
Concurrent Incorrectness Separation Logic

Azalea Raad1,2 Josh Berdine2 Derek Dreyer3 Peter O’Hearn2

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

POPL, 2022

1 Imperial College London
2 Meta

3 MPI-SWS

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

CISL
=

Incorrectness Separation Logic (ISL)
+

Concurrency
for

Concurrent Bug Detection & Analysis

2

[p] C [q]IL iff post(C)p ⊇ q

❖ Prove the presence of bugs — bug catching
❖ Under-approximate reasoning

Incorrectness Logic

For all states s in q, s can be reached by running C on some s’ in p

3

[p] C [q]IL iff post(C)p ⊇ q

❖ Prove the presence of bugs — bug catching
❖ Under-approximate reasoning

Incorrectness Logic

3

q under-approximates post(C)p

[p] C [q]IL iff post(C)p ⊇ q

❖ Prove the presence of bugs — bug catching
❖ Under-approximate reasoning

Incorrectness Logic

3

q under-approximates post(C)p

q

post(C)ptrue positive

[p] C [q]IL iff post(C)p ⊇ q

❖ Prove the presence of bugs — bug catching
❖ Under-approximate reasoning

Incorrectness Logic

3

q under-approximates post(C)p

q

post(C)p

false negative
true positive

[p] C [q]ISL iff post(C)p ⊇ q

❖ Prove the presence of bugs — bug catching
❖ Under-approximate reasoning

Incorrectness Separation Logic

4

q under-approximates post(C)p

q

post(C)p

false negative
true positive

[p牎r] C [q牎r]
[p] C [q]

ISL

Frame

[p] C [q]ISL iff post(C)p ⊇ q

❖ Prove the presence of bugs — bug catching
❖ Under-approximate reasoning

Incorrectness Separation Logic

4

q under-approximates post(C)p

q

post(C)p

false negative
true positive

[p牎r] C [q牎r]
[p] C [q]

ISL

Frame

Problem 1

No support for concurrency

❖ Several bug catching tools for concurrency based on under-approximation

Concurrent Bug Detection

5

➡ RacerD [Blackshear et al., 2018]: race detection @Meta
➡ ToolDL [Brotherston et al., 2021]: deadlock detection @Meta

❖ Each prove a no-false-positives (NFP) theorem: bugs found are true bugs

❖ Several bug catching tools for concurrency based on under-approximation

Concurrent Bug Detection

5

➡ RacerD [Blackshear et al., 2018]: race detection @Meta
➡ ToolDL [Brotherston et al., 2021]: deadlock detection @Meta

❖ Each prove a no-false-positives (NFP) theorem: bugs found are true bugs

Problem 2

Each analysis must prove NFP independently

❖ Several bug catching tools for concurrency based on under-approximation

Concurrent Bug Detection

5

➡ RacerD [Blackshear et al., 2018]: race detection @Meta
➡ ToolDL [Brotherston et al., 2021]: deadlock detection @Meta

❖ Each prove a no-false-positives (NFP) theorem: bugs found are true bugs

Problem 2

Each analysis must prove NFP independently

Solution

CISL:
Concurrent Incorrectness Separation Logic

6

Which CISL?
CSL (Correctness) Family Tree…

Graph courtesy of Ilya Sergey

6

Which CISL?
CSL (Correctness) Family Tree…

Graph courtesy of Ilya Sergey

Pitfall

The Next 700
Concurrent Separation Logics

6

Which CISL?
CSL (Correctness) Family Tree…

Graph courtesy of Ilya Sergey

Pitfall

The Next 700
Concurrent Separation Logics

Pitfall

The Next 700
Concurrent Incorrectness Separation Logics

6

Which CISL?
CSL (Correctness) Family Tree…

Graph courtesy of Ilya Sergey

Pitfall

The Next 700
Concurrent Separation Logics

Pitfall

The Next 700
Concurrent Incorrectness Separation Logics

Solution

CISL: general, parametric framework
that can be instantiated

for different use cases
à la Views [Dinsdale-Young et al., 2013]

7

CISL Framework
❖ First unifying framework for concurrent under-approximate reasoning
❖ General framework for multiple bug catching analyses

➡ Memory safety errors (e.g. null-pointer exception, use-after-free errors): CISLSV
➡ Races: CISLRD
➡ Deadlocks: CISLDD

❖ Sound: no false positives (NFP) guaranteed
❖ Underpins scalable bug-catching tools (NFP for free)

➡ CISLRD: analogous to RacerD @Meta
➡ CISLDD: analogous to DLTool @Meta

[p] C [!: q]
!: exit condition
 ok: normal execution
 er : erroneous execution

[p] skip [ok: p] [p] error() [er: p]

(Concurrent) Incorrectness (Separation) Logic

8

9

Three Faces of Concurrency Bugs:
1. Local Bugs

local use-after-free (memory safety) bug at L

What are they?
➡ They are due to one thread

9

Three Faces of Concurrency Bugs:
1. Local Bugs

local use-after-free (memory safety) bug at L

Thread-local analysis tools?
➡ Existing (sequential) tools out of the box

e.g. PulseX @Meta (based on ISL)

What are they?
➡ They are due to one thread

9

Three Faces of Concurrency Bugs:
1. Local Bugs

local use-after-free (memory safety) bug at L

Thread-local analysis tools?
➡ Existing (sequential) tools out of the box

e.g. PulseX @Meta (based on ISL)

CISL

[p] C1 || C2 [er: q]
[p] C1 [er: q]

ParEr

Short-circuiting on errors

What are they?
➡ They are due to one thread

10

Bug is due to two or more threads, under certain interleavings
2. data-agnostic: threads do not affect one another’s control flow

(global) data-agnostic
use-after-free bug at L (L’) (global) data-agnostic use-after-free bug at L

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

10

Bug is due to two or more threads, under certain interleavings
2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

(global) data-agnostic
use-after-free bug at L (L’) (global) data-agnostic use-after-free bug at L

(global) data-dependent use-after-free bug at L

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

11

Thread-local analysis tools?
2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

11

Thread-local analysis tools?
2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

➡ encode errors as ok (no short-circuiting)
➡ assumed by existing tools: RacerD, DLTool @Meta

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]

11

Thread-local analysis tools?
2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

➡ encode errors as ok (no short-circuiting)
➡ assumed by existing tools: RacerD, DLTool @Meta

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]

➡ possible in CISL theory
➡ no existing analysis tools: ongoing work with Meta

This talk

11

Thread-local analysis tools?
2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

➡ encode errors as ok (no short-circuiting)
➡ assumed by existing tools: RacerD, DLTool @Meta

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]

➡ possible in CISL theory
➡ no existing analysis tools: ongoing work with Meta

12

CISLRD: Data-Agnostic Races
❖ Races are global bugs by definition:

Two memory accesses (reads/writes), a and b, in program C race iff

➡ they are by distinct threads
➡ on the same location
➡ at least one of them is a write

1.a and b are conflicting:

2. they appear next to each other in an interleaving (history) of C

12

CISLRD: Data-Agnostic Races
❖ Races are global bugs by definition:

Two memory accesses (reads/writes), a and b, in program C race iff

➡ they are by distinct threads
➡ on the same location
➡ at least one of them is a write

1.a and b are conflicting:

2. they appear next to each other in an interleaving (history) of C

Race between lines 3, 5
witnessed by:

H = [1, 2, 4, 3, 5, 6]
No races

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

13

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

13

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

13

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

CISLRD

CISLRD

[" ↦ H] lock" l [ok: " ↦ H’]
H’ = H ++ [L(", l)]

RD-Lock
H’ is well-formed

CISLRD: Lock Axiom

H is well-formed iff it respects the lock semantics:
➡ lock l is acquired only if it is not already held
➡ lock l is released by " only if it is already held by "

14

15

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

CISLRD

[" ↦ H] unlock" l [ok: " ↦ H’]
H’ = H ++ [U(", l)]

RD-Unlock
H’ is well-formed

CISLRD: Unlock Axiom

A history H is well-formed iff it respects the lock semantics:
➡ lock l is acquired only if it is not already held
➡ lock l is released by " only if it is already held by "

16

17

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

CISLRD

[" ↦ H] L: a :=" [x] [ok: " ↦ H’]
H’ = H ++ [R(", L, x)]

RD-Read

[" ↦ H] L: [x] :=" a [ok: " ↦ H’]
H’ = H ++ [W(", L, x)]

RD-Write

CISLRD: Memory Access Axioms

18

CISLRD

[" ↦ H] L: a :=" [x] [ok: " ↦ H’]
H’ = H ++ [R(", L, x)]

RD-Read

[" ↦ H] L: [x] :=" a [ok: " ↦ H’]
H’ = H ++ [W(", L, x)]

RD-Write

CISLRD: Memory Access Axioms

We do not record the values read/written

18

19

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)]]

[ok: "2 ↦ [L("2, l)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

19

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)]]

[ok: "2 ↦ [L("2, l)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)] * "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

19

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)]]

[ok: "2 ↦ [L("2, l)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)] * "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

CISLRD

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

20

CISLRD: race Predicate

"1 ↦ H1 * "2 ↦ H2 ⇒ race(L1, L2, H) iff:
there exist H’1, H’2, H’, a, b such that:
➡ a and b are conflicting accesses
➡ H1 = H’1 ++ [a] ++ — and H2 = H’2 ++ [b] ++ —
➡ H = H’ ++ [a, b]
➡ H’ is a permutation of H’1 ++ H’2
➡ H is well-formed

21

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)]]

[ok: "2 ↦ [L("2, l)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

CISLRD

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)] * "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

21

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)]]

[ok: "2 ↦ [L("2, l)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)] * "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]
 ⋀ race(3, 5, [L("1, l), U("1, l), L("2, l), W("1, 3, x), W("2, 5, x)])]

CISLRD

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)] * "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

21

1. lock l; 4. lock l;

2. unlock l;

3. [x]:= 1;

5. [x]:= 2;

6. unlock l;

["1 ↦ []]
["1 ↦ [] * "2 ↦ []]

["2 ↦ []]

[ok: "1 ↦ [L("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)]]

[ok: "2 ↦ [L("2, l)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x)]]

[ok: "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)] * "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]
 ⋀ race(3, 5, [L("1, l), U("1, l), L("2, l), W("1, 3, x), W("2, 5, x)])]

CISLRD

[ok: "1 ↦ [L("1, l), U("1, l), W("1, 3, x)] * "2 ↦ [L("2, l), W("2, 5, x), U("2, l)]]

CISL

[p1牎S2] C1 || C2 [ok:q1牎q2]
[p1] C1 [ok:q1]

Par
[p2] C2 [ok:q2]➡ construct sequential histories

➡ analyse them for races

Methodology:

Simple
yet

Effective in Practice

à la RacerD

Conclusions

❖ Sound: no false positives (NFP) guaranteed
❖ Underpins scalable bug-catching tools (NFP for free)

➡ CISLRD: à la RacerD @Meta; CISLDD: à la DLTool @Meta

❖ First work to adapt under-approximate reasoning for concurrent bug detection
❖ General framework for multiple bug catching analyses

➡ Memory safety errors (e.g. null-pointer exception, use-after-free errors): CISLSV
➡ Races: CISLRD
➡ Deadlocks: CISLDD

Conclusions

❖ Sound: no false positives (NFP) guaranteed
❖ Underpins scalable bug-catching tools (NFP for free)

➡ CISLRD: à la RacerD @Meta; CISLDD: à la DLTool @Meta
❖ Future work:

➡ CISL for data-dependent bugs
➡ automated tools based on CISL, e.g. data-dependent races, deadlocks, memory safety errors
➡ mechanisation

❖ First work to adapt under-approximate reasoning for concurrent bug detection
❖ General framework for multiple bug catching analyses

➡ Memory safety errors (e.g. null-pointer exception, use-after-free errors): CISLSV
➡ Races: CISLRD
➡ Deadlocks: CISLDD

Conclusions

❖ Sound: no false positives (NFP) guaranteed
❖ Underpins scalable bug-catching tools (NFP for free)

➡ CISLRD: à la RacerD @Meta; CISLDD: à la DLTool @Meta
❖ Future work:

➡ CISL for data-dependent bugs
➡ automated tools based on CISL, e.g. data-dependent races, deadlocks, memory safety errors
➡ mechanisation

❖ First work to adapt under-approximate reasoning for concurrent bug detection
❖ General framework for multiple bug catching analyses

➡ Memory safety errors (e.g. null-pointer exception, use-after-free errors): CISLSV
➡ Races: CISLRD
➡ Deadlocks: CISLDD

Thank You for Listening!

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

