
Extending Intel-x86 Consistency and Persistency:

Formalising the Semantics of Intel-x86 Memory Types & Non-temporal Stores

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

POPL, 2022

Viktor Vafeiadis 
MPI-SWS

Azalea Raad 
Imperial College London

Luc Maranget 
Inria Paris

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org


❖ Write directly to memory, bypassing cache 
❖ Avoids cache pollution 
❖ Ubiquitous (application-level use)

Intel-x86 Non-temporal Stores

2



❖ Write directly to memory, bypassing cache 
❖ Avoids cache pollution 
❖ Ubiquitous (application-level use)

Intel-x86 Non-temporal Stores

➡ 308K instances of MOVNTI on GitHub 
    including in C, C++ & Assembly

2



❖ Write directly to memory, bypassing cache 
❖ Avoids cache pollution 
❖ Ubiquitous (application-level use)

Intel-x86 Non-temporal Stores

➡ 308K instances of MOVNTI on GitHub 
    including in C, C++ & Assembly

➡ memset function in the C runtime
➡ memcpy in glibc

2



❖ Write directly to memory, bypassing cache 
❖ Avoids cache pollution 
❖ Ubiquitous (application-level use)

Intel-x86 Non-temporal Stores

➡ 308K instances of MOVNTI on GitHub 
    including in C, C++ & Assembly

➡ memset function in the C runtime
➡ memcpy in glibc
➡ Large-scale projects: PMDK and SPDK to interface with NVM
➡ Large-scale projects: DPDK and DML to communicate with accelerators

2



❖ Also known as memory cacheability*: UC, WC, WT, WB

Intel-x86 Memory Types

3

➡ UC: Strong Uncacheable 
➡ WC: Write Combining

❖ Cacheable types: memory accesses go through the cache hierarchy 
➡ WB: Write Back 
➡ WT: Write Through

* There are two other memory types: WP and UC-

❖ Non-cacheable types: bypass memory, access (read/write) memory directly



❖ Also known as memory cacheability*: UC, WC, WT, WB

Intel-x86 Memory Types

3

➡ UC: Strong Uncacheable 
➡ WC: Write Combining

❖ Cacheable types: memory accesses go through the cache hierarchy 
➡ WB: Write Back 
➡ WT: Write Through

❖ Use within system-level code
➡ Linux Kernel: WC for frame buffer optimisation 
➡ Linux Kernel: UC for memory-mapped I/O 
➡ Interaction with non-cache-coherent DMA device drivers

* There are two other memory types: WP and UC-

❖ Non-cacheable types: bypass memory, access (read/write) memory directly



❖ Also known as memory cacheability*: UC, WC, WT, WB

Intel-x86 Memory Types

3

➡ UC: Strong Uncacheable 
➡ WC: Write Combining

❖ Cacheable types: memory accesses go through the cache hierarchy 
➡ WB: Write Back 
➡ WT: Write Through

❖ Use within system-level code
➡ Linux Kernel: WC for frame buffer optimisation 
➡ Linux Kernel: UC for memory-mapped I/O 
➡ Interaction with non-cache-coherent DMA device drivers

* There are two other memory types: WP and UC-

❖ Non-cacheable types: bypass memory, access (read/write) memory directly

Ex86 (Extended x86): 

Formal consistency semantics of Intel-x86 architectures 
including  

non-temporal stores & memory types



4

Isn’t it just TSO? 

Ex86: Extended Intel-x86 Consistency Semantics

Core1

Buffer

(Volatile) Memory

Core1

Buffer



4

Isn’t it just TSO? 

Ex86: Extended Intel-x86 Consistency Semantics

TSO confirmed for WB memory only 

Core1

Buffer

(Volatile) Memory

Core1

Buffer



5

Ex86: Extended Intel-x86 Consistency Semantics



5

SC ✗ ✗

Ex86: Extended Intel-x86 Consistency Semantics



5

SC ✗ ✗
TSO ✔ ✗

Ex86: Extended Intel-x86 Consistency Semantics



5

TSO/ WB, WT

SC ✗ ✗

✔ ✗

WB, WT memory are subject to TSO consistency:

write-read reordering

Ex86: Extended Intel-x86 Consistency Semantics



WB and WT Memory Types

6

TSO



WB and WT Memory Types

6

TSO

applies only to all-WB/ all-WT accesses, not mixed accesses



WB and WT Memory Types

6

TSO

The extent of 

WB/WT Specification 

in the Intel manual

applies only to all-WB/ all-WT accesses, not mixed accesses



7

TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗

Ex86: Extended Intel-x86 Consistency Semantics



7

TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗

UC memory is subject to SC consistency semantics:

no reordering

Ex86: Extended Intel-x86 Consistency Semantics



UC Memory Type

8

SC



UC Memory Type

8

SC

applies only to all-UC accesses, not mixed accesses



UC Memory Type

8

SC

The extent of 

UC Specification 

in the Intel manual

applies only to all-UC accesses, not mixed accesses



9

TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗
WC ✔✗

Ex86: Extended Intel-x86 Consistency Semantics

WC memory: write-write reordering on different locations



WC Memory Type

10

write-write reordering on different locations 



WC Memory Type

10

write-write reordering on different locations 

applies only to all-WC accesses, not mixed accesses



WC Memory Type

10

write-write reordering on different locations 

The extent of 

WC Specification 

in the Intel manual

applies only to all-WC accesses, not mixed accesses



What about Non-temporal Stores?

11



Intel Manual: Non-temporal Stores

12



Intel Manual: Non-temporal Stores

12

According to the Intel manual: 

Non-temporal stores have the same semantics as WC memory



Intel Manual: Non-temporal Stores

12

According to the Intel manual: 

Non-temporal stores have the same semantics as WC memory

But…



13

TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗
WC ✔✗

MOVNT ✔ ✔

Ex86: Extended Intel-x86 Consistency Semantics



13

TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗
WC ✔✗

MOVNT ✔ ✔
WC & NT stores


have different semantics

Ex86: Extended Intel-x86 Consistency Semantics



13

TSO/ WB, WT

SC ✗ ✗

✔ ✗
UC ✗✗
WC ✔✗

MOVNT ✔ ✔
WC & NT stores


have different semantics

Solution 
  

Validate the Ex86 Consistency Semantics!

Ex86: Extended Intel-x86 Consistency Semantics



❖ Validated Ex86 using the diy tool suite

Ex86 Validation

14

❖ Ran tests on various Intel-x86 CPU implementations
➡ e.g. coreI5, coreI6 and Xeon

❖ Built a test base of over 2200 tests

❖ Ran each test at least 6 x 108 times; ran critical tests up to a few billion times

❖ Extended the klitmus tool to allow for specifying memory types



❖ Validated Ex86 using the diy tool suite

Ex86 Validation

14

❖ Ran tests on various Intel-x86 CPU implementations
➡ e.g. coreI5, coreI6 and Xeon

❖ Built a test base of over 2200 tests

❖ Ran each test at least 6 x 108 times; ran critical tests up to a few billion times

❖ Extended the klitmus tool to allow for specifying memory types

❖ For more details see: http://diy.inria.fr/x86-memtype



Ex86 Semantics: Preserved Ordering

15

Order preserved;

may not be reordered

Order not preserved

may be reordered

sloc: Order preserved iff 

on the same location 

scl: Order preserved iff 

on the same cache line 



Ex86 Semantics: Preserved Ordering

15

Order preserved;

may not be reordered

Order not preserved

may be reordered

sloc: Order preserved iff 

on the same location 

scl: Order preserved iff 

on the same cache line 



Ex86 Semantics: Preserved Ordering

15

Order preserved;

may not be reordered

Order not preserved

may be reordered

sloc: Order preserved iff 

on the same location 

scl: Order preserved iff 

on the same cache line 



Ex86 Semantics: Preserved Ordering

15

Order preserved;

may not be reordered

Order not preserved

may be reordered

sloc: Order preserved iff 

on the same location 

scl: Order preserved iff 

on the same cache line 



Ex86 Semantics: Preserved Ordering

15

Order preserved;

may not be reordered

Order not preserved

may be reordered

sloc: Order preserved iff 

on the same location 

scl: Order preserved iff 

on the same cache line 



Ex86 Semantics: Preserved Ordering

15

Order preserved;

may not be reordered

Order not preserved

may be reordered

sloc: Order preserved iff 

on the same location 

scl: Order preserved iff 

on the same cache line 



Ex86 Semantics: Two Equivalent Models

16

Operational Ex86 Declarative Ex86

Proved the equivalence of the two models



What about Intel-x86 Persistency Semantics?

17



Computer Storage

HDD

RAM✓ fast 
✗ volatile

✗ slow 
✓ persistent

18



What is Non-Volatile Memory (NVM)?

RAMNVM

NVM: Hybrid Storage + Memory 
Best of both worlds: 
✓ persistent (like HDD)  
✓ fast, random access (like RAM) 

19



x := 1;

// x=0;y=0

y := 1;

What Can Go Wrong?

20



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

20



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

!! Execution continues ahead of persistence 
    — asynchronous persists

20

OR x=0;y=0



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

!! Execution continues ahead of persistence 
    — asynchronous persists

20

OR x=0;y=0 OR x=1;y=0



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

!! Writes may persist out of order

!! Execution continues ahead of persistence 
    — asynchronous persists

20

OR x=0;y=0 OR x=1;y=0 OR x=0;y=1



x := 1;

// x=0;y=0

y := 1;

// x=1;y=1

What Can Go Wrong?

!! Writes may persist out of order

!! Execution continues ahead of persistence 
    — asynchronous persists

20

OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Consistency Model
the order in which writes

are made visible to other threads

Persistency Model
the order in which writes 

are persisted to NVM

Full Semantics
Consistency + Persistency Model



21

PEx86 (Persistent Extended x86): 

Formal consistency + Persistency semantics of 
Intel-x86 architectures 

including  
non-temporal stores & memory types



PEx86 Semantics: Two Equivalent Models

22

Operational PEx86 Declarative PEx86

Proved the equivalence of the two models



23

PEx86: Persistent Extended Intel-x86 Semantics



Conclusions
❖ Developed Ex86: an extensive Intel-x86 consistency model

➡ Memory types (WB, WT, WC, UC) 
➡ Non-temporal stores

❖ Formalised Ex86 both operationally & declaratively, and proved them equivalent
❖ Empirically validated Ex86 through extensive testing
❖ Developed PEx86: an extensive Intel-x86 consistency and persistency model

➡ Memory types (WB, WT, WC, UC) 
➡ Non-temporal stores

❖ Formalised PEx86 both operationally & declaratively, and proved them equivalent



Conclusions
❖ Developed Ex86: an extensive Intel-x86 consistency model

➡ Memory types (WB, WT, WC, UC) 
➡ Non-temporal stores

❖ Future work

❖ Formalised Ex86 both operationally & declaratively, and proved them equivalent
❖ Empirically validated Ex86 through extensive testing
❖ Developed PEx86: an extensive Intel-x86 consistency and persistency model

➡ Memory types (WB, WT, WC, UC) 
➡ Non-temporal stores

❖ Formalised PEx86 both operationally & declaratively, and proved them equivalent

➡ Program logics 
➡ Model checking algorithms



Conclusions
❖ Developed Ex86: an extensive Intel-x86 consistency model

➡ Memory types (WB, WT, WC, UC) 
➡ Non-temporal stores

❖ Future work

❖ Formalised Ex86 both operationally & declaratively, and proved them equivalent
❖ Empirically validated Ex86 through extensive testing
❖ Developed PEx86: an extensive Intel-x86 consistency and persistency model

➡ Memory types (WB, WT, WC, UC) 
➡ Non-temporal stores

❖ Formalised PEx86 both operationally & declaratively, and proved them equivalent

➡ Program logics 
➡ Model checking algorithms

Thank You for Listening!

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

