝑏) in our relation and we
define ib′ = (ib ∪ {(𝑎, 𝑏)})+ and ob

′ = (ob ∪ [Inst]; ib′)+.
Clearly ib

′ and ob
′ are transitive, ib′ is irreflexive, and [Inst]; ib′ ⊆ ob

′. We need to prove the
following two facts: ob′ is still irreflexive; and ob

′; [Inst] ⊆ ib
′.

First, let us check that (ob ∪ [Inst]; ib′)+ is irreflexive. Since ob and ([Inst]; ib′) are both
transitive and irreflexive, a cycle would only be possible by alternating between the two com-
ponents, so it is enough to show that (ob; ([Inst]; ib′))+ is irreflexive. But (ob; ([Inst]; ib′))+ =

((ob; [Inst]); ib′)+ ⊆ (ib; ib′)+ ⊆ ib
′ is irreflexive. Thus ob′ is irreflexive.

Then, we need to check that ob′; [Inst] ⊆ ib
′. Using some rewriting, ob′ = (ob∪ [Inst]; ib′)+ =

ob ∪ (ob∗; ([Inst]; ib′))+; ob∗. We know ob; [Inst] ⊆ ib
′, which also implies ob∗; [Inst] ⊆ ib

′∗.
So ob

′; [Inst] = ob; [Inst] ∪ ((ob∗; [Inst]); ib′)+; (ob∗; [Inst]) ⊆ ib
′ ∪ (ib′∗; ib′)+; ib′∗ ⊆ ib

′.
Once ib is a total relation on Event, we can similarly freely extend ob into a total relation. □

We use Theorem D.6 above to extend ib and ob into total relations IB and OB.
We use Event to generate new events and some annotated labels. The extended set of events is

noted 𝐸ext.
• For every 𝑟 ∈ lR, from well-formedness conditions, there is 𝑤 such that (𝑤, 𝑟) ∈ rf and
eqloc&v (𝑟,𝑤). We create an annotated label lR⟨𝑟,𝑤⟩.

• For every 𝑢 ∈ CAS, from well-formedness conditions, there is 𝑤 such that (𝑤,𝑢) ∈ rf and
eqloc&v (𝑢,𝑤). We create an annotated label CAS⟨𝑢,𝑤⟩.

• For every𝑤 ∈ lW (that is not an initialisation event), we create annotated labels lW⟨𝑤⟩ and
B⟨𝑤⟩.

• For every 𝑓 ∈ F, we create annotated labels F⟨𝑓 ⟩.
• For every pair 𝑟 ∈ nlR and𝑤 ∈ nrW such that (𝑟,𝑤) ∈ po|imm, we create two events 𝑎 ∈ Put
and 𝑒 ∈ nrEX, and the annotated labels Push⟨𝑎⟩, NIC⟨𝑎⟩, nlR⟨𝑟,𝑤 ′, 𝑎,𝑤⟩ (where (𝑤 ′, 𝑟) ∈ rf),
nrW⟨𝑤, 𝑒⟩, B⟨𝑤⟩, and CN⟨𝑒⟩. If there is 𝑝 such that (𝑤, 𝑝) ∈ pf, we also create an annotated
label P⟨𝑝, 𝑒⟩. To simplify later definition, we also extend po such that the event 𝑎 is placed just
before 𝑟 , and 𝑒 just after𝑤 . I.e., let po′ = po∪ {(𝑒′, 𝑎) | (𝑒′, 𝑟) ∈ po} ∪ {(𝑎, 𝑒′) | (𝑟, 𝑒′) ∈ po

∗}
and redefine po = po

′ ∪ {(𝑒′, 𝑒) | (𝑒,𝑤) ∈ po
′∗} ∪ {(𝑒, 𝑒′) | (𝑤, 𝑒) ∈ po

′}.
Note: from well-formedness conditions, every nlR and every nrW are part of such a pair.

• Similarly for nrR/nlW, we create 𝑎 ∈ Get, 𝑒 ∈ nlEX, Push⟨𝑎⟩, NIC⟨𝑎⟩, nrR⟨. . .⟩, nlW⟨. . .⟩,
B⟨. . .⟩, and potentially P⟨. . .⟩.

• For every 𝑓 ∈ nF, we create the annotated labels Push⟨𝑓 ⟩, NIC⟨𝑓 ⟩, and nF⟨𝑓 ⟩.
Then, we use IB and OB to reconstruct a partial path from these annotated labels. We define a

path 𝜋0 such that:
• 𝜋0 ∈ (ALabel \ (Push ∪ NIC ∪ CN))∗
• getI𝜆(𝑒1, 𝜋0) ≺𝜋0 getI𝜆(𝑒2, 𝜋0) ⇐⇒ (𝑒1, 𝑒2) ∈ IB

• getO𝜆(𝑒1, 𝜋0) ≺𝜋0 getO𝜆(𝑒2, 𝜋0) ⇐⇒ (𝑒1, 𝑒2) ∈ OB

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:62 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

• ∀𝑤,𝑤 ′ ∈ {lW, nlW, nrW}, getI𝜆(𝑤, 𝜋0) ≺𝜋0 getO𝜆(𝑤 ′, 𝜋0)
This is possible from the properties of IB and OB. For pairs of annotated labels not ordered by IB

or OB, we decide to order lW⟨𝑤⟩/nlW⟨𝑤, _⟩/nrW⟨𝑤, _⟩ first and B⟨𝑤⟩ last. Note that the annotated
labels Push⟨. . .⟩, NIC⟨. . .⟩, and CN⟨. . .⟩ not covered by IB/OB are not yet integrated in 𝜋0.

Then we extend 𝜋0 to add annotated labels not considered by the declarative semantics. We use
the following extension function that introduces a new annotated label as early as possible after a
set of dependencies.

extend(𝜋, 𝜆, 𝑆) ≜
{
𝜋2 · 𝜆 · 𝜆′ · 𝜋1 if 𝜋 = 𝜋2 · 𝜆′ · 𝜋1 ∧ 𝜆′ ∈ 𝑆 ∧ 𝜋2 ∩ 𝑆 = ∅
𝜋 · 𝜆 if 𝜋 ∩ 𝑆 = ∅

We define a new function to recover the first annotated label corresponding to an event:
𝐸ext ≜ Event ∪ (Get ∪ Put ∪ nlEX ∪ nrEX)

getCPU : 𝐸ext ⇀ ALabel

getCPU(𝑒) ≜


getI𝜆(𝑒, 𝜋0) if 𝑒 ∈ 𝐸cpu = {lR, lW, CAS, F, P}
Push⟨𝑒⟩ if 𝑒 ∈ {Put, Get, nF}
undefined otherwise

And a similar function for events emptying a CPU buffer:
getTSO : 𝐸ext ⇀ ALabel

getTSO(𝑒) ≜


B⟨𝑒⟩ if 𝑒 ∈ lW

NIC⟨𝑒⟩ if 𝑒 ∈ {Put, Get, nF}
undefined otherwise

Let us consider (𝑎1, . . . , 𝑎𝑛) = Event ∩ {Put, Get, nF} in po order, i.e., if 𝑖 < 𝑗 then (𝑎 𝑗 , 𝑎𝑖) ∉ po.
We extend 𝜋0 successively until we get 𝜋𝑛 :

• We introduce Push as early as possible:
Let 𝜋 ′ = extend(𝜋𝑖−1, Push⟨𝑎𝑖⟩, {getCPU(𝑒) | (𝑒, 𝑎𝑖) ∈ po})

• We introduce NIC as early as possible:
Let 𝜋 ′′ = extend(𝜋 ′, NIC⟨𝑎𝑖⟩, {Push⟨𝑎𝑖⟩} ∪ {getTSO(𝑒) | (𝑒, 𝑎𝑖) ∈ po})

• If 𝑎𝑖 ∈ Put, there is 𝑒𝑖 ∈ nrEX such that nlR⟨_, _, 𝑎𝑖 ,𝑤⟩ ≺𝜋0 nrW⟨𝑤, 𝑒𝑖⟩. We also introduce
CN: Let 𝑆 = {nrW⟨𝑤, 𝑒𝑖⟩}∪{nlW⟨_, 𝑒⟩ | (𝑒, 𝑒𝑖) ∈ po ∩ sqp}∪{CN⟨𝑒⟩ | (𝑒, 𝑒𝑖) ∈ po ∩ sqp}, we
pose 𝜋𝑖 = extend(𝜋 ′′,CN⟨𝑒𝑖⟩, 𝑆).
Otherwise, i.e. 𝑎𝑖 ∉ Put, we simply have 𝜋𝑖 = 𝜋 ′′

Finally, 𝜋 = 𝜋𝑛 is our path for an annotated semantics reduction. We clearly have complete(𝜋)
by definition. Our goal is then to prove that wfp(𝜋) holds. It is composed of six properties. Note
that we already have the existence of the relevant annotated labels, and we need to show that the
ordering constraints are respected.

nodup

nodup(𝜋) directly comes from the definition of annotated labels. There is no conflict in event
usage.

backComp

Here are a couple lemmas showing that the new annotated labels are not placed too late and do
not disturb the expected ordering.

LemmaD.7. For all𝑎 ∈ {Put, Get, nF} and𝑏 ∈ Event, if (𝑎, 𝑏) ∈ po
∗
, then Push⟨𝑎⟩ ≺𝜋 getI𝜆(𝑏, 𝜋0).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:63

Proof. We take an arbitrary 𝑏, and proceed for 𝑎 in po order, i.e., we can assume it holds
for 𝑒 ∈ {Put, Get, nF} such that (𝑒, 𝑎) ∈ po. By definition, Push⟨𝑎⟩ comes from an extension
𝜋 ′′ = extend(𝜋 ′, Push⟨𝑎⟩, {getCPU(𝑒) | (𝑒, 𝑎) ∈ po}) and has been placed either first—and the
result is trivial—or just after some getCPU(𝑒) with (𝑒, 𝑎) ∈ po. If 𝑒 ∈ {Put, Get, nF}, we have
Push⟨𝑒⟩ ≺𝜋 ′′ Push⟨𝑎⟩ ≺𝜋 ′′ getI𝜆(𝑏, 𝜋0) by induction hypothesis. If 𝑒 ∈ 𝐸cpu = {lR, lW, CAS, F, P},
we have getI𝜆(𝑒, 𝜋0) ≺𝜋 ′′ Push⟨𝑎⟩ ≺𝜋 ′′ getI𝜆(𝑏, 𝜋0) since (𝑒, 𝑏) ∈ ippo ⊆ IB. □

Lemma D.8. ∀𝑎 ∈ {Put, Get, nF}, ∀𝑏 ∈ {nF, nrR, nlR, lW}, if (𝑎, 𝑏) ∈ po
∗
, then NIC⟨𝑎⟩ ≺𝜋

getO𝜆(𝑏, 𝜋0).
Proof. We take an arbitrary 𝑏 ∈ {nF, nrR, nlR}, and proceed for 𝑎 in po order, i.e., we can assume

it holds for 𝑒 ∈ {Put, Get, nF} such that (𝑒, 𝑎) ∈ po. By definition, NIC⟨𝑎⟩ comes from an extension
𝜋 ′′ = extend(𝜋 ′, NIC⟨𝑎⟩, 𝑆), with 𝑆 = {Push⟨𝑎⟩} ∪ {getTSO(𝑒) | (𝑒, 𝑎) ∈ po}, and has been placed
just after some 𝜆 ∈ 𝑆 .

• If 𝜆 = Push⟨𝑎⟩, then we have 𝜆 ≺𝜋 ′′ NIC⟨𝑎⟩ ≺𝜋 ′′ getO𝜆(𝑏, 𝜋0) using Lemma D.7 above, since
getI𝜆(𝑏, 𝜋0) = getO𝜆(𝑏, 𝜋0).

• If 𝜆 = getTSO⟨𝑒⟩ = NIC⟨𝑒⟩ for some 𝑒 ∈ {Put, Get, nF}, then we have 𝜆 ≺𝜋 ′′ NIC⟨𝑎⟩ ≺𝜋 ′′

getO𝜆(𝑏, 𝜋0) by induction hypothesis.
• If 𝜆 = getTSO⟨𝑒⟩ = B⟨𝑒⟩ for some 𝑒 ∈ lW, then we have B⟨𝑒⟩ ≺𝜋 ′′ NIC⟨𝑎⟩ ≺𝜋 ′′ getO𝜆(𝑏, 𝜋0)
since (𝑒, 𝑏) ∈ oppo ⊆ OB.

□

Lemma D.9. Forall𝑤 ,𝑒 ,𝑝 , if nrW⟨𝑤, 𝑒⟩ ∈ 𝜋 and P⟨𝑝, 𝑒⟩ ∈ 𝜋 , then CN⟨𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩.
Proof. Once again, we proceed for 𝑒 in po order, i.e., we can assume the result holds for 𝑒′ ∈ nrEX

such that (𝑒′, 𝑒) ∈ po. CN⟨𝑒⟩ is inserted in some operation 𝜋 ′′ = extend(𝜋 ′,CN⟨𝑒⟩, 𝑆), with
𝑆 = {nrW⟨𝑤, 𝑒⟩} ∪ {nlW⟨_, 𝑒′⟩ | (𝑒′, 𝑒) ∈ po ∩ sqp}∪ {CN⟨𝑒′⟩ | (𝑒′, 𝑒) ∈ po ∩ sqp}. It is then placed
just after some label 𝜆 ∈ 𝑆 .

• If 𝜆 = nrW⟨𝑤, 𝑒⟩, we have 𝜆 ≺𝜋 ′′ CN⟨𝑒⟩ ≺𝜋 ′′ P⟨𝑝, 𝑒⟩ because (𝑤, 𝑝) ∈ pf ⊆ IB.
• If 𝜆 = CN⟨𝑒′⟩ with (𝑒′, 𝑒) ∈ po ∩ sqp, then there is some 𝑤 ′ such that (𝑤 ′,𝑤) ∈ po ∩ sqp
and nrW⟨𝑤 ′, 𝑒′⟩ ∈ 𝜋 ′. From well-formedness condition number 5 (see Definition 4.3), there
is some 𝑝′ such that (𝑤 ′, 𝑝′) ∈ pf and (𝑝′, 𝑝) ∈ po. By induction hypothesis, we have
CN⟨𝑒′⟩ ≺𝜋 ′ P⟨𝑝′, 𝑒′⟩, and from (𝑝′, 𝑝) ∈ IB we have P⟨𝑝′, 𝑒′⟩ ≺𝜋 ′ P⟨𝑝, 𝑒⟩. In the end, we have
the result CN⟨𝑒′⟩ ≺𝜋 ′′ CN⟨𝑒⟩ ≺𝜋 ′′ P⟨𝑝, 𝑒⟩.

• If 𝜆 = nlW⟨𝑤 ′, 𝑒′⟩ with (𝑒′, 𝑒) ∈ po∩ sqp, then we also have (𝑤 ′,𝑤) ∈ po∩ sqp, so from well-
formedness condition number 5 (see Definition 4.3), there is some 𝑝′ such that (𝑤 ′, 𝑝′) ∈ pf

and (𝑝′, 𝑝) ∈ po. We have nlW⟨𝑤 ′, 𝑒′⟩ ≺𝜋 ′′ CN⟨𝑒⟩ ≺𝜋 ′′ P⟨𝑝′, 𝑒′⟩ ≺𝜋 ′′ P⟨𝑝, 𝑒⟩.
□

We can then check that we have backComp(𝜋):
• lW⟨𝑤⟩ ≺𝜋 B⟨𝑤⟩ comes from the third property when defining 𝜋0; similarly for nlW and nrW.
• Push⟨𝑎⟩ ≺𝜋 NIC⟨𝑎⟩ comes from the extension process.
• NIC⟨𝑓 ⟩ ≺𝜋 nF⟨𝑓 ⟩ comes from Lemma D.8; similarly for NIC⟨𝑎⟩ ≺𝜋 nlR/nrR⟨. . .⟩.
• nlR⟨𝑟,𝑤, 𝑎,𝑤 ′⟩ ≺𝜋 nrW⟨𝑤 ′, 𝑒⟩ comes from (𝑟,𝑤 ′) ∈ ippo ⊆ IB; similarly for nrR/nlW.
• nrW⟨𝑤, 𝑒⟩ ≺𝜋 CN⟨𝑒⟩ comes from the extension process
• nlW⟨𝑤, 𝑒⟩ ≺𝜋 B⟨𝑤⟩ ≺𝜋 P⟨𝑝, 𝑒⟩ comes from (𝑤, 𝑝) ∈ [nlW]; pf ⊆ OB.
• CN⟨𝑒⟩ ≺𝜋 P⟨𝑝, 𝑒⟩ comes from Lemma D.9.

Thus we have backComp(𝜋).

bufFlushOrd

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:64 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

• lW⟨𝑤1⟩ ≺𝜋 lW⟨𝑤2⟩ ⇐⇒ B⟨𝑤1⟩ ≺𝜋 B⟨𝑤2⟩ when 𝑡 (𝑤1) = 𝑡 (𝑤2) comes the fact that
[lW]; po; [lW] ⊆ (IB ∪OB), so both sides are true if and only if (𝑤1,𝑤2) ∈ po; similarly for
nlW and nrW on the same queue pair.

• When 𝑡 (𝑎1) = 𝑡 (𝑎2), Push⟨𝑎1⟩ ≺𝜋 Push⟨𝑎2⟩ ⇐⇒ NIC⟨𝑎1⟩ ≺𝜋 NIC⟨𝑎2⟩ ⇐⇒ (𝑎1, 𝑎2) ∈ po

from the definition of the extension process (to define 𝜋𝑛).
• For 𝑎 ∈ {Put, Get, nF},𝑤 ∈ lW, such that 𝑡 (𝑎) = 𝑡 (𝑤):
– If (𝑤, 𝑎) ∈ po, then lW⟨𝑤⟩ ≺𝜋 Push⟨𝑎⟩ and B⟨𝑤⟩ ≺𝜋 NIC⟨𝑎⟩ from the definition of the
extension process.

– If (𝑎,𝑤) ∈ po, then Push⟨𝑎⟩ ≺𝜋 lW⟨𝑤⟩ and NIC⟨𝑎⟩ ≺𝜋 B⟨𝑤⟩ from Lemmas D.7 and D.8.
• When 𝑡 (𝑤) = 𝑡 (𝑓), lW⟨𝑤⟩ ≺𝜋 F⟨𝑓 ⟩ implies (𝑤, 𝑓) ∈ po (since [F]; po; [lW] ⊆ ippo ⊆ IB),
which implies B⟨𝑤⟩ ≺𝜋 F⟨𝑓 ⟩ (since [lW]; po; [F] ⊆ oppo ⊆ OB); similarly for CAS.

• If 𝑤 ∈ nlW, 𝑟 ∈ nlR, and sameqp(𝑤, 𝑟), then from well-formedness condition number 8
(see Definition 4.3), either (𝑤, 𝑟) ∈ nfo or (𝑟,𝑤) ∈ nfo. If nlW⟨𝑤, _⟩ ≺𝜋 nlR⟨𝑟, _, _, _⟩, then
(𝑟,𝑤) ∉ nfo (since nfo ⊆ IB) and (𝑤, 𝑟) ∈ nfo. Thus, B⟨𝑤⟩ ≺𝜋 nlR⟨𝑟, _, _, _⟩ (since nfo ⊆ OB);
similarly for nrW/nrR.

Thus we have bufFlushOrd(𝜋).

pollOrder

Lemma D.10. For all 𝑒1, 𝑒2 ∈ {nlEX, nrEX}, such that sameqp(𝑒1, 𝑒2), let 𝜆1 ∈ {nlW⟨_, 𝑒1⟩,CN⟨𝑒1⟩},
𝜆2 ∈ {nlW⟨_, 𝑒2⟩,CN⟨𝑒2⟩}, then (𝑒1, 𝑒2) ∈ po ⇐⇒ 𝜆1 ≺𝜋 𝜆2.

Proof. By symmetry, we only need to show (𝑒1, 𝑒2) ∈ po =⇒ 𝜆1 ≺𝜋 𝜆2. Once again, we
proceed for 𝑒1 in po order, i.e., we can assume the result holds for 𝑒′ ∈ nEX such that (𝑒′, 𝑒1) ∈ po.

• If 𝜆1 = nlW⟨𝑤1, 𝑒1⟩ and 𝜆2 = nlW⟨𝑤2, 𝑒2⟩, then (𝑒1, 𝑒2) ∈ po implies (𝑤1,𝑤2) ∈ (po ∩ sqp), so
(𝑤1,𝑤2) ∈ ippo ⊆ IB and 𝜆1 ≺𝜋 𝜆2.

• If 𝜆1 = nlW⟨𝑤1, 𝑒1⟩ and 𝜆2 = CN⟨𝑒2⟩, then by definition of the extension process we have
𝜆1 ≺𝜋 𝜆2.

• If 𝜆1 = CN⟨𝑒1⟩ and 𝜆2 = nlW⟨𝑤2, 𝑒2⟩, then 𝜆1 is inserted in some operation𝜋 ′′ = extend(𝜋 ′,CN⟨𝑒1⟩, 𝑆),
with 𝑆 = {nrW⟨_, 𝑒1⟩} ∪ {nlW⟨_, 𝑒′⟩ | (𝑒′, 𝑒1) ∈ po ∩ sqp} ∪ {CN⟨𝑒′⟩ | (𝑒′, 𝑒1) ∈ po ∩ sqp}. It
is then placed just after some label 𝜆 ∈ 𝑆 .
– If 𝜆 = nrW⟨𝑤1, 𝑒1⟩, we have 𝜆 ≺𝜋 ′′ 𝜆1 ≺𝜋 ′′ 𝜆2 because (𝑤1,𝑤2) ∈ ippo ⊆ IB.
– If 𝜆 = CN⟨𝑒′⟩ or 𝜆 = nlW⟨_, 𝑒′⟩, with (𝑒′, 𝑒1) ∈ po ∩ sqp, then by induction hypothesis
𝜆 ≺𝜋 ′′ 𝜆1 ≺𝜋 ′′ 𝜆2.

• If 𝜆1 = CN⟨𝑒1⟩ and 𝜆2 = CN⟨𝑒2⟩, then by definition of the extension process we have 𝜆1 ≺𝜋 𝜆2.
□

Let us assume we have 𝑒1, 𝑒2, 𝑝2, 𝜆1, 𝜆2 such that sameqp(𝑒1, 𝑒2), 𝜆1 ∈ {nlW⟨_, 𝑒1⟩,CN⟨𝑒1⟩}, 𝜆2 ∈
{nlW⟨_, 𝑒2⟩,CN⟨𝑒2⟩}, 𝜆1 ≺𝜋 𝜆2, and P⟨𝑝2, 𝑒2⟩ ∈ 𝜋 .
From the creation of the events 𝑒1 and 𝑒2, there is some𝑤1,𝑤2 ∈ {nlW, nrW} such that (𝑤𝑖 , 𝑒𝑖) ∈

po|imm. From Lemma D.10, we have (𝑒1, 𝑒2) ∈ po and thus (𝑤1,𝑤2) ∈ (po ∩ sqp). By definition, we
also have (𝑤2, 𝑝2) ∈ pf. From well-formedness condition number 5 (see Definition 4.3), there is
some 𝑝1 such that (𝑤1, 𝑝1) ∈ pf and (𝑝1, 𝑝2) ∈ po. Thus we have P⟨𝑝1, 𝑒1⟩ ≺𝜋 P⟨𝑝2, 𝑒2⟩ as required
to prove pollOrder(𝜋).

nicActOrder

Let 𝑎1 and 𝑎2 such that NIC⟨𝑎1⟩ ≺𝜋 NIC⟨𝑎2⟩ and sameqp(𝑎1, 𝑎2). From the definition of the
extension process, we have (𝑎1, 𝑎2) ∈ po.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:65

• If 𝑎1 ∈ nF or 𝑎2 ∈ nF, then most of the required results hold by definition of ippo. The only
exception is CN⟨𝑒⟩ ≺𝜋 nF⟨𝑎2⟩ which holds (by induction on 𝑒 in po order) because all the
dependencies of CN⟨𝑒⟩ are before nF⟨𝑎2⟩ by ippo.

• If (𝑎1 ∈ Get ∧ 𝑎2 ∈ Get), the result holds by ippo.
• If (𝑎1 ∈ Get ∧ 𝑎2 ∈ Put), the result holds by Lemma D.10.
• If (𝑎1 ∈ Put ∧ 𝑎2 ∈ Get), the first results holds by ippo, the second by Lemma D.10.
• If (𝑎1 ∈ Put ∧ 𝑎2 ∈ Put), the first two results hold by ippo, the last one by Lemma D.10.

Thus we have nicActOrder(𝜋).

wfrd

Let us assumewe have𝜋 = 𝜋4·𝜆𝑟 ·𝜋3, with 𝜆𝑟 ∈ {lR⟨𝑟,𝑤⟩, CAS⟨𝑟,𝑤⟩, nlR⟨𝑟,𝑤, _, _⟩, nrR⟨𝑟,𝑤, _, _⟩}.
In all cases we have (𝑤, 𝑟) ∈ rf. Another important fact is that ∀𝑤 ′, (𝑤,𝑤 ′) ∈ mo =⇒ (𝑟,𝑤 ′) ∈ rb.

• If 𝜆𝑟 = lR⟨𝑟,𝑤⟩, we need to show wfrdCPU(𝑟,𝑤, 𝜋3).
– If𝑤 = 𝑖𝑛𝑖𝑡loc(𝑤) , thenwe need to check that {B⟨𝑤 ′⟩, CAS⟨𝑤 ′, _⟩ ∈ 𝜋3 | loc(𝑤 ′) = loc(𝑟)} =
∅ and {lW⟨𝑤 ′′⟩ ∈ 𝜋3 | loc(𝑤 ′′) = loc(𝑟) ∧ 𝑡 (𝑤 ′′) = 𝑡 (𝑟)} = ∅. For the first, such a 𝑤 ′

would imply (𝑟,𝑤 ′) ∈ rb ⊆ OB, which contradicts the ordering with 𝜆𝑟 . For the second,
such an𝑤 ′′ would imply (𝑟,𝑤 ′′) ∈ rbb ⊆ IB, and 𝜆𝑟 ≺𝜋 lW⟨𝑤 ′′⟩ which similarly contradicts
the ordering with 𝜆𝑟 .

– If𝑤 ∈ lW, 𝑡 (𝑤) = 𝑡 (𝑟), and B⟨𝑤⟩ ∉ 𝜋3. From (𝑤, 𝑟) ∈ rfb ⊆ IB, we have 𝜆𝑤 = lW⟨𝑤⟩ ≺𝜋 𝜆𝑟 ,
i.e.,𝜋3 = 𝜋2·𝜆𝑤 ·𝜋1.We need to show that {lW⟨𝑤 ′⟩ ∈ 𝜋2 | loc(𝑤 ′) = loc(𝑟) ∧ 𝑡 (𝑤 ′) = 𝑡 (𝑟)} =
∅. Such a 𝑤 ′ would imply (𝑤,𝑤 ′) ∈ po (from [lW]; po; [lW] ⊆ ippo ⊆ IB, and the
execution graph forcing either (𝑤,𝑤 ′) ∈ po or (𝑤 ′,𝑤) ∈ po), (𝑤,𝑤 ′) ∈ mo (from
[lW]; po; [lW] ⊆ oppo ⊆ OB, and well-formedness conditions forcing either (𝑤,𝑤 ′) ∈ mo

or (𝑤 ′,𝑤) ∈ mo), and (𝑟,𝑤 ′) ∈ rbb ⊆ IB would contradicts the ordering with 𝜆𝑟 .
– Else we have 𝜆𝑤 ∈ 𝜋3, with 𝜆𝑤 ∈ {B⟨𝑤⟩, CAS⟨𝑤, _⟩}. If𝑤 ∈ lW and 𝑡 (𝑤) = 𝑡 (𝑟), this is the
remaining, else it comes from (𝑤, 𝑟) ∈ rf

b
⊆ OB. Thus we have 𝜋3 = 𝜋2 · 𝜆𝑤 · 𝜋1, and we

need to check two properties. First, we check that
{B⟨𝑤 ′⟩, CAS⟨𝑤 ′, _⟩ ∈ 𝜋2 | loc(𝑤 ′) = loc(𝑟)} = ∅. It holds because such a𝑤 ′ would again
imply (𝑟,𝑤 ′) ∈ rb ⊆ OB and contradict the ordering with 𝜆𝑟 . Second, we check that{
𝑤 ′

���� lW⟨𝑤 ′⟩ ∈ 𝜋3 ∧ B⟨𝑤 ′⟩ ∉ 𝜋3 ∧
loc(𝑤 ′) = loc(𝑟) ∧ 𝑡 (𝑤 ′) = 𝑡 (𝑟)

}
= ∅. It holds because such a 𝑤 ′ would again

imply (𝑤,𝑤 ′) ∈ mo, (𝑟,𝑤 ′) ∈ rbb ⊆ IB and contradict the ordering with 𝜆𝑟 .
• If 𝜆𝑟 = CAS⟨𝑟,𝑤⟩, we similarly check that wfrdCPU(𝑟,𝑤, 𝜋3) holds. The difference is that
cases that previously contradicted (rbb ⊆ IB) now contradict bufFlushOrd(𝜋) that forces the
buffer of 𝑡 (𝑟) to be empty when performing 𝜆𝑟 .

• If 𝜆𝑟 = nlR⟨𝑟,𝑤, _, _⟩, we need to show wfrdNIC(𝑟,𝑤, 𝜋3).
– If𝑤 = 𝑖𝑛𝑖𝑡loc(𝑤) , thenwe need to check that {B⟨𝑤 ′⟩, CAS⟨𝑤 ′, _⟩ ∈ 𝜋3 | loc(𝑤 ′) = loc(𝑟)} =
∅. Such a𝑤 ′ would imply (𝑟,𝑤 ′) ∈ rb ⊆ OB, which contradicts the ordering with 𝜆𝑟 .

– Else we have 𝜆𝑤 ∈ 𝜋3, with 𝜆𝑤 ∈ {B⟨𝑤⟩, CAS⟨𝑤, _⟩}. This comes from (𝑤, 𝑟) ∈ rf
b
⊆ OB.

Thus we have 𝜋3 = 𝜋2 · 𝜆𝑤 · 𝜋1, and we need to check that
{B⟨𝑤 ′⟩, CAS⟨𝑤 ′, _⟩ ∈ 𝜋2 | loc(𝑤 ′) = loc(𝑟)} = ∅. It holds because such a𝑤 ′ would again
imply (𝑟,𝑤 ′) ∈ rb ⊆ OB and contradict the ordering with 𝜆𝑟 .

• If 𝜆𝑟 = nrR⟨𝑟,𝑤, _, _⟩, we similarly check that wfrdNIC(𝑟,𝑤, 𝜋3) for the same reasons.
Thus we have wfrd(𝜋).

Theorem D.11. Let𝐺 be a well-formed consistent execution graph generated from a program P. Let

𝜋 be the path obtained from 𝐺 by the process defined above. Then there isM
′
, QP

′
(such that forall

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:66 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

𝑡, 𝑛 we have QP
′ (𝑡) (𝑛) = ⟨𝜀, 𝜀, nEX∗⟩), and an equivalent path 𝜋 ′

(producing the same outcome as 𝜋)

such that P,M0,B0,QP0, 𝜀 ⇒∗ (𝜆𝑡 .skip),M′,B0,QP
′, 𝜋 ′

.

Proof. From above, we have wf (𝜋). This shows that the program configuration can perform the
events described by the annotated labels of 𝜋 . We need to slightly reorder the path because of failed
CAS operations, as the two events (memory fence and local read) might not be immediately after
each other in 𝜋 , and we delay the memory fence operation in 𝜋 ′ to match the annotated operational
semantics. The remaining part of the proof is simply to check that the command rewritings used
when deriving the execution graph from P (see Fig. 23) can be used as E transitions in the annotated
semantics for P, which follows from the definitions. □

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

Semantics of Remote Direct Memory Access 341:67

D.5 Operational Semantics and Annotated Semantics

We define forgetful functions from annotated configurations to operational configurations. For mem-
ories, we replace the write event by the value written. For labels within annotated configurations,
we drop some arguments to recover the data structure of the operational semantics.

[[·]]M : AMem → Mem

[[M]]M ≜ 𝜆𝑥.𝑣w (M(𝑥))

[[·]]o𝑝 : 𝐸ext ⇀
{
𝑦𝑛 := 𝑥𝑛, 𝑦𝑛 := 𝑣, ackp, 𝑥

𝑛 := 𝑦𝑛, 𝑥𝑛 := 𝑣, cn, rfence 𝑛
}

[[lW(𝑥, 𝑣w)]]o𝑝 ≜ 𝑥 := 𝑣w

[[nrW(𝑦, 𝑣r)]]o𝑝 ≜ 𝑦 := 𝑣r

[[nlW(𝑥, 𝑣w, 𝑛)]]o𝑝 ≜ 𝑥 := 𝑣w

[[nF(𝑛)]]o𝑝 ≜ rfence 𝑛

[[Put(𝑦, 𝑥)]]o𝑝 ≜ 𝑦 := 𝑥

[[Get(𝑥,𝑦)]]o𝑝 ≜ 𝑥 := 𝑦

[[nlEX(𝑛)]]o𝑝 ≜ cn

[[nrEX(𝑛)]]o𝑝 ≜ ackp

[[F]]o𝑝 is undefined
[[P(. . .)]]o𝑝 is undefined

[[lR(. . .)]]o𝑝 is undefined
[[CAS(. . .)]]o𝑝 is undefined
[[nlR(. . .)]]o𝑝 is undefined
[[nrR(. . .)]]o𝑝 is undefined

[[·]]o𝑝𝑙 : 𝐸ext ⇀
{
𝑦𝑛 := 𝑥𝑛, 𝑦𝑛 := 𝑣, 𝑥𝑛 := 𝑦𝑛, 𝑥𝑛 := 𝑣, cn, rfence 𝑛

}
[[𝑙]]o𝑝𝑙 =

{
cn if 𝑙 = nrEX(𝑛)
[[𝑙]]o𝑝 otherwise

The labels that cannot appear in a well-formed annotated configuration are not mapped. For put
operations, the operational semantics uses both (ackp) and (cn) while the annotated semantics
uses the label nrEX, so the mapping is different for labels in wbL.

[[·]]o𝑝 and [[·]]o𝑝𝑙 are extended to lists in an obvious way.

We then extend this to configurations as expected. We overload notations to simplify the formulas.
For qp = ⟨pipe,wbR,wbL⟩ ∈ AQPair, we define [[qp]] ≜ ⟨[[pipe]]o𝑝 , [[wbR]]o𝑝 , [[wbL]]o𝑝𝑙 ⟩.
For QP ∈ AQPMap, we define [[QP]] ≜ 𝜆𝑡 .𝜆𝑛.[[QP(𝑡) (𝑛)]] .
For B ∈ ASBMap, we define [[B]] ≜ 𝜆𝑡 .[[B(𝑡)]]o𝑝 .

Theorem D.12. For all P, P′ ∈ Prog, M,M′ ∈ AMem, B,B′ ∈ ASBMap, QP,QP′ ∈ AQPMap,

𝜋, 𝜋 ′ ∈ Path, if P,M,B,QP, 𝜋 ⇒ P
′,M′,B′,QP′, 𝜋 ′

and wf (M,B,QP, 𝜋), then
P, [[M]]M, [[B]] , [[QP]] , 𝜋 ⇒ P

′, [[M′]]M, [[B′]] , [[QP′]] , 𝜋 ′
.

Proof. By straightforward induction on ⇒. □

Theorem D.13. For all M ∈ AMem, M
′′ ∈ Mem, B ∈ ASBMap, B

′′ ∈ SBMap, QP ∈ AQPMap,

QP
′′ ∈ QPMap, and 𝜋 ∈ Path, if P, [[M]]M, [[B]] , [[QP]] ⇒ P

′,M′′,B′′,QP′′ and wf (M,B,QP, 𝜋),
then there existsM

′ ∈ AMem, B
′ ∈ ASBMap, QP

′ ∈ AQPMap, and 𝜋 ′ ∈ Path such that [[M′]]M =

M
′′
, [[B′]] = B

′′
, [[QP′]] = QP

′′
, and P,M,B,QP, 𝜋 ⇒ P

′,M′,B′,QP′, 𝜋 ′
.

Proof. By straightforward induction on ⇒. In some cases, the reduction enforces a specific
annotated label 𝜆 and we have 𝜋 ′ = 𝜆 · 𝜋 ; we then need wf (M,B,QP, 𝜋) to check that 𝜆 is fresh
enough for 𝜋 . □

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

341:68 Guillaume Ambal, Brijesh Dongol, Haggai Eran, Vasileios Klimis, Ori Lahav, and Azalea Raad

Theorem D.14 (Operational and Annotated Semantics Eqivalence). For all program P.

• [[M0]]M, [[B0]] , and [[QP0]] are the initialisation for the operational semantics;

• If P,M0,B0,QP0, 𝜀 ⇒∗
P
′,M′,B′,QP′, 𝜋 ′

then P, [[M0]]M, [[B0]] , [[QP0]] ⇒∗
P
′, [[M′]]M, [[B′]] , [[QP′]]

• If P, [[M0]]M, [[B0]] , [[QP0]] ⇒∗
P
′,M′′,B′′,QP′′ then there existsM′ ∈ AMem,B

′ ∈ ASBMap,

QP
′ ∈ AQPMap, and 𝜋 ′ ∈ Path such that [[M′]]M = M

′′
, [[B′]] = B

′′
, [[QP′]] = QP

′′
, and

P,M0,B0,QP0, 𝜀 ⇒∗
P
′,M′,B′,QP′, 𝜋 ′

.

Proof. The first point comes from unfolding the definitions. The other two are proved by
straightforward induction on⇒∗ and using Theorems D.12 and D.13. The conditionwf (M,B,QP, 𝜋)
is obtained by applying Theorem D.2 when needed. □

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 341. Publication date: October 2024.

	Abstract
	1 Introduction
	2 Overview
	3 rdmatso Concrete and Simplified Operational Semantics
	3.1 rdmatso Concrete Operational Semantics at a Glance
	3.2 rdmatso Concrete Operational Semantics
	3.3 rdmatso Simplified Operational Semantics

	4 rdmatso Declarative Semantics
	5 Validating the rdmatso Model
	6 Related and Future Work
	Acknowledgments
	References
	A Litmus Tests
	A.1 Limitations of Experimental Behaviours
	A.2 Single-Threaded
	A.3 Message Passing
	A.4 Store Buffering
	A.5 Load Buffering
	A.6 Independent Reads of Independent Writes
	A.7 2+2W
	A.8 Reordering different QP same node
	A.9 Read From Future
	A.10 coreRMA comparison
	A.11 Observing pending writes in and
	A.12 Propensity of weak behaviours

	B Simplified Operational Semantics
	B.1 Definitions
	B.2 Equivalence Proof

	C Appendix to the Declarative Semantics
	C.1 Example Execution Graph
	C.2 Event Sequence Construction
	C.3 Extension of TSO Declarative Semantics
	C.4 Equivalent Declarative Semantics
	C.5 Counter-example without explicit NIC buffer order

	D Annotated Semantics
	D.1 Annotated Labels and Inference Rules
	D.2 Paths, Gluing, and Other Definitions
	D.3 From Annotated Semantics to Declarative Semantics
	D.4 From Declarative Semantics to Annotated Semantics
	D.5 Operational Semantics and Annotated Semantics

