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A SOUNDNESS
L���� A.1. For all = > 0, n 2 E�E���,m? ,m@,C,C0:

C,m?
=
=) n,m@ =) C;C0,m?

=
=) n,m@

P����. We proceed by natural induction on =.

Base case ==1
Pick arbitrary n 2E�E���, m? ,m@,C,C0 such that C,m?

1
=) n,m@ . From the operational semantics

we know there exist ; , C00 such that C
;�! C00 and (m? ,m@) 2 J;Kn . Consequently, from the con-

trol �ow transitions we have C;C0 ;�! C00;C0. As such, from the operational semantics we have
C;C0,m?

1
=) n,m@ .

Inductive case == 9+1 and = > 1

8n 2E�E���,m1,m2,C1,C2. C1,m1
9
=) n,m2 =) C1;C2,m1

9
=) n,m2 (I.H)

Pick arbitrary n 2E�E���, m? ,m@,C,C0 such that C,m?
=
=) n,m@ . As = > 1, from the operational

semantics we know there exist ; , C00, m such that, C
;�! C00, (m? ,m) 2 J;Kok, and C00,m

9
=) n,m@ .

Consequently, from the control �ow transitions we have C;C0 ;�! C00;C0. Moreover, from (I.H) we

have C00;C0,m
9
=) n,m@ . As such, since == 9+1, C;C0 ;�! C00;C0, (m? ,m) 2 J;Kok and C00;C0,m

9
=)

n,m@ from the operational semantics we have C;C0,m?
=
=) n,m@ , as required. ⇤

L���� A.2. For all =,:, n,m? ,mA ,m@,C1,C2:

C1,m?
=
=) ok,mA ^ C2,mA

:
=) n,m@ =) 91 . C1;C2,m?

1
=) n,m@

P����. We proceed by natural induction on =.

Base case ==0
Pick arbitrary :, n,m? ,mA ,m@,C1,C2 such that: C1,m?

0
=) ok,mA and C2,mA

:
=) n,m@ . As C1,m?

0
=)

ok,mA , from the operational semantics we then know C1=skip andmA=m? . Consequently, from the

control �ow transitions we have C1;C2
id�! C2. Moreover, from the de�nition of J.K ans sincem?=mA

we have (m? ,mA ) 2 JidKok. As such, since C1;C2
id�! C2, (m? ,mA ) 2 JidKok and C2,mA

:
=) n,m@ ,

from the operational semantics we have C1;C2,m?
:+1
==) n,m@ , as required.

Inductive case == 9+1
8:, n,m? ,mA ,m@,C1,C2.

C1,m?
9
=) ok,mA ^ C2,mA

:
=) n,m@ =) 91 . C1;C2,m?

1
=) n,m@

(I.H)

Pick arbitrary : , n , m? ,m@,mA ,C1,C2 such that: C1,m?
=
=) ok,mA and C2,mA

:
=) n,m@ . As = > 0,

from the operational semantics we know there exist ; , C0, m such that, C1
;�! C0, (m? ,m) 2 J;Kok,

and C0,m
9
=) n,mA . Consequently, from the control �ow transitions we have C1;C2

;�! C0;C2. As

C0,m
9
=) n,mA and C2,mA

:
=) n,m@ , from (I.H) we know there exists 1 such that C0;C2,m

1
=) n,m@ . As
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such, since C1;C2
;�! C0;C2, (m? ,m) 2 J;Kok and C1;C2,m

1
=) n,m@ , from the operational semantics

we have C1;C2,m?
1+1
==) n,m@ , as required. ⇤

L���� A.3. For all =, n,m? ,m@,C:

C,m?
=
=) n,m@ =) skip | | C,m?

=+1
==) n,m@ ^ C | | skip,m?

=+1
==) n,m@

P����. From the operational semantics we then have skip | | C id�! C and C | | skip id�! C. More-
over, from the de�nition of J.Kwe have (m? ,m? ) 2 JidKok. Consequently, asC,m?

=
=) n,m@ , from the

operational semantics we have skip | | C,m?
=+1
==) n,m@ and C | | skip,m?

=+1
==) n,m@ , as required. ⇤

L���� A.4. For all =, n,m? ,mA ,m@,C1,C2:

C1,m?
=
=) ok,mA ^ C2,mA

:
=) n,m@ =) 9 9 . C1 | | C2,m?

9
=) n,m@ ^ C2 | | C1,m?

9
=) n,m@

P����. We proceed by natural induction on =.

Base case ==0
Pick arbitrary : , n , m? ,m@,mA ,C1,C2 such that C1,m?

0
=) ok,mA and C2,mA

:
=) n,m@ . From the

operational semantics we then know C1 = skip and mA=m? . As such, from Lemma A.3 we know

C1 | | C2,m?
:+1
==) n,m@ and C2 | | C1,m?

:+1
==) n,m@ , as required.

Inductive case == 9+1
8:, n,m1,m2,m3,C1,C2 .

C1,m1
9
=) ok,m3 ^ C2,m3

:
=) n,m2 =) 98 . C1 | | C2,m1

8
=) n,m2 ^ C2 | | C1,m1

8
=) n,m2

(I.H)

Pick arbitrary : , n , m? ,m@,mA ,C1,C2 such that C1,m?
=
=) ok,mA and C2,mA

:
=) n,m@ . As = > 0 and

C1,m?
=
=) ok,mA , from the operational semantics we know there exist ; , C0, m such that, C1

;�! C0,

(m? ,m) 2 J;Kok, and C0,m
9
=) ok,mA . Consequently, as C0,m

9
=) ok,mA and C2,mA

:
=) n,m@ , from

(I.H) we know there exists 8 such that C0 | |C2,m
8
=) n,m@ and C2 | |C0,m

8
=) n,m@ . Moreover, as

C1
;�! C0, from the operational semantics we also have C1 | | C2

;�! C0 | | C2 and C2 | | C1
;�! C2 | | C0.

Consequently, as C1 | |C2
;�! C0 | |C2, C2 | |C1

;�! C2 | |C0, (m? ,m) 2 J;Kok, C0 | |C2,m
8
=) n,m@

and C2 | |C0,m
8
=) n,m@ , from the operational semantics we also have C1 | |C2,m

8+1
==) n,m@ and

C2 | | C1,m
8+1
==) n,m@ , as required. ⇤

L���� A.5. For all =, n 2 E�E���,m? ,m@,C1,C2:

C1,m?
=
=) n,m@ =) C1 | | C2,m?

=
=) n,m@ ^ C2 | | C1,m?

=
=) n,m@

P����. As n 2E�E��� and C1,m?
=
=) n,m@ , we know = > 0. We proceed by induction on =.

Base case ==1
Pick arbitrary n 2 E�E���,m? ,m@,C1,C2 such that C1,m?

1
=) n,m@ . From the operational semantics

we then know there exists ;,C0 such that C1
;�! C0, (m? ,m@) 2 J;Kn . As C1

;�! C0, from the control

�ow transitions we then also have C1 | |C2
;�! C0 | |C2 and C2 | |C1

;�! C2 | |C0. As such, since
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n 2 E�E��� and (m? ,m@) 2 J;Kn , from the operational semantics we have C1 | | C2,m?
1
=) n,m@ and

C2 | | C1,m?
1
=) n,m@ , as required.

Inductive case == 9+1 and = > 1

8n 2 E�E���,m1,m2,C1,C2 .

C1,m1
9
=) n,m2 =) C1 | | C2,m1

9
=) n,m2 ^ C2 | | C1,m1

9
=) n,m2

(I.H)

Pick arbitrary n 2 E�E���, m? ,m@,C1,C2 such that C1,m?
=
=) n,m@ . As = > 1 and C1,m?

=
=) ok,mA ,

from the operational semantics we know there exist ; , C0, m such that, C1
;�! C0, (m? ,m) 2 J;Kok,

and C0,m
9
=) n,m@ . As C0,m

9
=) n,m@ and n 2 E�E���, from (I.H) we know C0 | | C2,m

9
=) n,m@ and

C2 | |C0,m
9
=) n,m@ . Moreover, as C

;�! C0, from the control �ow transitions we have C1 | |C2
;�!

C0 | |C2 and C2 | |C1
;�! C2 | |C0. Consequently, as = = 9+1, C1 | |C2

;�! C0 | |C2, C2 | |C1
;�! C2 | |C0,

(m? ,m) 2 J;Kok, C0 | |C2,m
9
=) n,m@ and C2 | |C0,m

9
=) n,m@ , from the operational semantics we

also have C1 | | C2,m?
=
=) n,m@ and C2 | | C1,m?

=
=) n,m@ , as required. ⇤

L���� A.6. For all =,:, n,m? ,mA ,m@,C,C1,C2:

C,m?
=
=) ok,mA ^ C1 | | C2,mA

:
=) n,m@ =)

91 . C1 | | C;C2,m?
1
=) n,m@ ^ C;C1 | | C2,m?

1
=) n,m@

P����. We proceed by natural induction on =.

Base case ==0
Pick arbitrary :, n,m? ,mA ,m@,C,C1,C2 such that: C,m?

0
=) ok,mA and C1 | |C2,mA

:
=) n,m@ . As

C,m?
0
=) ok,mA , from the operational semantics we then know C=skip and mA=m? . Consequently,

from the control �ow transitions we have C;C1
id�! C1 and C;C2

id�! C2. Moreover, from the
de�nition of J.K ans since m?=mA we have (m? ,mA ) 2 JidKok. As such, since C;C8

id�! C8 for

8 2 {1, 2}, (m? ,mA ) 2 JidKok and C1 | |C2,mA
:
=) n,m@ , from the operational semantics we have

C1 | | C;C2,m?
:+1
==) n,m@ and C;C1 | | C2,m?

:+1
==) n,m@ , as required.

Inductive case == 9+1
8:, n,m? ,mA ,m@,C,C1,C2 .

C,m?
9
=) ok,mA ^ C1 | | C2,mA

:
=) n,m@ =)

91 . C1 | | C;C2,m?
1
=) n,m@ ^ C;C1 | | C2,m?

1
=) n,m@

(I.H)

Pick arbitrary: , n ,m? ,m@,mA ,C,C1,C2 such that:C,m?
=
=) ok,mA andC1 | | C2,mA

:
=) n,m@ . As= > 0,

from the operational semantics we know there exist ; , C0, m such that, C
;�! C0, (m? ,m) 2 J;Kok,

and C0,m
9
=) n,mA . Consequently, from the control �ow transitions we have C;C8

;�! C0;C8 for

8 2 {1, 2}. As C0,m
9
=) n,mA and C1 | |C2,mA

:
=) n,m@ , from (I.H) we know there exists 1 such that

C1 | |C0;C2,m
1
=) n,m@ and C0;C1 | |C2,m

1
=) n,m@ . As such, since C;C8

;�! C0;C8 for 8 2 {1, 2},
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(m? ,m) 2 J;Kok, C1 | | C0;C2,m
1
=) n,m@ and C0;C1 | | C2,m

1
=) n,m@ , from the operational semantics

we have C1 | | C;C2,m?
1+1
==) n,m@ and C;C1 | | C2,m?

1+1
==) n,m@ , as required. ⇤

L���� A.7. For all ?,C,@, n , if ` [?] C [n :@] holds, then:

8s 2 S����,m@ 2 b@ ⇤ {s}c . 9m? 2 b? ⇤ I�1 (s)c,=. C,m?
=
=) n,m@

P����. We proceed by induction on the structure of incorrectness triples.

Case S���
Pick an arbitrary s 2 S���� and m? 2 b? ⇤ {s}c. We then know there exists s? 2 ? such that

m? 2 bs? � sc. As I is re�exive and thus s 2 I�1 (s), it then su�ces to show that C,m?
0
=) ok,m? ,

which follows immediately from our operational semantics as C=skip.

Case A���
Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. We then know that C = a for some a. From axiom
soundness (Par. 8) we then know there exists m? 2 b? ⇤ I�1 (s)c such that (m? ,m@) 2 JaKn . There
are now two cases to consider: 1) n 2 E�E���; or 2) n=ok.
In case (1) since (m? ,m@) 2 JaKn and from our control �ow transitions (Fig. 6) we have

a
a�! skip, from our operational semantics we have C,m?

1
=) n,m@ , as required. In case (2)

since (m? ,m@) 2 JaKok, from our control �ow transitions (Fig. 6) we have a
a�! skip, and

skip,m@
0
=) ok,m@ , from our operational semantics we have C,m?

1
=) ok,m@ , as required.

Case S��E�
We then know C = C1;C2 for some C1,C2. Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. Since
from the premise of S��E� we have [?] C1 [n :@] with n 2 E�E���, from the inductive hypothesis
we know there exist m? 2 b? ⇤ I�1 (s)c, = 2 N such that C1,m?

=
=) n,m@ . Since n 2 E�E��� and

thus n < ok, from our operational semantics we know that = > 0. As such, since C = C1;C2,
C1,m?

=
=) n,m@ , = > 0 and n 2 E�E���, from Lemma A.1 C,m?

=
=), n,m@ . That is, there exist =,

m? , 2 b? ⇤ I�1 (s)c such that C,m?
=
=) n,m@ , as required.

Case S��
We then know C = C1;C2 for some C1,C2. Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. Since
from the premise of S�� we have [A ] C2 [n :@], from the inductive hypothesis we know there

exist mA 2 bA ⇤ I�1 (s)c, : 2 N such that C2,mA
:
=) n,m@ . That is, there exist sA 2 A and s1 such

that (s1, s) 2 I and mA 2 bsA � s1c. On the other hand, since sA 2 A and from the premise of S��
we have [?] C1 [ok : A ], from the inductive hypothesis we know there exist m? 2 b? ⇤ I�1 (s1)c,
= 2 N such that C1,m?

=
=) ok,mA . That is, there exist s? 2 ? and s2 such that (s2, s1) 2 I and

m? 2 bs? � s2c. As such, since (s1, s) 2 I, (s2, s1) 2 I and I is transitive, we have (s2, s) 2 I
and thus s2 2 I�1 (s); i.e. m? 2 b? ⇤ I�1 (s)c. Moreover, since C = C1;C2, C1,m?

=
=) ok,mA , and

C2,mA
:
=) n,m@ , from Lemma A.2 we know there exists 9 such that C,m?

9
=), n,m@ . That is, there

exist 9 2 N, m? , 2 b? ⇤ I�1 (s)c such that C,m?
9
=) n,m@ , as required.
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Case L���1
We know there exists C1 such that C = C¢

1 . Pick an arbitrary s 2 S���� and m? 2 b? ⇤ {s}c. As I is
re�exive and thus s 2 I�1 (s), we also have m? 2 b? ⇤ I�1 (s)c. From the control �ow transitions

we have C¢
1

id�! skip. Moreover, from the de�nition of J.K we have (m? ,m? ) 2 JidKok. On the

other hand, from the operational semantics we have skip,m?
0
=) ok,m? . As such, as C¢

1
id�! skip,

(m? ,m? ) 2 JidKok, skip,m?
0
=) ok,m? , from the operational semantics we have C,m?

1
=) ok,m? .

That is, there exist m? 2 b? ⇤ I�1 (s)c and ==1 such that C,m?
=
=) ok,m? , as required.

Case L���2
We know there exists C1 such that C = C¢

1 . Pick arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. From the
premise of L���2 we have [?] C¢

1 ;C1 [n :@] and thus from the inductive hypothesis we know there
exists m? 2 b? ⇤ I�1 (s)c and = such that C¢

1 ;C1,m?
=
=) n,m@ . From the control �ow transitions

we have C¢
1

id�! C¢
1 ;C1. Moreover, from the J.K de�nition we have (m? ,m? ) 2 JidKok. As such, as

C¢
1

id�! C¢
1 ;C1, (m? ,m? ) 2 JidKok, C¢

1 ;C1,m?
=
=) n,m@ , from the operational semantics we have

C,m?
=+1
==) n,m@ . That is, there exist m? 2 b? ⇤ I�1 (s)c, 8 such that C,m?

8
=) n,m@ , as required.

Case C�����
We know there exist C1,C2 such that C = C1 + C2. Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c.
From the premise of C����� we know there exists 8 2 {1, 2} such that [?] C8 [n :@], and thus from
the inductive hypothesis we know there exists m? 2 b? ⇤ I�1 (s)c and = such that C8 ,m?

=
=) n,m@ .

From the control �ow transitions we have C1 + C2
id�! C8 . Moreover, from the de�nition of J.K we

have (m? ,m? ) 2 JidKok. As such, as C1 + C2
id�! C8 , (m? ,m? ) 2 JidKok, C8 ,m?

=
=) n,m@ , from the

operational semantics we have C,m?
=+1
==) n,m@ . That is, there exist m? 2 b? ⇤ I�1 (s)c and 8==+1

such that C,m?
8
=) n,m@ , as required.

Case C���
Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. As form the premise of C��� we have @ ✓ @0, we
also know that m@ 2 b@0 ⇤ {s}c. On the other hand, from the premise of C��� we have [? 0] C
[n :@0] and thus from the inductive hypothesis we know there exist m? 2 b? 0 ⇤ I�1 (s)c and = such
that C,m?

=
=) n,m@ . Moreover, as ? 0 ✓ ? and m? 2 b? 0 ⇤ I�1 (s)c we also have m? 2 b? ⇤ I�1 (s)c.

That is, there exist m? 2 b? ⇤ I�1 (s)c and = such that C,m?
=
=) n,m@ , as required.

Case GC���
Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. As form the premise of C��� we have @ � @0, we
also know that m@ 2 b@0 ⇤ {s}c. On the other hand, from the premise of C��� we have [? 0] C
[n :@0] and thus from the inductive hypothesis we know there exist m? 2 b? 0 ⇤ I�1 (s)c and = such
that C,m?

=
=) n,m@ . Moreover, as ? 0 � ? and m? 2 b? 0 ⇤ I�1 (s)c we also have m? 2 b? ⇤ I�1 (s)c.

That is, there exist m? 2 b? ⇤ I�1 (s)c and = such that C,m?
=
=) n,m@ , as required.

Case F����
Note that F���� is used for PCMs with no interference, i.e. I , ID. Pick an arbitrary s 2 S����
and m@ 2 b@ ⇤ A ⇤ {s}c. That is, there exists s@ 2 @ and sA 2 A such that m1 2 bs@ � sA � sc.
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As from the premise of F���� we have [?] C [n :@], from the inductive hypothesis we know
there exist m? 2 b? ⇤ {sA � s}c and = such that C,m?

=
=) n,m@ . As such, since sA 2 A , we have

m? 2 b?⇤A ⇤I�1 (s)c. That is, there existm? 2 b?⇤A ⇤{s}c and= such thatC,m?
=
=) n,m@ , as required.

Case F����I����
Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ A ⇤ {s}c. That is, there exists s@ 2 @ and sA 2 A such
that m1 2 bs@ � sA � sc. As from the premise of F���� we have [?] C [n :@], from the inductive
hypothesis we know there exist m? 2 b? ⇤ I�1 (sA � s)c and = such that C,m?

=
=) n,m@ . Given

the properties on I (Par. 9) and the de�nition of I�1 we then know there exist s0, s0A , s00 such that
s00=s0A � s0, s00 2 I�1 (sA � s), i.e. (s00, sA � s) 2 I, m? 2 b? ⇤ {s0A } ⇤ {s0}c, (s0A , sA ) 2 I, (s0, s) 2 I
and thus s0 2 I�1 (s). Moreover, as stable(A ) holds (i.e. I�1 (A ) ✓ A ), sA 2 A and (s0A , sA ) 2 I (i.e.
s0A 2 I�1 (sA )), we also have s0A 2 A . As such, we have m? 2 b? ⇤ A ⇤ I�1 (s)c. That is, there exist
m? 2 b? ⇤ A ⇤ I�1 (s)c and = such that C,m?

=
=) n,m@ , as required.

Case D���
Pick an arbitrary s 2 S���� and m@ 2 b(@1 _ @2) ⇤ {s}c. We then know there exists 8 2 {1, 2} such
that m@ 2 b(@8 ) ⇤ {s}c. From the premise of D��� we have [?8 ] C [n :@8 ] and thus from the inductive
hypothesis we know there exists m? 2 b?8 ⇤ I�1 (s)c and =8 such that C,m?

=8
=) n,m@ . Moreover,

since ?8 ✓ ?1 _ ?2 and m? 2 b?8 ⇤ I�1 (s)c, we also have m? 2 b(?1 _ ?2) ⇤ I�1 (s)c. That is, there
exist m? 2 b(?1 _ ?2) ⇤ I�1 (s)c and = such that C,m?

=
=) n,m@ , as required.

Case P��
Note that F���� is used for PCMs with no interference, i.e. I , ID. It thus su�ces to show:

8s 2 S����. 8m@ 2 b@1 ⇤ @2 ⇤ {s}c . 9: 2 N,m? 2 b?1 ⇤ ?2 ⇤ {s}c . C1 | | C2,m?
:
=) ok,m@

Let %1 , ?1 ⇤ ?2, &1 , @1 ⇤ ?2, %2 , &1 and &2 , @1 ⇤ @2. As from the premise of P�� we have [?8 ]
C8 [ok : @8 ] for all 8 2 {1, 2}, from the F���� rule (whose soundness we established above) we also
have [%8 ] C8 [ok : &8 ] for all 8 2 {1, 2}. Consequently, from the inductive hypotheses we know that
for all 8 2 {1, 2}:

8s 2 S����. 8m@ 2 b&8 ⇤ {s}c . 9: 2 N,m? 2 b%8 ⇤ {s}c . C8 ,m?
:
=) ok,m@ (ok-i)

Pick arbitrary s 2 S���� and m@ 2 b(@1 ⇤ @2) ⇤ {s}c. That is, m@ 2 b&2 ⇤ {s}c. From (ok-i) we

then know there exist m2
? , :2 such that m2

? 2 b%2 ⇤ {s}c and C2,m2
?

:2

=) ok,m2
? . Similarly, as

m2
? 2 b%2 ⇤ {s2}c and&1 = %2, from (ok-i) we know there existm1

? , :1 such that:m1
? 2 b%1 ⇤ {s}c and

C1,m1
?

:1

=) ok,m2
? . Let s3 = s and m3

? = m@ . As such, since C1,m1
?

:1

=) ok,m2
? and C2,m2

?
:2

=) ok,m2
? ,

from Lemma A.4 we know there exist 9 such that C1 | |C2,m1
?

9
=) ok,m@ . Consequently, from the

de�nition of %1 we know there exist 9 2 N and m1
? 2 b?1 ⇤ ?2 ⇤ {s}c such that C1 | | C2,m1

?

9
=) ok,m@ ,

as required.

Case P��I����
We then have C = C1 | | C2 for some C1,C2, stable(?1,@2) _ stable(?2,@1), and ` [?8 ] C8 [ok : @8 ] for
all 8 2 {1, 2}. There are two cases two consider: 1) stable(?2,@1); or 2) stable(?1,@2). In case (1) we
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can then derive:
[?1] C1 [ok : @1] stable(?2)
[?1 ⇤ ?2] C1 [ok : @1 ⇤ ?2]

F����I����
[?2] C2 [ok : @2] stable(@1)
[@1 ⇤ ?2] C1 [ok : @1 ⇤ @2]

F����I����

[?1 ⇤ ?2] C1;C2 [ok : @1 ⇤ @2]
S��

[?1 ⇤ ?2] C1 | | C2 [ok : @1 ⇤ @2]
P��S��

In case (2) we can then derive:
[?2] C1 [ok : @2] stable(?1)
[?1 ⇤ ?2] C1 [ok : ?1 ⇤ @2]

F����I����
[?1] C2 [ok : @1] stable(@2)
[?1 ⇤ @2] C1 [ok : @1 ⇤ @2]

F����I����

[?1 ⇤ ?2] C2;C1 [ok : @1 ⇤ @2]
S��

[?1 ⇤ ?2] C1 | | C2 [ok : @1 ⇤ @2]
P��S��

Case P��E�
We then have C = C1 | | C2 for some C1,C2. Pick an arbitrary s 2 S���� andm@ 2 b@ ⇤ {s}c. From the
premise of P��E� we know that n 2 E�E��� and [?] C8 [n :@] for some 8 2 {1 · · ·=}. As such, from
the inductive hypothesis we know there exists m? 2 b? ⇤ I�1 (s)c and : such that C8 ,m?

:
=) n,m@ .

Consequently, as n 2 E�E���, from Lemma A.5 we have C1 | | C2,m?
:
=) n,m@ , as required.

Case P��L
We then have C = C1 | | C2 for some C1,C2. Pick an arbitrary s 2 S���� and m@ 2 b@ ⇤ {s}c. From
the premise of P��L we know there exist C3,C4 such that C1=C3;C4 and [A ] C4 | |C2 [n :@]. As
such, from the inductive hypothesis we know there exist mA 2 bA ⇤ I�1 (s)c, : 2 N such that

C4 | |C2,mA
:
=) n,m@ . That is, there exist sA 2 A and s1 such that (s1, s) 2 I and mA 2 bsA � s1c.

On the other hand, since sA 2 A and from the premise of P��L we have [?] C3 [ok : A ], from the

inductive hypothesis we know there exist m? 2 b? ⇤ I�1 (s1)c, 9 2 N such that C3,m?
9
=) ok,mA .

That is, there exist s? 2 ? and s2 such that (s2, s1) 2 I and m? 2 bs? � s2c. As such, since (s1, s) 2 I,
(s2, s1) 2 I and I is transitive, we have (s2, s) 2 I and thus s2 2 I�1 (s); i.e. m? 2 b? ⇤ I�1 (s)c.
Moreover, since C3,m?

9
=) ok,mA , C4 | | C2,mA

:
=) n,m@ and C1 = C3;C4 from Lemma A.6 we know

there exists 1 such that C1 | |C2,m?
1
=), n,m@ . That is, there exist 1 2 N, m? , 2 b? ⇤ I�1 (s)c such

that C,m?
9
=) n,m@ , as required.

The proof of P��R is analogous to that of P��L and is omitted here. ⇤

T������ A.8 (S��������). For all ?,C,@, n , if ` [?] C [n :@] holds, then |= [?] C [n :@] also
holds.

P����. Pick arbitrary ?,C,@, n such that ` [?] C [n :@] holds. Pick an arbitrary m@ 2 b@c. That
is, there exists s@ 2 @ such that m@ 2 bs@c. From the de�nition of � we then know there exists
s0 2 S����0 such that s@=s@ � s0. As such, from Lemma A.7 we know there existsm? 2 b? ⇤I�1 (s0)c
and= 2 N such thatC,m?

=
=) n,m@ . Moreover, from the properties ofI (Par. 9) and since s0 2 S����0

we know thatI�1 (s0) ✓ S����0. Consequently, from the de�nition of ⇤ and the properties of S����0
(Par. 2) we know ? ⇤ I�1 (s0) ✓ ? and thus b? ⇤ I�1 (s0)c ✓ b?c. That is, we know there exists
m? 2 b?c and = 2 N such that C,m?

=
=) n,m@ , as required. ⇤
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B CISLDC AXIOM SOUNDNESS
CISLDC Machine States. Weassume a Boolean interpretation function, J.K(.) : BA��⇥S����DC !

V��, evaluating Boolean assertions against a machine state. We lift this function to machine states,
and given m 2 MS����DC, we write J.Km for J.Ks , where s ,

–
G 2dom(m)

[G 7! (m(G), 1)].

J�: errorKAok ,; Jassume(⌫)KAok , {m | J⌫Km < 0}
JG := EKAok ,

�
(m,m[G 7! E]) G 2 dom(m)

 
JG := alloc()KAok ,

�
(m,m[G 7! ;] ] [; 7! E]) E 2V�� ^ G 2 dom(m) ^ ; 8dom(m)

 
JG := EKAmse(.) = JG := alloc()KAmse(.) = Jassume(⌫)KAmse(.) = JerrorKAmse(.) , ;

J�: free(G)KAok ,
�
(m,m[; 7! ?]) 9; . m(G) = ; ^m(;) 2 V��

 
J�: free(G)KAmse(�0) ,

�
(m,m) � = �0^ 9; . m(G) = ; ^m(;) = ?

 
J�:G := [~]KAok ,

�
(m,m[G 7! E]) G 2 dom(m) ^ 9; . m(~) = ; ^m(;) = E 2 V��

 
J�:G := [~]KAmse(�0) ,

�
(m,m) � = �0^ G 2 dom(m) ^ 9; . m(~) = ; ^m(;) = ?

 
J�: [G] := ~KAok ,

�
(m,m[; 7! m(~)]) ~ 2 dom(m) ^ 9; . m(G)=; ^m(;) 2 V��

 
J�: [G] := ~KAmse(�0) ,

�
(m,m) � = �0^ ~ 2 dom(m) ^ 9; . m(G)=; ^m(;) = ?

 

JaKAer (�) ,
(
{(m,m) | m 2 MS����DC} if a = �: error
; otherwise

B.1 CISLDC Axiom Soundness
T������ B.1 (CISLDC ������ ���������). For all (?, ;, n,@) 2 A���DC the following holds:

8s 2 S����DC,m@ 2 b@ ⇤ {s}cDC. 9m? 2 b? ⇤ I�1
DC (s)cDC. (m? ,m@) 2 J;KAn

P����. Pick an arbitrary (?, ;, n,@) 2 A���DC. Note that as the CISLDC interference is simply
de�ned as the identity relation, it su�ces to show that the following holds:

8s 2 S����DC,m@ 2 b@ ⇤ {s}cDC . 9m? 2 b? ⇤ {s}cDC . (m? ,m@) 2 J;KAn
We proceed by induction on the structure of (?, ;, n,@).

Case DC�A�����
We then have ; = assume(⌫), that n = ok,@ = ⇤

G8 2pvars (⌫)
G8

c87!E8^⌫ [E8/G8 ], and ? = ⇤
G8 2pvars (⌫)

G8
c87!E8 .

Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC and ⇤ we then
know that there exists s@ 2 @ such that m@ 2 bs@ �DC scDC and J⌫Ks@ < 0. From the de�nition of
J.Kf we then know J⌫Km@ < 0
Let s? = s@ and m? = m@ . From the de�nitions of b.cDC and ⇤ we then know that s? 2 ? and

m? 2 b? ⇤ {s}cDC. On the other hand, since J⌫Km@ < 0 and m? = m@ , we also have J⌫Km? < 0. As
such, from the de�nition of Jassume(⌫)KAok we have (m? ,m@) 2 Jassume(⌫)KAok, as required.

Case DC�E����
We then have ; = �: error, that n = er (�), @ = emp, and ? = @. Pick an arbitrary s 2 S����DC and
m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC and ⇤ we then know that there exists s@ 2 @ such
that s@ = ;, and m@ 2 bscDC.
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Let s? = s@ andm? = m@ . From the de�nitions of b.cDC and ⇤ we then know that s? 2 ? andm? 2
b?⇤{s}cDC. Moreover, from the de�nition of J�: errorKAer (�) we have (m? ,m@) 2 J�: errorKAer (�),
as required.

Case DC�A�����
We then have ; = G := E for some G, E , that n = ok, @ = G 7!E , and ? = G 7!E 0 for some E 0. Pick an
arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC and ⇤ we then know
that there exist s@ 2 @ such that s@ = [G 7! (E, 1)], G 8 dom(s), and m@ 2 bs@ �DC scDC.
Let s? = [G 7! E 0] and pick m? = m@ [G 7! E 0]. From the de�nitions of b.cDC and ⇤ we then

know that s? 2 ? and m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition of JG := EKAok we have
(m? ,m@) 2 JG := EKAok, as required.

Case DC�L���
We then have ; = G := [~] for some G,~, that n = ok, @ = G 7!E ⇤ ~

c~7!; ⇤ ; c7!E for some E, ;, c , and
? = G 7!E 0 ⇤~

c~7!; ⇤ ; c7!E for some E 0. Pick an arbitrary s 2 S����DC andm@ 2 b@ ⇤ {s}cDC. From the
de�nitions of b.cDC and ⇤we then know that there exist s@ 2 @ such that s@ = [G 7! (E, 1)] �DC [~ 7!
(;, c~)] �DC [; 7! (E, c)], G 8 dom(s), (c~=1 ^~ 8 dom(s)) _ (c~ < 1 ^ s(~)=(;, c 0

~) ^ c~+c 0
~  1)

for some c 0
~ , (c=1 ^ ; 8 dom(s)) _ (c < 1 ^ s(;)=(E, c 0) ^ c+c 0  1) for some c 0, and m@ =

bs �DC [G 7! (E, 1)] �DC [~ 7! (;, c~)] �DC [; 7! (E, c)]cDC.
Let s? = [G 7! (E 0, 1)] �DC [~ 7! (;, c~)] �DC [; 7! (E, c)] and m? = m@ [G 7! E 0]. From the

de�nitions of b.cDC and ⇤ we then know that s? 2 ? and m? 2 b? ⇤ {s}cDC. Moreover, from the
de�nition of JG := [~]KAok we have (m? ,m@) 2 JG := [~]KAok, as required.

Case DC�L���E�
We then have ; = �:G := [~] for some G,~, �, that n = mse(�), @ = ~

c~7! ; ⇤ ;
c
67! for some E, ;, c ,

and ? = @. Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC
and ⇤ we then know that there exist s@ 2 @ such that s@ = [~ 7! (;, c~)] �DC [; 7! (?, c)],
(c~=1^~ 8 dom(s))_ (c~ < 1^ s(~)=(;, c 0

~)^c~+c 0
~  1) for some c 0

~ , (c=1^; 8 dom(s))_ (c <
1 ^ s(;)=(?, c 0) ^ c+c 0  1) for some c 0, and m@ = bs �DC [~ 7! (;, c~)] �DC [; 7! (?, c)]cDC.

Let s? = s@ and m? = m@ . We then simply have m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition
of J�:G := [~]KAmse(�) we have (m? ,m@) 2 J�:G := [~]KAmse(�), as required.

The proofs of the DC�S���� and DC�S����E� cases are analogous to those of DC�L��� and DC�
L���E� respectively, and are omitted here.

Case DC�A����
We then have ; = G := alloc() for some G , that n = ok, @ = G 7!; ⇤; 7!E for some E, ; , and ? = G 7!E 0

for some E 0. Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC
and ⇤ we then know that there exist s@ 2 @,f, h, h such that s@ = [G 7! (;, 1)] �DC [; 7! (E, 1)],
G, ; 8 dom(s), and m@ = bs �DC [G 7! (;, 1)] �DC [; 7! (E, 1)]cDC.

Let s? = [G 7! (E 0, 1)] and m? = bs �DC [G 7! (E 0, 1)]cDC (from the de�nitions of �DC, s and
s? we know this is de�ned). From the de�nitions of b.cDC and ⇤ we then know that s? 2 ? and
m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition of JG := alloc()KAok we have (m? ,m@) 2 JG :=
alloc()KAok, as required.

Case DC�F���
We then have ; = free(G) for some G , that n = ok, @ = G

c7!; ⇤; 67! for some ; , and ? = G 7!;c ⇤; 7!E
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for some E . Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC
and ⇤ we then know that there exist s@ 2 @ such that s@ = [G 7! (;, c)] �DC [; 7! (?, 1)],
(c=1 ^ G 8 dom(s)) _ (c < 1 ^ s(G)=(;, c 0) ^ c+c 0  1) for some c 0, ; 8 dom(s), and m@ =
bs �DC [G 7! (;, c)] �DC [; 7! (?, 1)]cDC.
Let s? = [G 7! (;, c)] �DC [; 7! (E, 1)] and m? = m@ [G 7! E]. From the de�nitions of b.cDC and ⇤

we then know that s? 2 ? and m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition of Jfree(G)KAok
we have (m? ,m@) 2 Jfree(G)KAok, as required.

Case DC�F���E�
We then have ; = �: free(G) for some G, �, that n = mse(�), @ = G

cG7! ; ⇤ ;
c
67! for some ;, c, cG ,

and ? = @. Pick an arbitrary s 2 S����DC and m@ 2 b@ ⇤ {s}cDC. From the de�nitions of b.cDC
and ⇤ we then know that there exist s@ 2 @ such that s@ = [G 7! (;, cG )] �DC [; 7! (?, c)],
(cG=1^G 8 dom(s))_ (cG < 1^ s(G)=(;, c 0)^cG+c 0

G  1) for some c 0
G , (c=1^ ; 8 dom(s))_ (c <

1 ^ s(;)=(?, c 0) ^ c+c 0  1) for some c 0, and m@ = bs �DC [G 7! (;, cG )] �DC [; 7! (?, c)]cDC.
Let s? = s@ and m? = m@ . We then simply have m? 2 b? ⇤ {s}cDC. Moreover, from the de�nition

of J�: free(G)KAmse(�) we have (m? ,m@) 2 J�: free(G)KAmse(�), as required.
⇤
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C CISLRD SOUNDNESS
T������ C.1 (CISLRD ������ ���������). For all (?, ;, n,@) 2 A���RD the following holds:

8s 2 S����RD,m@ 2 b@ ⇤ {s}cRD. 9m? 2 b? ⇤ I�1
RD (s)cRD . (m? ,m@) 2 J;KAn

P����. Pick an arbitrary (?, ;, n,@) 2 A���RD. Note that as the CISLRD interference is simply
de�ned as the identity relation, it su�ces to show that the following holds:

8s 2 S����RD,m@ 2 b@ ⇤ {s}cRD . 9m? 2 b? ⇤ {s}cRD . (m? ,m@) 2 J;KAn
We proceed by induction on the structure of (?, ;, n,@).

Case RD�L���
We then have ; = lockg ; for some g, ; , that n = ok, @ = g 7! (� ++ L(g, ;), ( ] {;}) for some � , (
such that ; 8 ( , and ? = g 7! (� , (). Let � 0 , � ++ L(g, ;). Pick an arbitrary s 2 S����RD and
m@ 2 b@ ⇤ {s}cRD. From the de�nitions of b.cRD and ⇤ we then know that there exist s@ 2 @,�@ such
that s@ = ( [g 7! (� 0, ( ] {;})], g 8 dom(s), m@ = �@ , � 0 = �@ |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) )
� 00 = �@ |g0 and wf

�
�@

�
. That is, there exists �1,�2,�? such that �@ = �1 ++ L(g, ;) ++ �2,

84 2 �2. 4 .tid < g , �? = �1 ++ �2, and � = �? |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 = �? |g 0 .
Let s?=[g 7! (� , ()] and m?=�? . From the de�nitions of b.cRD, �? and ⇤ we then know that

s? 2 ? , that ? ⇤ {s} is de�ned (since g 8 dom(s)), and that m? 2 b? ⇤ {s}cRD. Moreover, as wf
�
�@

�
,

84 2 �2. 4 .tid < g , �@=�1 ++ L(g, ;) ++ �2 and �?=�1 ++ �2, it is straightforward to show that
wf

�
�?

�
. Finally, from the de�nition of J.KA we have (m? ,m@) 2 Jlockg ;KAok, as required.

The proof of the RD�U����� case is analogous and thus omitted here.

Case RD�R���
We then have ; = �:0 :=g G for some g, G, �, that n = ok, @ = g 7! (� ++ 4, () for some � , 4, ( such
that 4 = R(�, g, G)( , and that ? = g 7! (� , (). Let � 0 , � ++ 4 . Pick an arbitrary s 2 S����RD and
m@ 2 b@ ⇤ {s}cRD. From the de�nitions of b.cRD and ⇤ we then know that there exist s@ 2 @,�@ such
that s@ = ( [g 7! (� 0, ()], g 8 dom(s), m@ = �@ , � 0 = �@ |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 =
�@ |g 0 and wf

�
�@

�
. That is, there exists �1,�2,�? such that �@ = �1 ++ 4 ++ �2, 84 2 �2. 4 .tid < g ,

�? = �1 ++ �2, and � = �? |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 = �? |g 0 . Moreover, from the
de�nitions of �? , �@ we have: 8g 0. locks(�? , g 0) = locks(�@, g 0).
Let s?=[g 7! (� , ()] and m?=�? . From the de�nitions of b.cRD, �? and ⇤ we then know that

s? 2 ? , that ? ⇤{s} is de�ned (since g 8 dom(s)), and thatm? 2 b? ⇤{s}cRD. Moreover, aswf
�
�@

�
and

8g 0. locks(�? , g 0) = locks(�@, g 0), �@=�1 ++ L(g, ;) ++ �2 and �?=�1 ++ �2, it is straightforward
to show that wf

�
�?

�
. Finally, from the de�nition of of J.KA we have (m? ,m@) 2 J�:0 :=g GKAok, as

required.

The proof of the RD�W���� case is analogous and thus omitted here. ⇤
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D CISLDD SOUNDNESS
T������ D.1 (CISLDD ������ ���������). For all (?, ;, n,@) 2 A���DD the following holds:

8s 2 S����DD,m@ 2 b@ ⇤ {s}cDD . 9m? 2 b? ⇤ I�1
DD (s)cDD. (m? ,m@) 2 J;KAn

P����. Pick an arbitrary (?, ;, n,@) 2 A���DD. Note that as the CISLDD interference is simply
de�ned as the identity relation, it su�ces to show that the following holds:

8s 2 S����DD,m@ 2 b@ ⇤ {s}cDD . 9m? 2 b? ⇤ {s}cDD . (m? ,m@) 2 J;KAn
We proceed by induction on the structure of (?, ;, n,@).

Case DD�L���
We then have ; = �: lockg ; for some g, ; , that n = ok, @ = g 7! (� ++ L(g, ;), ( ] {;}) for some � ,
( such that ; 8 ( , and ? = g 7! (� , (). Let � 0 , � ++ L(g, ;). Pick an arbitrary s 2 S����DD and
m@ 2 b@ ⇤ {s}cDD. From the de�nitions of b.cDD and ⇤ we then know that there exist s@ 2 @,�@ such
that s@ = ( [g 7! (� 0, ( ] {;})], g 8 dom(s), m@ = �@ , � 0 = �@ |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) )
� 00 = �@ |g0 and wf

�
�@

�
. That is, there exists �1,�2,�? such that �@ = �1 ++ L(g, ;) ++ �2,

84 2 �2. 4 .tid < g , �? = �1 ++ �2, and � = �? |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 = �? |g 0 .
Let s?=[g 7! (� , ()] and m?=�? . From the de�nitions of b.cDD, �? and ⇤ we then know that

s? 2 ? , that ? ⇤ {s} is de�ned (since g 8 dom(s)), and that m? 2 b? ⇤ {s}cDD. Moreover, as wf
�
�@

�
,

84 2 �2. 4 .tid < g , �@=�1 ++ L(g, ;) ++ �2 and �?=�1 ++ �2, it is straightforward to show that
wf

�
�?

�
. Finally, from the de�nition of J.KA we have (m? ,m@) 2 J�: lockg ;KAok, as required.

Case DD�U�����
We then have ; = unlockg ; for some g, ; , that n = ok, @ = g 7! (� ++ U(g, ;), () for some� , ( , ( 0 such
that ; 8 ( , ( 0 = ( ] {;} and ? = g 7! (� , ( 0). Let � 0 , � ++ L(g, ;). Pick an arbitrary s 2 S����DD
and m@ 2 b@ ⇤ {s}cDD. From the de�nitions of b.cDD and ⇤ we then know that there exist s@ 2 @,�@

such that s@ = ( [g 7! (� 0, ()], g 8 dom(s), m@ = �@ , � 0 = �@ |g , 8g 0 2 dom(s) . s(g 0) = (� 00,�) )
� 00 = �@ |g0 and wf

�
�@

�
. That is, there exists �1,�2,�? such that �@ = �1 ++ U(g, ;) ++ �2,

84 2 �2. 4 .tid < g , �? = �1 ++ �2, and � = �? |g , 8g 0 2 dom(s). s(g 0) = (� 00,�) ) � 00 = �? |g 0 .
Let s?=[g 7! (� , ( 0)] and m?=�? . From the de�nitions of b.cDD, �? and ⇤ we then know that

s? 2 ? , that ? ⇤ {s} is de�ned (since g 8 dom(s)), and that m? 2 b? ⇤ {s}cDD. Moreover, as wf
�
�@

�
,

84 2 �2. 4 .tid < g , �@=�1 ++ L(g, ;) ++ �2 and �?=�1 ++ �2, it is straightforward to show that
wf

�
�?

�
. Finally, from the de�nition of J.KA we have (m? ,m@) 2 Junlockg ;KAok, as required.

⇤
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E CISLSV SOUNDNESS
CISLSV Machine States. As the LS���� PCM is supplied as a parameter to CISLSV, their cor-

responding machine states,MS����L, must similarly be supplied as a parameter to CISLSV. Since
here we instantiated LS���� with S����DC, we accordingly take MS����L , MS����DC. The set
of CISLSV machine states is: MS����SV , MS����L [ (RI� �n

ô {?} ] TI�).
CISLSV Atomic Semantics.

JG := EKAok ,
�
(m,m[G 7! E]) G 2 dom(m)

 
JG := alloc()KAok ,

�
(m,m[G 7! ;] ] [; 7! E]) E 2V�� ^ G 2 dom(m) ^ ; 8dom(m)

 
JG := EKAmse(.) = JG := alloc()KAmse(.) , ;

J�: free(G)KAok ,
�
(m,m[; 7! ?]) 9; . m(G) = ; ^m(;) 2 V��

 
J�: free(G)KAmse(�0) ,

�
(m,m) � = �0^ 9; . m(G) = ; ^m(;) = ?

 
J�:G := [~]KAok ,

�
(m,m[G 7! E]) G 2 dom(m) ^ 9; . m(~) = ; ^m(;) = E 2 V��

 
J�:G := [~]KAmse(�0) ,

�
(m,m) � = �0^ G 2 dom(m) ^ 9; . m(~) = ; ^m(;) = ?

 
J�: [G] := ~KAok ,

�
(m,m[; 7! m(~)]) ~ 2 dom(m) ^ 9; . m(G)=; ^m(;) 2 V��

 
J�: [G] := ~KAmse(�0) ,

�
(m,m) � = �0^ ~ 2 dom(m) ^ 9; . m(G)=; ^m(;) = ?

 
Jacqg rKAok ,

�
(m,m0) m(r)=? ^m0 = m[r 7! g]

 
Jrelg rKAok ,

�
(m,m0) m(r)=g ^m0 = m[r 7! ?]

 
CISLSV Erasure. As LS���� and MS����L are supplied as a parameter to CISLSV, the erasure

b.cL : LS���� ! P(MS����L) must similarly be supplied as a parameter to CISLSV. Since here we
instantiated LS����with S����DC andMS����L withMS����DC, we accordingly take b.cL , b.cDC.
Given a resource map d and a resource r, since at most one thread may be within r at any

given time and thus claim its associated resource, we write SV (d (r)) (resp. owner (d (r))) to denote
the resource associated with r (resp. the thread currently accessing r), if such resource (resp.
thread) exists; and otherwise to denote the set of empty resource LS����0 (resp. ?). That is, when
d (r)=(>,�,�), if > 2 TI� then SV (d (r)) = LS����0 and owner (d (r)) = > ; and if > = ? then
SV (d (r)) = S(count (d, r)) and owner (d (r)) = > = ?. The CISLSV erasure function is then de�ned
as follows:

b(l, p, d)cSV ,
n
(l �l l1 �l l2) l1 2 ⇤

r2dom(d)
SV (d (r)) ^ l2 = (;, “

r2dom(d)
[r 7! owner (d (r))])o

E.1 CISLSV Axiom Soundness
T������ E.1 (CISLSV ������ ���������). For all (?, ;, n,@) 2 A���SV the following holds:

8s 2 S����SV,m@ 2 b@ ⇤ {s}cSV . 9m? 2 b? ⇤ I�1
SV (s)cSV . (m? ,m@) 2 J;KAn

P����. Pick an arbitrary (?, ;, n,@) 2 A���SV. We proceed by induction on the structure of
(?, ;, n,@).

Case SV�A��
We then have n = ok, ; = acqg r for some g, r, @ =

‘
<�=

(S(<) ⇤ csrS (g :=,<)) for some =, and

? = resrS (g :=). Pick an arbitrary s 2 S����SV and m@ 2 b@ ⇤ {s}cSV. From the de�nitions of b.cSV
and ⇤ we then know that there exist l, d, C,:, l: , p, l1, l2 such that:

s=(l, p, d), (r, g) 8 dom(p),
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d (r)=(g,S, C), C (g)==, :=count (C), : � =,
l: 2 S(:),
m@=l: �l l �l l1 �l l2, l1 2 ⇤

r0 2dom(d)
SV (d (r0)), and l2=(;,

“
r0 2dom(d)

[r0 7! owner (d (r))]).

From the de�nition of m@ we know m@ (r)=g . Let s0 = (l, p, d 0) where d 0 = d [r 7! (?,S, C)]; let
m? = m@ [r 7! ?]. From the de�nitions of b.cSV and ⇤ we have m? 2 bresrS (g :=) ⇤ {s0}cSV; that is,
m? 2 b? ⇤ {s0}cSV. Moreover, from the de�nition of I0 we have (s0, s) 2 I0 ✓ I and thus s0 2 I�1 (s).
Finally, from the de�nition of Jacqg GKAok we have (m? ,m@) 2 Jacqg GKAok, as required.

Case SV�R��
We then have n = ok, ; = relg r for some g, r, @ = resrS (g :=+1) and ? =

‘
<�=

(S(<+1) ⇤ csrS (g :=,<))
for some =. Pick an arbitrary s 2 S����SV and m@ 2 b@ ⇤ {s}cSV. From the de�nitions of b.cSV and ⇤
we then know that there exist l, d, C,:, l: , p, l1, l2 such that:

s=(l, p, d), (r, g) 8 dom(p),
d (r)=(?,S, C), C (g)==+1, :=count (C), : � =+1, l: 2 S(:),
m@=l �l l: �l l1 �l l2, l1= ⇤

r0 2dom(d)\{r}
SV (d (r0)), and l2=(;,

“
r0 2dom(d)

[r0 7! owner (d (r))]).

From the de�nition of m@ we know m@ (r)=?. Let s0=(l, p, d 0) where d 0 = d [r 7! (g,S, C 0)]
and C 0=C [g 7! =]; and let m?=m@ [r 7! g]. From the de�nitions of s, s0, d, d 0, b.cSV and ⇤ we then
have m? 2 b{l: } ⇤ csrS (g :=,:�1) ⇤ {s0}cSV, i.e. m? 2 bS(:) ⇤ csrS (g :=,:�1) ⇤ {s0}cSV. As : � =+1
we also have :�1 � =. As such, we also have m? 2 b ‘

<�=
S(<+1) ⇤ csrS (g :=,<) ⇤ {s0}cSV; that is,

m? 2 b? ⇤ {s0}cSV. Moreover, from the de�nition of IA we have (s0, s) 2 IA ✓ I and thus s0 2 I�1 (s).
Finally, from the de�nition of Jrelg GKAok we have (m? ,m@) 2 Jrelg GKAok, as required.

Case SV�A���G
We then have n = ok, ; = acqg r for some g, r, @ = S(<) ⇤ csrS (g,<) for some<, and ? = resrS (<).
Pick an arbitrary s 2 S����SV and m@ 2 b@ ⇤ {s}cSV. From the de�nitions of b.cSV and ⇤ we then
know that there exist l, d, C,:, l: ,=, p, l1, l2 such that:

s=(l, p, d), 8g . (r, g) 8 dom(p),
d (r)=(g,S, C), C (g)==,<=count (C),< � =,
l< 2 S(<),
m@=l< �l l �l l1 �l l2, l1 2 ⇤

r0 2dom(d)
SV (d (r0)), and l2=(;,

“
r0 2dom(d)

[r0 7! owner (d (r))]).

From the de�nition of m@ we know m@ (r)=g . Let s0 = (l, p, d 0) where d 0 = d [r 7! (?,S, C)]; let
m? = m@ [r 7! ?]. From the de�nitions of b.cSV and ⇤ we have m? 2 bresrS (<) ⇤ {s0}cSV; that is,
m? 2 b? ⇤ {s0}cSV. Moreover, from the de�nition of I0 we have (s0, s) 2 I0 ✓ I and thus s0 2 I�1 (s).
Finally, from the de�nition of Jacqg GKAok we have (m? ,m@) 2 Jacqg GKAok, as required.

Case SV�R���G
We then have n = ok, ; = relg r for some g, r,@ = resrS (<+1) for some< and ? = S(<+1)⇤csrS (g,<).
Pick an arbitrary s 2 S����SV and m@ 2 b@ ⇤ {s}cSV. From the de�nitions of b.cSV and ⇤ we then
know that there exist l, d, C,=, l<+1, p, l1, l2 such that:

s=(l, p, d), 8g . (r, g) 8 dom(p),
d (r)=(?,S, C), C (g)==+1,<+1=count (C),<+1 � =+1 and thus< � =, l<+1 2 S(<+1),
m@=l �l l<+1 �l l1 �l l2, l1= ⇤

r0 2dom(d)\{r}
SV (d (r0)), and l2=(;,

“
r0 2dom(d)

[r0 7! owner (d (r))]).

From the de�nition of m@ we know m@ (r)=?. Let s0=(l, p, d 0) where d 0 = d [r 7! (g,S, C 0)]
and C 0=C [g 7! =]; and let m?=m@ [r 7! g]. From the de�nitions of s, s0, d, d 0, b.cSV and ⇤ we
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then have m? 2 b{l<+1} ⇤ csrS (g,<) ⇤ {s0}cSV, i.e. m? 2 bS(<+1) ⇤ csrS (g,<) ⇤ {s0}cSV and thus
m? 2 b? ⇤ {s0}cSV. Moreover, from the de�nition of IA we have (s0, s) 2 IA ✓ I and thus s0 2 I�1 (s).
Finally, from the de�nition of Jrelg GKAok we have (m? ,m@) 2 Jrelg GKAok, as required.

Case SV�CS
This rule can be derived as follows, where A�� denotes an assumption given by the premise:

(1)

(2) (3)
? ⇤ ‘

<�=
(S(<) ⇤ csrS (g :=,<))

�
C; relg r

h
ok : @ ⇤ resrS (g :=+1)

i S��

h
? ⇤ resrS (g :=)

i
acqg r;C; relg r

h
ok : @ ⇤ resrS (g :=+1)

i S��

h
? ⇤ resrS (g :=)

i
withg r do C

h
ok : @ ⇤ resrS (g :=+1)

i

h
⇤resrS (g :=)

i
acqg r


ok :

‘
<�=

(S(<) ⇤ csrS (g :=,<))
� SV�A��

stable(?)
h
? ⇤ resrS (g :=)

i
acqg r


ok : ? ⇤ ‘

<�=
(S(<) ⇤ csrS (g :=,<))

� F����I����

(1)

8< � =. [? ⇤ S(<)] C [ok : @ ⇤ S(<+1)] A��
stable

⇣
csrS (g :=,<)

⌘

8< � =.
h
? ⇤ S(<) ⇤ csrS (g :=,<)

i
C

h
ok : @ ⇤ S(<+1) ⇤ csrS (g :=,<)

i F����I����


? ⇤ ‘

<�=
(S(<) ⇤ csrS (g :=,<))

�
C


ok : @ ⇤ ‘

<�=
(S(<+1) ⇤ csrS (g :=,<))

� D���,C���

(2)

 ‘
<�=

(S(<+1) ⇤ csrS (g :=,<))
�
relg r

h
ok : resrS (g :=+1)

i SV�R��
stable(@)


@ ⇤ ‘

<�=
(S(<+1) ⇤ csrS (g :=,<))

�
relg r

h
ok : @ ⇤ resrS (g :=+1)

i F����I����

(3)
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Case SV�CS�G
This rule can be derived as follows, where A , ==:+Õ

:8 ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 ):

h
? ⇤ resrS (g ::)

i
withg r do C

h
ok : @ ⇤ resrS (g ::+1)

i SV�CS
stable(A )

[? ⇤ ==:+
’

:8 ⇤ resrS (g ::) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]
withg r do C

[ok : @ ⇤ ==:+
’

:8 ⇤ resrS (g ::+1) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]

F����I����

[? ⇤ ==:+
’

:8 ⇤ resrS (g ::) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]
withg r do C

[ok : @ ⇤ =+1=:+1+
’

:8 ⇤ resrS (g ::+1) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]

C���

[9:8 ,: . ? ⇤ ==:+
’

:8 ⇤ resrS (g ::) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]
withg r do C

[ok : 9:8 ,: . @ ⇤ =+1=:+1+
’

:8 ⇤ resrS (g ::+1) ⇤ ⇤
g8 2TI�\{g }

resrS (g8 ::8 )]

D���

h
? ⇤ resrS (=)

i
withg r do C

h
ok : @ ⇤ resrS (=+1)

i C���, S����S����

⇤

, Vol. 1, No. 1, Article . Publication date: October 2021.


	Abstract
	1 Introduction
	2 Overview of CISL
	3 The CISL Framework
	3.1 CISL Logic and Proof Rules
	3.2 CISL Model and Semantics
	3.3 CISL Soundness
	3.4 Generalising the Rule of Consequence (View Shifts)

	4 RD: CISL for Race Detection
	4.1 RDFormalism
	4.2 Generalising RD

	5 DD: CISL for Deadlock Detection
	6 Generalising CISL to PCMs with Interference
	7 SV: CISL for Shared Concurrency with Resource Subvariants
	8 Conclusions and Related Work
	References
	A Soundness
	B DCAxiom Soundness
	B.1 DCAxiom Soundness

	C RDSoundness
	D DDSoundness
	E SVSoundness
	E.1 SVAxiom Soundness


