
118

Memento: A Framework for Detectable Recoverability in

Persistent Memory

KYEONGMIN CHO, KAIST, Korea

SEUNGMIN JEON, KAIST, Korea

AZALEA RAAD, Imperial College London, United Kingdom

JEEHOON KANG, KAIST, Korea

Persistent memory (PM) is an emerging class of storage technology that combines the performance of DRAM

with the durability of SSD, offering the best of both worlds. This had led to a surge of research on persistent

objects in PM. Among such persistent objects, concurrent data structures (DSs) are particularly interesting

thanks to their performance and scalability. One of the most widely used correctness criteria for persistent

concurrent DSs is detectable recoverability, ensuring both thread safety (for correctness in non-crashing

concurrent executions) and crash consistency (for correctness in crashing executions). However, the existing

approaches to designing detectably recoverable concurrent DSs are either limited to simple algorithms or

suffer from high runtime overheads.

We present Memento: a general and high-performance programming framework for detectably recoverable

concurrent DSs in PM. To ensure general applicability to various DSs,Memento supports primitive operations

such as checkpoint and compare-and-swap and their composition with control constructs. To ensure high

performance, Memento employs a timestamp-based recovery strategy that requires fewer writes and flushes

to PM than the existing approaches. We formally prove thatMemento ensures detectable recoverability in

the presence of crashes. To showcaseMemento, we implement a lock-free stack, list, queue, and hash table,

and a combining queue that detectably recovers from random crashes in stress tests and performs comparably

to existing hand-tuned persistent DSs with and without detectable recoverability.

CCS Concepts: • Theory of computation→ Concurrent algorithms; • Computer systems organization

→ Reliability; • Hardware→ Non-volatile memory.

Additional Key Words and Phrases: persistent memory, detectable recovery, concurrent data structure

ACM Reference Format:

Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang. 2023.Memento: A Framework for Detectable

Recoverability in Persistent Memory. Proc. ACM Program. Lang. 7, PLDI, Article 118 (June 2023), 26 pages.

https://doi.org/10.1145/3591232

1 INTRODUCTION

Persistent memory (PM) technologies such as Samsung’s recently announced Memory-Semantic
SSD [Samsung 2023] and Kioxia’s XL-FLASH [Choe 2022] simultaneously provide (1) low-latency,
high-throughput, and fine-grained data transfer capabilities as DRAM does; and (2) durable and
high-capacity storage as SSD does. As such, PM has the potential to radically change the way we
build fault-tolerant systems by optimizing traditional and distributed file systems [Chen et al. 2021;
Kadekodi et al. 2021; Kim et al. 2021a; Kwon et al. 2017; Xu and Swanson 2016; Zhu et al. 2021],

Authors’ addresses: Kyeongmin Cho, KAIST, Daejeon, Korea, kyeongmin.cho@kaist.ac.kr; Seungmin Jeon, KAIST, Daejeon,

Korea, seungmin.jeon@kaist.ac.kr; Azalea Raad, Imperial College London, London, United Kingdom, azalea.raad@imperial.

ac.uk; Jeehoon Kang, jeehoon.kang@kaist.ac.kr, KAIST, Daejeon, Korea.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART118

https://doi.org/10.1145/3591232

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3591232
https://doi.org/10.1145/3591232
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3591232&domain=pdf&date_stamp=2023-06-06

118:2 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

transaction processing systems for high-velocity real-time data [Meehan et al. 2015], distributed
stream processing systems [Wang et al. 2021], and stateful applications organized as a pipeline of
cloud serverless functions interacting with cloud storage systems [Setty et al. 2016; Zhang et al.
2020].

A key building block in PM for such optimizations are concurrent data structures (DSs) that ensure
that the underlying DS is both thread-safe (i.e. it behaves correctly when accessed by concurrent
threads racing to manipulate the DS) and crash-consistent (i.e. it is restored into a consistent state
upon recovery from a crash, e.g. a power failure). The thread-safety of the underlying DS is ensured
by using a suitable concurrency control mechanism, e.g. transactional memory (TM), locking, or lock-
free techniques using fine-grained synchronization primitives (e.g. CAS instructions). Compared
to TM- or locking-based DS implementations, lock-free data structures have the following two
advantages. (1) They have a greater potential to parallelize workloads than others by distributing
memory accesses across a multitude of contention points [David et al. 2018]. For instance, logging
imposes significant overhead both in time (due to the concentrated contention point at the tip) and
in space (because all intermediate changes are recorded). As such, lock-free queues and hash tables
[Fatourou and Kallimanis 2011, 2012; Goodman et al. 1989; Hendler et al. 2010] outperform lock-
and TM-based ones in PM. (2) Lock-free algorithms ensure that the DS is in a consistent state at all
times, thereby eliminating the need for additional mechanisms to ensure crash consistency, so long
as the updates on the DS are flushed to PM in a timely manner.
As such, persistent lock-free DSs have drawn significant attention in the literature, including

persistent lock-free stacks [Attiya et al. 2019], queues [Friedman et al. 2018], lists [Attiya et al. 2022;
Zuriel et al. 2019], hash tables [Chen et al. 2020; Nam et al. 2019; Zuriel et al. 2019], and trees [Attiya
et al. 2022], as well as general techniques for transforming volatile (in-DRAM) lock-free DSs to
persistent (in-PM) DSs [Friedman et al. 2020, 2021; Izraelevitz et al. 2016; Lee et al. 2019].

One of the most widely accepted correctness criteria for persistent lock-free DSs (and concurrent
DSs in general) is durable linearizability (DL) [Izraelevitz et al. 2016]. A multi-threaded execution
(where the operations of concurrent threads can arbitrarily interleave) is linearizable if each opera-
tion appears to execute and take effect atomically (without being interleaved by operations in other
threads) at some point, called the linearization point, between its invocation and response [Herlihy
and Wing 1990]. DL is an extension of linearizability to the PM setting and additionally offers
crash consistency guarantees. Specifically, a multi-threaded execution that possibly spans multiple
crashes satisfies DL if it is linearizable when ignoring the crash events. In particular, operations
completed before a crash should be persisted across the crash, and if there are operations whose
executions are interrupted by the crash, then the DS should be recovered to a consistent state after
the crash. DL is indeed satisfied by most existing persistent concurrent DSs, except for those DSs
that intentionally trade durability for performance [Friedman et al. 2018].

However, DL is insufficient for composing persistent DSs with one another [Friedman et al. 2018].
For instance, consider a banking DS comprising a savings account, S, and a current account, C,
where amount 0 is withdrawn from S and, if successful, deposited into C:

1: BD22 ←Withdraw(S, 0); if BD22 then Deposit(C, 0);

Even if both DSs underlying C and S each individually satisfy DL, the whole banking DS does not: the
amount 0 withdrawn from S can be lost if a crash occurs before it is deposited into C.What is needed
for the correctness of this composition is the stronger detectable recoverability (or detectability in
short) [Friedman et al. 2018]. Under detectability, after a crash a user can (1) detect if an operation
was not invoked, interrupted by the crash, or completed before the crash; (2) resume the execution
of an interrupted operation; and (3) retrieve the correct output for completed operations. If S and C

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:3

were detectable, then one could detect the value withdrawn from S and whether it was deposited
into C in case of a crash, and resume the interrupted operation.

Note that existing persistent TM (PTM) systems such as those of Krishnan et al. [2020];Memaripour
et al. [2017] provide such detectability guarantees. Specifically, code wrapped within a persistent
transaction C is executed both atomically (i.e. it is thread-safe) and failure-atomically (i.e. either all
or none of the effects of C take place in case of a crash, and thus C is detectable). Nevertheless, PTM
systems have two limitations that make them unsuitable for implementing persistent concurrent
DSs. First, the code wrapped within a PTM (or TM for that matter) is typically required to comprise
simple memory read and write operations, rather than arbitrary operations associated with DSs.
Second, even if one could enclose arbitrary DS operations within a PTM transaction, combining
PTM and a concurrent DS is not straightforward: a PTM (as with TM) system provides its own
concurrency control mechanism (e.g. via locking), clashing with and defeating the purpose of the
already in place concurrency control mechanism of a concurrent DS. As such, PTM systems are
not immediately suitable for implementing detectable concurrent DSs in PM.

Challenges. Our aim here is to devise a technique for implementing detectable concurrent DSs in
PM in such a way that is both generally applicable (i.e. it can be applied to implement an arbitrary
DS rather than tailored towards a specific DS, e.g. a queue) and highly performant.
This, however, is far from straightforward. Specifically, as we discuss below, although several

detectable concurrent DSs have been proposed in the literature [Attiya et al. 2022, 2018; Ben-David
et al. 2019; Friedman et al. 2018; Li and Golab 2021; Rusanovsky et al. 2021], to the best of our
knowledge, each is either limited to simple algorithms or suffers from high runtime overhead.

• General Applicability: Many of the existing detectable concurrent DSs are hand-tuned and
manually reason about crash consistency and detectability. Friedman et al. [2018]; Li and Golab
[2021] present detectable lock-free queues. Fatourou et al. [2022]; Rusanovsky et al. [2021]
present a general combiner to construct persistent combining DSs, but it can recover only the
last invocation of each operation. As such, in an execution of the banking example where S
is withdrawn two times before a crash, we cannot distinguish whether the crash happened
during the first or the second invocation of Withdraw. Attiya et al. [2018] present a detectable
compare-and-swap (CAS) operation on PM locations as a general primitive operation for
pointer-based DSs. However, the applicability of their CAS to concurrent DSs has not been
established. Attiya et al. [2022] present a transformation from concurrent DSs in DRAM into
those in PM with detectability, but this requires the operations to be strictly splittable into
two phases: load-only gather and CAS-only update. Such a requirement is satisfied by data
structures such as linked-lists [Harris 2001], but not by more sophisticated ones such as the
Michael-Scott queue [Michael and Scott 1996] or hash tables [Chen et al. 2020; Shalev and
Shavit 2006] that perform loads and CASes in an interleaved manner. Ben-David et al. [2019]
present a more general transformation, but theirs requires the operations to follow specific
patterns such as the normalized form [Timnat and Petrank 2014] for efficient transformation
and makes a simplifying assumption that is not satisfied by real-world systems (see §7).
• High Performance: While the overhead of detectability is modest or negligible for hand-tuned
DSs [Attiya et al. 2022; Friedman et al. 2018; Li and Golab 2021; Rusanovsky et al. 2021], it is
significant for the transformation of Ben-David et al. [2019] for two reasons. First, an object
supporting a detectable CAS consumes $ ()) space in PM where) is the number of threads,
prohibiting its use for space-efficient DSs such as hash tables and trees. More significantly,
the detectable CAS object of Attiya et al. [2018] consumes $ () 2) space in PM. Second, the
transformed program writes and flushes to PM rather frequently (see §7 for details).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:4 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

Contributions and Outline. To address the above challenges, we present Memento: the first
general programming framework for high-performance, detectable, concurrent DSs in PM.1 To
this end, we generalize Ramalingam and Vaswani [2013]’s type system that statically ensures the
detectable recovery of programs in a simple core language. In contrast to the prior work,Memento’s
type system additionally supports control constructs such as conditionals, loops, and function calls
for general programming, and the CAS primitive operation for concurrent programming in PM.
Our type system ensures programs to be deterministically replayed after a crash so that well-typed
programs are detectably recoverable when simply re-executed from the beginning after a crash. As
such, our type system substantially reduces the complexity of designing detectable DS in PM to that
of designing volatile DS. Unlike most hand-tuned persistent DSs that require challenging-to-develop
and reason-about DS-specific recovery code, our framework solely requires a program to conform
to our type system, thereby eliminating the need for DS-specific recovery code! As example, we
adapt several volatile concurrent DSs to well-typed programs and automatically derive detectable
concurrent DSs. Specifically, we make the following contributions:

• In §2, we describe how to design programs that are deterministically replayed after a crash. We
do so using two primitive operations, detectable checkpoint and CAS, by composing them with
usual control constructs such as sequential composition, conditionals, and loops.
• In §3, we design a core language for persistent programming and its associated type system for
deterministic replay, and prove that well-typed programs are detectably recoverable.
• In §4, we present an implementation of our core language in the Intel-x86 Optane DCPMM
architecture. Our construction is not tightly coupled with Intel-x86 so that it can be adapted to
other PM architectures like Samsung’s Memory-Semantic SSD in a straightforward manner.
• In §5, we adapt several volatile, concurrent DSs to satisfy our type system, automatically
deriving detectable concurrent DSs in PM. These include a lock-free linked-list [Harris 2001],
Treiber stack [Treiber 1986], Michael-Scott queue [Michael and Scott 1996], a combining queue,
and Clevel hash table [Chen et al. 2020]. In doing so, we capture the optimizations of hand-tuned
persistent concurrent DSs with additional primitives and type derivation rules (§B and §C)2,
and support safe memory reclamation even in the presence of crashes (§D).
• In §6, we evaluate the detectability and performance of our CAS and automatically derived
concurrent DSs in PM. They successfully recover from random thread and system crashes in
stress tests, respectively (§6.1); and perform comparably with the existing hand-tuned persistent
DSs with and without detectability (§6.2).

In §7, we conclude with related and future work. Our implementation and experimental results are
open-sourced and available as supplementary material [Cho et al. 2023].

2 DESIGNING DETECTABLE PROGRAMSWITH DETERMINISTIC REPLAY

Memento achieves detectability by deterministically replaying programs after a crash. Before
presenting our type system that statically ensures deterministic replay of programs in §3, we first
describe our key idea, which is recording the progress and result of a program using a memento, a
thread-private log stored in PM (hence the framework name), in a compositional manner.

2.1 Ensuring Deterministic Replay of Composed Operations

Composition. Consider the Transfer function of our banking example (§1) shown in Algorithm 1:
it attempts to withdraw 0<>D=C from B0E8=6B (L2), and if successful, it deposits the same amount into

1We use the word “concurrent” to emphasize Memento’s general applicability, but the framework applies not only to

lock-free or lock-based concurrent CSs but also to sequential DSs.
2All alphabetical references in this paper refer to sections in the technical appendix [Cho et al. 2023].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:5

Algorithm 1 Transfer from a savings account to a current account with mementos

1: function Transfer(B0E8=6B, 2DAA4=C, 0<>D=C,mid) ⊲ mid: memento id

2: BD22 ←Withdraw(B0E8=6B, 0<>D=C,mid.withdraw);

3: if BD22 then Deposit(2DAA4=C, 0<>D=C,mid.desposit)

4: end function

2DAA4=C (L3). The code without highlighted parts is correct on volatile memory but not recoverable
on PM in case of crashes. To ensure deterministic replay of Transfer, it suffices to ensure those of
its sub-operations Withdraw and Deposit using sub-mementos mid.withdraw and mid.deposit,
respectively. Regardless of whether the execution of a function 5 is finished or interrupted at crash
time, thanks to its memento the post-crash re-execution of 5 will return the same result or resume
from the interrupted program point, respectively. For instance, if the pre-crash execution crashes
at L2, the post-crash re-execution resumesWithdraw thanks to its deterministic replay. On the
other hand, if the pre-crash execution crashes during Deposit at L3, the post-crash re-execution
produces the same result BD22 fromWithdraw, takes the same branch, and resumes Deposit. In
general, the deterministic replay property is preserved by sequential composition and conditionals.

Checkpoint Primitive. As a general-purpose primitive operation, our framework provides a
detectable checkpoint operation that records the result of a read-only expression:

1: E ← chkpt(_.4,mid) ⊲ 4: read-only

Here, 4 is a read-only expression whose result may change across crashes due to, e.g. concurrent
modifications to PM. The checkpoint operation first checks if a value is recorded in the memento
mid, and if so it returns its value; otherwise, it executes 4 , records its result in the memento mid

and returns the result. The checkpoint operation is detectable: even though it may partially execute
4 multiple times across crashes (hence the requirement for 4 to be read-only), it produces a unique
result that is recorded in the memento across crashes and assigns this unique result to E .

A PM allocation is considered read-only as its effect is thread-local and becomes visible to other
threads only after the address is published to shared memory. It is safe to leak PM allocations
during crashes, as the underlying memory allocator is assumed to trace garbage after a crash.

Checkpoint operation is already proposed in prior work [Ben-David et al. 2019], but we generalize
their implementation with timestamps (see §2.2 for details). We will present our design in §4.2.

Compare-and-Swap Primitive. As another general-purpose primitive operation for concurrent
programming, our framework provides a detectable, persistent compare-and-swap (CAS) operation:3

1: A ← pcas(;>2, E>;3 , E=4F,mid)

This operation compares the current value of ;>2 against E>;3 , and if the values match it updates it
to E=4F ; otherwise the value of ;>2 is unchanged. The return value A ∈ B × Val is a pair comprising
a boolean flag reflecting whether the update was successful, and the original value held in ;>2 .
The operation guarantees that the result A is deterministic so long as the arguments are also
deterministic. In particular, if a pcas were unsuccessful before a crash, its failure would be recorded
in its memento mid and thus the post-crash execution would also fail by inspecting mid.

Note that deterministic replay cannot be achieved using plain CAS operations: in case of a crash,
one loses such information as whether the plain CAS was performed, and if it was successful or not.
The pcas requires additional synchronization in PM. Recognizing its general applicability, Attiya
et al. [2018]; Ben-David et al. [2019] have proposed alternative implementations, but they consume

3Here we omit memory orderings [McKenney 2005]—e.g. release or acquire—but we annotate the most efficient and yet

correct orderings in our implementation.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:6 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

Algorithm 2 Insertion on the Harris concurrent sorted linked-list

1: function Insert(ℎ403, E0;,mid)

2: loop

3: (?A4E, =4GC, 1;:) ← chkpt(_.4pnb,mid.pnb); ⊲ timestamp: 30 | 80

4: BD22 ← pcas(?A4E .next, =4GC, 1;:,mid.cas); ⊲ timestamp: 20 | 90

5: if BD22 then return

6: end loop

7: end function

4pnb
△
= (?, =) ← Find(ℎ403, E0;);1← palloc(⟨val : E0; ; next :=⟩); return (?, =, 1)

$ () 2) and $ ()) PM space for each location, respectively, where) is the number of threads. By
contrast, our implementation (§4.3) uses only 8 PM bytes for each location.

2.2 Supporting Simple Loops with Timestamps

The banking example uses a unique sub-memento for each sub-operation, making it easier to ensure
a deterministic replay of composed operations. While feasible for simple programs, the unique
memento assumption does not apply to complex programs with loops as the sub-mementos are
reused across different loop iterations. To support loops, our framework employs timestamps.

Example: Concurrent Linked-List. Consider the Insert operation on the concurrent sorted
linked-list by Harris [2001] in Algorithm 2. For brevity, we omit the implementation of the function
Find(ℎ403, E0;) (traversing the list from ℎ403 to find E0;) and the deallocation of non-inserted
blocks (see §D for the implementation). As before, the code without highlighted parts is correct
for volatile memory: it searches for adjacent blocks, ?A4E and =4GC , between which E0; is inserted
while preserving the sorted order and allocates a new block, 1;: , that contains E0; and points to
=4GC (L3); performs a CAS on ?A4E .=4GC from =4GC to 1;: (L4); and keeps trying until successful
(L5).

Challenge: Reused Memento. Adding the highlighted parts (replacing cas with pcas at L4),
programmers can ensure the deterministic replay of the loop body. However, it is insufficient to
correctly recover from crashes after loop iterations as they reuse mementos. Consider an execution
that crashes right after L3 in the second loop iteration. After the crash, mid.pnb contains the result
of 4pnb in the second iteration, while mid.cas contains the result of the CAS in the first iteration. As
such, it is necessary to distinguish the results of sub-operations from different iterations for correct
recovery; otherwise, a post-crash execution would mix the sub-operation results.
To address the challenge of loops and more generally of complex control flow, the prior work

performs additional writes and following flushes to PM to record the operation progress. Specifically,
Attiya et al. [2018]; Li and Golab [2021] additionally reset memento-like “operation descriptors”
by writing sentinel values to PM; and Ben-David et al. [2019] further checkpoint the program
counter in PM. However, these additional writes and flushes to PM incur a significant performance
overhead for high-contention workloads with heavy use of loops (see §6 for details).

Solution: Timestamp. To distinguish between the sub-operation results of different iterations
efficiently (and record the operation progress more generally), our framework uses timestamps.
A timestamp is a counter that increases monotonically during executions and across crashes.4

Specifically, each primitive detectable sub-operation additionally records in its sub-memento the
timestamp at which it completes. In the above scenario, the sub-operations may record timestamps

4Intel-x86 does not natively support such a timestamp with strong properties, but we develop such a counter in §4.2.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:7

Algorithm 3 Resizing the Clevel hash table [Chen et al. 2020] (simplified)

1: function ResizeMoveArray(from, to,mid)

2: loop

3: 8 ← chkpt(_.q (0, 8 + 1),mid.i); ⊲ timestamp: 30 | 80

4: if 8 ≥ |from| then return

5: ResizeMoveEntry(from, 8, to,mid.entry) ⊲ timestamp: 20 | 90

6: end loop

7: end function

of 10 and 20 in mid.pnb and mid.cas in the first loop iteration, respectively, and then overwrite the
timestamp of 30 in mid.pnb in the next iteration.

In the post-crash execution, our framework first observes that timestamp 30 inmid.pnb and then
20 in mid.cas, which is not monotonically increasing with the control flow. That is, the checkpoint
at L3 was performed in the last iteration before the crash, but the pcas at L4 was not. As such, the
post-crash execution may resume at L4 and re-execute pcas.
Regardless of the program point at which the execution crashes, the post-crash execution can

deterministically replay the last iteration before the crash. Suppose the timestamps recorded in
mid.pnb and mid.cas were 80 and 90, respectively. Then the post-crash execution replays the last
iteration by observing the monotonically increasing timestamps (80 at L3 and 90 at L4) and retrieves
the recorded results. Thereafter, it will either successfully return or try again (L5).

Unlike prior approaches [Attiya et al. 2018; Ben-David et al. 2019], our approach does not incur
additional writes and flushes to PM.5 On the one hand, our primitive operations, checkpoint
and CAS, record an operation’s timestamp and result atomically at once. On the other hand, our
framework does not require additional writes and flushes for loops and other control constructs.

2.3 Supporting Loop-Carried Dependence by Checkpointing Dependent Variables

In the presence of loop-carried dependence, timestamps alone do not guarantee deterministic replay
because dependent variable values may be lost in case of a crash. As such, our framework further
requires programmers to checkpoint the dependent variables for each iteration.

Example: Clevel Hash Table. Consider the ResizeMoveArray operation on the Clevel hash
table [Chen et al. 2020] presented in Algorithm 3. When resizing the hash table, every entry in
the array of an old level, from, is moved to the array of a new level, to. To do this, the operation
iterates over from (L3) and invokes the sub-operation ResizeMoveEntry for each entry index 8 (for
brevity we omit ResizeMoveEntry). To reveal loop-carried dependence explicitly, we represent
the code in the Static Single Assignment (SSA) form [Cytron et al. 1989, 1991].6 In the SSA form,
loop-dependent variables are defined as a q-node at the beginning of the loop. A q-node of the
form E = q (E0, E1) assign E0 (resp. E1) to E if it is the first (resp. a later) iteration. In our example of
Algorithm 3, 8 gets 0 in the first iteration and 8 + 1 in the later iterations at L3.

Challenge: Dependent Variable. With the highlighted part, especially invoking the sub-operation
with an additional memento argument mid.entry at L5, our framework ensures the deterministic
replay of the loop body. However, the loop-dependent variable 8 makes it challenging to correctly
recover from crashes because the framework needs to restore the value of 8 in the last iteration.

5Since our approach reduces the number of writes as well as that of flushes, it has performance advantages over the prior

approaches in a wide range of PM platforms including Intel eADR [Intel 2021].
6The SSA form can represent a much more general class of control flow-dependent variables than loop-dependent vari-

ables [Cytron et al. 1989, 1991]. Although we present this example in SSA form, we do not require SSA in our implementation.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:8 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

p ::= [X] #»s1 | | . . . | |
#»s= program

s ∈ Stmt ::= r ← e | r← pload(e) | r← palloc(e) assignment & PM

| if (e) #»st
#»sf | loop r e

#»s | continue e | break control constructs

| r← f (#»e) | return e function call/return

| r← chkpt(#»s , emid) | r← pcas(eloc, eold, enew, emid) detectable op.

e ∈ Expr ::= () | I | 1 | <83 | r | (e1 op e2) | e.8 | (e1, e2) | inl e | inr e pure expr.

| match e { inl el ⇒ e′l , inr er ⇒ e′r} | n | e.lab | . . .

v ∈ Val ::= () | I | 1 | <83 | (v1, v2) | inl v | inr v value

I ∈ Z 1 ∈ B op ∈ Op r ∈ VReg
△
= N f ∈ VRegMap

△
= VReg ⇀ Val

f ∈ FnId X ∈ Env
△
= FnId ⇀ (

»

VReg ×
»

Stmt) l ∈ PLoc
△
= N lab ∈ Label <83 ∈

»

Label

C ∈ Time
△
= N tid ∈ TId

△
= N mmts ∈ Mmts

△
=

»

Label→ ⟨val :Val; time :Time⟩

c ∈ Cont ts ∈ TState
△
= ⟨regs : VRegMap; time :Time⟩ T ∈�read

△
=

»

Stmt ×
»

Cont × TState ×Mmts

ev ∈ Event ::= R(l, v) | U(l, v>;3 , v=4F) CA ∈
»

Event mem ∈ Mem M ∈ Machine
△
=

»

�read ×Mem

#»s1,
#»c1, ts1,mmts1

CA
−−→X

#»s2,
#»c2, ts2,mmts2 mem1

CA
−−→ mem2 M1

CA
−−→p M2

(machine-step)

T1 [tid] = (
#»s1,

#»c1, ts1,mmts1) T2 = T1 [tid ↦→ (
#»s2,

#»c2, ts2,mmts2)]
#»s1,

#»c1, ts1,mmts1
CA
−−→?.X

#»s2,
#»c2, ts2,mmts2 mem1

CA
−−→ mem2

(T1,mem1)
CA |U
−−−→p (T2,mem2)

(machine-crash)

T1 [tid] = (
#»s1,

#»c1, ts1,mmts1)

T2 = T1 [tid ↦→ (
»?.Btid , [], tsinit,mmts1)]

(T1,mem)
[]
−−→p (T2,mem)

Fig. 1. The syntax and semantics of our core PM language (excerpt)

Solution: Checkpoint at the Loop Head. To address the challenge above, our framework requires
programmers to checkpoint dependent variables, e.g. 8 , at the loop head. In the post-crash execution,
the checkpoint operation retrieves the 8 value in the last iteration and, moreover, delimits the last
iteration. For instance, suppose that L3 and L5 record timestamps 30 and 20, respectively. Then the
last iteration began at timestamp 30 and the post-crash execution should re-execute L5. Similarly, if
L3 and L5 respectively record timestamps 80 and 90, then the last iteration began at timestamp 80
and the post-crash execution should retrieve the sub-operation result recorded in mid.entry at L5.

In the presence of multiple dependent variables, our framework requires programmers to merge
them all into a single tuple or struct and checkpoint it at once. Otherwise, dependent variables of
two consecutive iterations can be mixed. For instance, suppose there were two dependent variables,
G and ~, and they were individually checkpointed. If only G were checkpointed at the loop head
and then the thread crashes, then the post-crash execution retrieves the value of G from the last
iteration and that of ~ from the previous iteration, violating the recovery correctness.

3 TYPE SYSTEM FOR DETECTABILITY

We next formalize the key idea presented in §2. We design a core language for PM (§3.1) and a type
system for deterministic replay (§3.2), and prove that typed programs are detectable (§3.3).

3.1 Core Language

We present the syntax and semantics of our core language for PM in Fig. 1. We discuss the imple-
mentation of our language later in §4, and give its semantics in the technical appendix (§F).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:9

A program, ? , consists of a function environment, X , and a list of statements, # »sC83 , for each thread
C83 . An assignment statement, r ← e where r ∈ VReg is a register id and 4 ∈ Expr is a pure
expression, evaluates 4 to a value in Val ⊆ Expr and assigns it to r . An expression is either a
constant, register, arithmetic/boolean operation, tuple/union introduction/elimination, memento

id, empty expression (n) or concatenation (e.lab, see below). A value is an irreducible expression

without variables. A load statement, r← pload(e), evaluates e as a PM location, l ∈ PLoc
△
= N, in

the shared memory, loads the value of l and writes it to r . For simplicity, we classify PM locations
into shared and thread-local ones so that we can use the former as concurrent DS memory blocks
and the latter as mementos. An allocation, r← palloc(e), initializes a fresh PM location in the
shared memory with the value evaluated from e and writes the location to r .
A conditional statement, if (e) #»st

#»sf , reduces either to
#»st or to #»sf depending on the value

evaluated from e. Loops reveal loop-carried dependence explicitly in the style of the SSA form
(§2.3). Specifically, loop r e #»s (1) evaluates the initial value from e and assigns it to the dependent
variable r ; (2) executes the body #»s ; (3) in doing so, if continue e is executed, then the (merged)
loop-carried dependent value evaluated from e is assigned to r , and #»s is re-executed for the next
iteration; and (4) if break is executed, the loop terminates. A function call, r← f (#»e), evaluates
the arguments #»e , finds the function id f in the program’s function environment X with X (f) =

(# »prms, #»sf) ∈
»

VReg×
»

Stmt, and executes the function body #»sf with a fresh variable context assigning
the evaluated arguments to # »prms. If return e is executed, then the control goes back to the caller
and the return value evaluated from e is assigned to r .

We treat primitive detectable operations as language constructs and implement them on Intel-x86
later in §4. Primitive detectable operations comprise chkpt and pcas. A detectable checkpoint,
r← chkpt(#»s , emid), evaluates

#»s as if it is a function body, but using the same variable context as
the operation’s caller as a variable-capturing closure. A detectable CAS, r← pcas(el, eo, en, emid),
evaluates the expressions respectively to vl, vo, and vn, attempts to update the PM location vl from
vo to vn atomically, and writes whether it succeeded to r . For both chkpt and pcas, their results
and timestamps are checkpointed at the thread’s sub-memento (located in its private PM) identified
by the memento id (<83) evaluated from emid.
A thread consists of statements (#»s), loop and function continuations (#»c , definition omitted),

a volatile state (ts), and a persistent memento (mmts). Continuations are pushed (resp. popped)
for loop and call (resp. break and return) statements, respectively. A thread state, ts, consists of a
register file (ts.regs) and the thread’s last observed timestamp (ts.time, see §2.2). To maintain its
invariant, ts.time is initialized with zero at thread initialization point (see machine-crash below),
and incremented when a primitive operation is executed or replayed. When executing a primitive
operation op, we compare ts.time with the timestamp Cmmt checkpointed in the memento of op.
If ts.time < Cmmt, then op was executed before the crash, and thus we simply update ts.time to
Cmmt; otherwise, the replay is over and we execute op and update ts.time to a new timestamp. A
memento is a map from memento ids (lists of labels) to primitive mementos that record values
and timestamps; e.g. the id list.pnb denotes the primitive memento used at L3 in Algorithm 2. In
our implementation, we statically reason about the structure and size of the memento for each
operation with types. Lastly, a machine, M , consists of a list of threads (T) and a memory (mem).

A judgement of the form #»s1,
#»c1, ts1,mmts1

CA
−→X

#»s2,
#»c2, ts2,mmts2 denotes a thread transition for

environment X , emitting a trace CA . A trace is a list of events; an event is either a read (R(l, v),
reading v from shared PM location l) or an update (U(l, v>;3 , v=4F), atomically updating l from v>;3
to v=4F). For read events, the values read from the shared memory are constrained not by thread

transitions but by memory transitions of the form mem1
CA
−→mem2. Two transitions are combined

into a machine transition of the form M1
CA
−→p M2 for program ? . The machine-step rule states that

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:10 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

labs ∈ P(Label) FnType ::= RO | RW

Δ ∈ EnvType
△
= FnId→ FnType

⊢ p

(program)

⊢ X : Δ Δ ⊢labstid
»stid for each tid

⊢ [X] #»s1 | | . . . | |
#»s=

⊢ X : Δ

(env-empty)

⊢ : []

(env-ro)

⊢ X : Δ Δ ⊢RO
#»s

⊢ X [f ↦→ (# »prms, #»s)] : Δ[f ↦→ RO]

(env-rw)

⊢ X : Δ Δ ⊢labs
#»s

»prmsall =
»prms ++ {mid}

⊢ X [f ↦→ (# »prmsall,
#»s)] : Δ[f ↦→ RW]

Δ ⊢labs
#»s

(empty)

Δ ⊢∅ []

(assign)

Δ ⊢∅ [r ← e]

(cas)

Δ ⊢{lab} [r← pcas(el, eo, en,mid.lab)]

(chkpt)

Δ ⊢RO
#»s

Δ ⊢{lab} [r← chkpt(#»s ,mid.lab)]

(seq)

labsl ∩ labsr = ∅

Δ ⊢labsl
#»sl Δ ⊢labsr

#»sr

Δ ⊢labsl⊎labsr
#»sl ++

#»sr

(if-then-else)

Δ ⊢labst
#»st Δ ⊢labsf

#»sf

Δ ⊢labst∪labsf [if (e)
#»st

#»sf]

(loop-simple)

Δ ⊢labs
#»s

Δ ⊢labs [loop _ ()
#»s]

(loop)

Δ ⊢labs
#»s lab ∉ labs

Δ ⊢{lab}⊎labs [loop r e ((r← chkpt([return r],mid.lab)) :: #»s)]

(continue)

Δ ⊢∅ [continue e]

(break)

Δ ⊢∅ [break]

(call)

Δ(f) = RW

Δ ⊢{lab} [r← f (#»e ++ {mid.lab})]

(return)

Δ ⊢∅ [return e]

Fig. 2. Type System (excerpt)

a thread may execute a step CA , transitioning the memory with the same trace CA , emitting only
updates externally (CA |U); the machine-crash states that a thread may crash and re-execute the
initial statements with an empty continuation, initial thread state, and the preserved memento.

3.2 Type System

We present our type system for detectable operations with deterministic replay in Fig. 2. The
program rule states that a program is typed if its function environment and each thread’s statements
are typed. A judgement of the form ⊢ X : Δ denotes that for each function id 5 , the function X (5) is
detectable with type Δ(5) ∈ FnType. A function type is either RO, meaning the function only reads
from shared PM locations and does not access mementos at all; or RW, meaning the function reads
and writes to shared PM locations and accesses only those mementos prefixed by mid given as its
last argument. The env-empty rule states that the empty function environment is typed; env-ro
adds a read-only function to the environment7; and env-rw adds a read-write function with the last
parameter being the memento id mid. The judgement Δ ⊢labs

#»s in the premise of env-rw states
that for any function environment (X) with type Δ, the execution of #»s satisfies the interpretation
of RW while using only those sub-mementos prefixed by mid.lab for some lab ∈ labs.
For read-write functions, empty states that the empty statement list is typed for any function

environment type (Δ) using no mementos (∅); and assign, continue, break and return state
that so are assignment, continue, break, and return statements for all sub-expressions as they are

7For brevity, we omit the definition of the read-only ⊢RO judgement as it is straightforward (see §G for the its definition).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:11

(a) Deterministic Replay (b) Removing Crashes with Deterministic Replay

Fig. 3. Proving detectability by gradually removing crashes

pure.8 The seq composes lists of statements so long as they use disjoint mementos (labsl ∩ labsr=∅)
and sequential composition uses their disjoint union (labsl ⊎ labsr). The if-then-else composes a
conditional branch without requiring disjointness as only one branch is executed (see §2.1).
The cas rule states that a pcas is typed against the memento label it uses (lab); the chkpt

behaves analogously so long as the checkpoint body (#»s) is read-only. We require the body’s
result to be immediately checkpointed before being assigned to a register for deterministic replay.
For instance, consider an execution of Algorithm 2 where among ?A4E , =4GC and 1;: obtained
at L3only ?A4E is checkpointed before a crash. The post-crash execution then re-calculates new
values, (?A4E ′, =4GC ′, 1;: ′), and uses the old ?A4E from the memento but the new values =4GC ′, 1;: ′,
mixing the results of different executions across crashes. This leads to a bug: as list traversal is
non-deterministic, ?A4E and =4GC ′ may not be adjacent to each other, breaking the list invariant.
The loop-simple states that a loop without loop-carried dependence is typed if its body is (#»s).

Here, the loop-dependent variable “_” means it is written to nowhere, or equivalently, there are
no dependent variables (§2.2). The loop states that a loop is typed if so is its body, its dependent
variable (r) is checkpointed at the loop head, and the checkpoint and body use disjoint memento
labels (§2.3). The call states that an RW function call is typed against the memento label it uses.

3.3 Detectability of Typed Programs

We sketch the proof of the detectability of typed programs and give the full proof in §H. Unlike
the prior work [Attiya et al. 2018; Friedman et al. 2018], we formulate detectability in terms of

behaviour refinement. For a program, p, we say event trace CA is a behaviour of ? , written CA ∈ �E (p),

if there exists" such that 8=8C (p)
CA
→
∗

p " , where 8=8C (p) is the initial machine of ? and
CA
→
∗

p is the

reflexive transitive closure of the machine transition
CA
−→p with concatenated event traces. A

CA is a crash-free behaviour of ? , written CA ∈ �(p) if it is a behaviour from a crash-free machine
execution using only machine-step. We then prove the following theorem.

Theorem 3.1 (Detectability). Given a program ? , if ⊢ p holds, then �E (p) ⊆ �(p).

This theorem ensures failure transparency in that crashes do not introduce additional behaviours;
that is, this theorem ensures the detectable recoverability of typed programs.

We prove this theorem by gradually transforming an arbitrary execution of ? into one without
crashes while preserving the behaviour, as illustrated in Fig. 3. We exploit the fact that each thread
interacts with the other components only via event traces: as long as event traces are preserved,
we can locally merge a thread’s consecutive executions across crashes into one without crashes.

8We do not establish the usual soundness result with our type system; e.g. while we can derive Δ ⊢∅ [r1 ← r2] for any Δ, r1
and r2, the r1 ← r2 may get stuck as r2 is a free variable. Though it is straightforward to adapt our system for soundness,

we forgo this as this is not our aim and our type system is sufficient for our main goal: detectability by deterministic replay.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:12 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

Subsequently, the resulting machine execution would produce the same behaviour as before with
fewer crashes. Going forward, we will get a crash-free execution with the same behaviour.

Deterministic Replay. We formulate the ability to locally merge thread executions in Def. 3.2.
We assume that a thread executes the statements #»s twice, before and after a crash. As such, the
statements, continuations, and volatile thread state are initialized and the memento (mmtsl) is
preserved. There then is an execution without crashes that results in the same memento (mmtsl)

while emitting an event trace (CAx) that refines the original event trace (CA ++ CA): we can reach
CAx from CA ++ CA by removing some read events. Trace refinement is sufficient to replace thread
executions in a machine execution while preserving its behaviour, because machine transitions
ignore read events and memory transitions are closed under trace refinement.

Definition 3.2 (Deterministic Replay). Let X be a function environment and #»s be a list of statements.
We say #»s is deterministically replayed for X , denoted by DR(X, #»s), if the following holds:

∀CA, CA, #»sl ,
#»sl ,

#»cl ,
#»cl , ts, tsl , tsl ,mmts,mmtsl ,mmtsl .

#»s , [], ts,mmts
CA
−→
∗

X
#»sl ,

#»cl , tsl ,mmtsl −→
#»s , [], ts,mmtsl

CA

−→
∗

X
#»sl ,

#»cl , tsl ,mmtsl −→

∃CAx,
#»sx ,

#»cx, tsx .
#»s , [], ts,mmts

CAx
−−→

∗

X
#»sx ,

#»cx, tsx,mmtsl ∧ CAx ∼ CA ++ CA .

Lemma 3.3. Let X be an environment, Δ be an environment type, #»s be a list of statements, and labs

be a set of labels. If we have ⊢ X : Δ and Δ ⊢labs
#»s , then DR(X, #»s).

This lemma states that typed statements are deterministically replayed. We prove it by strong
induction on the derivations of ⊢ X : Δ and Δ ⊢labs

#»s , formalizing the arguments presented in §2.

Erasure. In the absence of crashes, a program ? behaves equivalently to the erasure of ? , written
erase(p), intuitively corresponding to removing the highlighted parts in §2. In particular, memento
parameters and arguments are removed, checkpoint operations are removed, and pcas operations
are replaced with plain cas operations. We thus obtain the following theorem.

Theorem 3.4 (Erasure). Given a program ? , If ⊢ p holds, then �E (p) ⊆ �(erase(p)).

The theorem effectively reduces the complexity of designing detectable and persistent DS to
that of designing volatile DS (already well-studied) and adapting volatile DS to our type system
(straightforward). In particular, programmers no longer need to write challenging-to-develop and
reason-about DS-specific recovery code, which is required by most hand-tuned persistent DSs. This
way, we will straightforwardly design a wide variety of high-performance detectable DSs in §5.

4 IMPLEMENTATION OF THE CORE LANGUAGE

To show the feasibility and practicality of our core language in §3, we implement it on Intel-x86.

4.1 Framework

PM Primitive. We use the App Direct mode of Intel-x86 Optane DCPMM to access PM locations
with byte addressability via load, store, and CAS instructions. We use clwb instructions to ensure
a write to a PM location is persisted: a store or CAS to a PM cache line 2; is guaranteed to be
persisted if followed by clwb 2; and then sfence,mfence, or a successful CAS. We refer the reader
to Cho et al. [2021]; Raad et al. [2019] for the formal semantics of clwb. We use Ralloc [Cai et al.
2020] for PM allocation and our modified version of Crossbeam [Crossbeam 2022] for safe memory
reclamation of shared PM locations (see §D for more details on reclamation).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:13

Crash Handler. To emulate machine-crash, we install a crash handler that continuously observes
and handles crashes. (1) When a thread crashes, which may happen due to signals but not widely
considered in the literature [Attiya et al. 2022, 2018; Ben-David et al. 2019], the handler creates a
new thread that executes the original thread’s initial statements. It also initializes the thread state
(ts), e.g. setting ts.time to zero, and runtime resources such as reclamation handle (see §D for more
details). (2)When the whole system crashes, the post-crash execution first executes the handler,
which then initializes the system state as if every thread experiences just a thread crash instead of
the system crash. Specifically, the handler performs Ralloc’s garbage collection, initializes volatile
data used by primitive operations (see §4.2 and §4.3 for details), and revives the threads.

Timestamp. The core language assumes a consistent clock for multiple threads across crashes. We
design such a clock on Intel-x86 using the rdtscp instruction generating hardware timestamps. The
hardware clock is consistent for a single thread: strictly increasing and serializing in that rdtscp
followed by lfence is not reordered with the surrounding instructions [Intel 2022].

However, Kashyap et al. [2018] observe that the clock is not consistent for multiple threads across
crashes as follows. (1) The clock is reset to zero when the machine is rebooted after a crash. (2) The
clock has an inter-core skew due to misaligned delivery of the RESET signal at the system boot. As
such, even if an rdtscp instruction happens before [Owens et al. 2009] another in a different thread,
their timestamps may not be ordered. Still, the skew is invariant: constant regardless of dynamic
frequency and voltage scaling. For the core language, we address these caveats as follows.
For reset, the crash handler calibrates the clock at the system boot. Specifically, it ❶ calculates

the maximum timestamp checkpointed in all mementos, Cmax; ❷ generates the current timestamp,
Cinit, using rdtscp; and ❸ adds offset (−Cinit + Cmax) to all timestamps generated by rdtscp. The
calibrated timestamps are then always larger than those checkpointed before the system boot.

For skew, we relax the synchronization criteria of the clock. We follow Kashyap et al. [2018] to
measure the maximum pair-wise inter-core skew, $6. We then make the following observation.

Observation 1 (Weak Global Synchronization). Suppose 0 and 1 are rdtscp; lfence instruc-

tion sequences. If either 0
po
→ 1 (single-thread program order) or 0

hb
→ wait($6)

hb
→ 1 (multi-thread

happens-before), then 0’s timestamp is less than 1’s.

Here, wait($6) is a spin loop to provide a sufficient margin for the clock skew. The single-thread
program order and multi-thread happens-before order conditions are used in the implementation
of checkpoint (§4.2) and CAS (§4.3) operations, respectively.

The single-thread program order sufficiently separates two rdtscp instructions even if the thread
is context-switched in-between. Even if the thread switches to a core with a negative timestamp
offset, its effect, bounded by$6 (60ns at the maximum in our evaluation), is subsumed by the context
switch latency (2-5μs at the minimum [Blandy 2022; Microsoft 2023]). Similarly, for the multi-thread
happens-before condtition, $6 sufficiently separates two rdtscp instructions regardless of their
executed cores because $6 is the maximum inter-core skew.

4.2 Detectable Checkpoint

We implement the chkpt operation of the core language (§3.1) on Intel-x86. Following Ben-David
et al. [2019], we ensure the atomicity of chkpt (i.e. one never observes a partially checkpointed
value) by double buffering: while a buffer is being written, the other buffer holds a valid value.
Moreover, we record timestamps and values in PM to deterministically replay control flow (§2.2).

We present our implementation in Algorithm 4. To atomically update a timestamped value in the
abstract memento (§3.1), its concrete implementation uses two timestamped values, stale and latest.
The algorithm then ❶ compares the given memento’s two timestamps (BC and ;C) to distinguish

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:14 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

Algorithm 4 Detectable checkpoint

1: function chkpt(#»s ,mid)

2: C0 ← Loadpln (mmts[mid] [0] .time)

3: C1 ← Loadpln (mmts[mid] [1] .time)

4: Cmmt ← (C0 < C1) ? C1 : C0
5: (BC, ;C) ← (C0 < C1) ? (0, 1) : (1, 0)

6: if Cmmt > ts.time then

7: ts.time← Cmmt

8: vr ← Loadpln (mmts[mid] [;C] .val)

9: return vr
10: end if

11: vr ← exec #»s

12: Storepln (mmts[mid] [BC] .val, vr)

13: if SizeOf(<<C) > �!(�/� then

14: flushopt mmts[mid] [BC] .val; sfence

15: end if

16: C ← rdtscp

17: Storepln (mmts[mid] [BC] .time, C)

18: flushopt mmts[mid] [BC] .time; sfence

19: ts.time← C

20: return vr
21: end function

stale from latest (L2-L5); ❷ if the memento’s timestamp (Cmmt) is greater than the thread’s replaying
timestamp (ts.time), then the operation was already performed before the crash. In this case, ts.time

is incremented to Cmmt first, and then the pre-crash result is replayed by simply returning the old
returned value (L6-10); ❸ write the result of the given statements to the memento’s stale buffer
(L12); ❹ flush the stale buffer, unless the memento fits in a cache line so that the buffer is anyway
flushed at L18, following van Renen et al. [2020]’s optimization technique (L14); and ❺ update the
stale timestamp to the current timestamp (L17), flush it (L18), update ts.time (L19), and return the
result (L20). Here, “flushopt ;” is a shorthand for performing clwb 2; on all cache lines 2; that
spanning location ; .

4.3 Detectable Compare-and-Swap

We implement the pcas operation of our core language (§3.1) on Intel-x86. Following Attiya et al.
[2018]; Ben-David et al. [2019], our pcas on location ; comprises three phases: locking ; with
an architecture-provided plain CAS, committing the operation with PM writes, and unlocking ;

with another plain CAS. If a thread observes a locked location, it helps the ongoing operation to
guarantee lock freedom. When helping, it is crucial to notify such a fact to the helped thread to
ensure deterministic replay; otherwise, in the case that a thread performs a locking CAS, crashes,
and gets helped, then the thread would incorrectly perform the same CAS (that is already performed
by the helper) again in the post-crash execution. While the helping mechanism of Attiya et al.
[2018] (resp. Ben-David et al. [2019]) requires an array of $ () 2) (resp. $ ())) sequence numbers in
PM for each location (where) is the number of threads), we reduce the space consumption in PM
to only 8 bytes per location. The key idea is comparing timestamps as for loops (§2.2).

Components. An 8-byte location consists of 1-bit parity for helping, 1-bit helping flag to prevent
ABA9, 8-bit thread id (0 reserved for the pcas algorithm and 1-255 usable), 54-bit address annotated
with user tag (64TB with 8-bit tag or 256GB with 16-bit tag)10. The tag is reserved for users to
annotate arbitrary bits to pointer values for correctness [Harris 2001] or optimization [Chen et al.
2020]. We assume the encode and decode functions respectively convert a ⟨parity, thread id, offset⟩
tuple to a location and vice versa.

As with the chkpt operation, pcas ensures atomicity by double buffering, storing two copies of a
value and an annotated timestamp in its implementation of primitive memento. A 62-bit timestamp
generated from rdtscp (sufficient for about 47 years without overflow) is annotated with a 1-bit

9For brevity, we defer the discussion on ABA prevention to §A.
10If 64 or more bits are necessary, a 118-bit integer supporting detectable CAS can be constructed from 128-bit machine

words and double-word machine CAS operations.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:15

parity and a 1-bit success flag, forming 8 bytes in total. We assume encodeT and decodeT convert
a ⟨parity, success flag, timestamp⟩ tuple into an annotated timestamp and vice versa.

For helping, our framework tracks several timestamps in DRAM and PM. The ts.cas timestamp in
DRAM records the parity-annotated timestamps of each thread’s last CAS operation across crashes,
while the global arrays ��!% [2] [)] in PM record the timestamp of the last helping for each parity
and thread, written by the helpers. Our framework maintains the invariant that the thread ts’s CAS
was helped if ts.cas is less than ��!% [?] [ts] for some appropriate parity ? (see below).

The crash handler initializes ts.caswith the maximum timestamp checkpointed in pcas primitive
mementos when a thread crashes, and uses ��!% to calculate Cmax for clock calibration when the
system crashes (§4.1).

Load. We present our pcas implementation in Algorithm 5. As pcas acquires a lock by temporarily
tagging parity, success flag, and thread id to the location value in PM, we also implement pload that
helps the ongoing pcas to release the lock, ensuring it reads a value persisted in PM. Specifically,
Load (L1) performs an architecture-provided plain load and invokes Help (see below for details on
helping). As such, both operations are oblivious to tags: their input and output location values are
tagged with zero.

CAS: Normal Execution. The pcas operation (L5) begins by identifying the stale and latest values
in the memento (L9). It then performs two main tasks: (1) determining whether the CAS operation
was completed or crashed while executing previously with the latest values in the memento, and
if so, returning the previous result value (L12-27); (2) if not, executing an actual CAS operation
(L28-52). For easier understanding, we describes the second task first.

The CAS operation ❶ tries to lock the location by performing a plain CAS to the new value
annotated with the next parity (¬?own) and the thread id (tid, L30-34); ❷ if unsuccessful, it finishes
the operation after updating ts.time and persisting the failure to the memento (L36-41); ❸ ensures
the operation is committed by flushing the plain CAS (L43); and ❹ completes the operation after
updating ts.time (L44) and ts.cas (for the next CAS operation) (L46), persisting the success to the
memento (L48), attempting to unlock the location by atomically clearing annotations (L50), and
(regardless of the result) ensuring the writes to the memento are flushed (L51).

CAS: Replay. To demonstrate that the execution of pcas is deterministically replayed, we first
define the following events of a pre-crash execution. Commit is the flush of the first plain CAS
at L30. Note that this event does not coincide with the flush instruction at L43, as a write can be
voluntarily flushed before requested. Checkpoint is the flush of memento writes at L39 and L47.
Unlock is the flush of the second plain CAS at L50. Based on the timing of a crash, the memory
state that can be observed during post-crash execution can be categorized as follows:

(E1) Before commit: the latest timestamp in the memento (Cmmt) is less than or equal to11 the thread’s
last observed timestamp (ts.time).

(E2) Between commit and checkpoint: Cmmt is still less than or equal to ts.time. The location (;>2) can
have one of two states: (E20) ;>2 is still locked by the thread; or (E21) ;>2 is not locked by the
thread as it is unlocked by another thread’s helping.

(E3) After checkpoint: Cmmt is greater than ts.time.

The replay algorithm (L12-27) exhaustively covers all the crash cases mentioned above. After
decoding the memento’s annotated timestamp (L11), it compares Cmmt and ts.time. If Cmmt is greater
than ts.time (corresponding to E3), the pre-crash execution is replayed: it updates ts.time and if
pcas was successful, returns true and >;3 (L14); otherwise returns false and the value stored

11If the memento function is within a loop, it is possible for the timestamp of the memento and the thread’s last observed

timestamp to be equal.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:16 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

Algorithm 5 Load and detectable CAS for location values

1: function pload(;>2) ⊲ for location values

2: 2DA ← Loadpln (;>2)

3: return Help(;>2, 2DA)

4: end function

5: function pcas(;>2, >;3, =4F,mid)

6: C0 ← Loadpln (mmts[mid] [0] .time)

7: C1 ← Loadpln (mmts[mid] [1] .time)

8: Cmmt ← (C0 < C1) ? C1 : C0
9: (BC, ;C) ← (C0 < C1) ? (0, 1) : (1, 0)

10: ?BCmmt ← Loadpln (mmts[mid] [;C] .time)

11: (?0Ammt, BD2mmt, Cmmt) ← decodeT(?BCmmt)

12: if Cmmt > ts.time then

13: ts.time← Cmmt

14: if BD2mmt then return (true, >;3)

15: vr ← Loadpln (mmts[mid] [;C] .val)

16: return (false, vr)

17: end if

18: _← pload(;>2)

19: (?0Aown, _, Cown) ← decodeT(ts.cas)

20: Chelp ← Loadpln (��!% [¬?0Aown] [C83])

21: if Cown < Chelp then

22: ts.time← Chelp
23: ?BCsuc ← encodeT(¬?0Aown, true, Chelp)

24: Storepln (mmts[mid] [BC] .time, ?BCsuc)

25: flushopt mmts[mid] [BC] .time; sfence

26: return (true, >;3)

27: end if

28: >;3′ ← encode(Even, false, 0, >;3)

29: =4F ′ ← encode(¬?0Aown, false, C83, =4F)

30: A1 ← CASpln (;>2, >;3
′, =4F ′)

31: C ← rdtscp; lfence

32: if A1 is (Err 2DA) then

33: 2DA ← Help(;>2, 2DA)

34: if 2DA = >;3 then goto 30

35: ts.time← C

36: ?BCfail ← encodeT(Even, false, C)

37: ts.cas← ?BCfail
38: Storepln (mmts[mid] [BC] .val, 2DA)

39: Storepln (mmts[mid] [BC] .time, ?BCfail)

40: flushopt mmts[mid] [BC]; sfence

41: return (false, 2DA)

42: end if

43: flushopt ;>2 ; sfence

44: ts.time← C

45: ?BCsuc ← encodeT(¬?0Aown, true, C)

46: ts.cas← ?BCsuc
47: Storepln (mmts[mid] [BC] .time, ?BCsuc)

48: flushopt mmts[mid] [BC] .time

49: =4F ′′ ← encode(Even, false, 0, =4F)

50: A2 ← CASpln (;>2, =4F
′, =4F ′′)

51: if A2 is Err then sfence

52: return (true, >;3)

53: end function

54: function Help(;>2, >;3)

55: (?0Aold, 3B2old, C83old, >old) ← decode(>;3)

56: if C83old = 0 then return >old
57: wait($6)

58: C ← rdtscp; lfence

59: wait($6)

60: 2DA ← Loadpln (;>2)

61: if >;3 ≠ 2DA then >;3 ← 2DA ; goto 55

62: flushopt ;>2

63: Adsc ← RegisterDesc(;>2, >;3)

64: if Adsc is (Ok 2DA) then

65: (?0Aold, _, C83old, >old) ← decode(2DA)

66: else

67: >;3 ← Loadpln (;>2); goto 55

68: end if

69: Chelp ← Loadpln (��!% [?0Aold] [C83old])

70: if C ≤ Chelp then

71: >;3 ← Loadpln (;>2); goto 55

72: end if

73: A ← CASpln (��!% [?0Aold] [C83old], Chelp, C)

74: if A is Err then

75: >;3 ← Loadpln (;>2); goto 55

76: end if

77: flushopt ��!% [?0Aold] [C83old]

78: >;3′ ← encode(Even, false, 0, >old)

79: if CASpln (;>2, >;3, >;3
′) is (Err cur) then

80: >;3 ← 2DA ; goto 55

81: end if

82: flushopt ;>2 ; sfence

83: return >old
84: end function

in the memento (L16). If Cmmt is less than or equal to ts.time, it helps the location’s ongoing pcas

if it exists (L18), which transitions the sub-case E20 to E21 . To distinguish between cases E1 and
E21 , the last timestamp increased by helper and the timestamp of the thread’s last CAS operation
should be compared. To this end, it decodes ts.cas, retrieves the parity and timestamp (Cown), and
loads the helping timestamp (Chelp) using the opposite parity (L19-20, see below for details of parity
and timestamp on helping). If Chelp is greater than Cown (corresponding to E21), it detects (from the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:17

invariant of ts.cas and ��!%) that the last CAS operation actually succeeded and finalizes the
operation (L21-27). Otherwise (corresponding to E1), it proceeds to the normal execution (L28-52).

Helping. For lock-freedom, a thread may invoke Help(;>2, >;3) (L54) for loc’s ongoing pcas oper-
ation to be flushed, unlock it and to return an unlocked (i.e. untagged) location value. It ❶ returns
the given value old read from loc if is already unlocked (L56); ❷ waits for $6, reads the current
timestamp (C), and waits for $6 again to make C synchronized across other threads (L57-L59, see
Observation 1); ❸ loads a value, say 2DA , from loc again, and if >;3 ≠ 2DA , then retries from L55
(L61); ❹ ensures the ongoing operation is committed by flushing ;>2 (L62); ❺ registers the helping
descriptor flag to prevent ABA9 (L63-68); ❻ loads ��!% [?0Aold] [C83old], the last CAS help’s times-
tamp for the parity and thread id annotated in >;3 , and if it is bigger than C , retries the operation
(L69-72); ❼ performs a plain CAS and flush on ��!% [?0Aold] [C83old] to atomically increase it to
C , and if unsuccessful, retries the operation because the CAS has been already helped (L73-77);
❽ tries to unlock the location with a plain CAS and a flush, and if unsuccessful, retries the operation
(L78-82); and ❾ returns the unlocked location (L83).

C=−1=rdtscp; lfencea:

Update=−1,2 / Loadb:

Update=,1c:

C=d:

Update=,2 / Loade:

Update=+1,1f:

C=+1g:

po

po

pcas

����

Loadh:

Waiti:

Cℎ=rdtscp; lfencej:

Waitk:

Loadl:

po

po

Help()

�����

a
hb
→ c

hb
→ h

hb
→ j

hb
→ l

hb
→ e

hb
→ g

A 5

A 5

A1;A 5 ?

Fig. 4. Synchronization of pcas() and Help()

For deterministic replay, we show that
Help() updates ��!% for a re-execution of
pcas to enter the branch at L21 if and only
if the previous execution of pcas crashed be-
tween commit and checkpoint of success (E2). To
this end, it is sufficient to prove the following.

Lemma 4.1. Let ?= and C= denote the parity

and timestamp of C83’s =th pcas invocation. The

sequence {?8 } then alternates between even and

odd numbers, and the sequence {C8 } is strictly increasing. Then C=−1 < ��!% [?=] [C83] if and only if

either the =th or a later CAS with parity ?= was helped.

Proof. Suppose a Help operation generates a timestamp Cℎ at L58 and tries to help the second
plain CAS of thread C83’s=-thCAS invocation, as illustrated in Fig. 4. Here, we depict the plain CASes
and timestamp generations of C83’s (= − 1)st to (= + 1)st CAS invocations, and loads and timestamp
generations of aHelp invocation, whereUpdate=,8 represents the 8

th plain CAS of C83’s =th CAS, and
Load represents a load from a location. Then we have the following properties from Observation 1:

(1) C=−1 < Cℎ from 0
po
→ 2

rf
→ ℎ

po
→ 8

po
→ 9 ; and (2) Cℎ < C=+1 from 9

po
→ :

po
→ ;

rb;rf ?

→ 4
po
→ 6, where po is

the program order; rf is the reads-from relation from each write to its readers; rb is the reads-before
relation from each read to the later writes; rb;rf ? is the reads-before relation possibly followed by
a reads-from relation; and all relations constitute the happens-before relation hb in the x86-TSO
memory model (see Owens et al. [2009] for more details).
Recall that Help persists Update=,1 (L62), atomically increases ��!% [?=] [C83] to Cℎ (L73-L77),

and helps Update=,2 (L78-L82). If thread C83’s =th CAS was helped, then we have C=−1 < Cℎ ≤

��!% [?=] [C83] due to property (1). Conversely, if C=−1 < ��!% [?=] [C83], then it cannot be the
result of a help for (= − 2)nd or earlier CASes or those with parity ¬?= due to property (2). □

5 IMPLEMENTATION OF CONCURRENT DATA STRUCTURES

As primitive detectable operations, we implement Chkpt-mmt: chkpt (§4.2); CAS-mmt: pcas
(§4.3); Indel-mmt: insertion/deletion for atomic locations that performs fewer flushes than pcas.
These primitives capture the essence of optimization in Friedman et al. [2018]; Li and Golab [2021]’s
hand-tuned detectable Michael-Scott queues (MSQs) [Michael and Scott 1996] (see §B for details).
Accordingly, we extend the core language to support additional primitive operations, including

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:18 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

Vol-mmt: a volatile location for cached values requiring no flushes (see §C.1 for details); and
Comb-mmt: an adaptation of Fatourou et al. [2022]’s general combiner for persistent DSs to our
framework. While the original combiner is detectable, it only supports a single invocation of each
operation by each thread, e.g. the following statements are not detectably recoverable:

1: E1 ← Deqeue(@); E2 ← Deqeue(@); Enqeue(@, E1 + E2)

If an execution crashes while performing Deqeue, we cannot detect whether it was for E1 or E2.
In contrast, we distinguish the two invocations by distinct sub-mementos.
Using the primitives and our type system, we implement the following detectable, persistent

DSs: List-mmt: CAS-based lock-free linked-list; TreiberS-mmt: CAS-based Treiber stack [Treiber
1986];MSQ-mmt-O0: CAS-based MSQ;MSQ-mmt-O1: MSQ based on Indel-mmt and Vol-mmt;
CombQ-mmt: combining queue based on Comb-mmt; and Clevel-mmt: CAS-based lock-free
resizing hash table of Chen et al. [2020]12, which we optimize with an advanced type rule, loop-try
(see §C.2 for details). Theorem 3.4 guarantees the detectability of these implementations. In addition,
we implement MSQ-mmt-O2: a variant of MSQ-mmt-O1 with an invariant-based optimization,
which reduces PM flushes based on the invariant that certain location values are always persisted
(see §C.3 for details).

We implement safe memory reclamation for all DSs, but we defer the details to §D for space
reasons. In doing so, we discover and fix a use-after-free bug in the MSQs of Friedman et al. [2018];
Li and Golab [2021] in case of crashes due to a lack of flush.

6 EVALUATION

We evaluate the detectable recoverability (§6.1) and performance (§6.2) of our detectable CAS, list,
queues and hash table. We implement our framework and DSs in Rust nightly-2022-05-26 [Rust
2023] and build them with release mode. We use a machine running Ubuntu 20.04 and Linux 5.4
with dual-socket Intel Xeon Gold 6248R (3.0GHz, 24 cores, 48 threads) and an Intel Optane DCPMM
(100 Series, 256GB). We pin all threads to a single socket to keep all DCPMM traffic within the
same NUMA node. For brevity, we present only key results here; see §E for the full results.

6.1 Detectability

We evaluate the detectability of two distinct crash scenarios: thread crashes and system crashes.
Thread crashes present a more non-deterministic and challenging aspect to address in comparison to
system crashes. Conversely, system crashes provide an opportunity to examine if data is accurately
retained in persistent memory, thereby enabling the detection of missing flush bugs in weak
persistency memory models [Cho et al. 2021].

To perform stress test under thread crashes, we randomly crash an arbitrary thread. To crash a
specific thread, we use the tgkill system call to send the SIGUSR1 signal to the thread and let its
signal handler abort its execution. To the best of our knowledge, this is the first general stress test
for thread crashes carried out for detectable, persistent DSs. For the integration test of CAS and
each DS, we observe no test failures for 100K runs with thread crashes.
Provoking an actual system crash in a controlled and efficient manner is challenging within

conventional systems. Instead, we perform stress test under simulated system crashes by running
model-checking tools, Yashme [Gorjiara et al. 2022b] and PSan [Gorjiara et al. 2022a], in the
“random” mode, which does not enumerate all possible executions and thus possibly fails to detect
existing bugs. We use the random mode to avoid state explosion. For the integration test of CAS
and each DS, we observe no test failures for 1K runs with simulated system crashes.

12We use a bug-fixed version due to Chen et al. [2022].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:19

(a) Throughput

(1 Location)

(b) Throughput

(1K Locations)

(c) Throughput

(1M Locations)

(d) Memory Usage

(1M Locations)

Fig. 5. Multi-threaded throughput of detectable CASes

(a) Read Intensive

(20 Key Range)

(b) Read Intensive

(2K Key Range)

(c) Update Intensive

(20 Key Range)

(d) Update Intensive

(2K Key Range)

Fig. 6. Multi-threaded throughput of persistent lists

6.2 Performance

Unless specified otherwise, we measure the throughput for a varying number of threads: 1 to 8 and
the multiples of 4 from 12 to 64; we report the average throughput of 5 runs, each for 10 seconds.

CAS. Fig. 5 presents the throughput and memory usage of our CAS-mmt; PMwCAS: detectable
multi-word CAS by Wang et al. [2018]; and NrlCAS: detectable CAS by Attiya et al. [2018]. We
reimplement PMwCAS in Rust to use the same allocator as the other CASes; we implement NrlCAS
in Rust because its source code is not publicly available. Over-subscription over 48 threads is
indicated as shaded regions. (1) When multiple threads perform CASes randomly on a varying
number of locations (Fig. 5a, Fig. 5b, Fig. 5c), CAS-mmt exhibits higher throughput than the others
for every thread count, except for NrlCAS with low thread counts for 1K locations. (2) When
multiple threads perform CASes randomly on 1M locations (Fig. 5d), NrlCAS indeed consumes
$ () 2) PM locations, where) is the number of threads. (3) PMwCAS exhibits lower throughput
than reported by Wang et al. [2018], because PM was not generally available at the time of writing
and they experimented with DRAM. Also, PMwCAS generally exhibits lower throughput than
single-word CASes because it supports multi-word CAS.

List. Fig. 6 illustrates the throughput of List-mmt; Capsule: detectable linked-list by Ben-David
et al. [2019]; andCapsule-Opt: optimized detectable linked-list and Tracking: detectable linked-list
by Attiya et al. [2022]. We use the DS implementation and evaluation workloads of Attiya et al.
[2022]: from a random initial list, read-intensive workloads perform inserts, deletes and finds for
15%, 15%, and 70% times; and update-intensive workloads perform them for 35%, 35%, and 30%
times. (1) For small key ranges, List-mmt significantly outperforms the others thanks to fewer
flushes to PM of timestamp-based replay (Fig. 6a, Fig. 6c); and (2) for large key ranges, all lists are
saturated at almost the same performance because search dominates the cost (Fig. 6b, Fig. 6d).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:20 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

(a) enqueue-dequeue (b) enqueue-20% (c) enqueue-50% (d) enqueue-80%

Fig. 7. Multi-threaded throughput of persistent queues

Fig. 8. Multi-threaded throughput of hash tables for uniform distributions

Queue. We compare the throughput of our queues; DurableQ: undetectable durable MSQ by
Friedman et al. [2018]; LogQ: detectable MSQ by Friedman et al. [2018]; DssQ: detectable MSQ by
Li and Golab [2021]; PBcombQ: detectable combining queue by Fatourou et al. [2022]; ClobberQ:
transaction-based queue in Clobber-NVM [Xu et al. 2021]; PMDKQ: transaction-based queue in
PMDK [Intel 2023b]; and CorundumQ: transaction-based queue in Corundum [Hoseinzadeh and
Swanson 2021]. We reimplement DurableQ and LogQ in Rust for a use-after-free bug (see §D);
reimplement PBcombQ in Rust because it does not implement detectable recovery and uses a custom
allocator; and implement DssQ in Rust because its source code is not publicly available.
Fig. 7 shows the throughput of queues for four workloads: enqueue-dequeue: each operation

enqueues an item and then immediately dequeues an item; enqueue-X% (with X=20, 50 or 80):
each operation enqueues (or dequeues) an item for the probability of X%. We initialize the queues
with 10M items to prevent excessive empty dequeues. (1) Transaction-based queues are noticeably
slower than MSQs and combining queues. (2) Combining queues significantly outperform MSQs at
high thread counts, in line with observations by Fatourou et al. [2022]. Thus, we cut the graphs to
focus on MSQs rather than combining queues. (3) Although not shown in the graphs, it’s worth
noting that CombQ-mmt incurs a slight overhead over PBcombQ, especially for dequeue operations,
because the latter saves a flush by assuming that a thread does not invoke an operation multiple
times (see above). (4) MSQ-mmt-O2 outperforms hand-tuned persistent MSQs with and without
detectability thanks to fewer flushes to PM of timestamp-based deterministic replay (§2.2, see
also §7). In addition, DurableQ’s dequeue incurs PM block allocation to store the return value.
(5) MSQ-mmt-O1 performs comparably with hand-tuned MSQs for dequeue-heavy workloads but
not for enqueue-heavy workloads, because without an invariant-based optimization, its enqueue
performs two plain CASes. (6) MSQ-mmt-O0 is outperformed by hand-tuned MSQs due to its
CAS-based dequeue flushing the head pointer and invalidating its cache line for every thread.

HashTable. We compare the throughput ofClevel-mmt with the original, undetectableClevel [Chen
et al. 2020] using the PiBench benchmark [Lersch et al. 2019] specifically designed for PM hash
tables. We employ the Clevel implementation and evaluation workloads from a PM hash table
evaluation paper [Hu et al. 2021], which consists of seven workloads (insert, positive and negative

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:21

search, delete, and write-heavy, balanced, and read-heavy) and two key distributions: uniform and
skewed (80% of accesses target 20% of keys); see §E for full details.
Fig. 8 illustrates multi-threaded throughput of hash tables under uniform key distributions. The

results for the skewed distribution are similar. (1) Clevel-mmt exhibits a slight overhead over Clevel
for positive search queries because Clevel-mmt’s load operations checks if the location value is
locked and it should help concurrent pcas (§4.3). (2) Clevel-mmt exhibits a noticeable overhead
over Clevel for delete queries because Clevel-mmt’s delete operations perform two plain CASes
for detectability. (3) Clevel-mmt outperforms Clevel for insert queries, and Clevel does not scale
well over 24 threads. The main reason for this is that the PMDK allocator used by Clevel does
not perform well for allocation and thread counts above the core count. While the comparison is
not apple-to-apple, we can at least deduce that Clevel-mmt’s detectability introduces only modest
overhead for most combinations of thread counts, workloads, and key distributions.

7 RELATED AND FUTURE WORK

Detectable Lock-Free DSs in PM. Attiya et al. [2022] propose transforming lock-free DRAM-based
DSs into PM-based ones by persistently tracking an operation’s progress and necessary completion
information in its operation descriptor in PM. They assume each DS operation on the DS can be
split into load-only gather and CAS-only update phases. However, this efficient approach is limited
to specific operations that can be split in this manner and cannot handle complex operations with
interleaved loads, CASes, or control constructs such as conditional branches and loops. Additionally,
their approach performs a PM flush to reset an operation descriptor before reuse, while Memento

directly overwrites mementos without resetting, utilizing timestamps.
Ben-David et al. [2019] checkpoint program points and local variables to record an operation’s

progress and result. However, their approach has two limitations. First, it makes unrealistic system
assumptions to recover the execution context from the checkpointed values correctly, such as the
persistence of the OS page table and maintaining the same virtual address space upon recovery.
These assumptions are not satisfied by Linux, which is typically used for PM deployments. More-
over, their method requires the number of each stack frame’s persisted local variables to be less
than a machine word’s bitwidth to atomically update the validity of the local variables, limiting
its applicability to complex operations in file systems and DBMS. Second, their approach must
checkpoint program points around CASes and after branches, causing noticeable performance
overhead, especially in write-heavy workloads, as shown in §6.

Friedman et al. [2018] and Li and Golab [2021] present detectable MSQs in PM, but both have a
bug on reclamation (§D) and perform slower than our MSQ due to an additional flush (§6).
Rusanovsky et al. [2021] and Fatourou et al. [2022] present hand-tuned persistent combining

DSs based on a general combiner. However, their DSs only support a single invocation for each
operation (§5): their DSs use a fixed per-thread PM storage to track the progress of a thread’s
operation, and in our experience of implementing CombQ-mmt, storing the results of multiple
invocations requires a sizeable restructuring of the algorithms. Furthermore, their methods require
additional DS logic, requiring deep understanding: e.g. the combining queue of Fatourou et al.
[2022] has extra synchronization that prevents dequeuing of elements that are enqueued but not
yet persisted. By contrast, our type system applies to general programs with control constructs
(Fig. 2) and automatically guarantees the detectability of well-typed programs (Theorem 3.1).

Undetectable Lock-Free DSs in PM. Friedman et al. [2018] present an undetectable lock-free MSQ
in PM. Our detectable MSQ outperforms theirs because their dequeue operation allocates a PM
block to store the return value (§6). Various hash tables [Chen et al. 2020; Lee et al. 2019; Lu et al.
2020; Nam et al. 2019; Zuo et al. 2018; Zuriel et al. 2019] and trees [Arulraj et al. 2018; Kim et al.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

118:22 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

2021b] in PM have been proposed in the literature. In this paper, we convert the Clevel [Chen et al.
2020] hash table to a detectable one as a case study because it is lock-free. Converting the others to
detectable DSs is an interesting direction for future work.

Transformation of DSs from DRAM to PM. Izraelevitz et al. [2016] present a universal construc-
tion of lock-free DSs in PM, but the constructed DSs are generally slow [Friedman et al. 2020, 2021].
Lee et al. [2019] propose a RECIPE to convert indexes from DRAM to PM and Kim et al. [2021b]
propose the Packed Asynchronous Concurrency guideline to construct high-performance persistent
DSs in PM, but their approaches are abstract, high-level, and not immediately applicable to DSs in
general. By contrast, our rules of composition provide a more concrete guideline at the code level.

NVTraverse [Friedman et al. 2020] is a systematic transformation of persistent DSs, exploiting an
observation that most operations comprise two phases: read-only traversal (which does not require
flushes) and critical modification. Mirror [Friedman et al. 2021] is a more general and efficient
transformation that replicates DSs in PM and DRAM, significantly improving read performance.
FliT [Wei et al. 2022] is a persistent DS library based on a transformation utilizing dirty cache line
tracking. However, none of these works support the transformation of detectable DSs.

Detectability. Attiya et al. [2022, 2018]; Friedman et al. [2018]; Li and Golab [2021] define detectabil-
ity as thread’s ability to detect the DS operation’s progress of a pre-crash execution and resume
thereafter. We formalize this property as a deterministic replay of thread executions (Definition 3.2)
and instead define detectability as failure transparency of machine’s behaviours under crashes, and
generally prove the detectability of well-typed programs (Theorem 3.1).

PMPlatforms. Memento applies not only to Intel Optane persistent memory [Intel 2019] (with and
without eADR [Intel 2021]) but also to other PM platforms, such as Samsung’s Memory-Semantic
SSD (MS-SSD) [Samsung 2023], because they all provide the following features that Memento

relies on: direct access via mmap and fine-grained data transfer. Intel’s PMDK [Intel 2023b] maps
persistent memory to virtual memory via mmap to support direct memory access [Intel 2023a],
while Samsung’s SMDK supports the CXL.mem interface [Samsung 2022] that serves the same
purpose. Furthermore, both Intel Optane persistent memory and Samsung MS-SSD’s CXL.mem
interface transfer data at the cache line granularity [Blankenship 2020].

Future Work. (1)We will design larger objects (e.g. file systems and storage engines) inMemento.
(2) In doing so, we will adapt existing hand-tuned detectable concurrent DSs and persistent trans-
actional memory (PTM) systems [Krishnan et al. 2020; Memaripour et al. 2017] to Memento to
compose them into larger objects. (3)We will formalize our type system and verify the detectability
of well-typed programs in logics for PM [Raad et al. 2020; Vindum and Birkedal 2022]. (4) We
will reason about the invariant-based optimizations to verify MSQ-mmt-O2 by composing the
type-based automatic verification of MSQ-mmt-O1 and manual verification of the invariant-based
optimization.

ACKNOWLEDGMENTS

We thank the PLDI 2023 reviewers and Minseong Jang for their valuable feedback. Kyeongmin
Cho, Seungmin Jeon, and Jeehoon Kang are partly supported by Samsung Electronics Co., Ltd (No.
IO220407-09486-01), and the Institute for Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea Government (MSIT) (No. 2018-0-00503, Researches on
next generation memory-centric computing system architecture). Azalea Raad is supported by a
UKRI Future Leaders Fellowship under grant number MR/V024299/1.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:23

8 DATA AVAILABILITY STATEMENT

The accompanying artifact [Cho et al. 2023] (also available at https://github.com/kaist-cp/memento)
provides the implementation and the experimental results. The artifact is structured as follows.

• /memento/src/: the implementation of the Memento framework and its primitives (§4).
• /memento/src/: the implementation of detectably persistent data structures (§5).
• /memento/evaluation/: the experiment script for correctness and performance (§6).
• /evaluation_data/: the complete experimental results (§6).

Please refer to the artifact’s README.md for detailed instructions on how to reproduce the results.

REFERENCES

Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018. Bztree: A High-Performance Latch-Free

Range Index for Non-Volatile Memory. Proc. VLDB Endow. 11, 5 (jan 2018), 553–565.

Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler, and Eleftherios Kosmas. 2019. Tracking in Order to

Recover: Detectable Recovery of Lock-Free Data Structures. https://doi.org/10.48550/ARXIV.1905.13600

Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler, and Eleftherios Kosmas. 2022. Detectable Recovery of

Lock-Free Data Structures. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (Seoul, Republic of Korea) (PPoPP ’22). Association for Computing Machinery, New York, NY, USA, 262–277.

https://doi.org/10.1145/3503221.3508444

Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. 2018. Nesting-Safe Recoverable Linearizability: Modular Constructions

for Non-Volatile Memory. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (Egham,

United Kingdom) (PODC ’18). Association for Computing Machinery, New York, NY, USA, 7–16. https://doi.org/10.1145/

3212734.3212753

Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei. 2019. Delay-Free Concurrency on Faulty Persistent

Memory. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures (Phoenix, AZ, USA) (SPAA ’19).

Association for Computing Machinery, New York, NY, USA, 253–264. https://doi.org/10.1145/3323165.3323187

Jim Blandy. 2022. Comparison of Rust async and Linux thread context switch time and memory use. https://github.com/

jimblandy/context-switch

Robert Blankenship. 2020. CXL 1.1 Protocol Extensions: Review of the Cache and Memory Protocols in CXL. https:

//www.snia.org/educational-library/cxl-11-protocol-extensions-review-cache-and-memory-protocols-cxl-2020

Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott. 2020. Understanding

and Optimizing Persistent Memory Allocation. In Proceedings of the 2020 ACM SIGPLAN International Symposium on

Memory Management (London, UK) (ISMM 2020). Association for Computing Machinery, New York, NY, USA, 60–73.

https://doi.org/10.1145/3381898.3397212

Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu Shu. 2021. Scalable

Persistent Memory File System with Kernel-Userspace Collaboration. In 19th USENIX Conference on File and Storage

Technologies, FAST 2021, February 23-25, 2021, Marcos K. Aguilera and Gala Yadgar (Eds.). USENIX Association, 81–95.

https://www.usenix.org/conference/fast21/presentation/chen-youmin

Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concurrent Level Hashing for Persistent Memory. In

2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association, 799–812. https://www.usenix.org/

conference/atc20/presentation/chen

Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. 2022. Efficiently Detecting Concurrency Bugs in Persistent

Memory Programs. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS 2022). Association for Computing Machinery, New

York, NY, USA, 873–887. https://doi.org/10.1145/3503222.3507755

Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang. 2023. Artifact for Article "Memento: A Framework for

Detectable Recoverability in Persistent Memory". https://doi.org/10.5281/zenodo.7811928

Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang. 2021. Revamping Hardware Persistency Models:

View-Based and Axiomatic Persistency Models for Intel-X86 and Armv8. In Proceedings of the 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association

for Computing Machinery, New York, NY, USA, 16–31. https://doi.org/10.1145/3453483.3454027

Jeongdong Choe. 2022. Review and Things to Know: Flash Memory Summit 2022. TechInsights (August 2022). https:

//www.techinsights.com/blog/review-and-things-know-flash-memory-summit-2022

Crossbeam. 2022. Crossbeam. https://github.com/crossbeam-rs/crossbeam

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

https://github.com/kaist-cp/memento
https://doi.org/10.48550/ARXIV.1905.13600
https://doi.org/10.1145/3503221.3508444
https://doi.org/10.1145/3212734.3212753
https://doi.org/10.1145/3212734.3212753
https://doi.org/10.1145/3323165.3323187
https://github.com/jimblandy/context-switch
https://github.com/jimblandy/context-switch
https://www.snia.org/educational-library/cxl-11-protocol-extensions-review-cache-and-memory-protocols-cxl-2020
https://www.snia.org/educational-library/cxl-11-protocol-extensions-review-cache-and-memory-protocols-cxl-2020
https://doi.org/10.1145/3381898.3397212
https://www.usenix.org/conference/fast21/presentation/chen-youmin
https://www.usenix.org/conference/atc20/presentation/chen
https://www.usenix.org/conference/atc20/presentation/chen
https://doi.org/10.1145/3503222.3507755
https://doi.org/10.5281/zenodo.7811928
https://doi.org/10.1145/3453483.3454027
https://www.techinsights.com/blog/review-and-things-know-flash-memory-summit-2022
https://www.techinsights.com/blog/review-and-things-know-flash-memory-summit-2022
https://github.com/crossbeam-rs/crossbeam

118:24 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1989. An Efficient Method of Computing Static

Single Assignment Form. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Austin, Texas, USA) (POPL ’89). Association for Computing Machinery, New York, NY, USA, 25–35. https:

//doi.org/10.1145/75277.75280

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing Static

Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (oct 1991), 451–490.

https://doi.org/10.1145/115372.115320

Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor Zablotchi. 2018. Log-Free Concurrent Data Structures. In

Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference (Boston, MA, USA) (USENIX ATC ’18).

USENIX Association, USA, 373–385.

Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A Highly-Efficient Wait-Free Universal Construction. In Proceedings of

the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and Architectures (San Jose, California, USA) (SPAA

’11). Association for Computing Machinery, New York, NY, USA, 325–334. https://doi.org/10.1145/1989493.1989549

Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the Combining Synchronization Technique. In Proceedings

of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (New Orleans, Louisiana, USA)

(PPoPP ’12). Association for ComputingMachinery, New York, NY, USA, 257–266. https://doi.org/10.1145/2145816.2145849

Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas. 2022. The Performance Power of Software Combining

in Persistence. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(Seoul, Republic of Korea) (PPoPP ’22). Association for Computing Machinery, New York, NY, USA, 337–352. https:

//doi.org/10.1145/3503221.3508426

Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez Petrank. 2020. NVTraverse: In NVRAM Data

Structures, the Destination is More Important than the Journey. In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery,

New York, NY, USA, 377–392. https://doi.org/10.1145/3385412.3386031

Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A Persistent Lock-Free Queue for Non-Volatile

Memory. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Vienna,

Austria) (PPoPP ’18). Association for Computing Machinery, New York, NY, USA, 28–40. https://doi.org/10.1145/3178487.

3178490

Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror: Making Lock-Free Data Structures Persistent. Association

for Computing Machinery, New York, NY, USA, 1218–1232. https://doi.org/10.1145/3453483.3454105

James R. Goodman, Mary K. Vernon, and Philip J. Woest. 1989. Efficient Synchronization Primitives for Large-Scale Cache-

Coherent Multiprocessors. In Proceedings of the Third International Conference on Architectural Support for Programming

Languages and Operating Systems (Boston, Massachusetts, USA) (ASPLOS III). Association for Computing Machinery,

New York, NY, USA, 64–75. https://doi.org/10.1145/70082.68188

Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky. 2022a. Checking Robustness to Weak

Persistency Models. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design

and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA,

490–505. https://doi.org/10.1145/3519939.3523723

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2022b. Yashme: Detecting Persistency Races. In Proceedings of

the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems

(Lausanne, Switzerland) (ASPLOS ’22). Association for Computing Machinery, New York, NY, USA, 830–845. https:

//doi.org/10.1145/3503222.3507766

Timothy L. Harris. 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists. In Proceedings of the 15th International

Conference on Distributed Computing (DISC ’01). Springer-Verlag, Berlin, Heidelberg, 300–314.

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat Combining and the Synchronization-Parallelism

Tradeoff. In Proceedings of the Twenty-Second Annual ACM Symposium on Parallelism in Algorithms and Architectures

(Thira, Santorini, Greece) (SPAA ’10). Association for Computing Machinery, New York, NY, USA, 355–364. https:

//doi.org/10.1145/1810479.1810540

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM

Trans. Program. Lang. Syst. 12, 3 (jul 1990), 463–492. https://doi.org/10.1145/78969.78972

Morteza Hoseinzadeh and Steven Swanson. 2021. Corundum: Statically-Enforced Persistent Memory Safety. In Proceedings

of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems

(Virtual, USA) (ASPLOS 2021). Association for Computing Machinery, New York, NY, USA, 429–442. https://doi.org/10.

1145/3445814.3446710

Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen. 2021. Persistent Memory Hash Indexes: An Experi-

mental Evaluation. Proc. VLDB Endow. 14, 5 (jan 2021), 785–798. https://doi.org/10.14778/3446095.3446101

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1145/2145816.2145849
https://doi.org/10.1145/3503221.3508426
https://doi.org/10.1145/3503221.3508426
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/70082.68188
https://doi.org/10.1145/3519939.3523723
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3445814.3446710
https://doi.org/10.1145/3445814.3446710
https://doi.org/10.14778/3446095.3446101

Memento: A Framework for Detectable Recoverability in Persistent Memory 118:25

Intel. 2019. Intel® Optane™ Persistent Memory. https://www.intel.com/content/www/us/en/architecture-and-technology/

optane-dc-persistent-memory.html

Intel. 2021. eADR: New Opportunities for Persistent Memory Applications. https://www.intel.com/content/www/us/en/

developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html

Intel. 2022. Intel 64 and IA-32 Architectures Software Developer’s Manual (Combined Volumes). https://www.intel.com/

content/www/us/en/developer/articles/technical/intel-sdm.html Order Number: 325462-076US.

Intel. 2023a. The libpmem2 library. https://pmem.io/pmdk/libpmem2/

Intel. 2023b. Persistent Memory Programming. https://pmem.io/pmdk/

Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016. Linearizability of persistent memory objects under a

full-system-crash failure model. In International Symposium on Distributed Computing. Springer, 313–327.

Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and

Vijay Chidambaram. 2021. WineFS: A Hugepage-Aware File System for Persistent Memory That Ages Gracefully. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).

Association for Computing Machinery, New York, NY, USA, 804–818. https://doi.org/10.1145/3477132.3483567

Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim, and Taesoo Kim. 2018. A Scalable Ordering Primitive for Multicore

Machines. In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for Computing

Machinery, New York, NY, USA, Article 34, 15 pages. https://doi.org/10.1145/3190508.3190510

Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, Dejan Kostić, Youngjin Kwon, Simon Peter, and Emmett

Witchel. 2021a. LineFS: Efficient SmartNIC Offload of a Distributed File System with Pipeline Parallelism. In Proceedings

of the ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for

Computing Machinery, New York, NY, USA, 756–771. https://doi.org/10.1145/3477132.3483565

Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Changwoo Min. 2021b. PACTree: A High

Performance Persistent Range Index Using PAC Guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery, New York, NY,

USA, 424–439. https://doi.org/10.1145/3477132.3483589

R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri, Changwoo Min, and Sudarsun Kannan. 2020.

Durable Transactional Memory Can Scale with Timestone. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).

Association for Computing Machinery, New York, NY, USA, 335–349. https://doi.org/10.1145/3373376.3378483

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, and Thomas Anderson. 2017. Strata: A Cross

Media File System. In Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17).

Association for Computing Machinery, New York, NY, USA, 460–477. https://doi.org/10.1145/3132747.3132770

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chidambaram. 2019. Recipe: Converting

Concurrent DRAM Indexes to Persistent-Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,

462–477. https://doi.org/10.1145/3341301.3359635

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Willhalm. 2019. Evaluating Persistent Memory

Range Indexes. Proc. VLDB Endow. 13, 4 (dec 2019), 574–587. https://doi.org/10.14778/3372716.3372728

Nan Li and Wojciech Golab. 2021. Brief Announcement: Detectable Sequential Specifications for Recoverable Shared

Objects. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC’21).

Association for Computing Machinery, New York, NY, USA, 557–560. https://doi.org/10.1145/3465084.3467943

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable Hashing on Persistent Memory. Proc.

VLDB Endow. 13, 8 (apr 2020), 1147–1161. https://doi.org/10.14778/3389133.3389134

Paul E McKenney. 2005. Memory ordering in modern microprocessors, part I. Linux Journal 2005, 136 (2005), 2.

John Meehan, Nesime Tatbul, Stan Zdonik, Cansu Aslantas, Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David

Maier, Andrew Pavlo, Michael Stonebraker, Kristin Tufte, and Hao Wang. 2015. S-Store: Streaming Meets Transaction

Processing. Proc. VLDB Endow. 8, 13 (sep 2015), 2134–2145. https://doi.org/10.14778/2831360.2831367

Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin Strauss, and

Steven Swanson. 2017. Atomic In-Place Updates for Non-Volatile Main Memories with Kamino-Tx. In Proceedings of the

Twelfth European Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17). Association for Computing Machinery,

New York, NY, USA, 499–512. https://doi.org/10.1145/3064176.3064215

Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue

Algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing (Philadelphia,

Pennsylvania, USA) (PODC ’96). Association for Computing Machinery, New York, NY, USA, 267–275. https://doi.org/

10.1145/248052.248106

Microsoft. 2023. High context switch rate. https://learn.microsoft.com/en-us/gaming/gdk/_content/gc/system/overviews/

finding-threading-issues/high-context-switches

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://pmem.io/pmdk/libpmem2/
https://pmem.io/pmdk/
https://doi.org/10.1145/3477132.3483567
https://doi.org/10.1145/3190508.3190510
https://doi.org/10.1145/3477132.3483565
https://doi.org/10.1145/3477132.3483589
https://doi.org/10.1145/3373376.3378483
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.1145/3465084.3467943
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.14778/2831360.2831367
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/248052.248106
https://learn.microsoft.com/en-us/gaming/gdk/_content/gc/system/overviews/finding-threading-issues/high-context-switches
https://learn.microsoft.com/en-us/gaming/gdk/_content/gc/system/overviews/finding-threading-issues/high-context-switches

118:26 Kyeongmin Cho, Seungmin Jeon, Azalea Raad, and Jeehoon Kang

Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beomseok Nam. 2019. Write-Optimized Dynamic Hashing

for Persistent Memory. In 17th USENIX Conference on File and Storage Technologies (FAST 19). USENIX Association,

Boston, MA, 31–44. https://www.usenix.org/conference/fast19/presentation/nam

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better X86 Memory Model: X86-TSO. In TPHOL.

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2020. Persistent Owicki-Gries Reasoning: A Program Logic for Reasoning

about Persistent Programs on Intel-X86. Proc. ACM Program. Lang. 4, OOPSLA, Article 151 (nov 2020), 28 pages.

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019. Persistency Semantics of the Intel-X86 Architecture.

Proc. ACM Program. Lang. 4, POPL, Article 11 (dec 2019), 31 pages. https://doi.org/10.1145/3371079

Ganesan Ramalingam and Kapil Vaswani. 2013. Fault Tolerance via Idempotence. In Proceedings of the 40th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy) (POPL ’13). Association for

Computing Machinery, New York, NY, USA, 249–262. https://doi.org/10.1145/2429069.2429100

Matan Rusanovsky, Hagit Attiya, Ohad Ben-Baruch, TomGerby, Danny Hendler, and Pedro Ramalhete. 2021. Flat-Combining-

Based Persistent Data Structures for Non-Volatile Memory. arXiv:2012.12868 [cs.DC]

Rust. 2023. Rust. https://www.rust-lang.org/

Samsung. 2022. API list of Scalable Memory Development Kit (SMDK). https://github.com/OpenMPDK/SMDK/wiki/5.-

Plugin#api-list

Samsung. 2023. Memory-Semantic SSD. https://samsungmsl.com/ms-ssd/

Srinath Setty, Chunzhi Su, Jacob R. Lorch, Lidong Zhou, Hao Chen, Parveen Patel, and Jinglei Ren. 2016. Realizing the

Fault-Tolerance Promise of Cloud Storage Using Locks with Intent. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16). USENIX Association, Savannah, GA, 501–516.

Ori Shalev and Nir Shavit. 2006. Split-Ordered Lists: Lock-Free Extensible Hash Tables. J. ACM 53, 3 (may 2006), 379–405.

https://doi.org/10.1145/1147954.1147958

Shahar Timnat and Erez Petrank. 2014. A Practical Wait-Free Simulation for Lock-Free Data Structures. SIGPLAN Not. 49, 8

(feb 2014), 357–368. https://doi.org/10.1145/2692916.2555261

R.K. Treiber. 1986. Systems Programming: Coping with Parallelism. International Business Machines Incorporated, Thomas J.

Watson Research Center. https://books.google.co.kr/books?id=YQg3HAAACAAJ

Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2020. Building Blocks for Persistent

Memory: How to Get the Most out of Your New Memory? The VLDB Journal 29, 6 (nov 2020), 1223–1241. https:

//doi.org/10.1007/s00778-020-00622-9

Simon Friis Vindum and Lars Birkedal. 2022. Spirea: A Mechanized Concurrent Separation Logic for Weak Persistent

Memory. https://cs.au.dk/~vindum/res/spirea.pdf

Guozhang Wang, Lei Chen, Ayusman Dikshit, Jason Gustafson, Boyang Chen, Matthias J. Sax, John Roesler, Sophie Blee-

Goldman, Bruno Cadonna, Apurva Mehta, Varun Madan, and Jun Rao. 2021. Consistency and Completeness: Rethinking

Distributed Stream Processing in Apache Kafka. Association for Computing Machinery, New York, NY, USA, 2602–2613.

Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy Lock-Free Indexing in Non-Volatile Memory. In 2018

IEEE 34th International Conference on Data Engineering (ICDE). 461–472. https://doi.org/10.1109/ICDE.2018.00049

Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and Erez Petrank. 2022. FliT: A Library for Simple and

Efficient Persistent Algorithms. In Proceedings of the The 27th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (Seoul, South Korea) (PPoPP 2022).

Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories.

In 14th USENIX Conference on File and Storage Technologies, FAST 2016, Santa Clara, CA, USA, February 22-25, 2016,

Angela Demke Brown and Florentina I. Popovici (Eds.). USENIX Association, 323–338.

Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM: Log Less, Re-Execute More. In Proceedings of the 26th

ACM International Conference on Architectural Support for Programming Languages and Operating Systems (Virtual, USA)

(ASPLOS 2021). Association for Computing Machinery, New York, NY, USA, 346–359.

Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent Liu. 2020. Fault-tolerant and transactional

stateful serverless workflows. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).

USENIX Association, 1187–1204. https://www.usenix.org/conference/osdi20/presentation/zhang-haoran

Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu, and Jiwu Shu. 2021. Octopus+: An RDMA-Enabled Distributed

Persistent Memory File System. ACM Trans. Storage 17, 3 (2021), 19:1–19:25. https://doi.org/10.1145/3448418

Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-Performance Hashing Index Scheme for Persistent

Memory. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX Association,

Carlsbad, CA, 461–476. https://www.usenix.org/conference/osdi18/presentation/zuo

Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. 2019. Efficient Lock-Free Durable Sets. Proc.

ACM Program. Lang. 3, OOPSLA, Article 128 (Oct. 2019), 26 pages. https://doi.org/10.1145/3360554

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 118. Publication date: June 2023.

https://www.usenix.org/conference/fast19/presentation/nam
https://doi.org/10.1145/3371079
https://doi.org/10.1145/2429069.2429100
https://arxiv.org/abs/2012.12868
https://www.rust-lang.org/
https://github.com/OpenMPDK/SMDK/wiki/5.-Plugin#api-list
https://github.com/OpenMPDK/SMDK/wiki/5.-Plugin#api-list
https://samsungmsl.com/ms-ssd/
https://doi.org/10.1145/1147954.1147958
https://doi.org/10.1145/2692916.2555261
https://books.google.co.kr/books?id=YQg3HAAACAAJ
https://doi.org/10.1007/s00778-020-00622-9
https://doi.org/10.1007/s00778-020-00622-9
https://cs.au.dk/~vindum/res/spirea.pdf
https://doi.org/10.1109/ICDE.2018.00049
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://doi.org/10.1145/3448418
https://www.usenix.org/conference/osdi18/presentation/zuo
https://doi.org/10.1145/3360554

	Abstract
	1 Introduction
	2 Designing Detectable Programs with Deterministic Replay
	2.1 Ensuring Deterministic Replay of Composed Operations
	2.2 Supporting Simple Loops with Timestamps
	2.3 Supporting Loop-Carried Dependence by Checkpointing Dependent Variables

	3 Type System for Detectability
	3.1 Core Language
	3.2 Type System
	3.3 Detectability of Typed Programs

	4 Implementation of the Core Language
	4.1 Framework
	4.2 Detectable Checkpoint
	4.3 Detectable Compare-and-Swap

	5 Implementation of Concurrent Data Structures
	6 Evaluation
	6.1 Detectability
	6.2 Performance

	7 Related and Future Work
	Acknowledgments
	8 Data Availability Statement
	References

