Persistency Semantics
of the
Intel-x86 Architecture

Azalea Raad'2 John Wickerson2 Gil Neigerd Viktor Vafeiadis?

1 Max Planck Institute for Software Systems (MPI-SWS)
2 Imperial College London
3 Intel Corporation

> azalea@mpi-sws.org %SoundAndComplete.org gj @azalearaad

Computer Storage

4)
i

v fast RAM

X volatile

X slow
:

s ¥ persistent
L - [_HDD

What is Non-Volatile Memory (NVM)??

[

.
11
NVM

i

N\

NVM: Hybrid Storage + Memory
Best of both worlds:

v persistent (like HDD)
v fast, random access (like RAM)

\TEL OPTANE™
OLOGY

&

NON-VOLATILE

DENSE

Q: Why Formal NVM Semantics”?

Volatile memory
)/ x=0
X =1

/) x=1

f

// NO recovery

g)/ x=0)

Non-Volatile memory

)/ x=0
X =1
1

/) x=

i

// recovery routine

9 /ox=1

Q: Why Formal NVM Semantics”?

Volatile memory Non-Volatile memory
// X = o // x =0
=] = 1
// x=1 //2 1
// NO chovery // recovery routine
L /) x=0 y / /) x=1)

A: Program Verification

Q: Why Formal NVM Semantics”?

What about Concurrency?

a)

/Jox=y=...=0

Cr |l c2 || ... || Ca
/AR irke

i

// recovery routine
/) 227

Formal Semantic Models

DiffiAcuIty

» time

Sequential SC WMC
(1940s) (1979) (1990s)

Weak Memory Consistency (WMC)

No total execution order (to) =

weak behaviour absent under SC, caused by:

® |nstruction reordering by compiler
* write propagation across cache hierarchy

Weak Memory Consistency (WMC)

Consistency Model

the order in which
writes are made visible
to other threads

e.g. x86 (TSO), ARMv8, C11, Java

Formal Semantic Models

Difficulty

(5

. > time
Sequential SC WMC WNVMC

(1940s) (1979) (1990s) (2017)

What Can Go Wrong”

/) x=y=0
X = 1;
y = 1;

L

// recovery routine

// x=y=1 OR szy=0) OR x=1;y=0 OR (x=0;y=1

-

! Execution continues ahead of persistence
— asynchronous persists

Writes may persist
— relaxed persists

What Can Go Wrong”

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

NVM Semantics

Consistency + Persistency Model

25 This Talk 72

10

Warmup:
Sequential Px86

x86: (Sequential) Persistent Hardware Model

[CPU) x:=1 : adds x:=1 to p-buffer

A

[Persistence BuffeD

[(;Dersistent) Memory)

12

x86: (Sequential) Persistent Hardware Model

[CPU) x:=1 : adds x:=1 to p-buffer

unbuffer” : p-buffer to

iy
[Persistence BuffeD

[(i’ersistent) Memory)

* at non-deterministic times 19

x86: (Sequential) Persistent Hardware Model

(CPU) x:=1 : adds x:=1 to p-buffer

unbuffer* : p-buffer to memory

Persistence Buffer

[(i’ersistent) Memory]

Unbuffered at non-deterministic points in time!

Buffering & unbuffering orders may disagree!

* at non-deterministic times 12

x86: (Sequential) Persistent Hardware Model

[CPU) x:=1 : adds x:=1 to p-buffer

unbuffer” : p-buffer to

| a:=x : If p-buffer contains x, reads latest entry

[Persistence BuffeD else reads from

[(;Dersistent) Memory)

* at non-deterministic times 19

x86: (Sequential) Persistent Hardware Model

[CPU) x:=1 : adds x:=1 to p-buffer

unbuffer” : p-buffer to

: ! a:=x . If p-buffer contains x, reads latest entry
[Persistence BuffeD else reads from
5 p-buffer lost; retained

[(i’ersistent) Memory)

* at non-deterministic times 19

FiIxing Relaxed Persists: Attempt

~
/) x=0; y=0

X = 1

y = 1

// recovery routine
// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR[(x=0;y=1

N\

J

persists
w persist barriers?

13

Persist Barriers: Desiderata

N\

/) x=0; y=0

// recovery routine
// x=1;y=1 OR x=0;y=0 OR x=1;y=0

persists

w persist barriers?

14

Persist Barriers: Desiderata

X86

does not provide
persist barriers!

Xx86 memory barriers
(e.9. sfence, mfence)
do not enforce
persist ordering!

14

FiIxing Relaxed Persists: Attempt

~
/) x=0; y=0

X = 1

y = 1

// recovery routine
// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR[(x=0;y=1

N\

J

persists
w explicit persists?

15

Explicit Persists: Desiderata

/) %x=0; y=0
X = 1;

M persist x;
y = 1;

L

// recovery routine

N\

// x=1;y=1 OR =%=04%=0- OR x=1;y=0 OR -x=84-

persists
w explicit persists?

16

Explicit Persists: Reality on x86

/) x=0;vy=0

X = 1;
- clwb x;
y = 1;

L

// recovery routine
// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

N\

4)

J

persists

w explicit persists?
clwb x/clflushopt x/clflush x:
asynchronously persist cache line containing x

17

Explicit Persists: Reality on x86

x86 explicit persists
are
asynchronous
and can themselves
persist out of order !

17

Solution: Persist Sequence

/) x=0; y=0

X = 1;

-

‘ clwb x;

sfence;

~

v,

vy = 1;

f

// recovery routine
/) x=1;y=1 OR ==B+%=6 OR x=1;y=0 OR n=04%5=1
_

J

r

» Waits until earlier writes on x are persisted

“* Disallows reordering
-

w

v' synchronous persists
persists

18

X80 Persists: clwb, clflushopt, clflush

clwb clflush
Strength | | ’
(ordering constraints) |
clflushopt
clflush clwb
Performance | | | g
clflushopt

<+ clwb and clflushopt: same ordering constraints

<+ clwb does not invalidate cache line
<+ clflushopt invalidates cache line

<+ clflush: strongest ordering constraints; invalidates cache line

19

Concurrent Px86

x86: (Volatile) Concurrent Hardware Model (TSO)

x:=1 : adds x:=1 to buffer

[Thread1) = [Thread?2)
A l A l A A
(outer)

unbuffer® : buffer to

! ! =:=x : if buffer contains x, reads latest entry
[(Volatile) Memory) else reads from
5 buffer and lost

* at non-deterministic times 01

Px86: Persistent & Concurrent x86

(CPU) (Thread1) (Thread2)

T N [
(Persis’;ence Buffer) | Buflfer | | Buf-lfer |
f l N l

[(Persistent) Memory) ((Volatile) Memory)
Sequential, Persistent x86 Concurrent, Volatile x86
Thread1 Thread?2
g =

,l- l*
:l L

[Persistence Buff)

l

C (Persistent) Memory)

22

Persistent x86 (Px306)

(Thread1) (Thread2)
) A A 4 2

(Persistence Buffer)

l

((Persistent) Memory)

buffer/unbuffer order: consistency model

23

Persistent x86 (Px86)

[Thread1) [Thread?)
N a—

Persistence Buffer

((Persistent) Memory)

buffer/unbuffer order: consistency model

buffer/unbuffer order: persistency model

23

Persistent x86 (Px806)

[Thread1) [Thread?)
N a—

Persistence Buffer

((Persistent) Memory)

buffer/unbuffer order: consistency model NVM
— Semantics

buffer/unbuffer order: persistency model (Px86)

23

Px806

Intel® Architecture Reference Manual

”N

“Executions of the clwb instruction are
ordered with respect to fence instructions ...”

“They are not ordered with respect to
other executions of c¢lwb, to executions
of clflush and clflushopt ...”

Ambiguities in text!

J
Two Px86 models

24

Px806

Intel® Architecture Reference Manual

i

e

5038
pages!

“Executions of the clwb instruction are
ordered with respect to fence instructions ...

“They are not ordered with respect to
other executions of c¢lwb, to executions
of clflush and clflushopt ...”

Ambiguities in text!

J
Two Px86 models

PX86man

faithful to manual text
weaker than architectural intent
2 models: operational & declarative

proved equivalent

PXSGQm

captures architectural intent
stronger than manual text
2 models: operational & declarative

proved equivalent

24

Summary

v Formalised Intel-x86 NVM semantics:
-+ Px86man: equivalent operational & declarative models

-+ Px86sim: equivalent operational & declarative models

v More Iin the paper
-+ Persistent transactional library implemented in Px86

-+ Persistent queue library implemented in Px86

? Future Work:
- program logics

-+ model checking algorithms
-+ litmus testing

Summary

v Formalised Intel-x86 NVM semantics:
-+ Px86man: equivalent operational & declarative models

-+ Px86sim: equivalent operational & declarative models

v More Iin the paper
-+ Persistent transactional library implemented in Px86

-+ Persistent queue library implemented in Px86

? Future Work:
- program logics

-+ model checking algorithms
-+ litmus testing

Thank You for Listening!

> azalea@mpi-sws.org %SoundAndComplete.org g? @azalearaad

