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INntel-x86 Non-temporal Stores

+* Write directly to memory, bypassing cache
+ Avoids cache pollution
+ Ubiquitous (application-level use)
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+* Write directly to memory, bypassing cache

< Avoids cache pollution

+ Ubiquitous (application-level use)

= 308K instances of MOVNTI on GitHub
including in C, C++ & Assembly
= memset function in the C runtime

= memcpy IN glibc
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e projects: PMDK and SPDK to interface with NVM
e projects: DPDK and DML to communicate with accelerators



INtel-x86 Memory lypes

* Also known as memory cacheability : UC, WC, WT, WB

+* Non-cacheable types: bypass memory, access (read/write) memory directly

= UC: Strong Uncacheable
= \WC: Write Combining

+ Cacheable types: memory accesses go through the cache hierarchy

= \WB: Write Back
= WT. Write Through

* There are two other memory types: WP and UC
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* Also known as memory cacheability : UC, WC, WT, WB

+* Non-cacheable types: bypass memory, access (read/write) memory directly

= UC: Strong Uncacheable
= \WC: Write Combining

+ Cacheable types: memory accesses go through the cache hierarchy

= \\VB: Write Back
= WT. Write Through

+ Use within system-Ilevel code

= | inux Kernel: WC for frame buffer optimisation
= | inux Kernel: UC for memory-mapped |/O
= |nteraction with non-cache-coherent DMA device drivers

* There are two other memory types: WP and UC



INtel-x86 Memory lypes

Ex86 (Extended x86):

Formal consistency semantics of Intel-x86 architectures
including
non-temporal stores & memory types
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Store buffering (SB) Message passing (MP)
Initially, x =y =0 Initially, x =y =0
x =1 y =1 x=1 | a=y /I
a=y /0| b:=x /0 y:=11| b:=x /0
s X X

TSO/ WB, WT v 4 X




WB and WT Memory lypes

Table 11-2. Memory Types and Their Properties

Memory Type and Cacheable | Writeback | Allows Memory Ordering Model
Mnemonic Cacheable | Speculative

Reads
Write Through (WT) | Yes No Yes Speculative Processor Ordering.
Write Back (WB) Yes Yes Yes Speculative Processor Ordering.
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WB and WT Memory lypes

Table 11-2. Memory Types and Their Properties

Memory Type and Cacheable | Writeback | Allows Memory Ordering Model
Mnemonic Cacheable | Speculative

Reads
Write Through (WT) | Yes No Yes Speculative Processor Ordering.
Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

applies only to all-WB/ all-WT accesses, not mixed accesses

Write-through (WT) — Writes and reads to and from system memory are cached. Reads come from cache
lines on cache hits; read misses cause cache fills. Speculative reads are allowed. All writes are written to a
cache line (when possible) and through to system memory. When writing through to memory, invalid cache
lines are never filled, and valid cache lines are either filled or invalidated. Write combining is allowed. This type
of cache-control is appropriate for frame buffers or when there are devices on the system bus that access

system memory, but do not perform snooping of memory accesses. It enforces coherency between caches in
the processors and system memory.

Write-back (WB) — Writes and reads to and from system memory are cached. Reads come from cache lines
on cache hits; read misses cause cache fills. Speculative reads are allowed. Write misses cause cache line fills
(in processor families starting with the P6 family processors), and writes are performed entirely in the cache,
when possible. Write combining is allowed. The write-back memory type reduces bus traffic by eliminating
many unnecessary writes to system memory. Writes to a cache line are not immediately forwarded to system
memory; instead, they are accumulated in the cache. The modified cache lines are written to system memory
later, when a write-back operation is performed. Write-back operations are triggered when cache lines need to
be deallocated, such as when new cache lines are being allocated in a cache that is already full. They also are
triggered by the mechanisms used to maintain cache consistency. This type of cache-control provides the best
performance, but it requires that all devices that access system memory on the system bus be able to snoop
memory accesses to ensure system memory and cache coherency.
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UC Memory Type

Table 11-2. Memory Types and Their Properties

Memory Type and Cacheable | Writeback | Allows Memory Ordering Model
Mnemonic Cacheable | Speculative
Reads
Strong Uncacheable | No No No Strong Ordering
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Table 11-2. Memory Types and Their Properties
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UC Memory Type

Table 11-2. Memory Types and Their Properties

Memory Type and Cacheable | Writeback | Allows Memory Ordering Model
Mnemonic Cacheable | Speculative
Reads
Strong Uncacheable | No No No Strong Ordering
(UC) |

applies only to all-UC accesses, not mixed accesses

Strong Uncacheable (UC) —System memory locations are not cached. All reads and writes appear on the
system bus and are executed in program order without reordering. No speculative memory accesses, page-
table walks, or prefetches of speculated branch targets are made. This type of cache-control is useful for
memory-mapped I/O devices. When used with normal RAM, it greatly reduces processor performance.
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WC Memory Type

Table 11-2. Memory Types and Their Properties

Memory Type and Cacheable | Writeback | Allows Memory Ordering Model
Mnemonic Cacheable | Speculative

Reads
Write Combining (WC) | No No Yes

Weak Ordering. Available by programming MTRRs or by selecting it
through the PAT.
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Table 11-2. Memory Types and Their Properties

Memory Type and Cacheable | Writeback | Allows Memory Ordering Model
Mnemonic Cacheable | Speculative

Reads
Write Combining (WC) | No No Yes

Weak Ordering. Available by programming MTRRs or by selecting it
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WC Memory Type

Table 11-2. Memory Types and Their Properties

Memory Type and Cacheable | Writeback | Allows Memory Ordering Model
Mnemonic Cacheable | Speculative
Reads
Write Combining (WC) | No No Yes Weak Ordering. Available by programming MTRRs or by selecting it

| through the PAT.

applies only to all-WC accesses, not mixed accesses

Write Combining (WC) — System memory locations are not cached (as with uncacheable memory) and
coherency is not enforced by the processor’s bus coherency protocol. Speculative reads are allowed. Writes
may be delayed and combined in the write combining buffer (WC buffer) to reduce memory accesses. If the WC
buffer is partially filled, the writes may be delayed until the next occurrence of a serializing event; such as an
SFENCE or MFENCE instruction, CPUID or other serializing instruction, a read or write to uncached memory, an
interrupt occurrence, or an execution of a LOCK instruction (including one with an XACQUIRE or XRELEASE
prefix). In addition, an execution of the XEND instruction (to end a transactional region) evicts any writes that
were buffered before the corresponding execution of the XBEGIN instruction (to begin the transactional region)
before evicting any writes that were performed inside the transactional region.

This type of cache-control is appropriate for video frame buffers, where the order of writes is unimportant as
long as the writes update memory so they can be seen on the graphics display. See Section 11.3.1, “"Buffering
of Write Combining Memory Locations,” for more information about caching the WC memory type. This memory
type is available in the Pentium Pro and Pentium II processors by programming the MTRRS; or in processor
families starting from the Pentium lll processors by programming the MTRRs or by selecting it through the PAT.
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What about Non-temporal Stores”’



INntel Manual: Non-temporal Stores

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by treating the memory being
accessed as the write combining (WC) type.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data may not be written to
memory in program order,

12
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Ex86: Extended Intel-x86 Consistency Semantics

Solution

Validate the Ex86 Consistency Semantics!
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Ex86 Valigdation

+ Validated Ex36 using the diy tool suite

+ Extended the klitmus tool to allow for specifying memory types

<+ Bullt a test base of over 2200 tests

+ Ran tests on various Intel-x86 CPU implementations
= e.g. coreld, corelb and Xeon

+ Ran each test at least 6 x 108 times; ran critical tests up to a few billion times
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Ex86 Valigdation

+ Validated Ex36 using the diy tool suite

+ Extended the klitmus tool to allow for specifying memory types

<+ Bullt a test base of over 2200 tests

+ Ran tests on various Intel-x86 CPU implementations

= e.g. coreld, corelb and Xeon

+ Ran each test at least 6 x 108 times; ran critical tests up to a few billion times

+ For more details see: http://diy.inria.fr/x86-memtype
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Ex86 Semantics: Preserved Ordering

Later in Program Order

wa,wt R'uc,wc Wwb Wuc,wt wwc,nt UMF,5F| FL | FO
R [/ |/ |/ 7 [/ 7/ [ /|V
§ We | X | / |/ | / |sloc| « |/ [sd
= Watwe| X |V |V |V | /| V [/ |V
% Waent| X | ¢ |sloc] v |sloc| « |/ |scl
SN 7/ | 7 /7 /7 7 77
sIsF| x | /T |/ |/ |/ | v [/|V/
SIFL | X |/ |/ 7 1 /7| 7/ [ /X
w [ FO | X |/ x| /| X SOl X X

Order preserved;
may not be reordered

sloc: Order preserved iff

on the same location

scl: Order preserved iff
on the same cache line

Order not preserved
may be reordered
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Ex86 Semantics: Two Equivalent Models

Operational Ex86 Declarative Ex86

(cpu) .. (cpu] — [init]

PO b T
. Wxl L Wyl
T T’ | ot o |
( Memory ) Ry() Rx0

Proved the equivalence of the two models



What about Intel-x86 Persistency Semantics?
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v fast
X volatile

Computer Storage

11
RAM

| X slow

v persistent
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What is Non-Volatile Memory (NVM)?

4 )
11
NVM

o

NVM: Hybrid Storage + Memory
Best of both worlds:

v persistent (like HDD)
v fast, random access (ke RAM)




What Can Go Wrong?
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What Can Go Wrong?

~
/) x=0; y=0

X = 1;

v = 1;

f

/) x=1;y=1 OROR x=1;y=0 OR|x=0;y=1

.

J

! Execution continues ahead of persistence
— asynchronous persists

Writes may persist
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What Can Go Wrong?

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

Full Semantics
Consistency + Persistency Model
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PEXx86 (Persistent Extended x86):

~ormal consistency + Persistency semantics of
INtel-x386 architectures
INncluaing

non-temporal stores & memory types
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PEX86 Semantics: Two Equivalent Models

Operational PEx86 Declarative PEx86

[cEPU] o [cEPu]

- . ,'"‘\ \
1 T Wxl Wyl

Y W T
| ) \‘ y | 'v
I |
‘ " :
I H

ababa W

[ P:;Sr::nlcy buffer ) l g / ' rf ) . . l
( NVM ) RyO Rx0

Proved the equivalence of the two models
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PEXx86: Persistent Extended Intel-x86 Semantics

x,y€Locy | X,X,y€Locy, | X, X, yELocy, | X,X,yELocy x, X",y €Locyp
x =1 x = 1 x =1 x =1 x =1
y =1 clflush x’ | clflushopt x'| clflushopt x’ | clflushopt x”
y =1 y =1 xchg(y, 1) sfence
y =1
rec: x,y €{0,1} |rec:y=1=x=1|rec:x,y€{0,1} | rec:y=1=x=1 rec: y=1=x=1
x€Llocycuwt | X ELoCy, x€Llocye, [Xx€ELocwbuwtuwe [X € LoCwbuwtuwe
y€Loc yeLoCuwcuwb | YELOC,cuwt | Y €ELOCUcUwWt y € LoCuwcuwb
x = 1 x =1 x =1 x =1 x =1
y =1 y =1 y =1 X =NT 2 X i=NT 2
y =1 sfence
y =1
rec: y=1=x=1|rec:x,y€{0,1} |rec:y=1=x=1| reciy=1=>x=2 | rec:y=1=x=2

23



Conclusions

+* Developed Ex86: an extensive Intel-x86 consistency model

= Memory types (WB, WT, WC, UC)
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+ Empirically validated Ex86 through extensive testing
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