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❖ Avoids cache pollution 
❖ Ubiquitous (application-level use)

Intel-x86 Non-temporal Stores

➡ 308K instances of MOVNTI on GitHub 
    including in C, C++ & Assembly

➡ memset function in the C runtime
➡ memcpy in glibc
➡ Large-scale projects: PMDK and SPDK to interface with NVM
➡ Large-scale projects: DPDK and DML to communicate with accelerators
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❖ Also known as memory cacheability*: UC, WC, WT, WB

Intel-x86 Memory Types
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➡ UC: Strong Uncacheable 
➡ WC: Write Combining

❖ Cacheable types: memory accesses go through the cache hierarchy 
➡ WB: Write Back 
➡ WT: Write Through

* There are two other memory types: WP and UC-

❖ Non-cacheable types: bypass memory, access (read/write) memory directly
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Ex86 (Extended x86): 

Formal consistency semantics of Intel-x86 architectures 
including  

non-temporal stores & memory types
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Isn’t it just TSO? 

Ex86: Extended Intel-x86 Consistency Semantics
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Isn’t it just TSO? 

Ex86: Extended Intel-x86 Consistency Semantics

TSO confirmed for WB memory only 
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Ex86: Extended Intel-x86 Consistency Semantics
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SC ✗ ✗
TSO ✔ ✗
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TSO/ WB, WT

SC ✗ ✗

✔ ✗

WB, WT memory are subject to TSO consistency:

write-read reordering

Ex86: Extended Intel-x86 Consistency Semantics



WB and WT Memory Types
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applies only to all-WB/ all-WT accesses, not mixed accesses
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TSO

The extent of 

WB/WT Specification 

in the Intel manual

applies only to all-WB/ all-WT accesses, not mixed accesses
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TSO/ WB, WT

SC ✗ ✗

✔ ✗
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TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗

UC memory is subject to SC consistency semantics:

no reordering

Ex86: Extended Intel-x86 Consistency Semantics
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The extent of 

UC Specification 

in the Intel manual

applies only to all-UC accesses, not mixed accesses
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TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗
WC ✔✗

Ex86: Extended Intel-x86 Consistency Semantics
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WC Memory Type
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write-write reordering on different locations 

The extent of 

WC Specification 

in the Intel manual

applies only to all-WC accesses, not mixed accesses



What about Non-temporal Stores?
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Intel Manual: Non-temporal Stores
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According to the Intel manual: 

Non-temporal stores have the same semantics as WC memory

But…
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TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗
WC ✔✗

MOVNT ✔ ✔

Ex86: Extended Intel-x86 Consistency Semantics
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TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗
WC ✔✗

MOVNT ✔ ✔
WC & NT stores


have different semantics
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TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗
WC ✔✗

MOVNT ✔ ✔
WC & NT stores


have different semantics

Solution 
  

Validate the Ex86 Consistency Semantics!

Ex86: Extended Intel-x86 Consistency Semantics



❖ Validated Ex86 using the diy tool suite

Ex86 Validation
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❖ Ran tests on various Intel-x86 CPU implementations
➡ e.g. coreI5, coreI6 and Xeon

❖ Built a test base of over 2200 tests

❖ Ran each test at least 6 x 108 times; ran critical tests up to a few billion times

❖ Extended the klitmus tool to allow for specifying memory types
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❖ Ran tests on various Intel-x86 CPU implementations
➡ e.g. coreI5, coreI6 and Xeon

❖ Built a test base of over 2200 tests

❖ Ran each test at least 6 x 108 times; ran critical tests up to a few billion times

❖ Extended the klitmus tool to allow for specifying memory types

❖ For more details see: http://diy.inria.fr/x86-memtype



Ex86 Semantics: Preserved Ordering
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Order preserved;
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Order not preserved

may be reordered

sloc: Order preserved iff 

on the same location 

scl: Order preserved iff 

on the same cache line 
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Ex86 Semantics: Two Equivalent Models
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Operational Ex86 Declarative Ex86

Proved the equivalence of the two models



What about Intel-x86 Persistency Semantics?
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Computer Storage

HDD

RAM✓ fast 
✗ volatile

✗ slow 
✓ persistent
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What is Non-Volatile Memory (NVM)?

RAMNVM

NVM: Hybrid Storage + Memory 
Best of both worlds: 
✓ persistent (like HDD)  
✓ fast, random access (like RAM) 
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x := 1;

// x=0;y=0

y := 1;

What Can Go Wrong?

20



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

20



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

!! Execution continues ahead of persistence 
    — asynchronous persists

20

OR x=0;y=0



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

!! Execution continues ahead of persistence 
    — asynchronous persists

20

OR x=0;y=0 OR x=1;y=0



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

!! Writes may persist out of order

!! Execution continues ahead of persistence 
    — asynchronous persists

20

OR x=0;y=0 OR x=1;y=0 OR x=0;y=1



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

!! Writes may persist out of order

!! Execution continues ahead of persistence 
    — asynchronous persists

20

OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Consistency Model
the order in which writes

are made visible to other threads

Persistency Model
the order in which writes 

are persisted to NVM

Full Semantics
Consistency + Persistency Model
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PEx86 (Persistent Extended x86): 

Formal consistency + Persistency semantics of 
Intel-x86 architectures 

including  
non-temporal stores & memory types



PEx86 Semantics: Two Equivalent Models
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Operational PEx86 Declarative PEx86

Proved the equivalence of the two models
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PEx86: Persistent Extended Intel-x86 Semantics
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❖ Developed Ex86: an extensive Intel-x86 consistency model
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➡ Non-temporal stores

❖ Formalised Ex86 both operationally & declaratively, and proved them equivalent
❖ Empirically validated Ex86 through extensive testing
❖ Developed PEx86: an extensive Intel-x86 consistency and persistency model

➡ Memory types (WB, WT, WC, UC) 
➡ Non-temporal stores

❖ Formalised PEx86 both operationally & declaratively, and proved them equivalent
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