Concurrent Incorrectness Separation Logic

Azalea Raad'2 Josh Berdine2 Derek Dreyers Peter O’'Hearn?

T Imperial College London
2 Meta
3 MPI-SWS

POPL, 2022

> azalea@imperial.ac.uk %SoundAndComplete.org g? @azalearaad

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

CISL
Incorrectness Separation Logic (ISL)
|
Concurrency
for
Concurrent Bug Detection & Analysis

Incorrectness Logic

* Prove the presence of bugs — bug catching

+ Under-approximate reasoning

-

-

[o] Clal iff postCp 2 g

For all states s in g, s can be reached by running G on some s’ in P

J

Incorrectness Logic

* Prove the presence of bugs — bug catching
+ Under-approximate reasoning

1L 0] Clal if postC)p 2/q

q under-approximates post(C)p

Incorrectness Logic

* Prove the presence of bugs — bug catching
+ Under-approximate reasoning

1L 0] Clal if postC)p 2/q

q under-approximates post(C)p

g
i &
true positive & Dost(C)p

Incorrectness Logic

* Prove the presence of bugs — bug catching
+ Under-approximate reasoning

1L 0] Clal if postC)p 2/q

q under-approximates post(C)p

d & < false negative
true positive g post(C)p

Incorrectness Separation L.ogic

* Prove the presence of bugs — bug catching
+ Under-approximate reasoning

-

ISL] Clg] iff post(C)p 2/q

q under-approximates post(C)p

-

d & < false negative
true positive g post(C)p

4)

> pIc
o *r] C[g*r]

Frame

Incorrectness Separation L.ogic

Problem 1

NO support for concurrency

Concurrent Bug Detection

+ Several bug catching tools for concurrency based on under-approximation

= RacerD [Blackshear et al., 2018]: race detection @Meta
= [oolDL [Brotherston et al., 2021]: deadlock detection @Meta

+ Each prove a no-false-positives (NFP) theorem: bugs found are true bugs

Concurrent Bug Detection

Problem 2

Each analysis must prove NFP independently

Concurrent Bug Detection

Solution

CISL:
Concurrent Incorrectness Separation Logic

Which CISL?

CSL (Correctness) Family Tree...

/"’— Owicki-Gries (1976) \
RSL (2013)
Rely-Guarantee (1983) CSL (2004) — \
Concurrent RGRefs (2017) / Bornat-al (2005) — N ¥ FSL (2016)
RGSep (2007) \
SAGL (2007) // Bell-al (2010) -
H;)or-al (2008) l __) Deny-Guarantee (2009) Gotsman.al (2007) (20'7)
- |
Hobor-Gherghina LRG (2009) CAP (lZOIO)
(2011) / - * |lacobs-Piessens (201 1)
HLRG (2010) RGSIm (2012)
HOCAP (2013) SCSL (2013)
Liang-Feng (2013) | TaDA (2014)
CaReSL (2013) 'C‘:A/PQO"” FTCSL (2015)
Y
l \ | CoLoSL (2015) FCSL (2014)
GPS (2014) Iris (2015)
LT (2016) l / Total-TaDA (2016) l
| L ris 3.0 (2017) Disel (2018)
iGPS (2017
(2017) . Aneris (2018) —

Graph courtesy of llya Sergey

Which CISL?

Pitfall

The Next 700
Concurrent Separation Logics

Which CISL?

Pitfall

The Next 700
Concurrent Incorrectness Separation Logics

Which CISL?

Solution

CISL: general, parametric framework
that can be instantiated
for different use cases
a la Views [Dinsdale-Young et al., 2013]

CISL Framework

* First unifying framework for concurrent under-approximate reasoning
+* General framework for multiple bug catching analyses

= Memory safety errors (e.g. null-pointer exception, use-after-free errors): ClSLsy
= Races: CISLrp
= Deadlocks: CISLpp

+ Sound: no false positives (NFP) guaranteed
+ Underpins scalable bug-catching tools (NFP for free)

= CISLrp: analogous to RacerD @Meta
= CISLpp: analogous to DLTool @Meta

(Concurrent) Incorrectness (Separation) Logic

p] G le: g

E: exit condition
Ook: normal execution
er : erroneous execution

P} skip [ok: P p] error() ler: p]

Three Faces of Concurrency Bugs:
1. Local Bugs

What are they”
= [hey are due 1o one thread
free(x);
C
L: [x]:=1
_local use-after-free (memory safety) bug at L

Three Faces of Concurrency Bugs:
1. Local Bugs

What are they”
= [hey are due 1o one thread
free(x);
C
L: [x]:=1
_local use-after-free (memory safety) bug at L

Thread-local analysis tools”?

= Existing (sequential) tools out of the box
e.g. PulseX @Meta (based on ISL)

Three Faces of Concurrency Bugs:

What are they”
= [hey are due to one thread

1. Local Bugs

r

free(x);
L: [x]:=1

C

_local use-after-free (memory safety) bug at L

Thread-local analysis tools”?
= Existing (sequential) tools out of the box

e.g.

PulseX @Meta (based on [SL)

OSL [p]Ci fer:

o] C1 || Cz2 [er: g

Par

Short-circuiting on errors

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

Bug Is due to two or more threads, under certain interleavings

2. data-agnostic: threads do not affect one another’s control flow

~

.

L: free(x) ||L”: free(x)

(global) data-agnostic
use-after-free bug at L (L)

v,

r

_ (global) data-agnostic use-after-free bug at L

free(x);
[z] := 1;

a:=|z|;
if (¥)L:[x]:=1

10

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

Bug Is due to two or more threads, under certain interleavings

2. data-agnostic: threads do not affect one another’s control flow

~

.

L: free(x)||L”: free

(global) data-agnostic

use-after-free bug at L (L)

(x)

v,

3. data-dependent bugs: threads do a

r

free(x);
[z] := 1;

a:= [z];
if(x)L:[x]:=1

_ (global) data-agnostic use-after-free bug at L

fect one another’s control flow

s

free(x);
|z]:= 1;

a:= [z];

if (a=1)1: [x]:=

(global) data-dependent use-atfter-free bug at L

1

10

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

Thread-local analysis tools”

2. data-agnostic: threads do not affect one another’s control flow

3. data-dependent bugs: threads do affect one another’s control flow

11

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

Thread-local analysis tools”

2.

. data-dependent bugs: threads do a

data-agnostic: threads do not affect one another’s control flow

= encode errors as ok (nNo short-circuiting)

= assumed by existing tools: RacerD, DLTool @Meta

&

CIS

(p1] C1 [Ok:g1

[02] Co [0k: 2]

[p1%p2] C1 |

C2 [ok:q1 * g2]

Par

fect one another’s control flow

11

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

Thread-local analysis tools”

2. data-agnostic: threads do not affect one another’s control flow

= cncode errors as ok (no short-circuitin

= assumed by existing tools:

3. data-dependent bugs: threads do a

= nossible in CISL theory

9)

RacerD, D

_Tool @Meta

N\

.
CIS

(p1] C1 [Ok:g1

2] G2 [0K:Q2]

[p1%p2] C1 |

Co [ok:q1* 2]

Par

fect one another’s control flow

= NO existing analysis tools: ongoing work with Meta

11

Three Faces of Concurrency Bugs:
2, 3. Global Bugs

Thread-local analysis tools”

2. data-agnostic: threads do not affect one another’s control flow

= encode errors as ok (no short-circuiting)
= assumed by existing tools: RacerD, DLTool @Meta

This talk

.
CIS

_

01] C1 [Ok:g1

2] G2 [0K:Q2]

[p1%*p2] Ci |

Co [OKZQ1 k QQ]

Par

3. data-dependent bugs: threads do affect one another’'s control flow

= nossible in CISL theory
= NO existing analysis tools: ongoing work with Meta

11

ClSLrp: Data-Agnostic Races

+ Races are global bugs by definition:
Two memory accesses (reads/writes), a and b, in program C race |ff
1.a and b are conflicting:

= they are by distinct threads
= on the same locatior
= at least one of them IS a write

2.they appear next to each other in an interleaving (history) of C

ClSLrp: Data-Agnostic Races

+ Races are global bugs by definition:

Two memory accesses (reads/writes), a and b, in program C race |ff

1.a and b are conflicting:

= they are by distinct threads

= on the same locatior
= at least one of them Is a write

2.they appear next to each other in an interleaving (history) of C

1. lock; 4. 1ock [;
2. unlockl; ||5. |[x]:=2;
3. [x]:=1; |[|6.unlockl;

withessed by:
H=11, 2, 4, 3,5, 0]

.

~

Race between lines 3, 5

.

~

1. lock; 4. lock;
2. [x]:=1; ||5. [x]:=2;
3. unlock; || 6. unlock;

NO races

12

[71 []]
1. lock /;

2. unlock /;

3. [x]:=1;

Methodology:

= construct sequential histories
= analyse them for races

CISLRrp

[71 []* 72> []]

[72 []]
4. lock /;
5. [x]:=2;
6. unlock /;
CISL
p1] C1 [ok:g1] [p2] Co [0K:g2]
[01* p2] Cq || C2 [0k:g1* 2]

13

[71 []]
1. lock /;

2. unlock /;

3. [x]:=1;

Methodology:

=| construct sequential histories

= analyse them for races

CISLRrp

[71 []* 72> []]

[72 []]
4. lock /;
5. [x]:=2;
6. unlock /;
CISL
[p1] C1[okigi] [p2] G2 [Ok:qe]
[01*p2] C1 || Co [0k:q1 * q2]

13

[71 []]
1. lock [;

[lok: 71 [L(z1, /)]]
2. unlock /;

3. [x]:=1;

Methodology:

=| construct sequential histories

= analyse them for races

CISLRrp

[71 []* 72> []]

[72 []]
4. lock /;
5. [x]:=2;
6. unlock /;
CISL
p1] C1[ok:gi] [p2] G2 [Ok:qe]
[01*p2] C1 || Co [0k:q1 * q2]

13

CISLRrp

- Lock Axiom

o

(C|S|_F%D

H = H++[L(r,

[)] H’ is well-formed

RD-Lock

z—H]lock, ! [ok: 7+ H’]

H Is well-formed Iff it respects the lock semantics:

)
)

OC
OC

< [

< [

IS acquired only If I

' 1S not already held

IS released by 7 on

y it it Is already held by 7

14

[T []]
1. lock [;

[lok: 71 [L(z1, /)]]
2. unlock /;

lok: 71 [L(71, [), U(z1,)]]
3. [x]:=1;

Methodology:

=| construct sequential histories

= analyse them for races

CISLRrp

[71 []* 72> []]

[72 []]
4. lock /;
5. [x]:=2;
6. unlock /;
CISL
p1] C1[ok:gi] [p2] G2 [Ok:qe]
[01*p2] C1 || Co [0k:q1 * q2]

15

CISLrp: Unlock Axiom

o

(C|S|_F%D
H = H++[U(z, [)]

H’ is well-formed

RD-Unlock

[z~ H] unlock, / [ok: 7—H’]

A history H Is well-formed Iff it respects the lock semantics:

)
)

OC
OC

< [

< [

IS acquired only If it is not already held
S released by 7 only if it is already held by =

16

CISLRrp

[71 []* 72> []]

[71— []]
1. lock /;
[lok: 71 [L(z1, /)]]
2. unlock /;
lok: 71 [L(71, [), U(z1,)]]
3. [x]:=1;
lok: 71 = [L(z1, [), U(r1, 1), W(r1, 3, x)] |

Methodology:

=| construct sequential histories

= analyse them for races

[72 []]
4. lock /;
5. [x]:=2;
6. unlock /;
CISL
Pi] Crlok:qi] [pJColokiqe] |
[01 % p2] C1 || G2 [0k:Q1* O]

17

ClISLrp: Memory Access Axioms

(C|S|_RD

H =H++[R(zr, L, x)]

r—H]L:a:=_[x] [oki t—~H’]

H =H++[W(r, L, x)]

zr—H]L: [x] :=,a|ok: 7 H’]

D-Read

D-Write

18

ClISLrp: Memory Access Axioms

(C|S|_F%D

H = H++[R(z, L, x)]
r—H]L:a:=_[x] [oki t—~H’]

RD-Read

H = H++[W(z, L, x))]
r—>H]L: [x] :=,a|ok: t—~H’]

RD-Write

We do not record the values read/written

CISLRrp

(71> [* 2 [1]

[710 []]
1. lock /;
[ok: 71 = [L(z1, [)]]
2. unlock /;
lok: 71 [L(71, [), U(z1, [)]]
3. [x]:=1;
lok: 71 = [L(z1, [), U(r1, 1), W(z1, 3, x)]]

Methodology:

=| construct sequential histories

= analyse them for races

[72 []]
4. lock /;

[ok: 72— [L(z2,)]]

5. [x]:=2

lok: 72— [L(z2, [), W(zr2, 5, x)]]
6. unlock /;
[ok: 12— [L(z2, [), W(z2, 5, x), U(zr2, /)]]

.
CISL

01] C1 [Ok:g1

[02] C2 [0k: 2]

[p1%*p2] Ci |

Co [OKZQ1 %k QQ]

19

CISLRrp

(71> [* 2 [1]

[710 []]
1. lock /;
[ok: 71 = [L(z1, [)]]
2. unlock /;
lok: 71 [L(71, [), U(z1, [)]]
3. [x]:=1;
lok: 71 = [L(z1, [), U(r1, 1), W(z1, 3, x)]]

[72 []]
4. lock /;

[ok: 72— [L(z2,)]]

5. [x]:=2

lok: 72— [L(z2, [), W(zr2, 5, x)]]
6. unlock /;
[ok: 12— [L(z2, [), W(z2, 5, x), U(zr2, /)]]

lok: 1 = [L(z1, 1), U(r1, 1), W(r1, 3, x)] * o= [L(z2, [), W2, 5, x), U(r2, [)]]

Methodology:

=| construct sequential histories

= analyse them for races

.
CISL

01] C1 [Ok:g1

[02] C2 [0k: 2]

.

[p1%*p2] Ci |

Co [OKZQ1 %k QQ]

19

CISLRrp

(71> [* 2 [1]

[710 []]
1. lock /;
[ok: 71 = [L(z1, [)]]
2. unlock /;
lok: 71 [L(71, [), U(z1, [)]]
3. [x]:=1;
lok: 71 = [L(z1, [), U(r1, 1), W(z1, 3, x)]]

[72 []]
4. lock /;

[ok: 72— [L(z2,)]]

5. [x]:=2

lok: 72— [L(z2, [), W(zr2, 5, x)]]
6. unlock /;
[ok: 12— [L(z2, [), W(z2, 5, x), U(zr2, /)]]

lok: 1 = [L(z1, 1), U(r1, 1), W(r1, 3, x)] * o= [L(z2, [), W2, 5, x), U(r2, [)]]

Methodology:
= construct sequential histories

=| analyse them for races

.
CISL

01] C1 [Ok:g1

[02] C2 [0k: 2]

.

[p1%*p2] Ci |

Co [OKZQ1 %k QQ]

19

ClISLrp: race Predicate

1 Hi * o Ho = race(ls, Lo, H) iff:

there exist H'1, H'2, H’, a, b such that:

= a and b are conflicting accesses

= Hy=H"1++ [a] +- and Hz=H"2++ [b] +-
= H=H a, D]

= H’ is a permutation of H1 ++ H’»

= H |s well-formed

20

CISLRrp

(71> [* 2 [1]

[710 []]
1. lock /;
[ok: 71 = [L(z1, [)]]
2. unlock /;
lok: 71 [L(71, [), U(z1, [)]]
3. [x]:=1;
lok: 71 = [L(z1, [), U(r1, 1), W(z1, 3, x)]]

[72 []]
4. lock /;

[ok: 72— [L(z2,)]]

5. [x]:=2

lok: 72— [L(z2, [), W(zr2, 5, x)]]
6. unlock /;
[ok: 12— [L(z2, [), W(z2, 5, x), U(zr2, /)]]

lok: 1 = [L(z1, 1), U(r1, 1), W(r1, 3, x)] * o= [L(z2, [), W2, 5, x), U(r2, [)]]

Methodology:
= construct sequential histories

=| analyse them for races

.
CISL

01] C1 [Ok:g1

[02] C2 [0k: 2]

.

[p1%*p2] Ci |

Co [OKZQ1 %k QQ]

21

CISLRrp

(71> [* 2 [1]

[71 []]
1. lock /;
[ok: 71 = [L(z1, [)]]
2. unlock /;
lok: 71 [L(71, [), U(z1, [)]]
3. [x]:=1;
lok: 71 = [L(z1, [), U(r1, 1), W(z1, 3, x)]]

[72— []]
4. lock /;

[ok: 72— [L(z2,)]]

5. [x]:=2

lok: 72— [L(z2, [), W(zr2, 5, x)]]
6. unlock /;
[ok: 12— [L(z2, [), W(z2, 5, x), U(zr2, /)]]

lok: 71 = [L(z1, [), U(r1, 1), W(r1, 3, x)] * o= [L(z2, [), W2, 5, x), U(r2, [)]]

lok: 71 [L(71, [), U(z1, [), W(z1, 3, x)] * 12— [L(z2, [), W2, 5, x), U(r2, [)]
A race(3, 5, [L(zr1, 1), U(z1, 1), L(ze, 1), W(t1, 3, x), W(t2, 5, x)])

Methodology:
= construct sequential histories

=| analyse them for races

]

.
CISL

01] C1 [Ok:g1

[02] C2 [0k: 2]

.

[p1%*p2] Ci |

Co [OKZQ1 %k QQ]

21

CISLRrp

Simple
vel
Effective Iin Practice
a la RacerD

21

Conclusions

* FIrst work to adapt under-approximate reasoning for concurrent bug detection
+* General framework for multiple bug catching analyses

= Memory safety errors (e.g. null-pointer exception, use-after-free errors): ClSLsy
= Races: CISLrp
= Deadlocks: CISLpp

+ Sound: no false positives (NFP) guaranteed

+ Underpins scalable bug-catching tools (NFP for free)
= ClISLrp: a la RacerD @Meta; CISLpp: a la DLTool @Meta

Conclusions

* FIrst work to adapt under-approximate reasoning for concurrent bug detection
+* General framework for multiple bug catching analyses

= Memory safety errors (e.g. null-pointer exception, use-after-free errors): ClSLsy
= Races: CISLrp

= Deadlocks: CISLpp

+ Sound: no false positives (NFP) guaranteed

+ Underpins scalable bug-catching tools (NFP for free)
= ClISLrp: a la RacerD @Meta; CISLpp: a la DLTool @Meta

<+ Future work:

= CISL for data-dependent bugs

= automated tools based on CISL, e.g. data-dependent races, deadlocks, memory safety errors
= mechanisation

Conclusions

* FIrst work to adapt under-approximate reasoning for concurrent bug detection
+* General framework for multiple bug catching analyses

= Memory safety errors (e.g. null-pointer exception, use-after-free errors): ClSLsy
= Races: CISLrp

= Deadlocks: CISLpp

+ Sound: no false positives (NFP) guaranteed

+ Underpins scalable bug-catching tools (NFP for free)
= ClISLrp: a la RacerD @Meta; CISLpp: a la DLTool @Meta

<+ Future work:

= CISL for data-dependent bugs

= automated tools based on CISL, e.g. data-dependent races, deadlocks, memory safety errors
= mechanisation

Thank You for Listening!

> azalea@imperial.ac.uk %SoundAndComplete.org y @azalearaad

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

