Concurrent Incorrectness Separation Logic

#### A SOUNDNESS

 LEMMA A.1. For all  $n > 0, \epsilon \in \text{EREXIT}, m_p, m_q, C, C'$ :  $C, m_p \stackrel{n}{\Rightarrow} \epsilon, m_q \implies C; C', m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ 

Base case n=1

Pick arbitrary  $\epsilon \in \text{EREXIT}$ ,  $m_p$ ,  $m_q$ , C, C' such that C,  $m_p \stackrel{1}{\Rightarrow} \epsilon$ ,  $m_q$ . From the operational semantics we know there exist l, C'' such that  $C \xrightarrow{l} C''$  and  $(m_p, m_q) \in [l] \epsilon$ . Consequently, from the con-trol flow transitions we have C; C'  $\xrightarrow{l}$  C''; C'. As such, from the operational semantics we have  $C; C', m_p \stackrel{1}{\Rightarrow} \epsilon, m_q.$ 

Inductive case n=j+1 and n > 1

$$\forall \epsilon \in \text{EREXIT}, m_1, m_2, \text{C}_1, \text{C}_2, \text{C}_1, m_1 \xrightarrow{j} \epsilon, m_2 \implies \text{C}_1; \text{C}_2, m_1 \xrightarrow{j} \epsilon, m_2 \tag{I.H}$$

Pick arbitrary  $\epsilon \in \text{EREXIT}$ ,  $m_p$ ,  $m_q$ , C, C' such that C,  $m_p \stackrel{n}{\Rightarrow} \epsilon$ ,  $m_q$ . As n > 1, from the operational semantics we know there exist l, C'', m such that,  $C \xrightarrow{l} C'', (m_p, m) \in [l] ok$ , and  $C'', m \xrightarrow{j} \epsilon, m_q$ . Consequently, from the control flow transitions we have C; C'  $\xrightarrow{l}$  C''; C'. Moreover, from (I.H) we have  $C''; C', m \stackrel{j}{\Rightarrow} \epsilon, m_a$ . As such, since  $n=j+1, C; C' \stackrel{l}{\rightarrow} C''; C', (m_p, m) \in [l]$  ok and  $C''; C', m \stackrel{j}{\Rightarrow}$  $\epsilon$ ,  $m_q$  from the operational semantics we have C; C',  $m_p \stackrel{n}{\Rightarrow} \epsilon$ ,  $m_q$ , as required. 

LEMMA A.2. For all  $n, k, \epsilon, m_p, m_r, m_q, C_1, C_2$ :

$$C_1, m_p \stackrel{n}{\Rightarrow} ok, m_r \wedge C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q \implies \exists b. C_1; C_2, m_p \stackrel{b}{\Rightarrow} \epsilon, m_q$$

PROOF. We proceed by natural induction on *n*.

Base case *n*=0

Pick arbitrary  $k, \epsilon, m_p, m_r, m_q, C_1, C_2$  such that:  $C_1, m_p \stackrel{0}{\Rightarrow} ok, m_r$  and  $C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q$ . As  $C_1, m_p \stackrel{0}{\Rightarrow} ok, m_r$ , from the operational semantics we then know  $C_1$ =skip and  $m_r=m_p$ . Consequently, from the control flow transitions we have  $C_1; C_2 \xrightarrow{id} C_2$ . Moreover, from the definition of [.] and since  $m_p = m_r$ we have  $(m_p, m_r) \in [[id]] ok$ . As such, since  $C_1; C_2 \xrightarrow{id} C_2, (m_p, m_r) \in [[id]] ok$  and  $C_2, m_r \xrightarrow{k} \epsilon, m_q$ , from the operational semantics we have  $C_1; C_2, m_p \stackrel{k+1}{\Longrightarrow} \epsilon, m_q$ , as required. 

#### Inductive case n=j+1

$$\forall k, \epsilon, m_p, m_r, m_q, C_1, C_2.$$

$$C_1, m_p \stackrel{j}{\Rightarrow} ok, m_r \wedge C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q \implies \exists b. \ C_1; C_2, m_p \stackrel{b}{\Rightarrow} \epsilon, m_q$$

$$(I.H)$$

Pick arbitrary k,  $\epsilon$ ,  $m_p$ ,  $m_q$ ,  $m_r$ ,  $C_1$ ,  $C_2$  such that:  $C_1$ ,  $m_p \stackrel{n}{\Rightarrow} ok$ ,  $m_r$  and  $C_2$ ,  $m_r \stackrel{k}{\Rightarrow} \epsilon$ ,  $m_q$ . As n > 0, from the operational semantics we know there exist l, C', m such that,  $C_1 \xrightarrow{l} C', (m_p, m) \in [l] ok$ , and C',  $m \stackrel{j}{\Rightarrow} \epsilon$ ,  $m_r$ . Consequently, from the control flow transitions we have C<sub>1</sub>; C<sub>2</sub>  $\stackrel{l}{\rightarrow}$  C'; C<sub>2</sub>. As C',  $m \stackrel{j}{\Rightarrow} \epsilon$ ,  $m_r$  and C<sub>2</sub>,  $m_r \stackrel{k}{\Rightarrow} \epsilon$ ,  $m_q$ , from (I.H) we know there exists *b* such that C'; C<sub>2</sub>,  $m \stackrel{b}{\Rightarrow} \epsilon$ ,  $m_q$ . As 

, Vol. 1, No. 1, Article . Publication date: October 2021.

<sup>1471</sup>  $\epsilon \in \text{EREXIT} \text{ and } (m_p, m_q) \in [l] \epsilon$ , from the operational semantics we have  $C_1 || C_2, m_p \xrightarrow{1} \epsilon, m_q$  and <sup>1472</sup>  $C_2 || C_1, m_p \xrightarrow{1} \epsilon, m_q$ , as required.

Inductive case n=j+1 and n > 1

1476 1477

1478

1495

$$\forall \epsilon \in \text{EREXIT}, m_1, m_2, C_1, C_2.$$

$$C_1, m_1 \stackrel{j}{\Rightarrow} \epsilon, m_2 \implies C_1 || C_2, m_1 \stackrel{j}{\Rightarrow} \epsilon, m_2 \wedge C_2 || C_1, m_1 \stackrel{j}{\Rightarrow} \epsilon, m_2 \qquad (\text{I.H})$$

Pick arbitrary  $\epsilon \in \text{EREXIT}$ ,  $m_p, m_q, C_1, C_2$  such that  $C_1, m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ . As n > 1 and  $C_1, m_p \stackrel{n}{\Rightarrow} ok, m_r$ , 1479 1480 from the operational semantics we know there exist l, C', m such that,  $C_1 \xrightarrow{l} C', (m_p, m) \in [l] ok$ , 1481 and C',  $m \stackrel{j}{\Rightarrow} \epsilon$ ,  $m_q$ . As C',  $m \stackrel{j}{\Rightarrow} \epsilon$ ,  $m_q$  and  $\epsilon \in \text{EREXIT}$ , from (I.H) we know C'  $|| C_2, m \stackrel{j}{\Rightarrow} \epsilon, m_q$  and 1482 1483  $C_2 || C', m \xrightarrow{j} \epsilon, m_q$ . Moreover, as  $C \xrightarrow{l} C'$ , from the control flow transitions we have  $C_1 || C_2 \xrightarrow{l} C_2 || C', m_q \xrightarrow{j} \epsilon$ . 1484  $C' || C_2 \text{ and } C_2 || C_1 \xrightarrow{l} C_2 || C'.$  Consequently, as  $n = j+1, C_1 || C_2 \xrightarrow{l} C' || C_2, C_2 || C_1 \xrightarrow{l} C_2 || C'.$ 1485  $(m_p, m) \in [l] \circ k, C' || C_2, m \xrightarrow{j} \epsilon, m_q \text{ and } C_2 || C', m \xrightarrow{j} \epsilon, m_q, \text{ from the operational semantics we}$ 1486 1487 also have  $C_1 || C_2, m_p \xrightarrow{n} \epsilon, m_q$  and  $C_2 || C_1, m_p \xrightarrow{n} \epsilon, m_q$ , as required. 1488

LEMMA A.6. For all  $n, k, \epsilon, m_p, m_r, m_q, C, C_1, C_2$ :

$$C, m_p \stackrel{n}{\Rightarrow} ok, m_r \wedge C_1 \mid\mid C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q \implies$$
$$\exists b. C_1 \mid\mid C; C_2, m_p \stackrel{b}{\Rightarrow} \epsilon, m_q \wedge C; C_1 \mid\mid C_2, m_p \stackrel{b}{\Rightarrow} \epsilon, m_q$$

**PROOF.** We proceed by natural induction on *n*.

1496 Base case n=0

Pick arbitrary  $k, \epsilon, m_p, m_r, m_q, C, C_1, C_2$  such that:  $C, m_p \stackrel{0}{\Rightarrow} ok, m_r$  and  $C_1 || C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q$ . As  $C, m_p \stackrel{0}{\Rightarrow} ok, m_r$ , from the operational semantics we then know C=skip and  $m_r=m_p$ . Consequently, from the control flow transitions we have  $C; C_1 \stackrel{\text{id}}{\to} C_1$  and  $C; C_2 \stackrel{\text{id}}{\to} C_2$ . Moreover, from the definition of [[.]] ans since  $m_p=m_r$  we have  $(m_p, m_r) \in [[\text{id}]]ok$ . As such, since  $C; C_i \stackrel{\text{id}}{\to} C_i$  for  $i \in \{1, 2\}, (m_p, m_r) \in [[\text{id}]]ok$  and  $C_1 || C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q$ , from the operational semantics we have  $C_1 || C; C_2, m_p \stackrel{k+1}{\Longrightarrow} \epsilon, m_q$  and  $C; C_1 || C_2, m_p \stackrel{k+1}{\Longrightarrow} \epsilon, m_q$ , as required.

Inductive case n=j+1

1506

1509

 $\forall k, \epsilon, m_p, m_r, m_q, \mathsf{C}, \mathsf{C}_1, \mathsf{C}_2. \\ \mathsf{C}, m_p \xrightarrow{j} ok, m_r \land \mathsf{C}_1 \mid$ 

$$C, m_p \stackrel{j}{\Rightarrow} ok, m_r \wedge C_1 || C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q \implies (I.H)$$
$$\exists b. C_1 || C; C_2, m_p \stackrel{b}{\Rightarrow} \epsilon, m_q \wedge C; C_1 || C_2, m_p \stackrel{b}{\Rightarrow} \epsilon, m_q$$

1512 Pick arbitrary  $k, \epsilon, m_p, m_q, m_r, C, C_1, C_2$  su  $c, m_r$ 0,  $L, m_p \Longrightarrow$ 1513 from the operational semantics we know there exist l, C', m such that,  $C \xrightarrow{l} C', (m_p, m) \in [l] ok$ , 1514 and C',  $m \stackrel{j}{\Rightarrow} \epsilon$ ,  $m_r$ . Consequently, from the control flow transitions we have C;  $C_i \stackrel{l}{\rightarrow} C'$ ;  $C_i$  for 1515 1516  $i \in \{1, 2\}$ . As C',  $m \stackrel{j}{\Rightarrow} \epsilon$ ,  $m_r$  and C<sub>1</sub> || C<sub>2</sub>,  $m_r \stackrel{k}{\Rightarrow} \epsilon$ ,  $m_a$ , from (I.H) we know there exists b such that 1517  $C_1 || C'; C_2, m \xrightarrow{b} \epsilon, m_q \text{ and } C'; C_1 || C_2, m \xrightarrow{b} \epsilon, m_q. \text{ As such, since } C; C_i \xrightarrow{l} C'; C_i \text{ for } i \in \{1, 2\},$ 1518 1519

LEMMA A.7. For all  $p, C, q, \epsilon$ , if  $\vdash [p] C [\epsilon : q]$  holds, then:

$$\forall s \in \text{STATE}, m_q \in \lfloor q * \{s\} \rfloor. \exists m_p \in \lfloor p * I^{-1}(s) \rfloor, n. C, m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$$

PROOF. We proceed by induction on the structure of incorrectness triples.

#### 1530 Case Skip

Pick an arbitrary  $s \in \text{STATE}$  and  $m_p \in \lfloor p * \{s\} \rfloor$ . We then know there exists  $s_p \in p$  such that  $m_p \in \lfloor s_p \circ s \rfloor$ . As I is reflexive and thus  $s \in I^{-1}(s)$ , it then suffices to show that  $C, m_p \stackrel{0}{\Rightarrow} ok, m_p$ , which follows immediately from our operational semantics as C=skip.

# <sup>1535</sup> **Саѕе** Атом

Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . We then know that C = a for some a. From axiom soundness (Par. 8) we then know there exists  $m_p \in \lfloor p * I^{-1}(s) \rfloor$  such that  $(m_p, m_q) \in \llbracket a \rrbracket \epsilon$ . There are now two cases to consider: 1)  $\epsilon \in \text{EREXIT}$ ; or 2)  $\epsilon = ok$ .

In case (1) since  $(m_p, m_q) \in [\![a]\!]\epsilon$  and from our control flow transitions (Fig. 6) we have  $a \stackrel{a}{\rightarrow} skip$ , from our operational semantics we have  $C, m_p \stackrel{1}{\Rightarrow} \epsilon, m_q$ , as required. In case (2) since  $(m_p, m_q) \in [\![a]\!]ok$ , from our control flow transitions (Fig. 6) we have  $a \stackrel{a}{\rightarrow} skip$ , and skip,  $m_q \stackrel{0}{\Rightarrow} ok, m_q$ , from our operational semantics we have  $C, m_p \stackrel{1}{\Rightarrow} ok, m_q$ , as required.

# 1545 Case SeqEr

We then know  $C = C_1$ ;  $C_2$  for some  $C_1, C_2$ . Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . Since from the premise of SEqER we have  $[p] C_1 [\epsilon : q]$  with  $\epsilon \in \text{EREXIT}$ , from the inductive hypothesis we know there exist  $m_p \in \lfloor p * I^{-1}(s) \rfloor$ ,  $n \in \mathbb{N}$  such that  $C_1, m_p \xrightarrow{n} \epsilon$ ,  $m_q$ . Since  $\epsilon \in \text{EREXIT}$  and thus  $\epsilon \neq ok$ , from our operational semantics we know that n > 0. As such, since  $C = C_1; C_2$ ,  $C_1, m_p \xrightarrow{n} \epsilon, m_q, n > 0$  and  $\epsilon \in \text{EREXIT}$ , from Lemma A.1 C,  $m_p \xrightarrow{n} \epsilon, m_q$ . That is, there exist n,  $m_p, \in \lfloor p * I^{-1}(s) \rfloor$  such that  $C, m_p \xrightarrow{n} \epsilon, m_q$ , as required.

#### 1554 Case SEQ

1553

We then know  $C = C_1$ ;  $C_2$  for some  $C_1$ ,  $C_2$ . Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . Since 1555 from the premise of SEQ we have  $[r] C_2 [\epsilon : q]$ , from the inductive hypothesis we know there 1556 1557 exist  $m_r \in \lfloor r * I^{-1}(s) \rfloor$ ,  $k \in \mathbb{N}$  such that  $C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q$ . That is, there exist  $s_r \in r$  and  $s_1$  such 1558 that  $(s_1, s) \in I$  and  $m_r \in \lfloor s_r \circ s_1 \rfloor$ . On the other hand, since  $s_r \in r$  and from the premise of SEQ 1559 we have  $[p] C_1[ok:r]$ , from the inductive hypothesis we know there exist  $m_p \in [p * I^{-1}(s_1)]$ , 1560  $n \in \mathbb{N}$  such that  $C_1, m_p \xrightarrow{n} ok, m_r$ . That is, there exist  $s_p \in p$  and  $s_2$  such that  $(s_2, s_1) \in I$  and 1561  $m_p \in \lfloor s_p \circ s_2 \rfloor$ . As such, since  $(s_1, s) \in I$ ,  $(s_2, s_1) \in I$  and I is transitive, we have  $(s_2, s) \in I$ 1562 and thus  $s_2 \in I^{-1}(s)$ ; i.e.  $m_p \in \lfloor p * I^{-1}(s) \rfloor$ . Moreover, since  $C = C_1; C_2, C_1, m_p \xrightarrow{n} ok, m_r$ , and 1563 1564  $C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q$ , from Lemma A.2 we know there exists j such that  $C, m_p \stackrel{j}{\Rightarrow}, \epsilon, m_q$ . That is, there 1565 exist  $j \in \mathbb{N}$ ,  $m_p \in \lfloor p * I^{-1}(s) \rfloor$  such that  $C, m_p \stackrel{j}{\Rightarrow} \epsilon, m_q$ , as required. 1566 1567

1568

1523

<sup>,</sup> Vol. 1, No. 1, Article . Publication date: October 2021.

#### Case LOOP1 1569

We know there exists  $C_1$  such that  $C = C_1^{\star}$ . Pick an arbitrary  $s \in \text{STATE}$  and  $m_p \in \lfloor p * \{s\} \rfloor$ . As I is 1570 reflexive and thus  $s \in I^{-1}(s)$ , we also have  $m_p \in \lfloor p * I^{-1}(s) \rfloor$ . From the control flow transitions 1571 we have  $C_1^{\star} \xrightarrow{id}$  skip. Moreover, from the definition of  $[\![.]\!]$  we have  $(m_p, m_p) \in [\![id]\!]ok$ . On the 1572 1573 other hand, from the operational semantics we have skip,  $m_p \stackrel{0}{\Rightarrow} ok$ ,  $m_p$ . As such, as  $C_1^{\star} \stackrel{id}{\rightarrow} skip$ , 1574  $(m_p, m_p) \in \llbracket id \rrbracket ok, skip, m_p \xrightarrow{0} ok, m_p$ , from the operational semantics we have C,  $m_p \xrightarrow{1} ok, m_p$ . 1575 1576 That is, there exist  $m_p \in \lfloor p * I^{-1}(s) \rfloor$  and n=1 such that  $C, m_p \xrightarrow{n} ok, m_p$ , as required. 1577

#### 1578 Case LOOP2

1579 We know there exists  $C_1$  such that  $C = C_1^*$ . Pick arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . From the premise of Loop2 we have  $[p] C_1^*; C_1 [\epsilon : q]$  and thus from the inductive hypothesis we know there 1580 1581 exists  $m_p \in \lfloor p * I^{-1}(s) \rfloor$  and n such that  $C_1^{\star}; C_1, m_p \xrightarrow{n} \epsilon, m_q$ . From the control flow transitions 1582 we have  $C_1^{\star} \xrightarrow{\text{id}} C_1^{\star}; C_1$ . Moreover, from the  $[\![.]\!]$  definition we have  $(m_p, m_p) \in [\![\text{id}]\!]ok$ . As such, as 1583 1584  $C_1^{\star} \xrightarrow{\text{id}} C_1^{\star}; C_1, (m_p, m_p) \in [[\text{id}]] \circ k, C_1^{\star}; C_1, m_p \xrightarrow{n} \epsilon, m_q$ , from the operational semantics we have 1585 C,  $m_p \stackrel{n+1}{\Longrightarrow} \epsilon$ ,  $m_q$ . That is, there exist  $m_p \in \lfloor p * I^{-1}(s) \rfloor$ , *i* such that C,  $m_p \stackrel{i}{\Rightarrow} \epsilon$ ,  $m_q$ , as required. 1586

#### Case CHOICE 1588

1587

1598

1605

1613

We know there exist  $C_1$ ,  $C_2$  such that  $C = C_1 + C_2$ . Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . From the premise of Choice we know there exists  $i \in \{1, 2\}$  such that  $[p] C_i [\epsilon : q]$ , and thus from 1589 1590 the inductive hypothesis we know there exists  $m_p \in \lfloor p * I^{-1}(s) \rfloor$  and *n* such that  $C_i, m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ . 1591 1592 From the control flow transitions we have  $C_1 + C_2 \xrightarrow{id} C_i$ . Moreover, from the definition of [.] we 1593 have  $(m_p, m_p) \in [[id]]ok$ . As such, as  $C_1 + C_2 \xrightarrow{id} C_i$ ,  $(m_p, m_p) \in [[id]]ok$ ,  $C_i$ ,  $m_p \xrightarrow{n} \epsilon$ ,  $m_q$ , from the 1594 operational semantics we have C,  $m_p \stackrel{n+1}{\Longrightarrow} \epsilon$ ,  $m_q$ . That is, there exist  $m_p \in \lfloor p * \mathcal{I}^{-1}(s) \rfloor$  and i=n+11595 1596 such that C,  $m_p \stackrel{\iota}{\Rightarrow} \epsilon, m_q$ , as required. 1597

### **Case** Cons

1599 Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . As form the premise of Cons we have  $q \subseteq q'$ , we 1600 also know that  $m_q \in \lfloor q' * \{s\} \rfloor$ . On the other hand, from the premise of Cons we have  $\lfloor p' \rfloor C$ 1601  $[\epsilon:q']$  and thus from the inductive hypothesis we know there exist  $m_p \in \lfloor p' * I^{-1}(s) \rfloor$  and *n* such 1602 that C,  $m_p \stackrel{n}{\Rightarrow} \epsilon$ ,  $m_q$ . Moreover, as  $p' \subseteq p$  and  $m_p \in \lfloor p' * \mathcal{I}^{-1}(s) \rfloor$  we also have  $m_p \in \lfloor p * \mathcal{I}^{-1}(s) \rfloor$ . 1603 That is, there exist  $m_p \in \lfloor p * \mathcal{I}^{-1}(s) \rfloor$  and *n* such that C,  $m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ , as required. 1604

#### 1606 Case GCons

1607 Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . As form the premise of Cons we have  $q \leq q'$ , we also know that  $m_q \in \lfloor q' * \{s\} \rfloor$ . On the other hand, from the premise of Cons we have [p'] C1608 1609  $[\epsilon:q']$  and thus from the inductive hypothesis we know there exist  $m_p \in \lfloor p' * I^{-1}(s) \rfloor$  and *n* such 1610 that C,  $m_p \stackrel{n}{\Rightarrow} \epsilon$ ,  $m_q$ . Moreover, as  $p' \leq p$  and  $m_p \in \lfloor p' * I^{-1}(s) \rfloor$  we also have  $m_p \in \lfloor p * I^{-1}(s) \rfloor$ . 1611 That is, there exist  $m_p \in \lfloor p * \mathcal{I}^{-1}(s) \rfloor$  and *n* such that C,  $m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ , as required. 1612

#### **Case** FRAME 1614

Note that FRAME is used for PCMs with no interference, i.e.  $I \triangleq ID$ . Pick an arbitrary  $s \in STATE$ 1615 and  $m_q \in \lfloor q * r * \{s\} \rfloor$ . That is, there exists  $s_q \in q$  and  $s_r \in r$  such that  $m_1 \in \lfloor s_q \circ s_r \circ s \rfloor$ . 1616 1617

As from the premise of FRAME we have  $[p] C [\epsilon : q]$ , from the inductive hypothesis we know there exist  $m_p \in \lfloor p * \{s_r \circ s\} \rfloor$  and n such that  $C, m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ . As such, since  $s_r \in r$ , we have  $m_p \in \lfloor p * r * I^{-1}(s) \rfloor$ . That is, there exist  $m_p \in \lfloor p * r * \{s\} \rfloor$  and n such that  $C, m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ , as required.

# 1622 Case FrameInter

1623 Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * r * \{s\} \rfloor$ . That is, there exists  $s_q \in q$  and  $s_r \in r$  such 1624 that  $m_1 \in \lfloor s_q \circ s_r \circ s \rfloor$ . As from the premise of FRAME we have  $[p] C [\epsilon : q]$ , from the inductive 1625 hypothesis we know there exist  $m_p \in \lfloor p * \mathcal{I}^{-1}(s_r \circ s) \rfloor$  and *n* such that  $C, m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ . Given 1626 the properties on I (Par. 9) and the definition of  $I^{-1}$  we then know there exist s', s', s'' such that 1627  $s''=s'_r \circ s', s'' \in I^{-1}(s_r \circ s), \text{ i.e. } (s'', s_r \circ s) \in I, m_p \in \lfloor p * \{s'_r\} * \{s'\} \rfloor, (s'_r, s_r) \in I, (s', s) \in I$ 1628 and thus  $s' \in I^{-1}(s)$ . Moreover, as stable(r) holds (i.e.  $I^{-1}(r) \subseteq r$ ),  $s_r \in r$  and  $(s'_r, s_r) \in I$  (i.e. 1629  $s'_r \in \mathcal{I}^{-1}(s_r)$ ), we also have  $s'_r \in r$ . As such, we have  $m_p \in \lfloor p * r * \mathcal{I}^{-1}(s) \rfloor$ . That is, there exist 1630  $m_p \in \lfloor p * r * I^{-1}(s) \rfloor$  and *n* such that C,  $m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ , as required. 1631

## 1633 Case Disj

1632

1640

1641

1642 1643 1644

1650 1651 1652

1653

1654 1655 1656

1657

1658 1659

1660

1661 1662

1663

Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor (q_1 \lor q_2) * \{s\} \rfloor$ . We then know there exists  $i \in \{1, 2\}$  such that  $m_q \in \lfloor (q_i) * \{s\} \rfloor$ . From the premise of DISJ we have  $[p_i] \subset [\epsilon : q_i]$  and thus from the inductive hypothesis we know there exists  $m_p \in \lfloor p_i * I^{-1}(s) \rfloor$  and  $n_i$  such that  $C, m_p \stackrel{n_i}{\Rightarrow} \epsilon, m_q$ . Moreover, since  $p_i \subseteq p_1 \lor p_2$  and  $m_p \in \lfloor p_i * I^{-1}(s) \rfloor$ , we also have  $m_p \in \lfloor (p_1 \lor p_2) * I^{-1}(s) \rfloor$ . That is, there exist  $m_p \in \lfloor (p_1 \lor p_2) * I^{-1}(s) \rfloor$  and n such that  $C, m_p \stackrel{n_i}{\Rightarrow} \epsilon, m_q$ , as required.

#### Case PAR

Note that FRAME is used for PCMs with no interference, i.e.  $I \triangleq ID$ . It thus suffices to show:

$$\forall s \in \text{STATE. } \forall m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. \exists k \in \mathbb{N}, m_p \in \lfloor p_1 * p_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor p_1 * p_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. \exists k \in \mathbb{N}, m_p \in \lfloor p_1 * p_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. \exists k \in \mathbb{N}, m_p \in \lfloor p_1 * p_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. \exists k \in \mathbb{N}, m_p \in \lfloor p_1 * p_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \in \lfloor q_1 * q_2 * \{s\} \rfloor. C_1 \mid\mid C_2, m_p \stackrel{\kappa}{\Rightarrow} ok, m_q \mid C_2 \mid C_2$$

Let  $P_1 \triangleq p_1 * p_2$ ,  $Q_1 \triangleq q_1 * p_2$ ,  $P_2 \triangleq Q_1$  and  $Q_2 \triangleq q_1 * q_2$ . As from the premise of PAR we have  $[p_i]$ C<sub>i</sub> [ok: q<sub>i</sub>] for all  $i \in \{1, 2\}$ , from the FRAME rule (whose soundness we established above) we also have  $[P_i]$  C<sub>i</sub> [ok: Q<sub>i</sub>] for all  $i \in \{1, 2\}$ . Consequently, from the inductive hypotheses we know that for all  $i \in \{1, 2\}$ :

$$\forall s \in \text{STATE. } \forall m_q \in \lfloor Q_i * \{s\} \rfloor. \exists k \in \mathbb{N}, m_p \in \lfloor P_i * \{s\} \rfloor. C_i, m_p \xrightarrow{k} ok, m_q \qquad (\text{ok-i})$$

Pick arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor (q_1 * q_2) * \{s\} \rfloor$ . That is,  $m_q \in \lfloor Q_2 * \{s\} \rfloor$ . From (ok-i) we then know there exist  $m_p^2$ ,  $k^2$  such that  $m_p^2 \in \lfloor P_2 * \{s\} \rfloor$  and  $C_2$ ,  $m_p^2 \stackrel{k^2}{\Rightarrow} ok$ ,  $m_p^2$ . Similarly, as  $m_p^2 \in \lfloor P_2 * \{s_2\} \rfloor$  and  $Q_1 = P_2$ , from (ok-i) we know there exist  $m_p^1$ ,  $k^1$  such that:  $m_p^1 \in \lfloor P_1 * \{s\} \rfloor$  and  $C_1$ ,  $m_p^1 \stackrel{k^1}{\Rightarrow} ok$ ,  $m_p^2$ . Let  $s_3 = s$  and  $m_p^3 = m_q$ . As such, since  $C_1$ ,  $m_p^1 \stackrel{k^1}{\Rightarrow} ok$ ,  $m_p^2$  and  $C_2$ ,  $m_p^2 \stackrel{k^2}{\Rightarrow} ok$ ,  $m_p^2$ , from Lemma A.4 we know there exist j such that  $C_1 || C_2, m_p^1 \stackrel{j}{\Rightarrow} ok$ ,  $m_q$ . Consequently, from the definition of  $P_1$  we know there exist  $j \in \mathbb{N}$  and  $m_p^1 \in \lfloor p_1 * p_2 * \{s\} \rfloor$  such that  $C_1 || C_2, m_p^1 \stackrel{j}{\Rightarrow} ok$ ,  $m_q$ , as required.

#### Case ParInter

We then have  $C = C_1 || C_2$  for some  $C_1, C_2$ , stable $(p_1, q_2) \lor$  stable $(p_2, q_1)$ , and  $\vdash [p_i] C_i [ok: q_i]$  for all  $i \in \{1, 2\}$ . There are two cases two consider: 1) stable $(p_2, q_1)$ ; or 2) stable $(p_1, q_2)$ . In case (1) we can then derive:  $\frac{[p_1] C_1[ok:q_1] \text{ stable}(p_2)}{[p_1 * p_2] C_1[ok:q_1 * p_2]} \operatorname{FrameInter} \frac{[p_2] C_2[ok:q_2] \text{ stable}(q_1)}{[q_1 * p_2] C_1[ok:q_1 * q_2]} \operatorname{FrameInter} \\
\frac{[p_1 * p_2] C_1; C_2[ok:q_1 * q_2]}{[p_1 * p_2] C_1; C_2[ok:q_1 * q_2]} \operatorname{ParSeq} \operatorname{FrameInter}$ 

In case (2) we can then derive:

$$\frac{[p_2] C_1 [ok: q_2] \text{ stable}(p_1)}{[p_1 * p_2] C_1 [ok: p_1 * q_2]} \operatorname{FrameINTER} \frac{[p_1] C_2 [ok: q_1] \text{ stable}(q_2)}{[p_1 * q_2] C_1 [ok: q_1 * q_2]} \operatorname{FrameINTER} \frac{[p_1 * p_2] C_2 (c_1 [ok: q_1 * q_2])}{[p_1 * p_2] C_1 [ok: q_1 * q_2]} \operatorname{FrameINTER} \frac{[p_1 * p_2] C_2 (c_1 [ok: q_1 * q_2])}{[p_1 * p_2] C_1 || C_2 [ok: q_1 * q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 * p_2] C_1 || C_2 [ok: q_1 * q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (ok: q_1 + q_2]} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + q_2] C_2 (c_1 [ok: q_1 + q_2])} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + q_2] C_2 (c_1 [ok: q_1 + q_2])} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + q_2] C_2 (c_1 [ok: q_1 + q_2])} \operatorname{FrameINTER} \frac{[p_1 + p_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + q_2] C_2 (c_1 [ok: q_1 + q_2])} \operatorname{FrameINTER} \frac{[p_1 + q_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + q_2] C_2 (c_1 [ok: q_1 + q_2])} \operatorname{FrameINTER} \frac{[p_1 + q_2] C_2 (c_1 [ok: q_1 + q_2])}{[p_1 + q_2] C_2$$

#### Case ParEr

1667

1673 1674

1679

1685

We then have  $C = C_1 || C_2$  for some  $C_1, C_2$ . Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . From the premise of PARER we know that  $\epsilon \in \text{EREXIT}$  and  $[p] C_i [\epsilon : q]$  for some  $i \in \{1 \cdots n\}$ . As such, from the inductive hypothesis we know there exists  $m_p \in \lfloor p * I^{-1}(s) \rfloor$  and k such that  $C_i, m_p \stackrel{k}{\Rightarrow} \epsilon, m_q$ . Consequently, as  $\epsilon \in \text{EREXIT}$ , from Lemma A.5 we have  $C_1 || C_2, m_p \stackrel{k}{\Rightarrow} \epsilon, m_q$ , as required.

# 1686 Case Parl

We then have  $C = C_1 || C_2$  for some  $C_1, C_2$ . Pick an arbitrary  $s \in \text{STATE}$  and  $m_q \in \lfloor q * \{s\} \rfloor$ . From 1687 the premise of PARL we know there exist  $C_3$ ,  $C_4$  such that  $C_1=C_3$ ;  $C_4$  and  $[r]C_4 ||C_2[\epsilon:q]$ . As 1688 such, from the inductive hypothesis we know there exist  $m_r \in \lfloor r * I^{-1}(s) \rfloor, k \in \mathbb{N}$  such that 1689  $C_4 || C_2, m_r \stackrel{k}{\Rightarrow} \epsilon, m_q$ . That is, there exist  $s_r \in r$  and  $s_1$  such that  $(s_1, s) \in I$  and  $m_r \in \lfloor s_r \circ s_1 \rfloor$ . On the other hand, since  $s_r \in r$  and from the premise of PARL we have  $[p] C_3 [ok: r]$ , from the 1690 1691 inductive hypothesis we know there exist  $m_p \in \lfloor p * \mathcal{I}^{-1}(s_1) \rfloor$ ,  $j \in \mathbb{N}$  such that  $C_3, m_p \stackrel{j}{\Rightarrow} ok, m_r$ . 1692 1693 That is, there exist  $s_p \in p$  and  $s_2$  such that  $(s_2, s_1) \in I$  and  $m_p \in \lfloor s_p \circ s_2 \rfloor$ . As such, since  $(s_1, s) \in I$ , 1694  $(s_2, s_1) \in I$  and I is transitive, we have  $(s_2, s) \in I$  and thus  $s_2 \in I^{-1}(s)$ ; i.e.  $m_p \in \lfloor p * I^{-1}(s) \rfloor$ . 1695 Moreover, since C<sub>3</sub>,  $m_p \stackrel{j}{\Rightarrow} ok$ ,  $m_r$ , C<sub>4</sub> || C<sub>2</sub>,  $m_r \stackrel{k}{\Rightarrow} \epsilon$ ,  $m_q$  and C<sub>1</sub> = C<sub>3</sub>; C<sub>4</sub> from Lemma A.6 we know 1696 there exists b such that  $C_1 || C_2, m_p \xrightarrow{b} \epsilon, m_q$ . That is, there exist  $b \in \mathbb{N}, m_p, \epsilon \lfloor p * I^{-1}(s) \rfloor$  such 1697 1698 that C,  $m_p \stackrel{j}{\Rightarrow} \epsilon$ ,  $m_q$ , as required. 1699

The proof of PARR is analogous to that of PARL and is omitted here.

THEOREM A.8 (SOUNDNESS). For all  $p, C, q, \epsilon$ , if  $\vdash [p] C [\epsilon : q]$  holds, then  $\models [p] C [\epsilon : q]$  also holds.

**PROOF.** Pick arbitrary  $p, C, q, \epsilon$  such that  $\vdash [p] C [\epsilon : q]$  holds. Pick an arbitrary  $m_q \in \lfloor q \rfloor$ . That 1705 is, there exists  $s_q \in q$  such that  $m_q \in \lfloor s_q \rfloor$ . From the definition of  $\circ$  we then know there exists 1706  $s_0 \in \text{STATE}^0$  such that  $s_q = s_q \circ s_0$ . As such, from Lemma A.7 we know there exists  $m_p \in \lfloor p * \mathcal{I}^{-1}(s_0) \rfloor$ 1707 and  $n \in \mathbb{N}$  such that C,  $m_p \stackrel{n}{\Rightarrow} \epsilon$ ,  $m_q$ . Moreover, from the properties of I (Par. 9) and since  $s_0 \in \text{STATE}^0$ 1708 we know that  $I^{-1}(s_0) \subseteq STATE^0$ . Consequently, from the definition of \* and the properties of STATE<sup>0</sup> 1709 (Par. 2) we know  $p * \mathcal{I}^{-1}(s_0) \subseteq p$  and thus  $\lfloor p * \mathcal{I}^{-1}(s_0) \rfloor \subseteq \lfloor p \rfloor$ . That is, we know there exists 1710  $m_p \in \lfloor p \rfloor$  and  $n \in \mathbb{N}$  such that C,  $m_p \stackrel{n}{\Rightarrow} \epsilon, m_q$ , as required. 1711 1712

1713

1700

1701 1702

1703

- 1714
- 1715

1716 **B** C

# CISL<sub>DC</sub> AXIOM SOUNDNESS

1717 *CISL<sub>DC</sub> Machine States.* We assume a Boolean interpretation function,  $[\![.]]_{(.)} : BAST \times STATE_{DC} \rightarrow$ 1718 VAL, evaluating Boolean assertions against a machine state. We lift this function to machine states, 1719 and given  $m \in MSTATE_{DC}$ , we write  $[\![.]]_m$  for  $[\![.]]_s$ , where  $s \triangleq \bigcup_{x \in dom(m)} [x \mapsto (m(x), 1)]$ . 1721

 $[L:error]_A ok \triangleq \emptyset$  $[assume(B)]_{\mathbb{A}}ok \triangleq \{m \mid [B]_m \neq 0\}$ 1722  $[x := v]_{A}ok \triangleq \{(m, m[x \mapsto v]) \mid x \in dom(m)\}$ 1723 1724  $[x := \texttt{alloc}()]_{A}ok \triangleq \{(m, m[x \mapsto l] \uplus [l \mapsto v]) \mid v \in \mathsf{VAL} \land x \in dom(m) \land l \notin dom(m)\}$ 1725  $[x := v]_A mse(.) = [x := alloc()]_A mse(.) = [assume(B)]_A mse(.) = [error]_A mse(.) \triangleq \emptyset$ 1726 1727  $\llbracket L: free(x) \rrbracket_A ok \triangleq \{ (m, m[l \mapsto \bot]) \mid \exists l. m(x) = l \land m(l) \in VAL \}$ 1728  $\llbracket L: free(x) \rrbracket_{A} \underline{mse(L')} \triangleq \{ (m, m) \mid L = L' \land \exists l. \ m(x) = l \land m(l) = \bot \}$ 1729  $\llbracket L: x := \llbracket y \rrbracket_A ok \triangleq \{ (m, m[x \mapsto v]) \mid x \in dom(m) \land \exists l. m(y) = l \land m(l) = v \in VAL \}$ 1730 1731  $\llbracket L: x := [y] \rrbracket_{\mathsf{A}} \underline{mse}(L') \triangleq \{(m, m) \mid L = L' \land x \in dom(m) \land \exists l. m(y) = l \land m(l) = \bot \}$ 1732  $\llbracket L: \llbracket x \rrbracket := y \rrbracket_A ok \triangleq \{ (m, m[l \mapsto m(y)]) \mid y \in dom(m) \land \exists l. m(x) = l \land m(l) \in VAL \}$ 1733 1734  $\llbracket L: [x] := y \rrbracket_{A} \underline{mse}(L') \triangleq \{(m, m) \mid L = L' \land y \in dom(m) \land \exists l. m(x) = l \land m(l) = \bot \}$ 1735  $[[a]]_{A}er(L) \triangleq \begin{cases} \{(m, m) \mid m \in MSTATE_{DC}\} & \text{if } a = L: error \\ \emptyset & \text{otherwise} \end{cases}$ 1736 1737

# 1739 B.1 CISL<sub>DC</sub> Axiom Soundness

THEOREM B.1 (CISL<sub>DC</sub> AXIOMS SOUNDNESS). For all  $(p, l, \epsilon, q) \in \text{ATOM}_{DC}$  the following holds:

$$\forall s \in \text{STATE}_{DC}, m_q \in \lfloor q * \{s\} \rfloor_{DC}. \exists m_p \in \lfloor p * I_{DC}^{-1}(s) \rfloor_{DC}. (m_p, m_q) \in \llbracket l \rrbracket_A \epsilon$$

PROOF. Pick an arbitrary  $(p, l, \epsilon, q) \in \text{Atom}_{DC}$ . Note that as the  $\text{CISL}_{DC}$  interference is simply defined as the identity relation, it suffices to show that the following holds:

$$\forall s \in \text{State}_{\text{DC}}, m_q \in \lfloor q * \{s\} \rfloor_{\text{DC}}, \exists m_p \in \lfloor p * \{s\} \rfloor_{\text{DC}}, (m_p, m_q) \in \llbracket l \rrbracket_{\text{A}} \epsilon$$

<sup>1748</sup> We proceed by induction on the structure of  $(p, l, \epsilon, q)$ .

# 1750 Case DC-Assume

We then have  $l = \operatorname{assume}(B)$ , that  $\epsilon = ok$ ,  $q = \underset{x_i \in pvars(B)}{*} x_i \stackrel{\pi_i}{\mapsto} v_i \wedge B[\overline{v_i/x_i}]$ , and  $p = \underset{x_i \in pvars(B)}{*} x_i \stackrel{\pi_i}{\mapsto} v_i$ . Pick an arbitrary  $s \in \operatorname{STATE}_{DC}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{DC}$ . From the definitions of  $\lfloor . \rfloor_{DC}$  and \* we then know that there exists  $s_q \in q$  such that  $m_q \in \lfloor s_q \circ_{DC} s \rfloor_{DC}$  and  $\llbracket B \rrbracket_{s_q} \neq 0$ . From the definition of  $\llbracket . \rrbracket_{\sigma}$  we then know  $\llbracket B \rrbracket_{m_q} \neq 0$ 

Let  $s_p = s_q$  and  $m_p = m_q$ . From the definitions of  $\lfloor . \rfloor_{DC}$  and \* we then know that  $s_p \in p$  and  $m_p \in \lfloor p * \{s\} \rfloor_{DC}$ . On the other hand, since  $\llbracket B \rrbracket_{m_q} \neq 0$  and  $m_p = m_q$ , we also have  $\llbracket B \rrbracket_{m_p} \neq 0$ . As such, from the definition of  $\llbracket assume(B) \rrbracket_A ok$  we have  $(m_p, m_q) \in \llbracket assume(B) \rrbracket_A ok$ , as required.

## 1760 **Case** DC-Error

We then have l = L: error, that  $\epsilon = er(L)$ , q = emp, and p = q. Pick an arbitrary  $s \in \text{STATE}_{DC}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{DC}$ . From the definitions of  $\lfloor . \rfloor_{DC}$  and \* we then know that there exists  $s_q \in q$  such that  $s_q = \emptyset$ , and  $m_q \in \lfloor s \rfloor_{DC}$ .

1764

1759

1738

1740

1741 1742 1743

1744

1745 1746

1747

, Vol. 1, No. 1, Article . Publication date: October 2021.

1765 Let  $s_p = s_q$  and  $m_p = m_q$ . From the definitions of  $\lfloor . \rfloor_{DC}$  and \* we then know that  $s_p \in p$  and  $m_p \in \lfloor p*\{s\}\rfloor_{DC}$ . Moreover, from the definition of  $\llbracket L: error \rrbracket_A er(L)$  we have  $(m_p, m_q) \in \llbracket L: error \rrbracket_A er(L)$ , 1767 as required.

#### 1769 Case DC-Assign

1768

1776

1788

1789

1790

1791

1792

1793

1794

1795

1796 1797

1798

1799 1800

1801

1802

1803

1804

1805

1806

1807

1808

1809 1810

We then have l = x := v for some x, v, that  $\epsilon = ok, q = x \mapsto v$ , and  $p = x \mapsto v'$  for some v'. Pick an arbitrary  $s \in \text{STATE}_{DC}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{DC}$ . From the definitions of  $\lfloor . \rfloor_{DC}$  and \* we then know that there exist  $s_q \in q$  such that  $s_q = [x \mapsto (v, 1)], x \notin dom(s)$ , and  $m_q \in \lfloor s_q \circ_{DC} s \rfloor_{DC}$ .

1773 Let  $s_p = [x \mapsto v']$  and pick  $m_p = m_q[x \mapsto v']$ . From the definitions of  $\lfloor . \rfloor_{DC}$  and \* we then 1774 know that  $s_p \in p$  and  $m_p \in \lfloor p * \{s\} \rfloor_{DC}$ . Moreover, from the definition of  $[x := v]_A ok$  we have 1775  $(m_p, m_q) \in [x := v]_A ok$ , as required.

# 1777 Case DC-LOAD

We then have l = x := [y] for some x, y, that  $\epsilon = ok, q = x \mapsto v * y \stackrel{\pi_y}{\mapsto} l * l \stackrel{\pi}{\mapsto} v$  for some  $v, l, \pi$ , and  $p = x \mapsto v' * y \stackrel{\pi_y}{\mapsto} l * l \stackrel{\pi}{\mapsto} v$  for some v'. Pick an arbitrary  $s \in \text{STATE}_{\text{DC}}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{\text{DC}}$ . From the definitions of  $\lfloor . \rfloor_{\text{DC}}$  and \* we then know that there exist  $s_q \in q$  such that  $s_q = [x \mapsto (v, 1)] \circ_{\text{DC}} [y \mapsto (l, \pi_y)] \circ_{\text{DC}} [l \mapsto (v, \pi)], x \notin dom(s), (\pi_y = 1 \land y \notin dom(s)) \lor (\pi_y < 1 \land s(y) = (l, \pi'_y) \land \pi_y + \pi'_y \leq 1)$ for some  $\pi'_y, (\pi = 1 \land l \notin dom(s)) \lor (\pi < 1 \land s(l) = (v, \pi') \land \pi + \pi' \leq 1)$  for some  $\pi'$ , and  $m_q = \lfloor s \circ_{\text{DC}} [x \mapsto (v, 1)] \circ_{\text{DC}} [y \mapsto (l, \pi_y)] \circ_{\text{DC}} [l \mapsto (v, \pi)] \rfloor_{\text{DC}}$ .

Let  $s_p = [x \mapsto (v', 1)] \circ_{DC} [y \mapsto (l, \pi_y)] \circ_{DC} [l \mapsto (v, \pi)]$  and  $m_p = m_q[x \mapsto v']$ . From the definitions of  $\lfloor . \rfloor_{DC}$  and \* we then know that  $s_p \in p$  and  $m_p \in \lfloor p * \{s\} \rfloor_{DC}$ . Moreover, from the definition of  $[x := [y]]_A ok$  we have  $(m_p, m_q) \in [x := [y]]_A ok$ , as required.

### Case DC-LOADER

We then have l = L: x := [y] for some x, y, L, that  $\epsilon = mse(L)$ ,  $q = y \stackrel{n_y}{\mapsto} l * l \not \stackrel{n}{\not \to} f$  or some  $v, l, \pi$ , and p = q. Pick an arbitrary  $s \in \text{STATE}_{DC}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{DC}$ . From the definitions of  $\lfloor . \rfloor_{DC}$ and \* we then know that there exist  $s_q \in q$  such that  $s_q = [y \mapsto (l, \pi_y)] \circ_{DC} [l \mapsto (\perp, \pi)]$ ,  $(\pi_y = 1 \land y \notin dom(s)) \lor (\pi_y < 1 \land s(y) = (l, \pi'_y) \land \pi_y + \pi'_y \leq 1)$  for some  $\pi'_y, (\pi = 1 \land l \notin dom(s)) \lor (\pi < 1 \land s(l) = (\perp, \pi') \land \pi + \pi' \leq 1)$  for some  $\pi'$ , and  $m_q = \lfloor s \circ_{DC} [y \mapsto (l, \pi_y)] \circ_{DC} [l \mapsto (\perp, \pi)] \rfloor_{DC}$ .

Let  $s_p = s_q$  and  $m_p = m_q$ . We then simply have  $m_p \in \lfloor p * \{s\} \rfloor_{DC}$ . Moreover, from the definition of  $[\![L:x:=[y]]\!]_A$  *mse*(L) we have  $(m_p, m_q) \in [\![L:x:=[y]]\!]_A$  *mse*(L), as required.

The proofs of the DC-Store and DC-StoreEr cases are analogous to those of DC-LOAD and DC-LOADEr respectively, and are omitted here.

### Case DC-Alloc

We then have l = x := alloc() for some x, that  $\epsilon = ok$ ,  $q = x \mapsto l * l \mapsto v$  for some v, l, and  $p = x \mapsto v'$ for some v'. Pick an arbitrary  $s \in \text{STATE}_{DC}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{DC}$ . From the definitions of  $\lfloor . \rfloor_{DC}$ and \* we then know that there exist  $s_q \in q, \sigma, h, h$  such that  $s_q = [x \mapsto (l, 1)] \circ_{DC} [l \mapsto (v, 1)]$ ,  $x, l \notin dom(s)$ , and  $m_q = \lfloor s \circ_{DC} [x \mapsto (l, 1)] \circ_{DC} [l \mapsto (v, 1)] \rfloor_{DC}$ .

Let  $s_p = [x \mapsto (v', 1)]$  and  $m_p = \lfloor s \circ_{DC} [x \mapsto (v', 1)] \rfloor_{DC}$  (from the definitions of  $\circ_{DC}$ , s and  $s_p$  we know this is defined). From the definitions of  $\lfloor . \rfloor_{DC}$  and \* we then know that  $s_p \in p$  and  $m_p \in \lfloor p * \{s\} \rfloor_{DC}$ . Moreover, from the definition of  $[x := alloc()]_A ok$  we have  $(m_p, m_q) \in [x := alloc()]_A ok$ , as required.

### Case DC-Free

1811 Case Define 1812 We then have l = free(x) for some x, that  $\epsilon = ok$ ,  $q = x \stackrel{\pi}{\mapsto} l * l \neq j$  for some l, and  $p = x \mapsto l\pi * l \mapsto v$ 1813 for some v. Pick an arbitrary  $s \in \text{STATE}_{DC}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{DC}$ . From the definitions of  $\lfloor . \rfloor_{DC}$ and \* we then know that there exist  $s_q \in q$  such that  $s_q = [x \mapsto (l, \pi)] \circ_{DC} [l \mapsto (\bot, 1)]$ ,  $(\pi = 1 \land x \notin dom(s)) \lor (\pi < 1 \land s(x) = (l, \pi') \land \pi + \pi' \leq 1)$  for some  $\pi', l \notin dom(s)$ , and  $m_q = \lfloor s \circ_{DC} [x \mapsto (l, \pi)] \circ_{DC} [l \mapsto (\bot, 1)] \rfloor_{DC}$ .

1818 Let  $s_p = [x \mapsto (l, \pi)] \circ_{DC} [l \mapsto (v, 1)]$  and  $m_p = m_q[x \mapsto v]$ . From the definitions of  $\lfloor . \rfloor_{DC}$  and \*1819 we then know that  $s_p \in p$  and  $m_p \in \lfloor p * \{s\} \rfloor_{DC}$ . Moreover, from the definition of  $\llbracket \text{free}(x) \rrbracket_A ok$ 1820 we have  $(m_p, m_q) \in \llbracket \text{free}(x) \rrbracket_A ok$ , as required.

### **Case** DC-FreeEr

We then have l = 1: free(x) for some x, L, that  $\epsilon = mse(L)$ ,  $q = x \xrightarrow{\pi_x} l * l \not\mapsto^n$  for some  $l, \pi, \pi_x$ , and p = q. Pick an arbitrary  $s \in \text{STATE}_{\text{DC}}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{\text{DC}}$ . From the definitions of  $\lfloor . \rfloor_{\text{DC}}$ and \* we then know that there exist  $s_q \in q$  such that  $s_q = [x \mapsto (l, \pi_x)] \circ_{\text{DC}} [l \mapsto (\perp, \pi)]$ ,  $(\pi_x = 1 \land x \notin dom(s)) \lor (\pi_x < 1 \land s(x) = (l, \pi') \land \pi_x + \pi'_x \le 1)$  for some  $\pi'_x$ ,  $(\pi = 1 \land l \notin dom(s)) \lor (\pi < 1 \land s(l) = (\perp, \pi') \land \pi_x + \pi'_x \le 1)$  for some  $\pi'$ , and  $m_q = \lfloor s \circ_{\text{DC}} [x \mapsto (l, \pi_x)] \circ_{\text{DC}} [l \mapsto (\perp, \pi)] \rfloor_{\text{DC}}$ .

<sup>1828</sup> Let  $s_p = s_q$  and  $m_p = m_q$ . We then simply have  $m_p \in \lfloor p * \{s\} \rfloor_{DC}$ . Moreover, from the definition <sup>1829</sup> of  $\llbracket L: free(x) \rrbracket_A mse(L)$  we have  $(m_p, m_q) \in \llbracket L: free(x) \rrbracket_A mse(L)$ , as required.

## 

## 1863 C CISL<sub>RD</sub> SOUNDNESS

# THEOREM C.1 (CISL<sub>RD</sub> AXIOMS SOUNDNESS). For all $(p, l, \epsilon, q) \in \text{Atom}_{RD}$ the following holds:

$$\forall s \in \text{STATE}_{RD}, m_q \in \lfloor q * \{s\} \rfloor_{RD}. \exists m_p \in \lfloor p * I_{RD}^{-1}(s) \rfloor_{RD}. (m_p, m_q) \in \llbracket l \rrbracket_A \epsilon$$

**PROOF.** Pick an arbitrary  $(p, l, \epsilon, q) \in \text{Atom}_{RD}$ . Note that as the  $\text{CISL}_{RD}$  interference is simply defined as the identity relation, it suffices to show that the following holds:

 $\forall s \in \text{STATE}_{\text{RD}}, m_q \in \lfloor q * \{s\} \rfloor_{\text{RD}}, \exists m_p \in \lfloor p * \{s\} \rfloor_{\text{RD}}, (m_p, m_q) \in \llbracket l \rrbracket_{\text{A}} \epsilon$ 

We proceed by induction on the structure of  $(p, l, \epsilon, q)$ .

#### Case RD-Lock

We then have  $l = \operatorname{lock}_{\tau} l$  for some  $\tau$ , l, that  $\epsilon = ok$ ,  $q = \tau \mapsto (H + L(\tau, l), S \oplus \{l\})$  for some H, S such that  $l \notin S$ , and  $p = \tau \mapsto (H, S)$ . Let  $H' \triangleq H + L(\tau, l)$ . Pick an arbitrary  $s \in \operatorname{STATE}_{RD}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{RD}$ . From the definitions of  $\lfloor . \rfloor_{RD}$  and \* we then know that there exist  $s_q \in q, H_q$  such that  $s_q = (\lfloor \tau \mapsto (H', S \uplus \{l\}) \rfloor, \tau \notin dom(s), m_q = H_q, H' = H_q \mid_{\tau}, \forall \tau' \in dom(s). s(\tau') = (H'', -) \Rightarrow$  $H'' = H_q \mid_{\tau'}$  and wf $(H_q)$ . That is, there exists  $H_1, H_2, H_p$  such that  $H_q = H_1 + L(\tau, l) + H_2$ ,  $\forall e \in H_2$ . e.tid  $\neq \tau, H_p = H_1 + H_2$ , and  $H = H_p \mid_{\tau}, \forall \tau' \in dom(s). s(\tau') = (H'', -) \Rightarrow H'' = H_p \mid_{\tau'}$ .

Let  $s_p = [\tau \mapsto (H, S)]$  and  $m_p = H_p$ . From the definitions of  $\lfloor . \rfloor_{RD}$ ,  $H_p$  and \* we then know that  $s_p \in p$ , that  $p * \{s\}$  is defined (since  $\tau \notin dom(s)$ ), and that  $m_p \in \lfloor p * \{s\} \rfloor_{RD}$ . Moreover, as wf $(H_q)$ ,  $\forall e \in H_2$ . *e*.tid  $\neq \tau$ ,  $H_q = H_1 + L(\tau, l) + H_2$  and  $H_p = H_1 + H_2$ , it is straightforward to show that wf $(H_p)$ . Finally, from the definition of  $\llbracket . \rrbracket_A$  we have  $(m_p, m_q) \in \llbracket lock_{\tau} l \rrbracket_A ok$ , as required.

The proof of the RD-UNLOCK case is analogous and thus omitted here.

## Case RD-READ

We then have  $l = L: a:=_{\tau} x$  for some  $\tau, x, L$ , that  $\epsilon = ok, q = \tau \mapsto (H + e, S)$  for some H, e, S such that  $e = R(L, \tau, x)S$ , and that  $p = \tau \mapsto (H, S)$ . Let  $H' \triangleq H + e$ . Pick an arbitrary  $s \in \text{STATE}_{RD}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{RD}$ . From the definitions of  $\lfloor . \rfloor_{RD}$  and \* we then know that there exist  $s_q \in q, H_q$  such that  $s_q = ([\tau \mapsto (H', S)], \tau \notin dom(s), m_q = H_q, H' = H_q|_{\tau}, \forall \tau' \in dom(s). s(\tau') = (H'', -) \Rightarrow H'' = H_q|_{\tau'}$  and  $wf(H_q)$ . That is, there exists  $H_1, H_2, H_p$  such that  $H_q = H_1 + e + H_2, \forall e \in H_2$ . e.tid  $\neq \tau$ ,  $H_p = H_1 + H_2$ , and  $H = H_p|_{\tau}, \forall \tau' \in dom(s). s(\tau') = (H'', -) \Rightarrow H'' = H_q|_{\tau'}$ . Moreover, from the definitions of  $H_p, H_q$  we have:  $\forall \tau'$ . locks $(H_p, \tau') = \text{locks}(H_q, \tau')$ .

Let  $s_p = [\tau \mapsto (H, S)]$  and  $m_p = H_p$ . From the definitions of  $\lfloor . \rfloor_{RD}$ ,  $H_p$  and \* we then know that  $s_p \in p$ , that  $p * \{s\}$  is defined (since  $\tau \notin dom(s)$ ), and that  $m_p \in \lfloor p * \{s\} \rfloor_{RD}$ . Moreover, as wf $(H_q)$  and  $\forall \tau'$ . locks $(H_p, \tau') = locks(H_q, \tau')$ ,  $H_q = H_1 + L(\tau, l) + H_2$  and  $H_p = H_1 + H_2$ , it is straightforward to show that wf $(H_p)$ . Finally, from the definition of of  $\llbracket . \rrbracket_A$  we have  $(m_p, m_q) \in \llbracket L: a :=_{\tau} x \rrbracket_A ok$ , as required.

The proof of the RD-WRITE case is analogous and thus omitted here.

## 1912 D CISL<sub>DD</sub> SOUNDNESS

THEOREM D.1 (CISL<sub>DD</sub> AXIOMS SOUNDNESS). For all  $(p, l, \epsilon, q) \in \text{Atom}_{DD}$  the following holds:

1917

1918 1919

1920

1921 1922  $\forall s \in \text{STATE}_{DD}, m_q \in \lfloor q * \{s\} \rfloor_{DD}. \ \exists m_p \in \lfloor p * I_{DD}^{-1}(s) \rfloor_{DD}. \ (m_p, m_q) \in \llbracket l \rrbracket_A \epsilon$ 

PROOF. Pick an arbitrary  $(p, l, \epsilon, q) \in \text{Atom}_{DD}$ . Note that as the CISL<sub>DD</sub> interference is simply defined as the identity relation, it suffices to show that the following holds:

 $\forall s \in \text{STATE}_{\text{DD}}, m_q \in \lfloor q * \{s\} \rfloor_{\text{DD}}, \exists m_p \in \lfloor p * \{s\} \rfloor_{\text{DD}}, (m_p, m_q) \in \llbracket l \rrbracket_{\text{A}} \epsilon$ 

We proceed by induction on the structure of  $(p, l, \epsilon, q)$ .

#### Case DD-Lock

We then have l = 1:  $lock_{\tau} l$  for some  $\tau$ , l, that  $\epsilon = ok$ ,  $q = \tau \mapsto (H + L(\tau, l), S \uplus \{l\})$  for some H, S such that  $l \notin S$ , and  $p = \tau \mapsto (H, S)$ . Let  $H' \triangleq H + L(\tau, l)$ . Pick an arbitrary  $s \in STATE_{DD}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{DD}$ . From the definitions of  $\lfloor . \rfloor_{DD}$  and \* we then know that there exist  $s_q \in q, H_q$  such that  $s_q = ([\tau \mapsto (H', S \uplus \{l\})], \tau \notin dom(s), m_q = H_q, H' = H_q|_{\tau}, \forall \tau' \in dom(s). s(\tau') = (H'', -) \Rightarrow$   $H'' = H_q|_{\tau'}$  and  $wf(H_q)$ . That is, there exists  $H_1, H_2, H_p$  such that  $H_q = H_1 + L(\tau, l) + H_2$ ,  $\forall e \in H_2$ .  $e.tid \neq \tau, H_p = H_1 + H_2$ , and  $H = H_p|_{\tau}, \forall \tau' \in dom(s). s(\tau') = (H'', -) \Rightarrow H'' = H_p|_{\tau'}$ .

Let  $s_p = [\tau \mapsto (H, S)]$  and  $m_p = H_p$ . From the definitions of  $\lfloor . \rfloor_{DD}$ ,  $H_p$  and \* we then know that  $s_p \in p$ , that  $p * \{s\}$  is defined (since  $\tau \notin dom(s)$ ), and that  $m_p \in \lfloor p * \{s\} \rfloor_{DD}$ . Moreover, as wf( $H_q$ ),  $\forall e \in H_2$ . e.tid  $\neq \tau$ ,  $H_q = H_1 + L(\tau, l) + H_2$  and  $H_p = H_1 + H_2$ , it is straightforward to show that wf( $H_p$ ). Finally, from the definition of  $\llbracket . \rrbracket_A$  we have  $(m_p, m_q) \in \llbracket L: lock_{\tau} l \rrbracket_A ok$ , as required.

# 1934 Case DD-UNLOCK

We then have  $l = \text{unlock}_{\tau} l$  for some  $\tau, l$ , that  $\epsilon = ok, q = \tau \mapsto (H + U(\tau, l), S)$  for some H, S, S' such that  $l \notin S, S' = S \uplus \{l\}$  and  $p = \tau \mapsto (H, S')$ . Let  $H' \triangleq H + L(\tau, l)$ . Pick an arbitrary  $s \in \text{STATE}_{\text{DD}}$ and  $m_q \in \lfloor q * \{s\} \rfloor_{\text{DD}}$ . From the definitions of  $\lfloor . \rfloor_{\text{DD}}$  and \* we then know that there exist  $s_q \in q, H_q$ such that  $s_q = ([\tau \mapsto (H', S)], \tau \notin dom(s), m_q = H_q, H' = H_q|_{\tau}, \forall \tau' \in dom(s). s(\tau') = (H'', -) \Rightarrow$  $H'' = H_q|_{\tau'}$  and  $wf(H_q)$ . That is, there exists  $H_1, H_2, H_p$  such that  $H_q = H_1 + U(\tau, l) + H_2$ ,  $\forall e \in H_2$ . e.tid  $\neq \tau, H_p = H_1 + H_2$ , and  $H = H_p|_{\tau}, \forall \tau' \in dom(s). s(\tau') = (H'', -) \Rightarrow H'' = H_p|_{\tau'}$ .

Let  $s_p = [\tau \mapsto (H, S')]$  and  $m_p = H_p$ . From the definitions of  $\lfloor . \rfloor_{DD}$ ,  $H_p$  and \* we then know that  $s_p \in p$ , that  $p * \{s\}$  is defined (since  $\tau \notin dom(s)$ ), and that  $m_p \in \lfloor p * \{s\} \rfloor_{DD}$ . Moreover, as wf $(H_q)$ ,  $\forall e \in H_2$ . e.tid  $\neq \tau$ ,  $H_q = H_1 + L(\tau, l) + H_2$  and  $H_p = H_1 + H_2$ , it is straightforward to show that wf $(H_p)$ . Finally, from the definition of  $\llbracket . \rrbracket_A$  we have  $(m_p, m_q) \in \llbracket unlock_{\tau} l \rrbracket_A ok$ , as required.

## 1958 1959 1960

1942

1943

1944

1945

, Vol. 1, No. 1, Article . Publication date: October 2021.

Concurrent Incorrectness Separation Logic

# E CISL<sub>SV</sub> SOUNDNESS

1961

1962CISL\_{SV} Machine States. As the LSTATE PCM is supplied as a parameter to  $CISL_{SV}$ , their cor-1963responding machine states,  $MSTATE_L$ , must similarly be supplied as a parameter to  $CISL_{SV}$ . Since1964here we instantiated LSTATE with  $STATE_{DC}$ , we accordingly take  $MSTATE_L \triangleq MSTATE_{DC}$ . The set1965of  $CISL_{SV}$  machine states is:  $MSTATE_{SV} \triangleq MSTATE_L \cup (RID \stackrel{fin}{\rightarrow} \{\bot\} \uplus TID)$ .1967 $CISL_{SV}$  Atomic Semantics.

$$\begin{aligned} \|x := v\|_{A}ok \triangleq \{(m, m[x \mapsto v]) \mid x \in dom(m)\} \\ \|x := alloc()\|_{A}ok \triangleq \{(m, m[x \mapsto l] \uplus [l \mapsto v]) \mid v \in VAL \land x \in dom(m) \land l \notin dom(m)\} \\ \|x := alloc()\|_{A}ok \triangleq \{(m, m[x \mapsto l]) \uplus [l \mapsto v]) \mid v \in VAL \land x \in dom(m) \land l \notin dom(m)\} \\ \|x := v\|_{A}mse(.) = \|x := alloc()\|_{A}mse(.) \triangleq \emptyset \\ \|x := v\|_{A}mse(.) = \|x := alloc()\|_{A}mse(.) \triangleq \emptyset \\ \|L: free(x)\|_{A}ok \triangleq \{(m, m[l \mapsto \bot]) \mid \exists l. m(x) = l \land m(l) \in VAL\} \\ \|L: free(x)\|_{A}mse(L') \triangleq \{(m, m[x \mapsto v]) \mid x \in dom(m) \land \exists l. m(y) = l \land m(l) = v \in VAL\} \\ \|L: x := [y]\|_{A}ok \triangleq \{(m, m[x \mapsto v]) \mid x \in dom(m) \land \exists l. m(y) = l \land m(l) = \bot\} \\ \|L: x := [y]\|_{A}ok \triangleq \{(m, m[l \mapsto m(y)]) \mid y \in dom(m) \land \exists l. m(x) = l \land m(l) \in VAL\} \\ \|L: [x] := y\|_{A}ok \triangleq \{(m, m[l \mapsto m(y)]) \mid y \in dom(m) \land \exists l. m(x) = l \land m(l) \in VAL\} \\ \|scale{10} \\ \|L: [x] := y\|_{A}ok \triangleq \{(m, m') \mid m(r) = \bot \land m' = m[r \mapsto \tau]\} \\ \|rel_{\tau} r\|_{A}ok \triangleq \{(m, m') \mid m(r) = \tau \land m' = m[r \mapsto \bot]\} \\ \|scale{10} \\ \|sc$$

1984 **CISL**<sub>SV</sub> **Erasure**. As LSTATE and MSTATE<sub>L</sub> are supplied as a parameter to  $\text{CISL}_{SV}$ , the erasure 1985  $\lfloor . \rfloor_L : \text{LSTATE} \rightarrow \mathcal{P}(\text{MSTATE}_L)$  must similarly be supplied as a parameter to  $\text{CISL}_{SV}$ . Since here we 1986 instantiated LSTATE with STATE<sub>DC</sub> and MSTATE<sub>L</sub> with MSTATE<sub>DC</sub>, we accordingly take  $\lfloor . \rfloor_L \triangleq \lfloor . \rfloor_{DC}$ .

Given a resource map  $\rho$  and a resource  $\mathbf{r}$ , since at most one thread may be within  $\mathbf{r}$  at any given time and thus claim its associated resource, we write  $SV(\rho(\mathbf{r}))$  (resp. *owner* ( $\rho(\mathbf{r})$ )) to denote the resource associated with  $\mathbf{r}$  (resp. the thread currently accessing  $\mathbf{r}$ ), if such resource (resp. thread) exists; and otherwise to denote the set of empty resource LSTATE<sup>0</sup> (resp.  $\perp$ ). That is, when  $\rho(\mathbf{r})=(o, -, -)$ , if  $o \in \text{TID}$  then  $SV(\rho(\mathbf{r})) = \text{LSTATE}^0$  and  $owner(\rho(\mathbf{r})) = o$ ; and if  $o = \perp$  then  $SV(\rho(\mathbf{r})) = S(count(\rho, \mathbf{r}))$  and  $owner(\rho(\mathbf{r})) = o = \perp$ . The CISL<sub>SV</sub> erasure function is then defined as follows:

$$\lfloor (\mathbf{l}, \mathbf{p}, \rho) \rfloor_{SV} \triangleq \left\{ (\mathbf{l} \circ_{\mathbf{l}} \mathbf{l}_{1} \circ_{\mathbf{l}} \mathbf{l}_{2}) \middle| \mathbf{l}_{1} \in \underset{\mathbf{r} \in dom(\rho)}{\bigstar} SV(\rho(\mathbf{r})) \land \mathbf{l}_{2} = (\emptyset, \underset{\mathbf{r} \in dom(\rho)}{\biguplus} [\mathbf{r} \mapsto owner(\rho(\mathbf{r}))]) \right\}$$

# E.1 CISL<sub>SV</sub> Axiom Soundness

Theorem E.1 (CISL<sub>SV</sub> Axioms soundness). For all  $(p, l, \epsilon, q) \in \text{Atom}_{SV}$  the following holds:

$$\forall s \in \text{STATE}_{SV}, m_q \in \lfloor q * \{s\} \rfloor_{SV}. \ \exists m_p \in \lfloor p * I_{SV}^{-1}(s) \rfloor_{SV}. \ (m_p, m_q) \in \llbracket l \rrbracket_A \epsilon$$

PROOF. Pick an arbitrary  $(p, l, \epsilon, q) \in \text{Atom}_{SV}$ . We proceed by induction on the structure of  $(p, l, \epsilon, q)$ .

## Case SV-Acq

1994 1995 1996

1997

1998 1999 2000

2001

2002

2009

We then have  $\epsilon = ok$ ,  $l = acq_{\tau} \mathbf{r}$  for some  $\tau$ ,  $\mathbf{r}$ ,  $q = \bigvee_{m \ge n} (S(m) * cs_{S}^{\mathbf{r}}(\tau; n, m))$  for some n, and  $p = \operatorname{res}_{S}^{\mathbf{r}}(\tau; n)$ . Pick an arbitrary  $s \in \operatorname{STATE}_{SV}$  and  $m_{q} \in \lfloor q * \{s\} \rfloor_{SV}$ . From the definitions of  $\lfloor . \rfloor_{SV}$ and \* we then know that there exist  $\mathbf{l}, \rho, t, k, \mathbf{l}_{k}, \mathbf{p}, \mathbf{l}_{1}, \mathbf{l}_{2}$  such that:  $s = (\mathbf{l}, \mathbf{p}, \rho), (\mathbf{r}, \tau) \notin dom(\mathbf{p}),$ 

2010  $\rho(\mathbf{r}) = (\tau, S, t), t(\tau) = n, k = count(t), k \ge n,$ 2011  $\mathbf{l}_k \in S(k),$ 

 $m_{q} = \mathbf{l}_{k} \circ_{1} \mathbf{l} \circ_{1} \mathbf{l}_{1} \circ_{1} \mathbf{l}_{2}, \mathbf{l}_{1} \in \mathsf{*}_{\mathbf{r}' \in dom(\rho)}^{\mathsf{V}} SV(\rho(\mathbf{r}')), \text{ and } \mathbf{l}_{2} = (\emptyset, \biguplus \mathbf{r}' \mapsto owner(\rho(\mathbf{r}))]).$ 

From the definition of  $m_q$  we know  $m_q(\mathbf{r})=\tau$ . Let  $s' = (\mathbf{l}, \mathbf{p}, \rho')$  where  $\rho' = \rho[\mathbf{r} \mapsto (\bot, S, t)]$ ; let  $m_p = m_q[\mathbf{r} \mapsto \bot]$ . From the definitions of  $\lfloor . \rfloor_{SV}$  and \* we have  $m_p \in \lfloor \operatorname{res}^r_S(\tau; n) * \{s'\} \rfloor_{SV}$ ; that is,  $m_p \in \lfloor p * \{s'\} \rfloor_{SV}$ . Moreover, from the definition of  $I_a$  we have  $(s', s) \in I_a \subseteq I$  and thus  $s' \in I^{-1}(s)$ . Finally, from the definition of  $[[\operatorname{acq}_\tau x]]_A ok$  we have  $(m_p, m_q) \in [[\operatorname{acq}_\tau x]]_A ok$ , as required.

## 2019 Case SV-REL

2018

We then have  $\epsilon = ok$ ,  $l = rel_{\tau} \mathbf{r}$  for some  $\tau$ ,  $\mathbf{r}$ ,  $q = res_{S}^{\mathbf{r}}(\tau; n+1)$  and  $p = \bigvee_{m \ge n} (S(m+1) * cs_{S}^{\mathbf{r}}(\tau; n, m))$ for some *n*. Pick an arbitrary  $s \in \text{STATE}_{SV}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{SV}$ . From the definitions of  $\lfloor . \rfloor_{SV}$  and \*we then know that there exist  $\mathbf{l}$ ,  $\rho$ , t,  $\mathbf{k}$ ,  $\mathbf{k}$ ,  $\mathbf{p}$ ,  $\mathbf{l}_1$ ,  $\mathbf{l}_2$  such that:

 $\begin{array}{ll} & 2023 \\ & s = (\mathbf{l}, \mathbf{p}, \rho), (\mathbf{r}, \tau) \notin dom(\mathbf{p}), \\ & \rho(\mathbf{r}) = (\bot, \mathcal{S}, t), t(\tau) = n+1, k = count(t), k \geq n+1, \mathbf{l}_k \in \mathcal{S}(k), \\ & 2025 \\ & m_q = \mathbf{l} \circ_{\mathbf{l}} \mathbf{l}_k \circ_{\mathbf{l}} \mathbf{l}_1 \circ_{\mathbf{l}} \mathbf{l}_2, \mathbf{l}_1 = \underset{\mathbf{r}' \in dom(\rho) \setminus \{\mathbf{r}\}}{*} SV(\rho(\mathbf{r}')), \text{ and } \mathbf{l}_2 = (\emptyset, \underset{\mathbf{r}' \in dom(\rho)}{\forall} [\mathbf{r}' \mapsto owner(\rho(\mathbf{r}))]). \end{array}$ 

From the definition of  $m_q$  we know  $m_q(\mathbf{r})=\perp$ . Let  $s'=(\mathbf{l}, \mathbf{p}, \rho')$  where  $\rho' = \rho[\mathbf{r} \mapsto (\tau, S, t')]$ and  $t'=t[\tau \mapsto n]$ ; and let  $m_p=m_q[\mathbf{r} \mapsto \tau]$ . From the definitions of  $s, s', \rho, \rho', \lfloor . \rfloor_{SV}$  and \* we then have  $m_p \in \lfloor \{l_k\} * \operatorname{cs}_S^r(\tau; n, k-1) * \{s'\} \rfloor_{SV}$ , i.e.  $m_p \in \lfloor S(k) * \operatorname{cs}_S^r(\tau; n, k-1) * \{s'\} \rfloor_{SV}$ . As  $k \ge n+1$ we also have  $k-1 \ge n$ . As such, we also have  $m_p \in \lfloor \bigvee S(m+1) * \operatorname{cs}_S^r(\tau; n, m) * \{s'\} \rfloor_{SV}$ ; that is,  $m \ge n$ 

 $m_p \in \lfloor p * \{s'\} \rfloor_{\text{SV}}. \text{ Moreover, from the definition of } I_r \text{ we have } (s', s) \in I_r \subseteq I \text{ and thus } s' \in I^{-1}(s).$ Finally, from the definition of  $[\![rel_\tau x]\!]_A ok$  we have  $(m_p, m_q) \in [\![rel_\tau x]\!]_A ok$ , as required.

# 2034 Case SV-Acq-G

We then have  $\epsilon = ok$ ,  $l = acq_{\tau} \mathbf{r}$  for some  $\tau$ ,  $\mathbf{r}$ ,  $q = S(m) * cs_{S}^{\mathbf{r}}(\tau, m)$  for some m, and  $p = res_{S}^{\mathbf{r}}(m)$ . Pick an arbitrary  $s \in STATE_{SV}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{SV}$ . From the definitions of  $\lfloor . \rfloor_{SV}$  and \* we then know that there exist  $\mathbf{l}$ ,  $\rho$ , t, k,  $\mathbf{l}_k$ , n,  $\mathbf{p}$ ,  $\mathbf{l}_1$ ,  $\mathbf{l}_2$  such that:

 $\begin{array}{ll} & s=(\mathbf{l},\mathbf{p},\rho), \forall \tau. \ (\mathbf{r},\tau) \notin dom(\mathbf{p}), \\ & \rho(\mathbf{r})=(\tau,\mathcal{S},t), t(\tau)=n, m=count \ (t), m \geq n, \\ & \mathbf{l}_m \in \mathcal{S}(m), \\ & m_q=\mathbf{l}_m \circ_1 \mathbf{l} \circ_1 \mathbf{l}_1 \circ_1 \mathbf{l}_2, \mathbf{l}_1 \in \underset{\mathbf{r}' \in dom(\rho)}{*} SV\left(\rho(\mathbf{r}')\right), \text{ and } \mathbf{l}_2=(\emptyset, \underset{\mathbf{r}' \in dom(\rho)}{\biguplus} [\mathbf{r}' \mapsto owner \ (\rho(\mathbf{r}))]). \end{array}$ 

From the definition of  $m_q$  we know  $m_q(\mathbf{r})=\tau$ . Let  $s' = (\mathbf{l}, \mathbf{p}, \rho')$  where  $\rho' = \rho[\mathbf{r} \mapsto (\bot, S, t)]$ ; let  $m_p = m_q[\mathbf{r} \mapsto \bot]$ . From the definitions of  $\lfloor . \rfloor_{SV}$  and \* we have  $m_p \in \lfloor \operatorname{res}_{S}^r(m) * \{s'\} \rfloor_{SV}$ ; that is,  $m_p \in \lfloor p * \{s'\} \rfloor_{SV}$ . Moreover, from the definition of  $I_a$  we have  $(s', s) \in I_a \subseteq I$  and thus  $s' \in I^{-1}(s)$ . Finally, from the definition of  $[\operatorname{acq}_\tau x]_A ok$  we have  $(m_p, m_q) \in [\operatorname{acq}_\tau x]_A ok$ , as required.

#### 2048 Case SV-Rel-G

2047

2058

We then have  $\epsilon = ok$ ,  $l = rel_{\tau} \mathbf{r}$  for some  $\tau$ ,  $\mathbf{r}$ ,  $q = res_{S}^{\mathbf{r}}(m+1)$  for some m and  $p = S(m+1)*cs_{S}^{\mathbf{r}}(\tau, m)$ . Pick an arbitrary  $s \in STATE_{SV}$  and  $m_q \in \lfloor q * \{s\} \rfloor_{SV}$ . From the definitions of  $\lfloor . \rfloor_{SV}$  and \* we then know that there exist  $\mathbf{l}$ ,  $\rho$ , t, n,  $\mathbf{l}_{m+1}$ ,  $\mathbf{p}$ ,  $\mathbf{l}_1$ ,  $\mathbf{l}_2$  such that:

2052  $s=(\mathbf{l},\mathbf{p},\rho), \forall \tau. (\mathbf{r},\tau) \notin dom(\mathbf{p}),$ 

- 2053  $\rho(\mathbf{r}) = (\bot, S, t), t(\tau) = n+1, m+1 = count(t), m+1 \ge n+1 \text{ and thus } m \ge n, l_{m+1} \in S(m+1),$
- $m_{q} = \mathbf{l} \circ_{\mathbf{l}} \mathbf{l}_{m+1} \circ_{\mathbf{l}} \mathbf{l}_{1} \circ_{\mathbf{l}} \mathbf{l}_{2}, \mathbf{l}_{1} = \underset{\mathbf{r}' \in dom(\rho) \setminus \{\mathbf{r}\}}{*} SV(\rho(\mathbf{r}')), \text{ and } \mathbf{l}_{2} = (\emptyset, \underset{\mathbf{r}' \in dom(\rho)}{\vdash} [\mathbf{r}' \mapsto owner(\rho(\mathbf{r}))]).$

From the definition of  $m_q$  we know  $m_q(\mathbf{r})=\perp$ . Let  $s'=(\mathbf{l}, \mathbf{p}, \rho')$  where  $\rho' = \rho[\mathbf{r} \mapsto (\tau, S, t')]$ and  $t'=t[\tau \mapsto n]$ ; and let  $m_p=m_q[\mathbf{r} \mapsto \tau]$ . From the definitions of  $s, s', \rho, \rho', \lfloor . \rfloor_{SV}$  and \* we then have  $m_p \in \lfloor \{\mathbf{l}_{m+1}\} * \mathrm{cs}_{\mathcal{S}}^{\mathbf{r}}(\tau, m) * \{s'\} \rfloor_{\mathrm{SV}}$ , i.e.  $m_p \in \lfloor \mathcal{S}(m+1) * \mathrm{cs}_{\mathcal{S}}^{\mathbf{r}}(\tau, m) * \{s'\} \rfloor_{\mathrm{SV}}$  and thus  $m_p \in \lfloor p * \{s'\} \rfloor_{\mathrm{SV}}$ . Moreover, from the definition of  $I_r$  we have  $(s', s) \in I_r \subseteq I$  and thus  $s' \in I^{-1}(s)$ . Finally, from the definition of  $[\![\mathrm{rel}_{\tau} x]\!]_{\mathbb{A}} ok$  we have  $(m_p, m_q) \in [\![\mathrm{rel}_{\tau} x]\!]_{\mathbb{A}} ok$ , as required.

## 2063 Case SV-CS

<sup>2064</sup> This rule can be derived as follows, where AsM denotes an assumption given by the premise:

$$\frac{(1) \quad \frac{(2) \quad (3)}{\left[p * \bigvee_{m \ge n} (\mathcal{S}(m) * \operatorname{cs}_{\mathcal{S}}^{r}(\tau; n, m))\right] C; \operatorname{rel}_{\tau} \mathbf{r} \left[ok: q * \operatorname{res}_{\mathcal{S}}^{r}(\tau; n+1)\right]}{\left[p * \operatorname{res}_{\mathcal{S}}^{r}(\tau; n)\right] \operatorname{acq}_{\tau} \mathbf{r}; C; \operatorname{rel}_{\tau} \mathbf{r} \left[ok: q * \operatorname{res}_{\mathcal{S}}^{r}(\tau; n+1)\right]}{\left[p * \operatorname{res}_{\mathcal{S}}^{r}(\tau; n)\right] \operatorname{with}_{\tau} \mathbf{r} \operatorname{do} C \left[ok: q * \operatorname{res}_{\mathcal{S}}^{r}(\tau; n+1)\right]} \qquad \text{Seq}$$

$$\frac{\left[\ast \operatorname{res}_{\mathcal{S}}^{\mathbf{r}}(\tau;n)\right]\operatorname{acq}_{\tau}\mathbf{r}\left[ok:\bigvee_{m\geq n}(\mathcal{S}(m)\ast\operatorname{cs}_{\mathcal{S}}^{\mathbf{r}}(\tau;n,m))\right]}{\left[\frac{\left[p\ast\operatorname{res}_{\mathcal{S}}^{\mathbf{r}}(\tau;n)\right]\operatorname{acq}_{\tau}\mathbf{r}\left[ok:p\ast\bigvee_{m\geq n}(\mathcal{S}(m)\ast\operatorname{cs}_{\mathcal{S}}^{\mathbf{r}}(\tau;n,m))\right]}{(1)}}$$
FRAMEINTER

$$\frac{\forall m \ge n. [p * S(m)] C [ok: q * S(m+1)]}{\forall m \ge n. [p * S(m) * cs_{S}^{r}(\tau:n,m)] C [ok: q * S(m+1) * cs_{S}^{r}(\tau:n,m)]} F_{\text{RAMEINTER}}}{\left[p * \bigvee_{m \ge n} (S(m) * cs_{S}^{r}(\tau:n,m))\right] C \left[ok: q * \bigvee_{m \ge n} (S(m+1) * cs_{S}^{r}(\tau:n,m))\right]} D_{\text{ISJ}}, Cons$$

$$(2)$$

$$\frac{\left[\bigvee_{m \ge n} (\mathcal{S}(m+1) * \operatorname{cs}^{\mathbf{r}}_{\mathcal{S}}(\tau; n, m))\right] \operatorname{rel}_{\tau} \mathbf{r} \left[ok: \operatorname{res}^{\mathbf{r}}_{\mathcal{S}}(\tau; n+1)\right]}{\operatorname{SV-ReL}} \frac{\operatorname{stable}(q)}{\operatorname{stable}(q)}{\operatorname{FrameInter}}$$

$$\frac{\left[q * \bigvee_{m \ge n} (\mathcal{S}(m+1) * \operatorname{cs}^{\mathbf{r}}_{\mathcal{S}}(\tau; n, m))\right] \operatorname{rel}_{\tau} \mathbf{r} \left[ok: q * \operatorname{res}^{\mathbf{r}}_{\mathcal{S}}(\tau; n+1)\right]}{(3)}$$

#### Case SV-CS-G

This rule can be derived as follows, where  $r \triangleq n=k+\sum k_i *$ 

This rule can be derived as follows, where 
$$r \triangleq n=k+\sum k_i * \underset{r_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)$$
:  
This rule can be derived as follows, where  $r \triangleq n=k+\sum k_i * \underset{r_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)$ :  

$$\frac{\left[p * \text{res}_{\mathcal{S}}^r(\tau;k)\right] \text{with}_{r} r \text{ do } C\left[ok: q * \text{res}_{\mathcal{S}}^r(\tau_i:k_1)\right]}{\left[p * n=k+\sum k_i * \text{res}_{\mathcal{S}}^r(\tau_i:k_1) * \underset{\tau_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)\right]} \text{FRAMEINTER}$$

$$\frac{\left[ok: q * n=k+\sum k_i * \text{res}_{\mathcal{S}}^r(\tau_i:k_1) * \underset{\tau_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)\right]}{\left[p * n=k+\sum k_i * \text{res}_{\mathcal{S}}^r(\tau_i:k_1) * \underset{\tau_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)\right]} \text{Cons}$$

$$\frac{\left[ok: q * n=k+\sum k_i * \text{res}_{\mathcal{S}}^r(\tau_i:k_1) * \underset{\tau_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)\right]}{\left[p * n=k+\sum k_i * \text{res}_{\mathcal{S}}^r(\tau_i:k_1) * \underset{\tau_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)\right]} \text{Disj}$$

$$\frac{\left[ak_i, k. p * n=k+\sum k_i * \text{res}_{\mathcal{S}}^r(\tau_i:k_1) * \underset{\tau_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)\right]}{\left[ak_i, k. q * n+1=k+1+\sum k_i * \text{res}_{\mathcal{S}}^r(\tau_i:k_1) * \underset{\tau_i \in \text{TD} \setminus \{\tau\}}{\text{*}} \text{res}_{\mathcal{S}}^r(\tau_i:k_i)} \right]} \text{Cons, SUBV-SPLIT}$$

$$\frac{\left[p * \text{res}_{\mathcal{S}}^r(n)\right] \text{with}_{\tau} r \text{ do } C\left[ok: q * \text{res}_{\mathcal{S}}^r(n+1)\right]} \text{Cons, SUBV-SPLIT}$$

