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A SOUNDNESS
L���� A.1. For all = > 0, n 2 E�E���,m? ,m@,C,C0:

C,m?
=
=) n,m@ =) C;C0,m?

=
=) n,m@

P����. We proceed by natural induction on =.

Base case ==1
Pick arbitrary n 2E�E���, m? ,m@,C,C0 such that C,m?

1
=) n,m@ . From the operational semantics

we know there exist ; , C00 such that C
;�! C00 and (m? ,m@) 2 J;Kn . Consequently, from the con-

trol �ow transitions we have C;C0 ;�! C00;C0. As such, from the operational semantics we have
C;C0,m?

1
=) n,m@ .

Inductive case == 9+1 and = > 1

8n 2E�E���,m1,m2,C1,C2. C1,m1
9
=) n,m2 =) C1;C2,m1

9
=) n,m2 (I.H)

Pick arbitrary n 2E�E���, m? ,m@,C,C0 such that C,m?
=
=) n,m@ . As = > 1, from the operational

semantics we know there exist ; , C00, m such that, C
;�! C00, (m? ,m) 2 J;Kok, and C00,m

9
=) n,m@ .

Consequently, from the control �ow transitions we have C;C0 ;�! C00;C0. Moreover, from (I.H) we

have C00;C0,m
9
=) n,m@ . As such, since == 9+1, C;C0 ;�! C00;C0, (m? ,m) 2 J;Kok and C00;C0,m

9
=)

n,m@ from the operational semantics we have C;C0,m?
=
=) n,m@ , as required. ⇤

L���� A.2. For all =,:, n,m? ,mA ,m@,C1,C2:

C1,m?
=
=) ok,mA ^ C2,mA

:
=) n,m@ =) 91 . C1;C2,m?

1
=) n,m@

P����. We proceed by natural induction on =.

Base case ==0
Pick arbitrary :, n,m? ,mA ,m@,C1,C2 such that: C1,m?

0
=) ok,mA and C2,mA

:
=) n,m@ . As C1,m?

0
=)

ok,mA , from the operational semantics we then know C1=skip andmA=m? . Consequently, from the

control �ow transitions we have C1;C2
id�! C2. Moreover, from the de�nition of J.K ans sincem?=mA

we have (m? ,mA ) 2 JidKok. As such, since C1;C2
id�! C2, (m? ,mA ) 2 JidKok and C2,mA

:
=) n,m@ ,

from the operational semantics we have C1;C2,m?
:+1
==) n,m@ , as required.

Inductive case == 9+1
8:, n,m? ,mA ,m@,C1,C2.

C1,m?
9
=) ok,mA ^ C2,mA

:
=) n,m@ =) 91 . C1;C2,m?

1
=) n,m@

(I.H)

Pick arbitrary : , n , m? ,m@,mA ,C1,C2 such that: C1,m?
=
=) ok,mA and C2,mA

:
=) n,m@ . As = > 0,

from the operational semantics we know there exist ; , C0, m such that, C1
;�! C0, (m? ,m) 2 J;Kok,

and C0,m
9
=) n,mA . Consequently, from the control �ow transitions we have C1;C2

;�! C0;C2. As

C0,m
9
=) n,mA and C2,mA

:
=) n,m@ , from (I.H) we know there exists 1 such that C0;C2,m

1
=) n,m@ . As
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such, since C1;C2
;�! C0;C2, (m? ,m) 2 J;Kok and C1;C2,m

1
=) n,m@ , from the operational semantics

we have C1;C2,m?
1+1
==) n,m@ , as required. ⇤

L���� A.3. For all =, n,m? ,m@,C:

C,m?
=
=) n,m@ =) skip | | C,m?

=+1
==) n,m@ ^ C | | skip,m?

=+1
==) n,m@

P����. From the operational semantics we then have skip | | C id�! C and C | | skip id�! C. More-
over, from the de�nition of J.Kwe have (m? ,m? ) 2 JidKok. Consequently, asC,m?

=
=) n,m@ , from the

operational semantics we have skip | | C,m?
=+1
==) n,m@ and C | | skip,m?

=+1
==) n,m@ , as required. ⇤

L���� A.4. For all =, n,m? ,mA ,m@,C1,C2:

C1,m?
=
=) ok,mA ^ C2,mA

:
=) n,m@ =) 9 9 . C1 | | C2,m?

9
=) n,m@ ^ C2 | | C1,m?

9
=) n,m@

P����. We proceed by natural induction on =.

Base case ==0
Pick arbitrary : , n , m? ,m@,mA ,C1,C2 such that C1,m?

0
=) ok,mA and C2,mA

:
=) n,m@ . From the

operational semantics we then know C1 = skip and mA=m? . As such, from Lemma A.3 we know

C1 | | C2,m?
:+1
==) n,m@ and C2 | | C1,m?

:+1
==) n,m@ , as required.

Inductive case == 9+1
8:, n,m1,m2,m3,C1,C2 .

C1,m1
9
=) ok,m3 ^ C2,m3

:
=) n,m2 =) 98 . C1 | | C2,m1

8
=) n,m2 ^ C2 | | C1,m1

8
=) n,m2

(I.H)

Pick arbitrary : , n , m? ,m@,mA ,C1,C2 such that C1,m?
=
=) ok,mA and C2,mA

:
=) n,m@ . As = > 0 and

C1,m?
=
=) ok,mA , from the operational semantics we know there exist ; , C0, m such that, C1

;�! C0,

(m? ,m) 2 J;Kok, and C0,m
9
=) ok,mA . Consequently, as C0,m

9
=) ok,mA and C2,mA

:
=) n,m@ , from

(I.H) we know there exists 8 such that C0 | |C2,m
8
=) n,m@ and C2 | |C0,m

8
=) n,m@ . Moreover, as

C1
;�! C0, from the operational semantics we also have C1 | | C2

;�! C0 | | C2 and C2 | | C1
;�! C2 | | C0.

Consequently, as C1 | |C2
;�! C0 | |C2, C2 | |C1

;�! C2 | |C0, (m? ,m) 2 J;Kok, C0 | |C2,m
8
=) n,m@

and C2 | |C0,m
8
=) n,m@ , from the operational semantics we also have C1 | |C2,m

8+1
==) n,m@ and

C2 | | C1,m
8+1
==) n,m@ , as required. ⇤

L���� A.5. For all =, n 2 E�E���,m? ,m@,C1,C2:

C1,m?
=
=) n,m@ =) C1 | | C2,m?

=
=) n,m@ ^ C2 | | C1,m?

=
=) n,m@

P����. As n 2E�E��� and C1,m?
=
=) n,m@ , we know = > 0. We proceed by induction on =.

Base case ==1
Pick arbitrary n 2 E�E���,m? ,m@,C1,C2 such that C1,m?

1
=) n,m@ . From the operational semantics

we then know there exists ;,C0 such that C1
;�! C0, (m? ,m@) 2 J;Kn . As C1

;�! C0, from the control

�ow transitions we then also have C1 | |C2
;�! C0 | |C2 and C2 | |C1

;�! C2 | |C0. As such, since
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n 2 E�E��� and (m? ,m@) 2 J;Kn , from the operational semantics we have C1 | | C2,m?
1
=) n,m@ and

C2 | | C1,m?
1
=) n,m@ , as required.

Inductive case == 9+1 and = > 1

8n 2 E�E���,m1,m2,C1,C2 .

C1,m1
9
=) n,m2 =) C1 | | C2,m1

9
=) n,m2 ^ C2 | | C1,m1

9
=) n,m2

(I.H)

Pick arbitrary n 2 E�E���, m? ,m@,C1,C2 such that C1,m?
=
=) n,m@ . As = > 1 and C1,m?

=
=) ok,mA ,

from the operational semantics we know there exist ; , C0, m such that, C1
;�! C0, (m? ,m) 2 J;Kok,

and C0,m
9
=) n,m@ . As C0,m

9
=) n,m@ and n 2 E�E���, from (I.H) we know C0 | | C2,m

9
=) n,m@ and

C2 | |C0,m
9
=) n,m@ . Moreover, as C

;�! C0, from the control �ow transitions we have C1 | |C2
;�!

C0 | |C2 and C2 | |C1
;�! C2 | |C0. Consequently, as = = 9+1, C1 | |C2

;�! C0 | |C2, C2 | |C1
;�! C2 | |C0,

(m? ,m) 2 J;Kok, C0 | |C2,m
9
=) n,m@ and C2 | |C0,m

9
=) n,m@ , from the operational semantics we

also have C1 | | C2,m?
=
=) n,m@ and C2 | | C1,m?

=
=) n,m@ , as required. ⇤

L���� A.6. For all =,:, n,m? ,mA ,m@,C,C1,C2:

C,m?
=
=) ok,mA ^ C1 | | C2,mA

:
=) n,m@ =)

91 . C1 | | C;C2,m?
1
=) n,m@ ^ C;C1 | | C2,m?

1
=) n,m@

P����. We proceed by natural induction on =.

Base case ==0
Pick arbitrary :, n,m? ,mA ,m@,C,C1,C2 such that: C,m?

0
=) ok,mA and C1 | |C2,mA

:
=) n,m@ . As

C,m?
0
=) ok,mA , from the operational semantics we then know C=skip and mA=m? . Consequently,

from the control �ow transitions we have C;C1
id�! C1 and C;C2

id�! C2. Moreover, from the
de�nition of J.K ans since m?=mA we have (m? ,mA ) 2 JidKok. As such, since C;C8

id�! C8 for

8 2 {1, 2}, (m? ,mA ) 2 JidKok and C1 | |C2,mA
:
=) n,m@ , from the operational semantics we have

C1 | | C;C2,m?
:+1
==) n,m@ and C;C1 | | C2,m?

:+1
==) n,m@ , as required.

Inductive case == 9+1
8:, n,m? ,mA ,m@,C,C1,C2 .

C,m?
9
=) ok,mA ^ C1 | | C2,mA

:
=) n,m@ =)

91 . C1 | | C;C2,m?
1
=) n,m@ ^ C;C1 | | C2,m?

1
=) n,m@

(I.H)

Pick arbitrary: , n ,m? ,m@,mA ,C,C1,C2 such that:C,m?
=
=) ok,mA andC1 | | C2,mA

:
=) n,m@ . As= > 0,

from the operational semantics we know there exist ; , C0, m such that, C
;�! C0, (m? ,m) 2 J;Kok,

and C0,m
9
=) n,mA . Consequently, from the control �ow transitions we have C;C8

;�! C0;C8 for

8 2 {1, 2}. As C0,m
9
=) n,mA and C1 | |C2,mA

:
=) n,m@ , from (I.H) we know there exists 1 such that

C1 | |C0;C2,m
1
=) n,m@ and C0;C1 | |C2,m

1
=) n,m@ . As such, since C;C8

;�! C0;C8 for 8 2 {1, 2},
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(m? ,m) 2 J;Kok, C1 | | C0;C2,m
1
=) n,m@ and C0;C1 | | C2,m

1
=) n,m@ , from the operational semantics

we have C1 | | C;C2,m?
1+1
==) n,m@ and C;C1 | | C2,m?

1+1
==) n,m@ , as required. ⇤

L���� A.7. For all ?,C,@, n , if ` [?] C [n :@] holds, then:

8s 2 S����,m@ 2 b@ ⇤ {s}c . 9m? 2 b? ⇤ I�1 (s)c,=. C,m?
=
=) n,m@

P����. We proceed by induction on the structure of incorrectness triples.

Case S���
Pick an arbitrary s 2 S���� and m? 2 b? ⇤ {s}c. We then know there exists s? 2 ? such that

m? 2 bs? � sc. As I is re�exive and thus s 2 I�1 (s), it then su�ces to show that C,m?
0
=) ok,m? ,

which follows immediately from our operational semantics as C=skip.

Case A���
Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. We then know that C = a for some a. From axiom
soundness (Par. 8) we then know there exists m? 2 b? ⇤ I�1 (s)c such that (m? ,m@) 2 JaKn . There
are now two cases to consider: 1) n 2 E�E���; or 2) n=ok.
In case (1) since (m? ,m@) 2 JaKn and from our control �ow transitions (Fig. 6) we have

a
a�! skip, from our operational semantics we have C,m?

1
=) n,m@ , as required. In case (2)

since (m? ,m@) 2 JaKok, from our control �ow transitions (Fig. 6) we have a
a�! skip, and

skip,m@
0
=) ok,m@ , from our operational semantics we have C,m?

1
=) ok,m@ , as required.

Case S��E�
We then know C = C1;C2 for some C1,C2. Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. Since
from the premise of S��E� we have [?] C1 [n :@] with n 2 E�E���, from the inductive hypothesis
we know there exist m? 2 b? ⇤ I�1 (s)c, = 2 N such that C1,m?

=
=) n,m@ . Since n 2 E�E��� and

thus n < ok, from our operational semantics we know that = > 0. As such, since C = C1;C2,
C1,m?

=
=) n,m@ , = > 0 and n 2 E�E���, from Lemma A.1 C,m?

=
=), n,m@ . That is, there exist =,

m? , 2 b? ⇤ I�1 (s)c such that C,m?
=
=) n,m@ , as required.

Case S��
We then know C = C1;C2 for some C1,C2. Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. Since
from the premise of S�� we have [A ] C2 [n :@], from the inductive hypothesis we know there

exist mA 2 bA ⇤ I�1 (s)c, : 2 N such that C2,mA
:
=) n,m@ . That is, there exist sA 2 A and s1 such

that (s1, s) 2 I and mA 2 bsA � s1c. On the other hand, since sA 2 A and from the premise of S��
we have [?] C1 [ok : A ], from the inductive hypothesis we know there exist m? 2 b? ⇤ I�1 (s1)c,
= 2 N such that C1,m?

=
=) ok,mA . That is, there exist s? 2 ? and s2 such that (s2, s1) 2 I and

m? 2 bs? � s2c. As such, since (s1, s) 2 I, (s2, s1) 2 I and I is transitive, we have (s2, s) 2 I
and thus s2 2 I�1 (s); i.e. m? 2 b? ⇤ I�1 (s)c. Moreover, since C = C1;C2, C1,m?

=
=) ok,mA , and

C2,mA
:
=) n,m@ , from Lemma A.2 we know there exists 9 such that C,m?

9
=), n,m@ . That is, there

exist 9 2 N, m? , 2 b? ⇤ I�1 (s)c such that C,m?
9
=) n,m@ , as required.
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Case L���1
We know there exists C1 such that C = C¢

1 . Pick an arbitrary s 2 S���� and m? 2 b? ⇤ {s}c. As I is
re�exive and thus s 2 I�1 (s), we also have m? 2 b? ⇤ I�1 (s)c. From the control �ow transitions

we have C¢
1

id�! skip. Moreover, from the de�nition of J.K we have (m? ,m? ) 2 JidKok. On the

other hand, from the operational semantics we have skip,m?
0
=) ok,m? . As such, as C¢

1
id�! skip,

(m? ,m? ) 2 JidKok, skip,m?
0
=) ok,m? , from the operational semantics we have C,m?

1
=) ok,m? .

That is, there exist m? 2 b? ⇤ I�1 (s)c and ==1 such that C,m?
=
=) ok,m? , as required.

Case L���2
We know there exists C1 such that C = C¢

1 . Pick arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. From the
premise of L���2 we have [?] C¢

1 ;C1 [n :@] and thus from the inductive hypothesis we know there
exists m? 2 b? ⇤ I�1 (s)c and = such that C¢

1 ;C1,m?
=
=) n,m@ . From the control �ow transitions

we have C¢
1

id�! C¢
1 ;C1. Moreover, from the J.K de�nition we have (m? ,m? ) 2 JidKok. As such, as

C¢
1

id�! C¢
1 ;C1, (m? ,m? ) 2 JidKok, C¢

1 ;C1,m?
=
=) n,m@ , from the operational semantics we have

C,m?
=+1
==) n,m@ . That is, there exist m? 2 b? ⇤ I�1 (s)c, 8 such that C,m?

8
=) n,m@ , as required.

Case C�����
We know there exist C1,C2 such that C = C1 + C2. Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c.
From the premise of C����� we know there exists 8 2 {1, 2} such that [?] C8 [n :@], and thus from
the inductive hypothesis we know there exists m? 2 b? ⇤ I�1 (s)c and = such that C8 ,m?

=
=) n,m@ .

From the control �ow transitions we have C1 + C2
id�! C8 . Moreover, from the de�nition of J.K we

have (m? ,m? ) 2 JidKok. As such, as C1 + C2
id�! C8 , (m? ,m? ) 2 JidKok, C8 ,m?

=
=) n,m@ , from the

operational semantics we have C,m?
=+1
==) n,m@ . That is, there exist m? 2 b? ⇤ I�1 (s)c and 8==+1

such that C,m?
8
=) n,m@ , as required.

Case C���
Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. As form the premise of C��� we have @ ✓ @0, we
also know that m@ 2 b@0 ⇤ {s}c. On the other hand, from the premise of C��� we have [? 0] C
[n :@0] and thus from the inductive hypothesis we know there exist m? 2 b? 0 ⇤ I�1 (s)c and = such
that C,m?

=
=) n,m@ . Moreover, as ? 0 ✓ ? and m? 2 b? 0 ⇤ I�1 (s)c we also have m? 2 b? ⇤ I�1 (s)c.

That is, there exist m? 2 b? ⇤ I�1 (s)c and = such that C,m?
=
=) n,m@ , as required.

Case GC���
Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. As form the premise of C��� we have @ � @0, we
also know that m@ 2 b@0 ⇤ {s}c. On the other hand, from the premise of C��� we have [? 0] C
[n :@0] and thus from the inductive hypothesis we know there exist m? 2 b? 0 ⇤ I�1 (s)c and = such
that C,m?

=
=) n,m@ . Moreover, as ? 0 � ? and m? 2 b? 0 ⇤ I�1 (s)c we also have m? 2 b? ⇤ I�1 (s)c.

That is, there exist m? 2 b? ⇤ I�1 (s)c and = such that C,m?
=
=) n,m@ , as required.

Case F����
Note that F���� is used for PCMs with no interference, i.e. I , ID. Pick an arbitrary s 2 S����
and m@ 2 b@ ⇤ A ⇤ {s}c. That is, there exists s@ 2 @ and sA 2 A such that m1 2 bs@ � sA � sc.
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As from the premise of F���� we have [?] C [n :@], from the inductive hypothesis we know
there exist m? 2 b? ⇤ {sA � s}c and = such that C,m?

=
=) n,m@ . As such, since sA 2 A , we have

m? 2 b?⇤A ⇤I�1 (s)c. That is, there existm? 2 b?⇤A ⇤{s}c and= such thatC,m?
=
=) n,m@ , as required.

Case F����I����
Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ A ⇤ {s}c. That is, there exists s@ 2 @ and sA 2 A such
that m1 2 bs@ � sA � sc. As from the premise of F���� we have [?] C [n :@], from the inductive
hypothesis we know there exist m? 2 b? ⇤ I�1 (sA � s)c and = such that C,m?

=
=) n,m@ . Given

the properties on I (Par. 9) and the de�nition of I�1 we then know there exist s0, s0A , s00 such that
s00=s0A � s0, s00 2 I�1 (sA � s), i.e. (s00, sA � s) 2 I, m? 2 b? ⇤ {s0A } ⇤ {s0}c, (s0A , sA ) 2 I, (s0, s) 2 I
and thus s0 2 I�1 (s). Moreover, as stable(A ) holds (i.e. I�1 (A ) ✓ A ), sA 2 A and (s0A , sA ) 2 I (i.e.
s0A 2 I�1 (sA )), we also have s0A 2 A . As such, we have m? 2 b? ⇤ A ⇤ I�1 (s)c. That is, there exist
m? 2 b? ⇤ A ⇤ I�1 (s)c and = such that C,m?

=
=) n,m@ , as required.

Case D���
Pick an arbitrary s 2 S���� and m@ 2 b(@1 _ @2) ⇤ {s}c. We then know there exists 8 2 {1, 2} such
that m@ 2 b(@8 ) ⇤ {s}c. From the premise of D��� we have [?8 ] C [n :@8 ] and thus from the inductive
hypothesis we know there exists m? 2 b?8 ⇤ I�1 (s)c and =8 such that C,m?

=8
=) n,m@ . Moreover,

since ?8 ✓ ?1 _ ?2 and m? 2 b?8 ⇤ I�1 (s)c, we also have m? 2 b(?1 _ ?2) ⇤ I�1 (s)c. That is, there
exist m? 2 b(?1 _ ?2) ⇤ I�1 (s)c and = such that C,m?

=
=) n,m@ , as required.

Case P��
Note that F���� is used for PCMs with no interference, i.e. I , ID. It thus su�ces to show:

8s 2 S����. 8m@ 2 b@1 ⇤ @2 ⇤ {s}c . 9: 2 N,m? 2 b?1 ⇤ ?2 ⇤ {s}c . C1 | | C2,m?
:
=) ok,m@

Let %1 , ?1 ⇤ ?2, &1 , @1 ⇤ ?2, %2 , &1 and &2 , @1 ⇤ @2. As from the premise of P�� we have [?8 ]
C8 [ok : @8 ] for all 8 2 {1, 2}, from the F���� rule (whose soundness we established above) we also
have [%8 ] C8 [ok : &8 ] for all 8 2 {1, 2}. Consequently, from the inductive hypotheses we know that
for all 8 2 {1, 2}:

8s 2 S����. 8m@ 2 b&8 ⇤ {s}c . 9: 2 N,m? 2 b%8 ⇤ {s}c . C8 ,m?
:
=) ok,m@ (ok-i)

Pick arbitrary s 2 S���� and m@ 2 b(@1 ⇤ @2) ⇤ {s}c. That is, m@ 2 b&2 ⇤ {s}c. From (ok-i) we

then know there exist m2
? , :2 such that m2

? 2 b%2 ⇤ {s}c and C2,m2
?

:2

=) ok,m2
? . Similarly, as

m2
? 2 b%2 ⇤ {s2}c and&1 = %2, from (ok-i) we know there existm1

? , :1 such that:m1
? 2 b%1 ⇤ {s}c and

C1,m1
?

:1

=) ok,m2
? . Let s3 = s and m3

? = m@ . As such, since C1,m1
?

:1

=) ok,m2
? and C2,m2

?
:2

=) ok,m2
? ,

from Lemma A.4 we know there exist 9 such that C1 | |C2,m1
?

9
=) ok,m@ . Consequently, from the

de�nition of %1 we know there exist 9 2 N and m1
? 2 b?1 ⇤ ?2 ⇤ {s}c such that C1 | | C2,m1

?

9
=) ok,m@ ,

as required.

Case P��I����
We then have C = C1 | | C2 for some C1,C2, stable(?1,@2) _ stable(?2,@1), and ` [?8 ] C8 [ok : @8 ] for
all 8 2 {1, 2}. There are two cases two consider: 1) stable(?2,@1); or 2) stable(?1,@2). In case (1) we
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can then derive:
[?1] C1 [ok : @1] stable(?2)
[?1 ⇤ ?2] C1 [ok : @1 ⇤ ?2]

F����I����
[?2] C2 [ok : @2] stable(@1)
[@1 ⇤ ?2] C1 [ok : @1 ⇤ @2]

F����I����

[?1 ⇤ ?2] C1;C2 [ok : @1 ⇤ @2]
S��

[?1 ⇤ ?2] C1 | | C2 [ok : @1 ⇤ @2]
P��S��

In case (2) we can then derive:
[?2] C1 [ok : @2] stable(?1)
[?1 ⇤ ?2] C1 [ok : ?1 ⇤ @2]

F����I����
[?1] C2 [ok : @1] stable(@2)
[?1 ⇤ @2] C1 [ok : @1 ⇤ @2]

F����I����

[?1 ⇤ ?2] C2;C1 [ok : @1 ⇤ @2]
S��

[?1 ⇤ ?2] C1 | | C2 [ok : @1 ⇤ @2]
P��S��

Case P��E�
We then have C = C1 | | C2 for some C1,C2. Pick an arbitrary s 2 S���� andm@ 2 b@ ⇤ {s}c. From the
premise of P��E� we know that n 2 E�E��� and [?] C8 [n :@] for some 8 2 {1 · · ·=}. As such, from
the inductive hypothesis we know there exists m? 2 b? ⇤ I�1 (s)c and : such that C8 ,m?

:
=) n,m@ .

Consequently, as n 2 E�E���, from Lemma A.5 we have C1 | | C2,m?
:
=) n,m@ , as required.

Case P��L
We then have C = C1 | | C2 for some C1,C2. Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. From
the premise of P��L we know there exist C3,C4 such that C1=C3;C4 and [A ] C4 | |C2 [n :@]. As
such, from the inductive hypothesis we know there exist mA 2 bA ⇤ I�1 (s)c, : 2 N such that

C4 | |C2,mA
:
=) n,m@ . That is, there exist sA 2 A and s1 such that (s1, s) 2 I and mA 2 bsA � s1c.

On the other hand, since sA 2 A and from the premise of P��L we have [?] C3 [ok : A ], from the

inductive hypothesis we know there exist m? 2 b? ⇤ I�1 (s1)c, 9 2 N such that C3,m?
9
=) ok,mA .

That is, there exist s? 2 ? and s2 such that (s2, s1) 2 I and m? 2 bs? � s2c. As such, since (s1, s) 2 I,
(s2, s1) 2 I and I is transitive, we have (s2, s) 2 I and thus s2 2 I�1 (s); i.e. m? 2 b? ⇤ I�1 (s)c.
Moreover, since C3,m?

9
=) ok,mA , C4 | | C2,mA

:
=) n,m@ and C1 = C3;C4 from Lemma A.6 we know

there exists 1 such that C1 | |C2,m?
1
=), n,m@ . That is, there exist 1 2 N, m? , 2 b? ⇤ I�1 (s)c such

that C,m?
9
=) n,m@ , as required.

The proof of P��R is analogous to that of P��L and is omitted here. ⇤

T������ A.8 (S��������). For all ?,C,@, n , if ` [?] C [n :@] holds, then |= [?] C [n :@] also
holds.

P����. Pick arbitrary ?,C,@, n such that ` [?] C [n :@] holds. Pick an arbitrary m@ 2 b@c. That
is, there exists s@ 2 @ such that m@ 2 bs@c. From the de�nition of � we then know there exists
s0 2 S����0 such that s@=s@ � s0. As such, from Lemma A.7 we know there existsm? 2 b? ⇤I�1 (s0)c
and= 2 N such thatC,m?

=
=) n,m@ . Moreover, from the properties ofI (Par. 9) and since s0 2 S����0

we know thatI�1 (s0) ✓ S����0. Consequently, from the de�nition of ⇤ and the properties of S����0
(Par. 2) we know ? ⇤ I�1 (s0) ✓ ? and thus b? ⇤ I�1 (s0)c ✓ b?c. That is, we know there exists
m? 2 b?c and = 2 N such that C,m?

=
=) n,m@ , as required. ⇤
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B CISLDC AXIOM SOUNDNESS
CISLDC Machine States. Weassume a Boolean interpretation function, J.K(.) : BA��⇥S����DC !

V��, evaluating Boolean assertions against a machine state. We lift this function to machine states,
and given m 2 MS����DC, we write J.Km for J.Ks , where s ,

–
G 2dom(m)

[G 7! (m(G), 1)].

J�: errorKAok ,; Jassume(⌫)KAok , {m | J⌫Km < 0}
JG := EKAok ,

�
(m,m[G 7! E]) G 2 dom(m)

 
JG := alloc()KAok ,

�
(m,m[G 7! ;] ] [; 7! E]) E 2V�� ^ G 2 dom(m) ^ ; 8dom(m)

 
JG := EKAmse(.) = JG := alloc()KAmse(.) = Jassume(⌫)KAmse(.) = JerrorKAmse(.) , ;

J�: free(G)KAok ,
�
(m,m[; 7! ?]) 9; . m(G) = ; ^m(;) 2 V��

 
J�: free(G)KAmse(�0) ,

�
(m,m) � = �0^ 9; . m(G) = ; ^m(;) = ?

 
J�:G := [~]KAok ,

�
(m,m[G 7! E]) G 2 dom(m) ^ 9; . m(~) = ; ^m(;) = E 2 V��

 
J�:G := [~]KAmse(�0) ,

�
(m,m) � = �0^ G 2 dom(m) ^ 9; . m(~) = ; ^m(;) = ?

 
J�: [G] := ~KAok ,

�
(m,m[; 7! m(~)]) ~ 2 dom(m) ^ 9; . m(G)=; ^m(;) 2 V��

 
J�: [G] := ~KAmse(�0) ,

�
(m,m) � = �0^ ~ 2 dom(m) ^ 9; . m(G)=; ^m(;) = ?

 

JaKAer (�) ,
(
{(m,m) | m 2 MS����DC} if a = �: error
; otherwise

B.1 CISLDC Axiom Soundness
T������ B.1 (CISLDC ������ ���������). For all (?, ;, n,@) 2 A���DC the following holds:

8s 2 S����DC,m@ 2 b@ ⇤ {s}cDC. 9m? 2 b? ⇤ I�1
DC (s)cDC. (m? ,m@) 2 J;KAn

P����. Pick an arbitrary (?, ;, n,@) 2 A���DC. Note that as the CISLDC interference is simply
de�ned as the identity relation, it su�ces to show that the following holds:

8s 2 S����DC,m@ 2 b@ ⇤ {s}cDC . 9m? 2 b? ⇤ {s}cDC . (m? ,m@) 2 J;KAn
We proceed by induction on the structure of (?, ;, n,@).

Case DC�A�����
We then have ; = assume(⌫), that n = ok,@ = ⇤

G8 2pvars (⌫)
G8

c87!E8^⌫ [E8/G8 ], and ? = ⇤
G8 2pvars (⌫)

G8
c87!E8 .

Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC and ⇤ we then
know that there exists s@ 2 @ such that m@ 2 bs@ �DC scDC and J⌫Ks@ < 0. From the de�nition of
J.Kf we then know J⌫Km@ < 0
Let s? = s@ and m? = m@ . From the de�nitions of b.cDC and ⇤ we then know that s? 2 ? and

m? 2 b? ⇤ {s}cDC. On the other hand, since J⌫Km@ < 0 and m? = m@ , we also have J⌫Km? < 0. As
such, from the de�nition of Jassume(⌫)KAok we have (m? ,m@) 2 Jassume(⌫)KAok, as required.

Case DC�E����
We then have ; = �: error, that n = er (�), @ = emp, and ? = @. Pick an arbitrary s 2 S����DC and
m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC and ⇤ we then know that there exists s@ 2 @ such
that s@ = ;, and m@ 2 bscDC.
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Let s? = s@ andm? = m@ . From the de�nitions of b.cDC and ⇤ we then know that s? 2 ? andm? 2
b?⇤{s}cDC. Moreover, from the de�nition of J�: errorKAer (�) we have (m? ,m@) 2 J�: errorKAer (�),
as required.

Case DC�A�����
We then have ; = G := E for some G, E , that n = ok, @ = G 7!E , and ? = G 7!E 0 for some E 0. Pick an
arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC and ⇤ we then know
that there exist s@ 2 @ such that s@ = [G 7! (E, 1)], G 8 dom(s), and m@ 2 bs@ �DC scDC.
Let s? = [G 7! E 0] and pick m? = m@ [G 7! E 0]. From the de�nitions of b.cDC and ⇤ we then

know that s? 2 ? and m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition of JG := EKAok we have
(m? ,m@) 2 JG := EKAok, as required.

Case DC�L���
We then have ; = G := [~] for some G,~, that n = ok, @ = G 7!E ⇤ ~

c~7!; ⇤ ; c7!E for some E, ;, c , and
? = G 7!E 0 ⇤~

c~7!; ⇤ ; c7!E for some E 0. Pick an arbitrary s 2 S����DC andm@ 2 b@ ⇤ {s}cDC. From the
de�nitions of b.cDC and ⇤we then know that there exist s@ 2 @ such that s@ = [G 7! (E, 1)] �DC [~ 7!
(;, c~)] �DC [; 7! (E, c)], G 8 dom(s), (c~=1 ^~ 8 dom(s)) _ (c~ < 1 ^ s(~)=(;, c 0

~) ^ c~+c 0
~  1)

for some c 0
~ , (c=1 ^ ; 8 dom(s)) _ (c < 1 ^ s(;)=(E, c 0) ^ c+c 0  1) for some c 0, and m@ =

bs �DC [G 7! (E, 1)] �DC [~ 7! (;, c~)] �DC [; 7! (E, c)]cDC.
Let s? = [G 7! (E 0, 1)] �DC [~ 7! (;, c~)] �DC [; 7! (E, c)] and m? = m@ [G 7! E 0]. From the

de�nitions of b.cDC and ⇤ we then know that s? 2 ? and m? 2 b? ⇤ {s}cDC. Moreover, from the
de�nition of JG := [~]KAok we have (m? ,m@) 2 JG := [~]KAok, as required.

Case DC�L���E�
We then have ; = �:G := [~] for some G,~, �, that n = mse(�), @ = ~

c~7! ; ⇤ ;
c
67! for some E, ;, c ,

and ? = @. Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC
and ⇤ we then know that there exist s@ 2 @ such that s@ = [~ 7! (;, c~)] �DC [; 7! (?, c)],
(c~=1^~ 8 dom(s))_ (c~ < 1^ s(~)=(;, c 0

~)^c~+c 0
~  1) for some c 0

~ , (c=1^; 8 dom(s))_ (c <
1 ^ s(;)=(?, c 0) ^ c+c 0  1) for some c 0, and m@ = bs �DC [~ 7! (;, c~)] �DC [; 7! (?, c)]cDC.

Let s? = s@ and m? = m@ . We then simply have m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition
of J�:G := [~]KAmse(�) we have (m? ,m@) 2 J�:G := [~]KAmse(�), as required.

The proofs of the DC�S���� and DC�S����E� cases are analogous to those of DC�L��� and DC�
L���E� respectively, and are omitted here.

Case DC�A����
We then have ; = G := alloc() for some G , that n = ok, @ = G 7!; ⇤; 7!E for some E, ; , and ? = G 7!E 0

for some E 0. Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC
and ⇤ we then know that there exist s@ 2 @,f, h, h such that s@ = [G 7! (;, 1)] �DC [; 7! (E, 1)],
G, ; 8 dom(s), and m@ = bs �DC [G 7! (;, 1)] �DC [; 7! (E, 1)]cDC.

Let s? = [G 7! (E 0, 1)] and m? = bs �DC [G 7! (E 0, 1)]cDC (from the de�nitions of �DC, s and
s? we know this is de�ned). From the de�nitions of b.cDC and ⇤ we then know that s? 2 ? and
m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition of JG := alloc()KAok we have (m? ,m@) 2 JG :=
alloc()KAok, as required.

Case DC�F���
We then have ; = free(G) for some G , that n = ok, @ = G

c7!; ⇤; 67! for some ; , and ? = G 7!;c ⇤; 7!E

, Vol. 1, No. 1, Article . Publication date: October 2021.



1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

for some E . Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC
and ⇤ we then know that there exist s@ 2 @ such that s@ = [G 7! (;, c)] �DC [; 7! (?, 1)],
(c=1 ^ G 8 dom(s)) _ (c < 1 ^ s(G)=(;, c 0) ^ c+c 0  1) for some c 0, ; 8 dom(s), and m@ =
bs �DC [G 7! (;, c)] �DC [; 7! (?, 1)]cDC.
Let s? = [G 7! (;, c)] �DC [; 7! (E, 1)] and m? = m@ [G 7! E]. From the de�nitions of b.cDC and ⇤

we then know that s? 2 ? and m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition of Jfree(G)KAok
we have (m? ,m@) 2 Jfree(G)KAok, as required.

Case DC�F���E�
We then have ; = �: free(G) for some G, �, that n = mse(�), @ = G

cG7! ; ⇤ ;
c
67! for some ;, c, cG ,

and ? = @. Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC
and ⇤ we then know that there exist s@ 2 @ such that s@ = [G 7! (;, cG )] �DC [; 7! (?, c)],
(cG=1^G 8 dom(s))_ (cG < 1^ s(G)=(;, c 0)^cG+c 0

G  1) for some c 0
G , (c=1^ ; 8 dom(s))_ (c <

1 ^ s(;)=(?, c 0) ^ c+c 0  1) for some c 0, and m@ = bs �DC [G 7! (;, cG )] �DC [; 7! (?, c)]cDC.
Let s? = s@ and m? = m@ . We then simply have m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition

of J�: free(G)KAmse(�) we have (m? ,m@) 2 J�: free(G)KAmse(�), as required.
⇤
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C CISLRD SOUNDNESS
T������ C.1 (CISLRD ������ ���������). For all (?, ;, n,@) 2 A���RD the following holds:

8s 2 S����RD,m@ 2 b@ ⇤ {s}cRD. 9m? 2 b? ⇤ I�1
RD (s)cRD . (m? ,m@) 2 J;KAn

P����. Pick an arbitrary (?, ;, n,@) 2 A���RD. Note that as the CISLRD interference is simply
de�ned as the identity relation, it su�ces to show that the following holds:

8s 2 S����RD,m@ 2 b@ ⇤ {s}cRD . 9m? 2 b? ⇤ {s}cRD . (m? ,m@) 2 J;KAn
We proceed by induction on the structure of (?, ;, n,@).

Case RD�L���
We then have ; = lockg ; for some g, ; , that n = ok, @ = g 7! (� ++ L(g, ;), ( ] {;}) for some � , (
such that ; 8 ( , and ? = g 7! (� , (). Let � 0 , � ++ L(g, ;). Pick an arbitrary s 2 S����RD and
m@ 2 b@ ⇤ {s}cRD. From the de�nitions of b.cRD and ⇤ we then know that there exist s@ 2 @,�@ such
that s@ = ( [g 7! (� 0, ( ] {;})], g 8 dom(s), m@ = �@ , � 0 = �@ |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) )
� 00 = �@ |g0 and wf

�
�@

�
. That is, there exists �1,�2,�? such that �@ = �1 ++ L(g, ;) ++ �2,

84 2 �2. 4 .tid < g , �? = �1 ++ �2, and � = �? |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 = �? |g 0 .
Let s?=[g 7! (� , ()] and m?=�? . From the de�nitions of b.cRD, �? and ⇤ we then know that

s? 2 ? , that ? ⇤ {s} is de�ned (since g 8 dom(s)), and that m? 2 b? ⇤ {s}cRD. Moreover, as wf
�
�@

�
,

84 2 �2. 4 .tid < g , �@=�1 ++ L(g, ;) ++ �2 and �?=�1 ++ �2, it is straightforward to show that
wf

�
�?

�
. Finally, from the de�nition of J.KA we have (m? ,m@) 2 Jlockg ;KAok, as required.

The proof of the RD�U����� case is analogous and thus omitted here.

Case RD�R���
We then have ; = �:0 :=g G for some g, G, �, that n = ok, @ = g 7! (� ++ 4, () for some � , 4, ( such
that 4 = R(�, g, G)( , and that ? = g 7! (� , (). Let � 0 , � ++ 4 . Pick an arbitrary s 2 S����RD and
m@ 2 b@ ⇤ {s}cRD. From the de�nitions of b.cRD and ⇤ we then know that there exist s@ 2 @,�@ such
that s@ = ( [g 7! (� 0, ()], g 8 dom(s), m@ = �@ , � 0 = �@ |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 =
�@ |g 0 and wf

�
�@

�
. That is, there exists �1,�2,�? such that �@ = �1 ++ 4 ++ �2, 84 2 �2. 4 .tid < g ,

�? = �1 ++ �2, and � = �? |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 = �? |g 0 . Moreover, from the
de�nitions of �? , �@ we have: 8g 0. locks(�? , g 0) = locks(�@, g 0).
Let s?=[g 7! (� , ()] and m?=�? . From the de�nitions of b.cRD, �? and ⇤ we then know that

s? 2 ? , that ? ⇤{s} is de�ned (since g 8 dom(s)), and thatm? 2 b? ⇤{s}cRD. Moreover, aswf
�
�@

�
and

8g 0. locks(�? , g 0) = locks(�@, g 0), �@=�1 ++ L(g, ;) ++ �2 and �?=�1 ++ �2, it is straightforward
to show that wf

�
�?

�
. Finally, from the de�nition of of J.KA we have (m? ,m@) 2 J�:0 :=g GKAok, as

required.

The proof of the RD�W���� case is analogous and thus omitted here. ⇤
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D CISLDD SOUNDNESS
T������ D.1 (CISLDD ������ ���������). For all (?, ;, n,@) 2 A���DD the following holds:

8s 2 S����DD,m@ 2 b@ ⇤ {s}cDD . 9m? 2 b? ⇤ I�1
DD (s)cDD. (m? ,m@) 2 J;KAn

P����. Pick an arbitrary (?, ;, n,@) 2 A���DD. Note that as the CISLDD interference is simply
de�ned as the identity relation, it su�ces to show that the following holds:

8s 2 S����DD,m@ 2 b@ ⇤ {s}cDD . 9m? 2 b? ⇤ {s}cDD . (m? ,m@) 2 J;KAn
We proceed by induction on the structure of (?, ;, n,@).

Case DD�L���
We then have ; = �: lockg ; for some g, ; , that n = ok, @ = g 7! (� ++ L(g, ;), ( ] {;}) for some � ,
( such that ; 8 ( , and ? = g 7! (� , (). Let � 0 , � ++ L(g, ;). Pick an arbitrary s 2 S����DD and
m@ 2 b@ ⇤ {s}cDD. From the de�nitions of b.cDD and ⇤ we then know that there exist s@ 2 @,�@ such
that s@ = ( [g 7! (� 0, ( ] {;})], g 8 dom(s), m@ = �@ , � 0 = �@ |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) )
� 00 = �@ |g0 and wf

�
�@

�
. That is, there exists �1,�2,�? such that �@ = �1 ++ L(g, ;) ++ �2,

84 2 �2. 4 .tid < g , �? = �1 ++ �2, and � = �? |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 = �? |g 0 .
Let s?=[g 7! (� , ()] and m?=�? . From the de�nitions of b.cDD, �? and ⇤ we then know that

s? 2 ? , that ? ⇤ {s} is de�ned (since g 8 dom(s)), and that m? 2 b? ⇤ {s}cDD. Moreover, as wf
�
�@

�
,

84 2 �2. 4 .tid < g , �@=�1 ++ L(g, ;) ++ �2 and �?=�1 ++ �2, it is straightforward to show that
wf

�
�?

�
. Finally, from the de�nition of J.KA we have (m? ,m@) 2 J�: lockg ;KAok, as required.

Case DD�U�����
We then have ; = unlockg ; for some g, ; , that n = ok, @ = g 7! (� ++ U(g, ;), () for some� , ( , ( 0 such
that ; 8 ( , ( 0 = ( ] {;} and ? = g 7! (� , ( 0). Let � 0 , � ++ L(g, ;). Pick an arbitrary s 2 S����DD
and m@ 2 b@ ⇤ {s}cDD. From the de�nitions of b.cDD and ⇤ we then know that there exist s@ 2 @,�@

such that s@ = ( [g 7! (� 0, ()], g 8 dom(s), m@ = �@ , � 0 = �@ |g , 8g 0 2 dom(s) . s(g 0) = (� 00,�) )
� 00 = �@ |g0 and wf

�
�@

�
. That is, there exists �1,�2,�? such that �@ = �1 ++ U(g, ;) ++ �2,

84 2 �2. 4 .tid < g , �? = �1 ++ �2, and � = �? |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 = �? |g 0 .
Let s?=[g 7! (� , ( 0)] and m?=�? . From the de�nitions of b.cDD, �? and ⇤ we then know that

s? 2 ? , that ? ⇤ {s} is de�ned (since g 8 dom(s)), and that m? 2 b? ⇤ {s}cDD. Moreover, as wf
�
�@

�
,

84 2 �2. 4 .tid < g , �@=�1 ++ L(g, ;) ++ �2 and �?=�1 ++ �2, it is straightforward to show that
wf

�
�?

�
. Finally, from the de�nition of J.KA we have (m? ,m@) 2 Junlockg ;KAok, as required.

⇤
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E CISLSV SOUNDNESS
CISLSV Machine States. As the LS���� PCM is supplied as a parameter to CISLSV, their cor-

responding machine states,MS����L, must similarly be supplied as a parameter to CISLSV. Since
here we instantiated LS���� with S����DC, we accordingly take MS����L , MS����DC. The set
of CISLSV machine states is: MS����SV , MS����L [ (RI� �n

ô {?} ] TI�).
CISLSV Atomic Semantics.

JG := EKAok ,
�
(m,m[G 7! E]) G 2 dom(m)

 
JG := alloc()KAok ,

�
(m,m[G 7! ;] ] [; 7! E]) E 2V�� ^ G 2 dom(m) ^ ; 8dom(m)

 
JG := EKAmse(.) = JG := alloc()KAmse(.) , ;

J�: free(G)KAok ,
�
(m,m[; 7! ?]) 9; . m(G) = ; ^m(;) 2 V��

 
J�: free(G)KAmse(�0) ,

�
(m,m) � = �0^ 9; . m(G) = ; ^m(;) = ?

 
J�:G := [~]KAok ,

�
(m,m[G 7! E]) G 2 dom(m) ^ 9; . m(~) = ; ^m(;) = E 2 V��

 
J�:G := [~]KAmse(�0) ,

�
(m,m) � = �0^ G 2 dom(m) ^ 9; . m(~) = ; ^m(;) = ?

 
J�: [G] := ~KAok ,

�
(m,m[; 7! m(~)]) ~ 2 dom(m) ^ 9; . m(G)=; ^m(;) 2 V��

 
J�: [G] := ~KAmse(�0) ,

�
(m,m) � = �0^ ~ 2 dom(m) ^ 9; . m(G)=; ^m(;) = ?

 
Jacqg rKAok ,

�
(m,m0) m(r)=? ^m0 = m[r 7! g]

 
Jrelg rKAok ,

�
(m,m0) m(r)=g ^m0 = m[r 7! ?]

 
CISLSV Erasure. As LS���� and MS����L are supplied as a parameter to CISLSV, the erasure

b.cL : LS���� ! P(MS����L) must similarly be supplied as a parameter to CISLSV. Since here we
instantiated LS����with S����DC andMS����L withMS����DC, we accordingly take b.cL , b.cDC.
Given a resource map d and a resource r, since at most one thread may be within r at any

given time and thus claim its associated resource, we write SV (d (r)) (resp. owner (d (r))) to denote
the resource associated with r (resp. the thread currently accessing r), if such resource (resp.
thread) exists; and otherwise to denote the set of empty resource LS����0 (resp. ?). That is, when
d (r)=(>,�,�), if > 2 TI� then SV (d (r)) = LS����0 and owner (d (r)) = > ; and if > = ? then
SV (d (r)) = S(count (d, r)) and owner (d (r)) = > = ?. The CISLSV erasure function is then de�ned
as follows:

b(l, p, d)cSV ,
n
(l �l l1 �l l2) l1 2 ⇤

r2dom(d)
SV (d (r)) ^ l2 = (;, “

r2dom(d)
[r 7! owner (d (r))])o

E.1 CISLSV Axiom Soundness
T������ E.1 (CISLSV ������ ���������). For all (?, ;, n,@) 2 A���SV the following holds:

8s 2 S����SV,m@ 2 b@ ⇤ {s}cSV . 9m? 2 b? ⇤ I�1
SV (s)cSV . (m? ,m@) 2 J;KAn

P����. Pick an arbitrary (?, ;, n,@) 2 A���SV. We proceed by induction on the structure of
(?, ;, n,@).

Case SV�A��
We then have n = ok, ; = acqg r for some g, r, @ =

‘
<�=

(S(<) ⇤ csrS (g :=,<)) for some =, and

? = resrS (g :=). Pick an arbitrary s 2 S����SV and m@ 2 b@ ⇤ {s}cSV. From the de�nitions of b.cSV
and ⇤ we then know that there exist l, d, C,:, l: , p, l1, l2 such that:

s=(l, p, d), (r, g) 8 dom(p),
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d (r)=(g,S, C), C (g)==, :=count (C), : � =,
l: 2 S(:),
m@=l: �l l �l l1 �l l2, l1 2 ⇤

r0 2dom(d)
SV (d (r0)), and l2=(;,

“
r0 2dom(d)

[r0 7! owner (d (r))]).

From the de�nition of m@ we know m@ (r)=g . Let s0 = (l, p, d 0) where d 0 = d [r 7! (?,S, C)]; let
m? = m@ [r 7! ?]. From the de�nitions of b.cSV and ⇤ we have m? 2 bresrS (g :=) ⇤ {s0}cSV; that is,
m? 2 b? ⇤ {s0}cSV. Moreover, from the de�nition of I0 we have (s0, s) 2 I0 ✓ I and thus s0 2 I�1 (s).
Finally, from the de�nition of Jacqg GKAok we have (m? ,m@) 2 Jacqg GKAok, as required.

Case SV�R��
We then have n = ok, ; = relg r for some g, r, @ = resrS (g :=+1) and ? =

‘
<�=

(S(<+1) ⇤ csrS (g :=,<))
for some =. Pick an arbitrary s 2 S����SV and m@ 2 b@ ⇤ {s}cSV. From the de�nitions of b.cSV and ⇤
we then know that there exist l, d, C,:, l: , p, l1, l2 such that:

s=(l, p, d), (r, g) 8 dom(p),
d (r)=(?,S, C), C (g)==+1, :=count (C), : � =+1, l: 2 S(:),
m@=l �l l: �l l1 �l l2, l1= ⇤

r0 2dom(d)\{r}
SV (d (r0)), and l2=(;,

“
r0 2dom(d)

[r0 7! owner (d (r))]).

From the de�nition of m@ we know m@ (r)=?. Let s0=(l, p, d 0) where d 0 = d [r 7! (g,S, C 0)]
and C 0=C [g 7! =]; and let m?=m@ [r 7! g]. From the de�nitions of s, s0, d, d 0, b.cSV and ⇤ we then
have m? 2 b{l: } ⇤ csrS (g :=,:�1) ⇤ {s0}cSV, i.e. m? 2 bS(:) ⇤ csrS (g :=,:�1) ⇤ {s0}cSV. As : � =+1
we also have :�1 � =. As such, we also have m? 2 b ‘

<�=
S(<+1) ⇤ csrS (g :=,<) ⇤ {s0}cSV; that is,

m? 2 b? ⇤ {s0}cSV. Moreover, from the de�nition of IA we have (s0, s) 2 IA ✓ I and thus s0 2 I�1 (s).
Finally, from the de�nition of Jrelg GKAok we have (m? ,m@) 2 Jrelg GKAok, as required.

Case SV�A���G
We then have n = ok, ; = acqg r for some g, r, @ = S(<) ⇤ csrS (g,<) for some<, and ? = resrS (<).
Pick an arbitrary s 2 S����SV and m@ 2 b@ ⇤ {s}cSV. From the de�nitions of b.cSV and ⇤ we then
know that there exist l, d, C,:, l: ,=, p, l1, l2 such that:

s=(l, p, d), 8g . (r, g) 8 dom(p),
d (r)=(g,S, C), C (g)==,<=count (C),< � =,
l< 2 S(<),
m@=l< �l l �l l1 �l l2, l1 2 ⇤

r0 2dom(d)
SV (d (r0)), and l2=(;,

“
r0 2dom(d)

[r0 7! owner (d (r))]).

From the de�nition of m@ we know m@ (r)=g . Let s0 = (l, p, d 0) where d 0 = d [r 7! (?,S, C)]; let
m? = m@ [r 7! ?]. From the de�nitions of b.cSV and ⇤ we have m? 2 bresrS (<) ⇤ {s0}cSV; that is,
m? 2 b? ⇤ {s0}cSV. Moreover, from the de�nition of I0 we have (s0, s) 2 I0 ✓ I and thus s0 2 I�1 (s).
Finally, from the de�nition of Jacqg GKAok we have (m? ,m@) 2 Jacqg GKAok, as required.

Case SV�R���G
We then have n = ok, ; = relg r for some g, r,@ = resrS (<+1) for some< and ? = S(<+1)⇤csrS (g,<).
Pick an arbitrary s 2 S����SV and m@ 2 b@ ⇤ {s}cSV. From the de�nitions of b.cSV and ⇤ we then
know that there exist l, d, C,=, l<+1, p, l1, l2 such that:

s=(l, p, d), 8g . (r, g) 8 dom(p),
d (r)=(?,S, C), C (g)==+1,<+1=count (C),<+1 � =+1 and thus< � =, l<+1 2 S(<+1),
m@=l �l l<+1 �l l1 �l l2, l1= ⇤

r0 2dom(d)\{r}
SV (d (r0)), and l2=(;,

“
r0 2dom(d)

[r0 7! owner (d (r))]).

From the de�nition of m@ we know m@ (r)=?. Let s0=(l, p, d 0) where d 0 = d [r 7! (g,S, C 0)]
and C 0=C [g 7! =]; and let m?=m@ [r 7! g]. From the de�nitions of s, s0, d, d 0, b.cSV and ⇤ we
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then have m? 2 b{l<+1} ⇤ csrS (g,<) ⇤ {s0}cSV, i.e. m? 2 bS(<+1) ⇤ csrS (g,<) ⇤ {s0}cSV and thus
m? 2 b? ⇤ {s0}cSV. Moreover, from the de�nition of IA we have (s0, s) 2 IA ✓ I and thus s0 2 I�1 (s).
Finally, from the de�nition of Jrelg GKAok we have (m? ,m@) 2 Jrelg GKAok, as required.

Case SV�CS
This rule can be derived as follows, where A�� denotes an assumption given by the premise:

(1)

(2) (3)
? ⇤ ‘

<�=
(S(<) ⇤ csrS (g :=,<))

�
C; relg r

h
ok : @ ⇤ resrS (g :=+1)

i S��

h
? ⇤ resrS (g :=)

i
acqg r;C; relg r

h
ok : @ ⇤ resrS (g :=+1)

i S��

h
? ⇤ resrS (g :=)

i
withg r do C

h
ok : @ ⇤ resrS (g :=+1)

i

h
⇤resrS (g :=)

i
acqg r


ok :

‘
<�=

(S(<) ⇤ csrS (g :=,<))
� SV�A��

stable(?)
h
? ⇤ resrS (g :=)

i
acqg r


ok : ? ⇤ ‘

<�=
(S(<) ⇤ csrS (g :=,<))

� F����I����

(1)

8< � =. [? ⇤ S(<)] C [ok : @ ⇤ S(<+1)] A��
stable

⇣
csrS (g :=,<)

⌘

8< � =.
h
? ⇤ S(<) ⇤ csrS (g :=,<)

i
C

h
ok : @ ⇤ S(<+1) ⇤ csrS (g :=,<)

i F����I����


? ⇤ ‘

<�=
(S(<) ⇤ csrS (g :=,<))

�
C


ok : @ ⇤ ‘

<�=
(S(<+1) ⇤ csrS (g :=,<))

� D���,C���

(2)

 ‘
<�=

(S(<+1) ⇤ csrS (g :=,<))
�
relg r

h
ok : resrS (g :=+1)

i SV�R��
stable(@)


@ ⇤ ‘

<�=
(S(<+1) ⇤ csrS (g :=,<))

�
relg r

h
ok : @ ⇤ resrS (g :=+1)

i F����I����

(3)
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Case SV�CS�G
This rule can be derived as follows, where A , ==:+Õ

:8 ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 ):

h
? ⇤ resrS (g ::)

i
withg r do C

h
ok : @ ⇤ resrS (g ::+1)

i SV�CS
stable(A )

[? ⇤ ==:+
’

:8 ⇤ resrS (g ::) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]
withg r do C

[ok : @ ⇤ ==:+
’

:8 ⇤ resrS (g ::+1) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]

F����I����

[? ⇤ ==:+
’

:8 ⇤ resrS (g ::) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]
withg r do C

[ok : @ ⇤ =+1=:+1+
’

:8 ⇤ resrS (g ::+1) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]

C���

[9:8 ,: . ? ⇤ ==:+
’

:8 ⇤ resrS (g ::) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]
withg r do C

[ok : 9:8 ,: . @ ⇤ =+1=:+1+
’

:8 ⇤ resrS (g ::+1) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]

D���

h
? ⇤ resrS (=)

i
withg r do C

h
ok : @ ⇤ resrS (=+1)

i C���, S����S����

⇤

, Vol. 1, No. 1, Article . Publication date: October 2021.


	Abstract
	1 Introduction
	2 Overview of CISL
	3 The CISL Framework
	3.1 CISL Logic and Proof Rules
	3.2 CISL Model and Semantics
	3.3 CISL Soundness
	3.4 Generalising the Rule of Consequence (View Shifts)

	4 RD: CISL for Race Detection
	4.1 RDFormalism
	4.2 Generalising RD

	5 DD: CISL for Deadlock Detection
	6 Generalising CISL to PCMs with Interference
	7 SV: CISL for Shared Concurrency with Resource Subvariants
	8 Conclusions and Related Work
	References
	A Soundness
	B DCAxiom Soundness
	B.1 DCAxiom Soundness

	C RDSoundness
	D DDSoundness
	E SVSoundness
	E.1 SVAxiom Soundness


