
Bayesian Separation Logic
A Logical Foundation and Axiomatic Semantics for Probabilistic Programming

SHING HIN HO, Imperial College London, UK
NICOLAS WU, Imperial College London, UK
AZALEA RAAD, Imperial College London, UK

Bayesian probabilistic programming languages (BPPLs) let users denote statistical models as code while the
interpreter infers the posterior distribution. The semantics of BPPLs are usually mathematically complex and
unable to reason about desirable properties such as expected values and independence of random variables. To
reason about these properties in a non-Bayesian setting, probabilistic separation logics such as PSL and Lilac
interpret separating conjunction as probabilistic independence of random variables. However, no existing
separation logic can handle Bayesian updating, which is the key distinguishing feature of BPPLs.

To close this gap, we introduce Bayesian separation logic (B�SL), a probabilistic separation logic that gives
semantics to BPPL. We prove an internal version of Bayes’ theorem using a result in measure theory known
as the Rokhlin-Simmons disintegration theorem. Consequently, B�SL can model probabilistic programming
concepts such as Bayesian updating, unnormalised distribution, conditional distribution, soft constraint,
conjugate prior and improper prior while maintaining modularity via the frame rule. The model of B�SL is
based on a novel instantiation of Kripke resource monoid via f-�nite measure spaces over the Hilbert cube,
and the semantics of Hoare triple is compatible with an existing denotational semantics of BPPL based on the
category of s-�nite kernels. Using B�SL, we then prove properties of statistical models such as the expected
value of Bayesian coin �ip, correlation of random variables in the collider Bayesian network, the posterior
distributions of the burglar alarm model, a parameter estimation algorithm, and the Gaussian mixture model.

CCS Concepts: • Theory of computation! Separation logic; Probabilistic computation.

Additional Key Words and Phrases: Probabilistic programming, Bayesian inference, Axiomatic semantics

ACM Reference Format:
Shing Hin Ho, Nicolas Wu, and Azalea Raad. 2026. Bayesian Separation Logic: A Logical Foundation and Ax-
iomatic Semantics for Probabilistic Programming. Proc. ACM Program. Lang. 10, POPL, Article 54 (January 2026),
29 pages. https://doi.org/10.1145/3776696

1 Introduction
Statistical techniques have become increasingly prevalent with widespread applications across a
multitude of domains from computer vision and data science to computational biology and social
science. As a result, there is a pressing need for developing secure and explainable statistical models.
A way of ensuring correctness of such systems is with formal methods, a collection of techniques that
allows computer scientists to prove properties of algorithms/programming languages by modelling
the objects of interest mathematically. In fact, researchers are increasingly applying formal methods
to probabilistic/machine learning algorithms in order to provide correctness guarantees on desirable
statistical properties [Cruz and Shoukry 2022; Slusarz et al. 2022]. We are interested in formal and

Authors’ Contact Information: Shing Hin Ho, Imperial College London, London, UK, shinghin.ho21@imperial.ac.uk; Nicolas
Wu, Imperial College London, London, UK, n.wu@imperial.ac.uk; Azalea Raad, Imperial College London, London, UK,
azalea.raad@imperial.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).
ACM 2475-1421/2026/1-ART54
https://doi.org/10.1145/3776696

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

https://orcid.org/0009-0000-4483-5841
https://orcid.org/0000-0002-4161-985X
https://orcid.org/0000-0002-2319-3242
https://doi.org/10.1145/3776696
https://orcid.org/0009-0000-4483-5841
https://orcid.org/0000-0002-4161-985X
https://orcid.org/0000-0002-4161-985X
https://orcid.org/0000-0002-2319-3242
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776696

54:2 Shing Hin Ho, Nicolas Wu, and Azalea Raad

compositional reasoning techniques for Bayesian probabilistic programming languages – a class of
statistical programming languages that implement algorithms for Bayesian inference.
Bayesian inference is a statistical technique that allows users to infer unknown distributions

using a statistical model and Bayes’ theorem. It has a wide range of applications ranging from
medicine [Muehlemann et al. 2023] to computer vision [Geman and Geman 1984]. For instance,
problems such as clustering and regression can be solved by reframing them as Bayesian inference
problems. Computationally, probabilistic programming is the programming paradigm that imple-
ments Bayesian inference by using general inference algorithms such as Hamiltonian Monte Carlo
and Gibbs sampling [Brooks et al. 2011], while providing a simple interface for users to specify their
statistical models [van de Meent et al. 2021]. Bayesian probabilistic programming languages (BPPLs)
such as S��� [Carpenter et al. 2017], A������� [Tolpin et al. 2016] and G�� [Cusumano-Towner
et al. 2019] are implementations of the programming paradigm and have specialised constructs for
users to easily express statistical models.

Goal. Our goal is to develop a logical foundation that allows us to reason about statistical
properties of BPPL programs (e.g. independence, expected value, correlation) in a compositional
manner. To achieve this, we use separation logic [Reynolds 2002], a logical system designed to
allow compositional reasoning of computational resources, which in our case, are the random
variables produced by the probabilistic program. In particular, we develop Bayesian separation
logic (B�SL, pronounced ‘basil’), a logical system for Bayesian reasoning based on probabilistic
separation logic. From B�SL, we derive the �rst Hoare logic for BPPLs, which then allows us to
prove the correctness/properties of statistical models such as the Bayesian coin �ip model, the
collider network, a parameter estimation algorithm, and a Gaussian-mixture-based clustering model.

Bayesian Conditioning. Unlike randomised programming languages, which are languages with a
sampling construct, sample, implemented via a pseudo-random number generator (e.g. in C and
Python), a BPPL has an additional conditioning construct, observe1, that allows users to express
conditional probability. For example, consider an experiment where we toss a fair die - , then
condition on the event - > 4. This can be expressed by the BPPL program in Figure 1, which
computes the distribution of - given that - > 4:

let - = sample(FairDie) in
observe(- > 4);
return -

‘observe’ �lters out traces
that do not satisfy - > 4
�������������������������!

1 2 3 4 5 6

Pr[- = G | - > 4]

Fig. 1. Conditioning as the computational e�ect observe

Probabilistic Separation Logics. The reasoning principles for randomised languages have been
studied in probabilistic separation logics [Bao et al. 2021a,b; Barthe et al. 2019; Li et al. 2023; Tassarotti
and Harper 2019] through a set of axiomatic rules for deriving Hoare triples. A Hoare triple,
{%} " {- .&}, consists of four components: the program" , the precondition % , the return variable
- and the postcondition & . A Hoare triple {%} " {- .&} is valid when executing the program"
assuming % produces a variable - and the proposition& holds. For instance, consider the following
Hoare triple (using the notation of L���� [Li et al. 2023]):

{>} sample(FairDie) {- .- ⇠ Unif ({1, ..., 6})}

1For readers familiar with probabilistic programming, observe is implemented using the soft-constraint construct score.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:3

The triple above describes the pre/postcondition for executing sample(FairDie) for rolling a fair die.
Assuming a precondition with no knowledge of variables (>), executing sample(FairDie) yields
a random variable - that has a uniform distribution on {1, ..., 6}. Moreover, since the underlying
logic of the Hoare triple is based on probabilistic separation logic, we can freely add independent
random variables in our pre/postconditions via the probabilistic separating conjunction ‘⇤’. For
example, the Hoare triple below states that given a random variable. with distribution P, executing
sample(FairDie) produces an - that is probabilistically independent of . :

{. ⇠ P} sample(FairDie) {- .- ⇠ Unif ({1, ..., 6}) ⇤ . ⇠ P}

This is useful due to the nature of probabilistic reasoning, where a key part is to determine
which random variables are independent of each other. Apart from the property of distribution
(propositions of the form - ⇠ P), probabilistic separation logic can also reason about di�erent
probabilistic properties. For example, the logical entailment

- ⇠ N(0, 1) ⇤ . ⇠ N(0, 1) ` (E[-] = 0 ⇤ E[.] = 0) ^ Cov[- ,.] = 0

states that if - and . are independent, normally-distributed random variables with mean 0 and
standard deviation 1, then they both have expected value2 zero (E[-] = 0 ⇤ E[.] = 0) and - ,.
are uncorrelated (since the covariance is zero Cov[- ,.] = 0). Having statistical propositions and
combining them using the separating conjunction ‘⇤’ allows formal and convenient statistical
reasoning in a formal setting.

Limitation of Existing Work: No Support for Bayesian Conditioning. While probabilistic separation
logics are a rich �eld of study with plenty of variations, existing probabilistic separation logics
cannot reason about the observe construct. For instance, following the intuition in Figure 1, we
should ideally have a Hoare triple speci�cation as follows:

{- ⇠ Unif ({1, ..., 6})} observe(- > 4) {- ⇠ Unif ({5, 6})}

This technique is called Bayesian updating/Bayesian conditioning, where we ‘update’ our distribu-
tions based on observations. B�SL is the �rst probabilistic separation logic that allows reasoning
of Bayesian updating, and we do this by drawing an analogy between mutation of memory in
standard separation logic. We achieve this by proving an internal Bayes’ theorem (Theorem 4.11)
using a result in measure theory known as the Rokhlin-Simmons disintegration theorem.

Limitation of Existing Work: Dependencies of Random Variables. Existing probabilistic separation
logics such as L���� and B���B��� can reason about dependent random variable via the conditioning
modality. For instance, the proposition G - | . ⇠ N(G, 1) means . has distribution N(G, 1),
conditioning on - = G for some G 2 R. B�SL extends the conditioning modality to support
conditional reasoning in the presence of Bayesian updating. Furthermore, the Hoare logic in B�SL
supports conditional sampling. For example, the following Hoare triple is provable in B�SL:

{- ⇠ Unif (0, 1)} sample(Normal(- , 1)) {. .G
Unif (0,1)
 ����� - | . ⇠ N(G, 1)}

It states that assuming - ⇠ Unif (0, 1), sampling a normal with mean - yields a random variable . ,
which has a conditional distribution . ⇠ N(G, 1) when - = G for almost all G 2 [0, 1].

Proving Properties of the Bayesian Coin Flip Model. By supporting the above features, together
with the compositionality a�orded by the frame rule, B�SL can serve as a logical foundation for
symbolic reasoning probabilistic programming. To demonstrate B�SL and its associated Hoare
logic, we �rst consider a simple statistical problem known as Bayesian coin �ip.
2The expected value E[-] of a random variable - is the average of the distribution of - .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:4 Shing Hin Ho, Nicolas Wu, and Azalea Raad

- ⇠ Unif (0, 1)
Flip1 ⇠ Bern(G) when - = G

Flip2 ⇠ Bern(G) when - = G

observation: Flip1 = 1
observation: Flip2 = 0

Fig. 2. Bayesian solution of Problem 1

Precondition: >
Postcondition: return value - has expected value 1/2

let - = sample(Unif (0, 1)) in // specify prior belief
let Flip1 = sample(Bern(-)) in // toss the coin
observe(Flip1 = 1); // assert it comes up heads
let Flip2 = sample(Bern(-)) in // toss again
observe(Flip2 = 0); // assert it comes up tails
return - // what is our belief now?

Fig. 3. B����C���

P������ 1. We have a coin and we want to know if it is fair. We toss it once, it comes up heads. We
toss it again, it comes up tails. Is it a fair coin?

The problem, while simple, encapsulates the three main steps of the Bayesian method:
(1) We assume a prior belief (or prior in short) regarding the problem. In our case, we assume a

prior regarding whether the coin is fair.
(2) We observe real-life data. In our case, we have two observations of coin �ip.
(3) We update our belief based on observations. In our case, we update our belief based on

observations using Bayes’ theorem.
We defer the explanation of the statistical model to §2. For now, we describe the problem using
statistical notation in Figure 2, and its programmatic counterpart in Figure 3. Figure 2 states that
- has (prior) distribution Unif (0, 1), Flip8 has distribution Bern(G) when - = G (the Bernoulli
distribution), which is a distribution that returns 1 with G probability and 0 with 1 � G probability,
and we have two observations. Using a BPPL, we can express the same model programmatically
as shown in the B����C��� program in Figure 3. Programmatically, the underlying interpreter
for the language is performing rejection sampling, which, to a �rst approximation, executes the
program many times and �lters out traces that do not satisfy the required observations, i.e. when
Flip1 < 1 or Flip2 < 0. Intuitively, since we observed a head and a tail, the expected value (average)
of - should remain 1/2. As we show in §2, using B�SL we can encode and prove this speci�cation
easily (Figure 4), and our proof derivation formally describes how the distributions of the random
variables evolve.

Application: Justifying Probabilistic Program Rewrites. It is well-known that probabilistic pro-
gramming languages are computationally expensive to execute. For example, consider the two
programs below (which we will explain in detail later in §3.7):

let - = sample(N (0, 1)) in
let . = sample(Beta(<,=)) in
for � in [1, ...,#] do
observe G� from N(", 1);
observe 2� from Bern(,)

let - = sample
�
N

� sum([G1,...,G#])

#+1 , 1
� �

in
let . = sample(Beta(= + #(2 = 1),< + #(2 = 0))) in
return (- ,.)

The two programs have equivalent distributions and can be considered to be equal. However,
the program on the left is computationally costly to sample from due to the existence of two
conditioning (observe-from) constructs and a loop, while the one on the right is easy to sample
from. As we show later in §3.7, using B�SL we can justify rewriting the program on the left to
the one on the right by showing that we can prove the same Hoare triple (with the same pre- and
post-conditions) for both programs, establishing their equivalent distributions.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:5

Contributions and Roadmap. Our contributions are as follows:
• We explain how B����C��� can be speci�ed in B�SL (§2).
• We prove properties of �ve standard, but non-trivial Bayesian statistical models such as
Bayesian networks (§3.3, §3.4), parameter estimation algorithm (§3.2), and the Gaussian
mixture model (§3.6). The models have non-trivial features such as conditional dependencies,
soft constraint, conjugate prior and improper prior (§3.5), which no existing probabilistic
separation logic can verify (§3).

• For the semantics of B�SL, we describe intuitively the existing resource-theoretic model
of L���� for modelling randomness (§4.1) and motivate the need for a measure-theoretic
semantics to model randomness in a Bayesian setting (§4.2).

• We develop a novel Kripke resource monoid for modelling randomness that supports Bayesian
updating by using f-�nite measure spaces over the Hilbert cube (§4.3).

• We show that the Kripke resource model [Galmiche et al. 2005] of B�SL is compatible with
partially a�ne separation logic [Charguéraud 2020] (§4.3).

• We generalise L����’s disintegration modality so that conditional reasoning can be performed
in the presence of Bayesian updating (§4.4).

• We design new logical propositions to encode the concept of likelihood and normalising
constants, two key concepts in Bayesian probability (§4.4).

• We prove an internal version of Bayes’ theorem and show that the concept can be encoded
as logical propositions in B�SL by combining the disintegration modality and the likelihood
proposition (Theorem 4.11).

• We develop the B�SL proof system (a set of Hoare triples) and prove that it is sound with respect
to our Kripke resource model of B�SL (§4.4).

Finally, we discuss related and future work and conclude (§5).

2 Overview
To give an intuition of how B�SL can be used to prove properties of statistical models, we demon-
strate its proof rules via B����C��� (Problem 1). Recall that Bern(0.5) represents a fair coin as it
returns 1 and 0 with equal probability, while Bern(0.9) represents a biased coin that comes up
heads 90% of the time. Hence, we model our belief about whether our coin is fair via a random
variable - that takes a value in [0, 1].

Since we do not have additional information about the coin (-), we assume - ⇠ Unif (0, 1) as
our prior distribution and write the program described in Figure 3. To semantically deduce that the
return value - has expected value 1/2 (see the postcondition of Figure 3), we use B�SL to describe
B����C��� axiomatically via pre/postcondition style reasoning rules. We present the B�SL proof
sketch of B����C��� in Figure 4. We proceed with a detailed but informal explanation of our proof.

Lines 1-3. Initially, we have no random variables, as captured by the trivial precondition >1,
where 1 in >1 is the current normalising constant (we explain this on Page 7). After executing
line 2 (of Figure 4), the interpreter produces a random variable - with the desired distribution. To
reason about this, we apply the H�S����� rule below at line 2, which states that sampling from a
distribution P of type R returns a random variable - of type R distributed according to P (for line
2, P is instantiated to Unif (0, 1)):

` {>1} sample(P) {- : R. - ⇠ P} H�S�����

To ‘chain’ the postcondition to the rest of the program, we apply the sequencing rule H�L�� below,
chaining the postcondition of the �rst program to the precondition of the second program, thus

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:6 Shing Hin Ho, Nicolas Wu, and Azalea Raad

1 {>1}

2 let - = sample(Unif (0, 1)) in
3 {- ⇠ Unif (0, 1)}
4 let Flip1 = sample(Bern(-)) in
5 {G

Unif (0,1)
 ����� - | Flip1 ⇠ Bern(G)}

6 observe(Flip1 = 1);
7 {G

Unif (0,1)
 ����� - | Flip1 ⇠ ✓=1 · Bern(G)}

8 {G
Unif (0,1)
 ����� - | L(G)} // likelihood of - = G is G

9 {- ⇠ Beta(2, 1) ⇤ NormConst}
10

11

12

13

14

15

H
�F
��

�
�

{- ⇠ Beta(2, 1)}
let Flip2 = sample(Bern(-)) in

{G
Beta(2,1)
 ����� - | Flip2 ⇠ Bern(G)}
observe(Flip2 = 0);

{G
Beta(2,1)
 ����� - | Flip2 ⇠ ✓=0 · Bern(G)}

{- ⇠ Beta(2, 2) ⇤ NormConst}
16 {- ⇠ Beta(2, 2) ⇤ NormConst ⇤ NormConst}
17 {- ⇠ Beta(2, 2) ⇤ NormConst}
18 return -
19 {- ⇠ Beta(2, 2) ⇤ NormConst}
20 {E[-] = 1/2 ⇤ NormConst}

Fig. 4. An axiomatic description of B����C���

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0
Unif (0, 1)

0 1
0.00

0.25

0.50

0.75

1.00

1 � G

G

Bern(G)

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0
Beta(2, 1)

0 1
0.00

0.25

0.50

0.75

1.00

1 � G

✓=0 · Bern(G)

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0
Beta(2, 2)

0 1
0.00

0.25

0.50

0.75

1.00

G

✓=1 · Bern(G)

Fig. 5. Visualisation of distributions

obtaining - ⇠ Unif (0, 1) on line 3.
` {%} " {- : A .&} - : A ` {&} # {. : B .'}

` {%} let - =" in # {. : B .'}
H�L��

Lines 4-5. At line 4 we sample a Bernoulli variable according to our sampled - . While this line
certainly typechecks, it is more challenging to verify: it is ambiguous statistically, as it semantically
describes a conditional distribution. Given - ⇠ Unif (0, 1), we write Flip1 |- = G ⇠ Bern(G) to mean
that conditioning on - = G for almost all G 2 [0, 1], the random variable Flip1 has distribution
Bern(G). To reason about this in B�SL, we introduce our conditional sampling axiom:

` {- ⇠ P} sample(? (-)) {. : R.G
P
 � - | . ⇠ ? (G)} H�C���S�����

The arrow/bar notation G
P
 � - | % is our novel conditioning modality, which assumes - has

distribution P and binds it to a deterministic name G , while the proposition % on the right is a
proposition on the conditioned space after conditioning- = G . Speci�cally, G

P
 � - |. ⇠ ? (G) in the

postcondition is read as follows: assuming - ⇠ P, if we condition on - = G for some deterministic
G , then the sampled . has distribution ? (G). Instantiating the axiom above, line 5 says Flip1 has
distribution Bern(G) whenever - = G .

0 1

G
1�G

(✓=1 · �)
7�������!

0 1

G · ✓=1 (1) = G

(1 � G) · ✓=1 (0) = 0

Fig. 6. Applying likelihood function

Lines 6-8. Line 6 asserts Flip1 = 1 and re-
jects all program traces where Flip1 = 0. Se-
mantically, this means we apply a likelihood
function ✓=1 : {0, 1} ! [0,1) to Bern(G),

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:7

where ✓=1 (1) := 1 and ✓=1 (0) := 0. Speci�cally, since Flip1 ⇠ Bern(G) (as depicted on the left side of
Figure 6), applying the likelihood function ✓=1 to Bern(G) updates the distribution to the one on the
right side of Figure 6. Notice that this operation is done in the conditioned space conditioning on
- = G . In light of this, we introduce the H�C���O������ axiom below for conditional observation:

` {G
c
 �- | . ⇠ ? (G)} observe(% (.)) {G

c
 �- | . ⇠ ✓% · ? (G)} H�C���O������

where % is a Boolean predicate on. . The axiom states that assuming. ⇠ ? (G) when conditioning on
- = G , where - ⇠ c in the unconditioned space, then observing % (.) updates the distribution from
? (G) to ✓% · ? (G), where ✓% is the likelihood function with ✓% (G) := 1 if % (G) holds, and 0 otherwise.
In our case, . = Flip1 and % (Flip1) is de�ned to be (Flip1 = 1), which yields the postcondition on
line 7. For readers familiar with probabilistic programming, observe is implemented using the soft
constraint construct score, and there is a more general rule H�C���S���� as we explain in §4.
Since observe(Flip1 = 1) multiplies the likelihood of Flip1 = 1 by 1, the likelihood of Flip1 = 1

is G · 1 = G when - = G . Similarly, observe(Flip1 = 1) multiplies the likelihood of Flip1 = 0 by
0; i.e. Flip1 = 0 has likelihood (1 � G) · 0 = 0 when - = G . In other words, this describes traces
where Flip1 ⇠ Bern(G) has likelihood G . Intuitively this makes sense: when - = 0.1, the likelihood
of Flip1 = 1 is 0.1, which is lower than the likelihood when - = 0.99. To reason about this, we
introduce a likelihood proposition L(G), which denotes that the likelihood of our current state is G .
Since Flip1 ⇠ Bern(G) has likelihood G , the entailment Flip1 ⇠ ✓=1 · Bern(G) ` L(G) holds, which
results in the postcondition on line 8 using the standard rule of consequence H�C��� (see Figure 9).

Line 9. In light of our observation regarding how likely - = G is, we can now update our belief.
To achieve this, we apply an internal, logical version of Bayes’ theorem. Recall that Bayes’ theorem,
in the context of Bayesian statistics, states the following:

posterior / prior · likelihood

Or, equivalently, suppose 1// is the normalising constant for some / > 0, then Bayes’ theorem
can be stated as unnormalised posterior · / = prior · likelihood. Notice that line 8 has a similar
structure to above – we have the prior - ⇠ Unif (0, 1) and the likelihood L(G). The question is:
can we �nd a suitable proposition that represents the (unnormalised) posterior? That is, �nding a
suitable proposition ?% such that the following entailment holds:

priorz }| {
G

Unif (0,1)
 ����� - |

likelihoodz}|{
L(G) `

posteriorz}|{
?%

Before explaining what the proposition looks like, let us �rst intuitively visualise how our belief
regarding the coin has changed.

✓
- ⇠

0 1

1
◆

observing Flip1 = 1
��������������!

✓
- ⇠

0 1

1
◆

Fig. 7. Bayesian updating of Unif (0, 1)

After observing the coin landing on heads, we
shift towards believing - being more likely to be
larger. For instance, it is less likely for - to be close
to zero, as this would make landing on heads less
likely. Without doing the calculations (which can
be found in a standard text on Bayesian methods,
e.g. by McElreath [2020, §2.2]), the original distribution Unif (0, 1) (left of Figure 7) is updated to
1/2 · Beta(2, 1) (right of Figure 7). There is, however, a caveat: since we applied Bayes’ theorem, the
Beta distribution is unnormalised: the area under the triangle of the graph is 1/2 < 1, as denoted by 1/2

in 1/2 ·Beta(2, 1). To remedy this, we use the separating conjunction ‘⇤’ to factor out the normalising
constant. Speci�cally, for all / > 0 (e.g. / = 1/2 here), the entailment - ⇠ / · Beta(2, 1) ` - ⇠
Beta(2, 1) ⇤NormConst holds. Intuitively, NormConst factors out and hides the normalising factor

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:8 Shing Hin Ho, Nicolas Wu, and Azalea Raad

and asserts the existence of a non-zero normalising constant, i.e. NormConst := 9: : (0,1). L(:).
This answers our question: the ‘posterior proposition’ ?% is of the form:

priorz }| {
G

Unif (0,1)
 ����� - |

likelihoodz}|{
L(G) `

posteriorz }| {
- ⇠ Beta(2, 1) ⇤ NormConst

As we will see in §4 (Theorem 4.11), the entailment is sound in B�SL via properties of disintegration
(Lemma 4.10). Next, by applying the rule of consequence, we obtain the postcondition on line 9.

✓
- ⇠

0 1

2
◆

observing Flip2 = 0
��������������!

✓
- ⇠

0 1

◆

Fig. 8. Bayesian updating of Beta(2, 1)

Lines 10-16. Note that lines 10-15 are similar to
line 3-7: we perform another coin toss, observe it
comes up tails, and return our updated belief. Intu-
itively, after observing the coin landing on tails, we
‘shift back’ our belief about- being likely to take on
higher values – - is more likely to take on values
in the middle (e.g. 0.4  -  0.6 has higher probability than - � 0.8 or -  0.2), i.e. we update
the distribution to the one on the right of Figure 8. This distribution is known as the Beta(2, 2)
distribution. To prove this in B�SL, we �rst assume - ⇠ Beta(2, 1) as our precondition of line 10,
repeat the steps above and obtain the postcondition on line 15.

We now enter another key step of our proof: using the frame rule of separation logic:

` {%} " {- .&}

` {% ⇤ � } " {- .& ⇤ � }
(- 8 fv(�)) H�F����

The H�F���� rule allows us to frame o� (factor out) propositions that are probabilistically indepen-
dent of our current resources. It states that in order to prove {% ⇤ � } " {- .& ⇤ � }, where � is a
proposition probabilistically independent of % and & , it su�ces to prove {%} " {- .&}.

As the normalising constant proposition NormConst is ‘separated’ from - ⇠ Beta(2, 1) on line
9, we can ‘frame o�’ the normalising constant NormConst prior to line 10 and frame it back on
after line 15 and obtain the postcondition on line 16.

Lines 17-20. At line 16 we have two normalising constants NormConst and NormConst, each
created from an update of - . We now combine them: intuitively, if two independent unnormalised
random variables have normalising constants / and / 0 respectively, the overall distribution has
normalising constant / · / 0. This justi�es the entailment NormConst ⇤ NormConst ` NormConst.
This means we can obtain the postcondition on line 17. Returning - yields the same postcondition
(see H�R�� in Figure 9), which leads to our desired postcondition on line 19. Since from line 19 we
know - ⇠ Beta(2, 2) and a Beta(2, 2)-distributed random variable has expected value (average) 1/2,
the entailment - ⇠ Beta(2, 2) ⇤ NormConst ` E[-] = 1/2 ⇤ NormConst holds, and we obtain the
postcondition on line 20 using the standard rule of consequence H�C��� (see Figure 9).

3 Verifying Statistical Models with B�SL
We demonstrate the expressivity and veri�cation capability of B�SL by verifying �ve programs
described below, each with distinct features. To this end, in §3.1 we �rst present the B�SL program-
ming language, B���, a standard Bayesian probabilistic programming language, and then present
the B�SL proof system as a set of Hoare triples (most of which we have described in §2). Speci�cally,
we verify and prove probabilistic properties of six programs listed in Table 1.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:9

Table 1. Statistical models considered in this section and their distinct features

§ Statistical model Distinct feature(s)
§3.2 Parameter estimation algorithm Soft constraint; conjugate priors
§3.3 The burglar alarm Bayesian network Joint conditioning; Bayes’ theorem
§3.4 The common e�ect Bayesian network Conditional dependence and correlation
§3.5 The semantic Lebesgue measure Improper prior; handling f-�nite measures
§3.6 Gaussian-mixture-based clustering Intractable posterior; bounded loops
§3.7 Models with equivalent posterior Verifying program rewriting

3.1 B�SL Programming Language and Proof System
The B�SL programming language, B���, is a typed, �rst-order language equipped with two e�ects:
the probabilistic sampling e�ect sample(P), which samples from a distribution P, and the soft
conditioning e�ect score(✓), which scales the current distribution according to a non-negative
number ✓ . The B��� terms and types are de�ned by the following grammar, where - ranges over a
countably in�nite set of names, = 2 N, A 2 R, and 5 ranges over (measurable) functions.

Term 3 " F () | - | = | A | 5 (") | (",") | " .1 | " .2 | true | false | if " then" else"
| sample(") | score(") | return(") | let - =" in"

Type 3 g F 1 | N | R | B | g ⇥ g | P(g)

Additional Encodings. We encode the following syntactic shorthands:

" ;# := let _ =" in # observe(") := score(if " then 1 else 0)
observe" from P := score(densityP ("))

The sequential composition (;) shorthand is standard; we describe the observe construct shortly
below, and elaborate on the soft constraint construct ‘observe from’ in §3.2.

B��� Typing Judgements. We present the B��� typing judgements in the technical appendix (Ho
et al. [2025, §B]), where a term " is typed via a judgement `p. Semantically, every open term
� `p " : g denotes an B-�nite kernel J"K : J�K † JgK. We refer the reader to the work of Staton
[2017] for a detailed explanation of the semantics as this is not essential for understanding B�SL.

B�SL Assertions. The B�SL assertions are de�ned by the following grammar:

% F > | ? | % ^ % | % _ % | %) % | 8G : �.% | 9G : �.% | % ⇤ % | % �⇤ %

| ⇢ ⇠ c | E[⇢] = 4 | own⇢ | (G
c
 � ⇢ | %) | L(4) | 8rv- : A .% | 9rv- : A .% | {%}" {- : A .%}

where c , ⇢, 4 ," range over maps de�ned later in Figure 23, and >1, as seen in §2, represents states
with normalising constant 1 and is de�ned to be L(1). Intuitively, ⇢ is a random expression, 4 is a
deterministic expression," is a B��� term, and c is a measure (distribution). The �rst-order and
separation logic assertions (�rst line of the grammar) are standard. For probabilistic assertions
(second line), we have described most of them intuitively in §2, but for 8rv, 9rv quanti�ers, which
quantify over random variables, and own, which asserts ownership of random expression ⇢.

B�SL Proof System. We present the B�SL axiomatic proof system through a set of rules in Figure 9.
We have intuitively described most of the axioms with the coin �ip example in §2 except for
axioms related to the score construct. To understand what score does intuitively, suppose we have
a random variable - ⇠ Unif (0, 1). Executing score(if - < 1/2 then 2 else 4) then increases the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:10 Shing Hin Ho, Nicolas Wu, and Azalea Raad

H�S�����
{>1} sample(P) {- : R.- ⇠ P}

H�C���S�����
{- ⇠ P} sample(? (-)) {. : R.G

P
 � - | . ⇠ ? (G)}

H�S����
{- ⇠ c} score(5 (-)) {- ⇠ 5 · c}

H�C���S����
{G

c
 � - | . ⇠ ? (G)} score(5 (.)){G

c
 � - | . ⇠ 5 · ? (G)}

H�O������
{- ⇠ c} observe(% (-)) {- ⇠ ✓% · c}

H�C���O������
{G

c
 � - | . ⇠ ? (G)} observe(% (.)) {G

c
 � - | . ⇠ ✓% · ? (G)}

H�R�����
{& [J"K/-]} return" {- : A .&}

H�F����
` {%}" {- : A .&}

` {% ⇤ � }" {- : A .& ⇤ � }
(- 8 fv(�))

H�L��
` {%}" {- : A .&} ` 8rv- : A . {&}# {. : B .'}

` {%} let - =" in # {. : B .'}

H�C���
% 0 ` % ` {%}" {- : A .&} & ` & 0

` {% 0}" {- : A .& 0}

Fig. 9. B�SL proof rules

likelihood of values < 1/2 being drawn by a factor of 2, and that of values � 1/2 by a factor of 4:(
- ⇠

0 1

1
)
score(if - < 1/2 then 2 else 4)

(
- ⇠

0 1

4
2

)

Note that the distribution of - in the postcondition is unnormalised, i.e. the shaded region has area
(normalising constant) 2 · 1/2+4 · 1/2 = 3. Moreover, when the distribution of- is normalised, we can
calculate that Pr[- � 1/2] = 2 · Pr[- < 1/2]. Statistically speaking, it is useful to think of score as a
way for users to specify the likelihood of an observation, allowing the interpreter to ‘mutate’ the
current distribution. Indeed, as we described above, we encode the hard conditioning observe(")

construct as score(if " then 1 else 0), setting to 0 the likelihood of observations where " does
not hold, rendering them impossible.

3.2 Conjugate Priors as Hoare Triples: Verifying a Parameter Estimation Algorithm
We begin our journey of verifying statistical models by considering a useful language feature
known as soft constraint in languages such as S��� and A�������, which allows users to specify
observations even when they are drawn from continuous distributions. B�SL is the �rst probabilistic
separation logic that can reason about soft constraints and Bayesian updating.

let ⇥ = sample(Normal(\0,f0)) in
observe G1 from Normal(⇥,f);
observe G2 from Normal(⇥,f);
return ⇥
Fig. 10. The G����P���� program

As described above, we encode the soft constraint con-
struct as observe G from P := score(densityP (G)). The
observe G from P denotes a distribution P that has den-
sity with respect to either the Lebesgue measure _R or the
counting measure #N (which includes ‘common’ distribu-
tions such as normal, binomial, gamma, etc.). We write
densityP to denote the corresponding density function of
P (see works of Vákár and Ong [2018, §7] and Staton [2020,
§4]). Intuitively, the score is higher if the observed G is more likely to be generated from P, and
the score is 0 if the observation is not possible, e.g. observe 2 from Unif (0, 1) is tantamount to
score(0).
We next consider the G����P���� example by Lee [2012, §2] in Figure 10, where we have a

normally distributed population with a known standard deviation f , and we would like to estimate

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:11

H�N����C����N���
{⇥ ⇠ N(\0,f0)} observe G from Normal(⇥,f) {⇥ ⇠ N(\\0,f0new,G ,f

\0,f0
new) ⇤ NormConst}

H�B����C����B���
{⇥ ⇠ Beta(<,=)} observe 1 from Bern(⇥) {⇥ ⇠ Beta(< + 1,=) ⇤ NormConst}

H�G�����C����P������
{_ ⇠ �(:, \)} observe G from Poisson(_) {_ ⇠ �(: + G, \/\+1) ⇤ NormConst}

{⇥ ⇠ N(\0,f0)} // H�S�����
observe G from Normal(⇥,f) // desugars to score(normal-pdf (G1 | ⇥,f))

{⇥ ⇠ normal-pdf (G | �,f) · N (\0,f0)} // H�S����
{⇥ ⇠ N(\\0,f0new,G ,f

\0,f0
new) ⇤ NormConst} // H�C���

Fig. 11. Examples of derived conjugate priors in B�SL (above); a B�SL derivation of H�N����C����N���
(below), where the //annotation denotes the B�SL rule(s) applied to obtain the associated postcondition.

{>1}

let ⇥ = sample(Normal(\0,f0)) in
{⇥ ⇠ N(\0,f0)} // H�S�����
observe G1 from Normal(⇥,f) // let \8+1 := \\8 ,f8new,G8+1 ; f8+1 := f\8 ,f8new for 8 � 0

{⇥ ⇠ N(\1,f1) ⇤ NormConst} // H�N����C����N���

H
�F
��

�
�

{⇥ ⇠ N(\1,f1)}
observe G2 from Normal(⇥,f)

{⇥ ⇠ N(\2,f2) ⇤ NormConst}
// H�F���� and H�N����C����N���

{⇥ ⇠ N(\2,f2) ⇤ NormConst ⇤ NormConst}
{⇥ ⇠ N(\2,f2) ⇤ NormConst} // H�C���
return ⇥

{⇥ ⇠ N(\2,f2) ⇤ NormConst} // H�R��

Fig. 12. A B�SL proof sketch of G����P����.

its mean⇥. To do this, we assume a normal prior⇥ ⇠ N(\0,f0), where \0, f0 are constants. Suppose
we draw two samples {G1, G2} from the dataset; we can then write observe G8 from Normal(⇥,f)
for 8 2 {1, 2} to compute our updated belief of ⇥, as shown in Figure 10. Intuitively, the mean of ⇥
shifts up when G8 > ⇥ and shifts down otherwise. Using Bayes’ rule, we can compute the updated
mean and standard deviation as follows [Lee 2012, §2.2.1]:

\\0,f0new,G := (f\0,f0new)
2
✓
\0
f2
0
+

G

f2

◆
f\0,f0new :=

s
1

f�20 + f�2

Note that the updated distribution has a closed-form solution (which is not usually the case).
Indeed, the Normal-prior/Normal-likelihood pair is an instance of a conjugate distribution, which
is a prior/likelihood pair that leads to a closed-form posterior distribution via Bayes’ rule.
In B�SL we can obtain this fact using the derived H�N����C����N��� rule in Figure 11 (above),

with its B�SL derivation given at the bottom of Figure 11. In fact, the ability to derive conjugate
priors in B�SL allows us to perform symbolic reasoning. To this end, in Figure 11 we list a few

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:12 Shing Hin Ho, Nicolas Wu, and Azalea Raad

common conjugate priors represented as Hoare triples. The ability to derive conjugate priors in
B�SL, along with the frame rule, gives us a foundation for modular and symbolic reasoning of
probabilistic programs: for observe G1 from Normal(⇥,f), we apply the frame rule to ‘frame out’
the normalising constant, then apply the conjugate distribution triple, which then allows us to
symbolically derive the posterior distribution for ⇥ in Figure 12.

3.3 Verifying the ‘Hello World’ of Probabilistic Programming: Burglar Alarm
With soft constraint conditioning de�ned, we now consider a classic example in Bayesian statistics,
the B������A���� program at the top of Figure 13. The problem is as follows: your home has a
burglar alarm that activates when there is a burglar, but it also accidentally activates when there is
an earthquake. There is a 1% probability that there is a burglar, and a 10% probability that there is
an earthquake. When the alarm activates, there is a 99% probability of the phone ringing. Assuming
that your phone is ringing now, what is the probability of there being an earthquake?

We use B�SL in Figure 13 to prove that the probability of having an earthquake is roughly 84.7%
by using a technique called joint conditioning. Note that random variable � takes a value in {0, 1}
depending on whether there is a burglar (captured by ⌫) or an earthquake (⇢). By conditioning on
the joint random variable (⌫, ⇢) = (1, 4) for some (1, 4) 2 {0, 1}2, we know � has distribution X1_4 .
We then apply the rule of consequence H�C��� with our internal notion of Bayes’ theorem E�B����
(explained later in Theorem 4.11), we obtain a posterior distribution stating that there is an 84.7%
probability of there being an earthquake, as shown below, with 5 de�ned in Figure 13:

priorz }| {
(1, 4)

Bern(0.01)⌦Bern(0.1)
 ������������ (⌫, ⇢) |

likelihoodz }| {
L(5 (1, 4)) `

posteriorz }| {
(⌫, ⇢) ⇠ 5 · (Bern(0.01) ⌦ Bern(0.1)) (Theorem 4.11)
` ⇢ ⇠ Bern(0.099/0.11682) (calculation)

3.4 Reasoning about Independence and Correlations: The Collider Bayesian Network
We now consider a Bayesian network in which two random variables - and . that are initially
independent become negatively correlated after performing Bayesian conditioning. B�SL is the
�rst logic that can reason about such conditional dependence brought about by Bayesian updating.

let - = sample(Bern(1/2)) in
let . = sample(Bern(1/2)) in
let / = return(- _ .) in
observe(/ = 1);
return (- ,.)

- .

/

Fig. 14. C������� and its Bayesian network

A Bayesian network is a directed acyclic
graph modelling relationship of random vari-
ables. A common structure in Bayesian net-
works is known as colliders (or common e�ects),
where the distribution of a random variable /
is conditionally independent upon- and. . For
our example in Figure 14, we �ip two coins -
and . (taking values in {0, 1}) and let / be the
maximum of - and . . Before observing / , - and . are independent. That is, we can use B�SL to
prove - ⇠ Bern(1/2) ⇤ . ⇠ Bern(1/2) prior to observing / . However, once we perform Bayesian
conditioning by observing / = 1, - and . are no longer independent: knowing the value of / gives
us information about - and . . For example, knowing / =1 and - =0 gives us extra information
. = 1. In fact, not only - and . are now dependent, they are also negatively correlated: when -
has a higher value, . is likely to be lower, and vice versa.

We use B�SL to prove this negative correlation as shown in Figure 15. We �rst apply H�S����� to
sample- with distribution Bern(1/2), then apply H�F���� and H�S����� to obtain. ⇠ Bern(1/2) and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:13

let ⌫ = sample(Bern(0.01)) in // probability of burglary is 1%
let ⇢ = sample(Bern(0.1)) in // probability of earthquake is 10%
let � = return(⌫ _ ⇢) in // alarm activates in case of burglary or earthquake
observe 1 from Bern(if� then 0.99 else 0.01); // observe the phone is ringing
return ⇢ // is there an earthquake?

{>1}

let ⌫ = sample(Bern(0.01)) in
{⌫ ⇠ Bern(0.01)} // H�S�����
let ⇢ = sample(Bern(0.1)) in

{⌫ ⇠ Bern(0.01) ⇤ ⇢ ⇠ Bern(0.1)} // H�S�����, H�F����
{(⌫, ⇢) ⇠ Bern(0.01) ⌦ Bern(0.1)} // H�C���
let � = return(⌫ _ ⇢) in

{(1, 4)
Bern(0.01)⌦Bern(0.1)
 ������������ (⌫, ⇢) | � ⇠ X1_4 } // H�C���S�����

observe 1 from Bern(if� then 0.99 else 0.01); // with 5 (1, 4) := if 1 _ 4 then 0.99 else 0.1n
(1, 4)

Bern(0.01)⌦Bern(0.1)
 ������������ (⌫, ⇢)

��� � ⇠ 5 · X1_4
o

// H�C���S����n
(1, 4)

Bern(0.01)⌦Bern(0.1)
 ������������ (⌫, ⇢)

��� L (5(1, 4))o // H�C���

{(⌫, ⇢) ⇠ 5 · (Bern(0.01) ⌦ Bern(0.1))} // H�C��� with E�B����
{⇢ ⇠ Bern(0.099/0.11682) ⇤ NormConst} // H�C���
{E[⇢] = 0.099/0.11682 ⇤ NormConst} // H�F����, H�C���
return ⇢

{E[⇢] = 0.099/0.11682 ⇤ NormConst} // H�R�����
{Pr[⇢ = 1] ⇡ 0.847 ⇤ NormConst} // H�C���

Fig. 13. B������A���� (above); B�SL proof sketch for deriving the posterior probability of earthquake (below)

‘frame’. onto- to obtain- ⇠ Bern(1/2)⇤. ⇠ Bern(1/2). Aswe show shortly in §4, the (bi)entailment
- ⇠ `⇤. ⇠ aa`(- ,.) ⇠ `⌦a holds andwe thus useH�C��� to obtain (- ,.) ⇠ Bern(1/2)⌦Bern(1/2).

{>1}

let - = sample(Bern(1/2)) in
{- ⇠ Bern(1/2)}
let . = sample(Bern(1/2)) in

{- ⇠ Bern(1/2) ⇤ . ⇠ Bern(1/2)}
{(- ,.) ⇠ Bern(1/2) ⌦ Bern(1/2)}
let / = return - _ . in

{(G,~)
Bern(1/2)⌦Bern(1/2)
 ������������ (- ,.) | / ⇠ XG_~}

observe(/ = 1);
{(G,~)

Bern(1/2)⌦Bern(1/2)
 ������������ (- ,.) | / ⇠ ✓=1 · XG_~}

{(G,~)
Bern(1/2)⌦Bern(1/2)
 ������������ (- ,.) | L(1 � [G = ~ = 0])}

return (- ,.)
{(- ,.) ⇠ (1 � [G = ~ = 0]) · Bern2 (1/2)}
{(- ,.) ⇠ Unif{(0, 1), (1, 0), (1, 1)} ⇤ NormConst}
{E[-.] = 1/3 ^ E[-] = E[.] = 2/3 ⇤ NormConst}
{Cov[- ,.] < 0 ⇤ NormConst}

Fig. 15. A B�SL proof sketch of C������� showing that
return values (- ,.) are negatively correlated

We next condition on (- ,.) and sam-
ple / using the conditional sampling ax-
iom H�C���S����� to show / has a condi-
tional distribution XG_~ , (jointly) condition-
ing on the random variable (- ,.)= (G,~) for
(G,~) 2 {0, 1}2. Upon subsequently observing
/ =1, we apply the conditional observation
axiom H�C���O������ to prove the updated
distribution ‘ignores’ the case when - = 0
and . = 0. Let us consider the updated like-
lihood of all four cases of (G,~) 2 {0, 1}2:
when G = ~ = 0, the likelihood is 0, other-
wise it is 1. That is, the likelihood proposition
L(if G =~=0 then 0 else 1) holds, or equiva-
lently, L(1 � [G =~=0]) holds. Using the in-
ternal Bayes’ theorem (formulated later in
Theorem 4.11), we thus know the updated
(- ,.) has distribution (- ,.) ⇠ (1 � [G =~=
0]) · Bern(1/2)2. We compute the probability
of (- ,.) being (0, 1), (1, 0) or (1, 1) is 1/3 in

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:14 Shing Hin Ho, Nicolas Wu, and Azalea Raad

{>1}

let - = sample(Exp(1)) in
{- ⇠ Exp(1)} // H�S�����
score(4-)

{- ⇠ exp · Exp(1)} // H�S����
{- ⇠ Leb[0,1) } // H�C���

Fig. 16. L�������

{- ⇠ Leb[0,1) }

observe - from `
{- ⇠ pdf` · Leb[0,1) } // H�S����
{- ⇠ `} // H�C���

Fig. 17. Conditioning of improper Lebesgue prior

each case, and thus calculate the covariance Cov[- ,.]=E[-.] � E[-]E[.]=1/3 � 2/3 · 2/3 = �1/9.
UsingH�C���, we then formally proveCov[- ,.] < 0, stating that- and. are negatively correlated.

3.5 Modelling Improper Prior: Correctness of the Semantic Lebesgue Measure
We now consider a common technique in Bayesian statistical modelling known as improper priors.
An improper prior is a distribution with an in�nite normalising constant. One canonical such
example [Narayanan et al. 2016; Staton 2020] is the Lebesgue measure, Leb[0,1) , which assigns
length 1 � 0 to any interval (0,1) with 0  0 < 1. As shown by Staton [2020], a B��� program can
simulate the Lebesgue measure as the computation let - = sample(Exp(1)) in score(4-) since
the measure (as opposed to probability) of - 2 (0,1) is

Ø
(0,1)

4G 4�GdG = 1 � 0. In fact, - has an
improper prior distribution – the normalising constant is currently

Ø
1

0 4G · 4�G dG =
Ø
1

0 1 dG =1.
B�SL is the �rst logic that can reason about improper priors because its semantic domain include

f-�nite measure spaces. We present a B�SL proof sketch of the computation in Figure 16, proving
that - is distributed according to the Lebesgue measure: - ⇠ Leb[0,1) . In fact, since - ⇠ Leb[0,1) ,
we know that for any measure ` with a density with respect to Leb[0,1) (e.g. ` = Unif (0, 1)),
observing - to have distribution ` results in - ⇠ `. We can derive this in B�SL as shown in
Figure 17.

3.6 Representing the Posterior of a Bayesian Clustering Algorithm
For our next example, we use B�SL to calculate the posterior of a clustering algorithm that imple-
ments the Gaussian mixture model (GMM). The problem is as follows: suppose we have a dataset
{G8 2 R}=8=1 and we want to cluster them into two groups. The model works by assuming there
are two normally-distributed latent variables `0, `1 2 R that represent the mean of the two groups
and another latent variable c 2 [0, 1] representing the proportion of samples belonging to the two
groups. For each G8 , we sample a Bernoulli random variable # with success probability c and we
assume G8 is a sample drawn from N(`# , 1) by performing soft conditioning. The diagram at the
top of Figure 18 illustrates the main idea of GMM: given a dataset {G8 }=8=1, we infer the mean of
clusters `0 and `1 and �t the data via the mixture of two Gaussian distributions.

H�B������F��
for 8 = 1, ...,=, {%8�1} " [G8/-] {%8 }

{%0} for - in [G1, ..., G=] do" {%=}

Unlike the previous examples, GMM does not have a
closed-form solution – we must rely on inference algo-
rithms such as MCMC to approximate the posterior distri-
bution of (`, c). However, with B�SL, we can symbolically
represent the formula for the posterior distribution. Similar
to L����, we extend B��� with a syntactic construct that encodes bounded loop over a literal
list [G1, ..., G=] by de�ning for - in [G1, ..., G=] do " := " [G1/-]; ...;" [G=/-]. By applying the
sequencing rule H�L�� inductively, we obtain the rule H�B������F��, which allows us to express
GMM and represent the posterior of (`, c) in Figure 18. Even though the posterior distribution
cannot be explicitly simpli�ed, we can still represent it as the postcondition (`, c) ⇠ P= .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:15

�4 �2 0 2 4 6

histogram of {G8 }=8=1

GMM
����!

�4 �2 0 2 4 6

`0 `1

histogram of {G8 }=8=1

{>1}

let c = sample(Unif (0, 1)) in // sample the proportion of each cluster
{c ⇠ Unif (0, 1)} // H�S�����, H�F����
let ` = sample(N (0, 10) ⌦ N(0, 10)) in // sample from two normal distributions

{` ⇠ N
2
(0, 10) ⇤ c ⇠ Unif (0, 10)} // H�S�����

for - in [G1, ..., G=] do // let P0 :=N
2
(0, 1) ⌦ Unif (0, 1)

{(`, c) ⇠ P8 } // H�C���
let � = sample(Bern(c)) in // let 58 (<, ?) := (1 � ?)N (G8 |<0, 1) + ?N(G8 |<1, 1)

{(<, ?)
P8
 � (`, c) | � ⇠ Bern(?)} // H�C���S�����

observe - from Normal(`� , 1) // let P8+1 := 58 · P8

{(<, ?)
P8
 � (`, c) | � ⇠ 58 · Bern(?)} // H�C���S����

{(`, c) ⇠ P8 } // H�C���, E�B����
{(`, c) ⇠ P=} // H�B������F��

Fig. 18. An illustration Gaussian mixture model (above); an implementation of the Gaussian mixture model
and a B�SL proof sketch deriving its posterior (below)

3.7 Rewriting Probabilistic Programs
As we brie�y discussed in §1, we can use B�SL to justify rewriting probabilistic program by proving
that they satisfy equivalent speci�cations (Hoare triples). Let us revisit the example in §1 (p. 4);
as sown in Figure 19, we can combine the techniques introduced thus far (in §3.2 to §3.6) to show
that the two programs satisfy equivalent speci�cations. The program on the left contains normally-
distributed and beta-distributed random variables - and . , respectively, along with conditioning
constructs on two lists of observed data {G8 }#8=1 and {28 }#8=1. Note that two kinds of conjugacy
exist within the program: the normal-normal conjugate and the beta-Bernoulli conjugate. As such,
we can simplify the program on the left by pre-computing the posterior and sampling from them
directly, as in the program on the right. However, how do we prove that the simpli�cation is sound,
i.e. the two programs are equivalent (up to a normalising constant)? We can do this in B�SL by
proving the same speci�cation (Hoare triple) for both programs, as shown in Figure 19.

Speci�cally, using H�N����C����N��� and H�B����C����B���, we establish a loop invariant and
reason about how the distributions of - and . change at every iteration � . We then apply the Hoare
triple for bounded for-loops H�B������F��. As such, we can show that the random variables in both
programs have the same distribution (up to a normalising constant NC, which can be safely ignored
since inference algorithms return the same samples, regardless of the normalising constant), and
therefore we can justify rewriting the program on the left to that on the right.

Through numerous examples showcasing the novel and hitherto-unsupported features of B�SL,
we have demonstrated the expressivity of B�SL, and we believe this can serve as a logical foundation
for static analysis/symbolic execution tools for probabilistic programs.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:16 Shing Hin Ho, Nicolas Wu, and Azalea Raad

{>1}

let - = sample(N (0, 1)) in
{- ⇠ N(0, 1)} // H�S�����
let . = sample(Beta(<,=)) in

{- ⇠ N(0, 1) ⇤ . ⇠ Beta(<,=)} // H�S�����
{- ⇠ N(0, 1) ⇤ . ⇠ Beta(<,=) ⇤ NC} // H�C���
// de�ne 08 :=

Õ8
9=1 [2 9 = 1], 18 :=

Õ8
9=1 [2 9 = 0]

// de�ne 28 :=
Õ8

9=1

Õ8
9=1 G 9
8

for � in [1, ...,#] do⇢
- ⇠ N(28 , 1) ⇤
. ⇠ Beta(< + 08 ,= + 18) ⇤ NC

�
// loop invariant

observe G� from N(", 1);⇢
- ⇠ N(28+1, 1) ⇤ NC ⇤
. ⇠ Beta(< + 08 ,= + 18)

�
// H�N����C����N���
// H�C���

observe 2� from Bern(,)⇢
- ⇠ N(28+1, 1) ⇤ NC ⇤
. ⇠ Beta(< + 08+1,= + 18+1)

�
// H�B����C����B���⇢

- ⇠ N(2# , 1) ⇤
. ⇠ Beta(< + 0# ,= + 1#) ⇤ NC

�
// H�B������F��

{>1}

let - = sample(N (2# , 1)) in
{- ⇠ N(2# , 1)} // H�S�����
let . = sample(Beta(= + 0# ,< + 1#)) in⇢

- ⇠ N(2# , 1) ⇤
. ⇠ Beta(< + 0# ,= + 1#)

�
// H�S�����

return (- ,.)⇢
- ⇠ N(2# , 1) ⇤
. ⇠ Beta(< + 0# ,= + 1#)

�
// H�R��

Fig. 19. Using B�SL to justify that the program on the le� can be soundly rewri�en to that on the right by
proving that they both satisfy the same B�SL specification (B�SL triple).

4 The Semantics of B�SL
Now that we have demonstrated how B�SL can function as a logical framework for proving
properties in statistical models, we explain its resource-theoretic semantics in §4.4. But before this,
we review the Kripke resource model of the L���� separation logic [Li et al. 2023] in §4.1, which
the model of B�SL is based on, then we motivate the need for a generalised model of randomness
for Bayesian updating in §4.2 and prove that it is indeed a resource model in §4.3.

4.1 Background: A Resource Monoid for Randomisation
In separation logic, computational resources such as heaps are modelled by partial commutative
monoids (M, •, 1) [Calcagno et al. 2007]. The setM represents states of the resource and the partial
function (•) : M⇥M ô M combines two states<1,<2 2M if they are compatible (e.g.<1 and<2
describe di�erent parts of the resource). For example, the heap is modelled byMheap := Loc ô�n Val,
where Loc is the set of memory addresses and Val is the set of values. For instance, {42 7! “a”} 2
Mheap represents a heap where address 42 stores value “a”. Moreover, given two heaps<1,<2,
(•) combines them if they contain separate addresses. For example,<1 := {21 7! 2025, 42 7! “a”}
and<2 := {52 7! 123} can be combined to<1 •<2 = {21 7! 2025, 42 7! “a”, 52 7! 123} since the
addresses in<1 (21 and 42) do not overlap with 52 in<2. There is also an identity element 1 2M
that represents the empty resource. For heaps, 1 is de�ned to be the empty heap {}.
Applying the same intuition to probability, one reasonable model of computational resource

is that of a random number generator. The L���� separation logic de�ned a partial commutative
monoid that models a random generator by encoding the following two properties:
(1) the distribution of the generated numbers, i.e. a random number generator should have infor-

mation about the distribution of the numbers generated; and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:17

(2) the usage of the generator, which has information regarding whether the 8-th number l8 has
been generated.

To model (1) and (2), L���� uses a measure space. In fact, the distribution and usage property
can be modelled via the measures and f-algebras, respectively. For readers unfamiliar with these
concepts, ameasurable space is a pair (⌦, F), where ⌦ is a set and F ✓ P(⌦) is a set of subsets such
thatú,⌦ 2 F and F is closed under complements and countable unions. We call ⌦ the sample space
and F a f-algebra of ⌦. A measure of (⌦, F) is a function ` : F ! [0,1] satisfying ` (ú) = 0 and
` (
“

82N*8) =
Õ

82N ` (*8). The triple (⌦, F , `) forms a measure space. If ` (⌦) = 1, we additionally
call (⌦, F , `) a probability space. For example, to model a fair die, we set ⌦ := {1, 2, 3, 4, 5, 6},
F := P(⌦), and ` (*) :=

Õ6
8=1 1* (8) · 1/6, where 1* (8) is 1 when 8 2 * and 0 when 8 8 * . We can

then compute that the probability of the die having a value greater than four is ` ({5, 6}) = 1/3.
We now consider a simpli�ed model of L����’s random number generator – we de�ne our sample

space to be ⌦ := {T, F}2 (as opposed to [0, 1]N in the full model of L����), which, intuitively, can
be thought of as the computer having access to a source of randomness that can generate two
independent booleans. The states of the random generator is then modelled by the following set:

M := {(F , `) | (⌦, F , `) is a probability space}

To explain howM models random generators, we construct the empty generator 1 := (F1, `1) – an
element ofM that represents a state where nothing has been generated. This means:
(1) We do not know the probability of the �rst boolean being F and second boolean being T. Hence,

{(F, T)} 8 F1 and we cannot apply `1 : F1 ! [0,1] to {(F, T)} to get the probability. Similarly,
{(0,1)} 8 F1 for 0,1 2 {T, F}.

(2) We do not know the probability of the �rst boolean being T, which is equivalent to saying
the �rst boolean being T and the second boolean being T or F. Hence, {(T, T), (T, F)} 8 F1.
Similarly, {(0,1), (2,3)} 8 F1 for 0,1, 2,3 2 {T, F}.

(3) Even though the �rst number has not been generated, we know that the �rst and/or second
boolean will either be T or F. Hence, {(T, F), (T, T), (F, T), (F, F)} = ⌦ 2 F1.

For F1 to be a f-algebra, we need ú 2 F1; hence, F1 = {ú,⌦}. For the probability measure
`1 : F1 ! [0,1], we know that the �rst and second boolean have a 100% probability of being T or
F. Hence, `1 ({(T, F), (T, T), (F, T), (F, F)}) = 1. See Figure 20 for an illustration.

Next, we construct<2 := (F2, `2) 2M where the �rst boolean has a 42% probability of being T
and 58% probability of being F, and only the �rst boolean has been generated. This means:
(1) We know the probability of the �rst boolean being T is 42%, which is equivalent to saying the

�rst boolean being T and the second boolean being T or F is 42%. Hence, {(T, F), (T, T)} 2 F2
and `2 ({(T, F), (T, T)}) := 0.42. Similarly, {(F, F), (F, T)} 2 F2 and `2 ({(F, F), (F, T)}) := 0.58.

(2) We do not know the probability of the second boolean being F, which is equivalent to saying
the second boolean being F and the �rst boolean being T or F. Hence, {(T, F), (F, F)} 8 F2.
Similarly, the singletons {(0,1)} with 0,1 2 {T, F} and {(T, T), (F, T)} should not be in F2 since
they contain information about the second boolean.

Since {(T, T), (F, T)} and {(F, F), (F, T)} are in F2, their union ⌦ is also in F2 and `2 (⌦) = 1, which
makes sense since the probability of either events happening is 42% + 58% = 100%.
Similarly, we can construct <3 = (F3, `3) 2 M where only the second boolean has been

generated with 30% probability of being T and 70% probability of being F. Now, since <2 only
has information about the �rst boolean and<3 only has information about the second boolean,
they can be combined to form<2 •<3 = (F23, `23) such that we can refer to e.g. the probability
of the �rst boolean being T and the second boolean being F, i.e. {(T, F)} 2 F23 and `23 ({T, F}) :=

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:18 Shing Hin Ho, Nicolas Wu, and Azalea Raad

⌫1 ⌫2

F T F T

1 =
⌫1 ⌫2

F T F T

<2 =
⌫1 ⌫2

F T F T

<3 =
⌫1 ⌫2

F T F T

1 •<2 =
⌫1 ⌫2

F T F T

<2 •<3 =

Fig. 20. Illustrations of random number generators

`2 ({(T, F), (T, T)}) · `3 ({(F, F), (F, T)}) = 42% · 70% = 29.4% (see Figure 20). As shown by Li et al.
[2023], (M, •, 1) forms a partial commutative monoid (PCM).

4.2 The Need for an Extended Resource Model of Randomness
We now motivate the semantics of B�SL by considering a problem we would like to solve; namely,
how a random generator, such as the ones presented above, can be updated. In the heap model of
separation logic (see �rst paragraph of §4.1), an update on address ; with value E is modelled as an
update function (�) [; 7! E] : Mheap !Mheap de�ned by<[; 7! E] :=<[{; 7! E}. We develop an
analogous operation on random number generators, for which we must model the observe/score
construct. But �rst, let us establish the motivation: why would we want to update a distribution?
And why is it such a notoriously hard problem? The answer is twofold: we need to handle both
unnormalised measures and the update’s e�ect on dependent random variables.

Unnormalised Measures. Consider an experiment where we �ip two fair coins ⌫1 and ⌫2 (modelled
as booleans). The resulting random generator can be visualised as<before in Figure 21. Suppose
that, based on data, we know ⌫2 must be T; we can then update our belief about ⌫2 via a likelihood
function, which is a function of type ✓ : ⌦ ! [0,1), de�ned by ✓ (11, T) := 1 and ✓ (11, F) := 0. For
any likelihood function ✓ and< = (P(⌦), `) 2M, there is a natural update operation (·) such that
(✓ · `) : P(⌦) ! [0,1] is a measure on (⌦,P(⌦)) de�ned as follows:

(✓ · `) (⇢) :=
’

(11,12)2⇢

✓ (11,12) · ` ({(11,12)})

This update scales the measure ` according to ✓ . Let us write (✓ ·<) := (F , ✓ · `) when< = (F , `) 2
M as a shorthand. Then the update<after := ✓ ·<before re�ects our belief: the probability that ⌫2 = F
is now zero since ✓ (11, F) = 0 and<after ({⌫2 = F}) =<after ({(T, F), (F, F)}) = 0. However, there is
a problem:<after is no longer a probability measure because it does not add up to 100%:

`after (⌦) = `after ({⌫2 = T}) + `after ({⌫2 = F}) = 0 + 1/2 = 1/2

This means the current distribution is unnormalised, with the normalising constant being 1/1/2 = 2.
This also means <after 8 M as M only includes probability spaces. To solve this problem, we
extend M to include non-probability measures as well.

Dependent Random Variables. A far more challenging problem is to handle dependency between
random variables. Consider an experiment where we toss a fair coin ⌫1, and depending on the
result of ⌫1, we obtain ⌫2 by sampling from two di�erent distributions:

⌫2 ⇠

(
toss a biased coin that is always T if ⌫1 = T

toss a fair coin if ⌫1 = F

Assuming that ⌫2 = T, what is the probability that ⌫1 = T?

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:19

⌫1 ⌫2

F T

50%

F T

<before

✓ · �
7���!

⌫1 ⌫2

F T F T

50%

<after

Fig. 21. Updating via likelihood function

⌫1 ⌫2

F T

75%

F T

50%

<

⌫1 ⌫2

F T F T

100%

<⌫1=F

⌫1 ⌫2

F T F T

50%

<⌫1=T

condit
ioning

⌫1=T

conditioning ⌫1=F

Fig. 22. A dependent random generator

Notice that ⌫1 and ⌫2 are not probabilistically independent: knowing ⌫1 is T means ⌫2 is T 100%
of the time, and knowing ⌫1 is F means ⌫2 is T 50% of the time (which means overall, ⌫2 is T 75% of
the time). Suppose< 2M represents this distribution; we represent the dependency between ⌫1
and ⌫2 in< pictorially in Figure 22. To see the problem, note that when we mutate the distribution
of ⌫2 via ✓ , the distribution of ⌫1 changes as well: indeed, knowing ⌫2 = T makes ⌫1 = T more
likely, as ⌫2 = T is more likely to be caused by �ipping the biased coin that is always T, rather than
the fair coin. To demonstrate how updating ⌫2 causes the update of ⌫1, we perform a ‘case analysis’
and apply (✓ · �) to the conditioned space<⌫1=T and<⌫1=F:

⌫1 ⌫2

F T F T

100% ✓ ·<⌫1=F =
⌫1 ⌫2

F T

100%

F T

50%
✓ ·<⌫1=T =

Since we now have information regarding the original distribution of ⌫1 (the prior distribution) as
well as the likelihood, we can apply Bayes’ theorem. Speci�cally, for all 1 2 {T, F}:

unnormalised posteriorz }| {
(✓ ·<) ({⌫1 = 1}) =

priorz }| {
` ({⌫1 = 1}) ·

likelihoodz }| {
(✓ ·<⌫1=1) ({⌫2 = T}) =

(
1/2 if 1 = T
1/4 if 1 = F

This means (✓ ·<) ({⌫1 = T}) = 1/2 and (✓ ·<) ({⌫1 = F}) = 1/4 and ✓ ·< is an unnormalised
measure (1/2 + 1/4 < 1). Normalising ✓ ·< yields the desired distribution – assuming ⌫2 = T, ⌫1 has
1/3 probability of being F, and 2/3 probability of being T, as shown below:

⌫1 ⌫2

F T

50%

F T

75%

(✓ ·)
7��������!

⌫1 ⌫2

F T

50%

F T

100%
normalise

7������������!

⌫1 ⌫2

F T

2/3

F T

100%

To model these features in B�SL, we develop a novel resource model for randomisation as follows:
(1) To handle unnormalised measures, we extend L����’s partial commutative monoid by allowing

non-probability measure spaces and impose several �niteness restrictions (De�nition 4.1) and
show that the resulting structure remains a partial commutative monoid (Theorem 4.3), i.e. a
model of separation logic. In fact (as in L����), it forms an even richer structure known as a
Kripke resource monoid (Corollary 4.5).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:20 Shing Hin Ho, Nicolas Wu, and Azalea Raad

(2) Given an unnormalised random number generator< 2M and a random variable - , if the
underlying space of - is a standard Borel space (described later in Figure 23), then the family
of generators<-=G conditioning on - = G (formally, the disintegration of< over -) exists
(Theorem 4.7). This allows us to perform conditional reasoning: in order to reason about the
dependencies between random variables, we need to reason about conditioned spaces.

(3) Random variables arising from random generators in B�SL can be updated via a logical
version of Bayes’ theorem (Theorem 4.11). This result relies on B�SL’s partially a�ne structure
(Proposition 4.9) and a theorem in disintegration theory (Lemma 4.10).

With the above theorems and guarantees, B�SL admits a standard resource-theoretic semantics
via a construction known as a Kripke resource model [Galmiche et al. 2005], which we formally
develop in the rest of this section.

4.3 The Kripke Resource Model of B�SL
Recall from §4.1 that our sample space was set to the booleans {T, F}. However, in B�SL (as in
L����) we �x the Hilbert cube (⌦, ⌃⌦) := ([0, 1]N,B[0, 1]N) as our underlying sample space, which
can be thought of as the random number generator having the ability to independently generate a
stream of numbers between 0 and 1. We next de�ne the Kripke resource monoid of B�SL, which
intuitively comprises the unnormalised random number generators described in §4.2.

De�nition 4.1. Let F be a f-algebra of ⌦ and ` : F ! [0,1] a measure. The pair (F , `) is a
random generator if the following conditions hold:
(1) ` is a f-�nite measure: there exists a countable sequence {*8 2 F }82N such that {*8 }82N

covers ⌦ (i.e.
–

82N*8 = ⌦) and ` (*8) < 1, for all 8 2 N.
(2) ` has non-zero total measure: ` (⌦) > 0.
(3) F is a sub-f-algebra of ⌃⌦ : F ✓ ⌃⌦ .
(4) F is countably generated: there exists a countable set of subsets {�8 ✓ ⌦}82N such that F is

the least f-algebra containing {�8 }82N.
(5) F has a �nite footprint: there exists an = 2 N such that: 8� 2F . 9� 0 ✓ [0, 1]= . � =� 0⇥ ⌦.

We writeM for the set of random generators of the Hilbert cube (⌦, ⌃⌦). Condition (1) describes
the space of interest – we are not only interested in �nite measures, but also measures with in�nite
normalising constants so that we can model improper priors, as demonstrated in §3.5. Condition
(2) is needed so that M forms a PCM, and it a�ects the way we interpret Hoare triples (§4.3).
Conditions (3) and (4) are needed so that we can consider disintegrations of ` with respect to its
random variables (Theorem 4.7). Condition (5) is needed because we want to ensure there is enough
space to generate new random variables (as in L���� [Li et al. 2023, §2.5]).

De�nition 4.2 ([Li et al. 2023, De�nition 2.2]). Let (F , `), (G,a) 2 M. Then (H , d) is the inde-
pendent combination of (F , `) and (G,a) ifH is the smallest f-algebra containing F and G, and
for all � 2 F ,⌧ 2 G, d (� \⌧) = ` (�) · a (⌧).

T������ 4.3 (PCM). Let< be the independent combination of<1,<2 2 M. Then< 2 M and
it is unique. Let (•) : M ⇥M ô M, mapping<1,<2 2 M to their independent combination if it
exists, and 1 for the trivial probability space over ⌦. Then (M, •, 1) is a partial commutative monoid.

P���� �����. The proof of uniqueness, similar to L����, relies on the uniqueness of measures
theorem, but for f-�nite measures instead. Identity and commutativity of (•) follow from properties
of f-algebras. For associativity, suppose<1,<2,<3 2 M and< (12)3 is de�ned; we de�ne<23 =

(F23, `23) by choosing a set + 2 F1 satisfying 0 < `1 (+) < 1 and de�ne `23 (*) := ` (12)3 (+*)

`1 (+)
. We

then construct a _-system ⇤ ✓ F23 of F23-measurable sets such that �23 2 ⇤ satis�es the property

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:21

` (12)3 (�1 \ �23) = `1 (�1)`23 (�23) whenever �1 2 F1, `1 (�1) < 1 and `23 (�23) < 1. Finally, we
apply the c-_ theorem and show that all measurable sets in F23 satisfy the property and therefore
establish associativity (see Ho et al. [2025, Theorem C.7] in the technical appendix for the full
proof).

In a logic of bunched implications (which includes separation logics), a Kripke resource monoid
(KRM) is the basis for providing a satis�ability relation by de�ning aKripke resource model [Galmiche
et al. 2005]. We now show that our PCM can be extended to a KRM.

De�nition 4.4 ([Barthe et al. 2019, De�nition 1]). A (partial) Kripke resource monoid is a tuple
(M, •, 1, v) such that (M, •, 1) is a partial commutative monoid and (v) ✓M ⇥M is a preorder
such that (•) is bifunctorial over (v); i.e. for all<,=,<0,=0 2 M, if< v =,<0 v =0 and< •<0,
= • =0 are de�ned, then< •<0 v = • =0.

C�������� 4.5 (KRM). Let (v) ✓M ⇥M be a preorder de�ned by (F1, `1) v (F2, `2) if F1 ✓ F2
and `2 |F1 = `1 (Li et al. [2023, Theorem 2.4]). Then (M, •, 1, v) is a Kripke resource monoid.

A desirable property ofM is that it is closed under conditioning of random variables. That is,
suppose (F , `) 2M, - : ⌦ ! A is a measurable function and c is a distribution of - generated
by mutating the likelihood of its current distribution; then the space (F , `+G |F) conditioning on
- = G (almost) always exists (Theorem 4.7). To prove this, we apply the following Rokhlin-Simmons
disintegration theorem [Simmons 2012], which is a variant of the disintegration theorem that holds
for f-�nite measures in standard Borel spaces.

L���� 4.6 (��������������). Let ` : ⌃⌦ ! [0,1] be a f-�nite Borel measure, - : ⌦ !
A a (⌃⌦, ⌃�)-measurable function and c : ⌃� ! [0,1] a f-�nite measure that dominates the
pushforward -⇤`. Then there exists a c-almost-surely-unique (- , c)-disintegration {`G }G2�.

T������ 4.7 (�����������). Let (F , `) 2M,- : ⌦ ! A be a (⌃⌦, ⌃�)-measurable function and
c : ⌃� ! [0,1] a f-�nite measure that dominates-⇤`. Then there exists a measure `+ : ⌃⌦ ! [0,1]
satisfying `+|F = `. Further, the (- , c)-disintegration {`+G }G2� of `+ exists and (F , `+G |F) 2M for
c-almost-all G 2 �.

P����. Readers familiar with disintegration will note that this is a disintegration theorem
in disguise. However, there are several non-trivialities. For existence of a Borel measure, since
` : F ! [0,1] is assumed to be a countably-generated f-�nite measure on a sub-Borel f-algebra
F , the extension `+ exists following from the result of Fremlin [2011, Proposition 433K]. We
then apply the Rokhlin-Simmons disintegration theorem (Lemma 4.6) and obtain the conditional
measure {`+G }G2� and restrict them to the f-algebra F . É

4.4 Semantics of B�SL Assertions
With the Kripke resource monoid de�ned, we now formulate a satis�ability relation for B�SL
assertions. In particular, we give semantics to well-typed assertions, where an assertion % is well-
typed under context �;� if �;� ` % , as de�ned in Figure 23. For instance, the assertion % := (- ⇠
Unif (0,0)) E[-] = 0/2) is well-typed under the context � := �0,0 : R and � := �0,- : (R,B(R)).
Notice that the map (W,0) 7! Unif (0,0) is a function J�K! G(R,B(R)), which means we have
� `meas Unif (0,0) : (R,B(R)) by T�P���M���. Then, notice that - is a name of �, which means
�;� ` - ⇠ Unif (0, 1) by T�D���. Similarly, �;� ` E[-] = G by T�E����������. Combining both
assertions with T�B��M������� yields the correct conclusion �;� ` % .
We de�ne the semantics of B�SL assertions through the satis�ability relation in Figure 24. We

write (W,⇡,<) è % to denote that % holds in state< under the deterministic context W and the list

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:22 Shing Hin Ho, Nicolas Wu, and Azalea Raad

Deterministic context: � = [G1 : �1, ..., G= : �=]

Probabilistic context: � = [-1 : A1, ...,-= : A=]

T�R���E���
⇢ 2 J�K! Meas(J�K,A)

�;� `re ⇢ : A

T�D��E���
4 2 J�K! �

� `de 4 : �

T�M���
c 2 J�K! "f (A)

� `meas c : A

T�T���

�;� ` >

T�F����

�;� ` ?

T�B��M�������
�;� ` % �;� ` &

�;� ` % � &

T�D������
�, G : �;� ` %
�;� ` QG : �.%

T�R�������
�;�,- : A ` %

�;� ` Qrv- : A .%

T�E����������
�;� `re ⇢ : (R,BR)

�;� `de 4 : R
�;� ` E[⇢] = 4

T�D���
�;� `re ⇢ : A � `meas c : A

�;� ` ⇢ ⇠ c

T�O��������
�;� `re ⇢ : A
�;� ` own⇢

T�C�����������
�;� `re ⇢ : A

� `meas c : A �, G : �;� ` %

�;� ` G
c
 � ⇢ | %

T�L���������
� `de 4 : [0,1)
�;� ` L(4)

T�H����
�;� ` % �;� `prog " : A �;�,- : A ` &

�;� ` {%}" {- : A .&}

where � ranges over sets, A ranges over standard Borel spaces, � 2 {^,_,), ⇤,�⇤}, Q 2 {8, 9} and
"f (A) is the set of f-�nite measures over A.

Fig. 23. Typing judgements for B�SL assertions

of random variables ⇡ . The semantics of propositional, �rst-order and separation logic connectives
and quanti�ers (^, _,), ⇤, �⇤, 8, 9) is standard. In order for B�SL to be sound, the ‘custom’
probabilistic propositions, own⇢, L(4), E[⇢] = 4 , G

c
 � ⇢ | % and {%}" {- .&}, must satisfy Kripke

monotonicity as follows.

P���������� 4.8 (K����� ������������). Let< v<0, �;� ` % , W 2 J�K and ⇡ 2 RVJ�K. Then
(W,⇡,<) è % implies (W,⇡,<0) è % .

We next explain the intuitive meaning of the custom probabilistic assertions in B�SL. The
ownership own⇢ and distribution ⇢ ⇠ c assertions are expressed via measurability of random
variables. Speci�cally, (W,⇡,<) è own⇢ holds i� ⇢W,⇡ := ⇢ (W) � ⇡ (the expression ⇢ applied to
(W,⇡)) is an F -measurable function. Similarly, (W,⇡,<) è ⇢ ⇠ c holds i� ⇢W,⇡ is an F -measurable
function and the pushforward of ⇢ with respect to ` is c (c (W) = ((⇢W,⇡)⇤`)). The semantics of the
expected value assertion E[⇢] = 4 follows its usual interpretation in statistics: a random expression
has expected value 4W if ⇢W ,⇡ integrates (with respect to the probability measure `) to 4W .

The remaining three assertions, namely the likelihood proposition L(4), the conditioning modality
G

c
 � ⇢ | % and the Hoare triple {%}" {- .&} have non-trivial semantics, as we describe below.

Likelihood L(4). Recall from §2 that L(4) asserts that the current state has likelihood 4 . Indeed, a
state (F , `) 2M is more likely if the total measure ` (⌦) is higher. Hence, (F , `) has likelihood
4 (W) when ` (⌦) = 4 (W). In fact, the proposition NormConst (mentioned in §2) is simply de�ned as
having a non-zero likelihood : :

NormConst := 9: : (0,1) .L(:)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:23

(W,⇡,<) è > always
(W,⇡,<) è ? never
(W,⇡,<) è % ^&

def
() (W,⇡,<) è % and (W,⇡,<) è &

(W,⇡,<) è % _&
def
() (W,⇡,<) è % or (W,⇡,<) è &

(W,⇡,<) è %) &
def
() for all<0 w<, (W,⇡,<) è % implies (W,⇡,<0) è &

(W,⇡,<) è % ⇤&
def
() there exists<1 •<2 v< such that (W,⇡,<1) è % , (W,⇡,<2) è &

(W,⇡,<) è % �⇤&
def
() if<0 •< is de�ned then (W,⇡,<0) è % implies (W,⇡,<0 •<) è &

(W,⇡,<) è 8G : �.% def
() for all G 2 �, ((W, G),⇡,<) è %

(W,⇡,<) è 9G : �.% def
() for some G 2 �, ((W, G),⇡,<) è %

(W,⇡,<) è 8rv- : A .%
def
() for all - 2 RV(A), (W, (⇡,-),<) è %

(W,⇡,<) è 9rv- : A .%
def
() for some - 2 RV(A), (W, (⇡,-),<) è %

(W,⇡,<) è own⇢
def
() ⇢ (W) � ⇡ is F -measurable

(W,⇡,<) è ⇢ ⇠ c
def
() ⇢ (W) � ⇡ is F -measurable and c (W) = (⇢ (W) � ⇡)⇤`

(W,⇡,<) è E[⇢] = 4
def
() (W,⇡, (F , `)) è L(1) and

Ø
⌦
⇢ (W) � ⇡ d` = 4 (W)

(W,⇡,<) è L(4)
def
() ` (⌦) = 4 (W)

(W,⇡, (F , `)) è G
c
 � ⇢ | % def

() (W,⇡, (F , `)) è own⇢ and -⇤` is absolutely continuous with re-
spect to c and for all measures `+ : ⌃⌦ ! [0,1] satisfying
`+|F = ` and all disintegrations {`+G }G2A of `+ along (- , c)
and for c-almost-all G 2 �, ((W, G),⇡, (F , `+G |F)) è % where
- := ⇢ (W) � ⇡

(W,⇡,<) è {%}" {- : A .&}
def
() for all<pre 2 M with (W,⇡,<pre) è % ,<fr 2 M with (F0, `0) :=

<pre •<fr de�ned, measures `+0 : ⌃⌦ ! [0,1] with `+0 |F0 = `0,
if `+0 ({l 2 ⌦ | J"W K(⇡ (l),A)}) > 0, then there exists
(1) - 2 RV(A),
(2) <post 2M with (F1, `1) :=<post •<fr de�ned, and
(3) measure `+1 : ⌃⌦ ! [0,1] with `+1 |F1 = `1

s.t. (W, (⇡,-),<post) è & , and for all 5 : ⌦ ! B and* 2 ⌃B⌦⌃A ,Ø
⌦
J"W K(⇡ (l), {G 2 � | (5 (l), G) 2 * }) `+0 (dl) =

`+1 ({l 2 ⌦ | (5 (l),- (l)) 2 * })

Fig. 24. Semantics of B�SL assertions

Note that L(1) constitutes the multiplicative unit (unit of ⇤) in B�SL. Speci�cally, let (W,⇡, (F , `))
è - ⇠ P for a probability measure P; then (F , `) satis�es L(1) as the probability measure is by
de�nition normalised. Recall that in a Kripke resource model, the multiplicative unit is a proposition
� satisfying the following for any KRM (M, •, 1, v) [Galmiche et al. 2005, De�nition 2.5]:

for all< 2M,< è � () 4 v<

Unfolding v in our KRM, we know that if � is the multiplicative unit and (W,⇡, (F , `)) è � , then
` (⌦) = 1. Hence, L(1) is the unit and we de�ne >1 := L(1). Recall that a proposition % entails
& (written % ` &) if (W,⇡,<) è % implies (W,⇡,<) è & , for all (W,⇡,<). With >1 being the
multiplicative unit, we then know the bi-entailment % ⇤ >1 a` % holds.

B�SL is partially a�ne. The fact that >1 is the multiplicative unit has signi�cant implications on
B�SL’s reasoning rules. In particular, this means we cannot forget about ‘unnormalised propositions’.
Recall that a separation logic is a�ne if the entailment % ⇤& ` % ^& holds [Galmiche et al. 2005].
For example, the I��� separation logic is a�ne [Jung et al. 2018], and we can e.g. forget about

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:24 Shing Hin Ho, Nicolas Wu, and Azalea Raad

pointers via the entailments (G õ! E ⇤ ~ õ! E 0) ` (G õ! E ^ ~ õ! E 0) ` G õ! E , i.e. given two
addresses G and ~, weakening ⇤ to ^ allows us to forget information about ~. On the other hand, a
separation logic is linear (or boolean) when the multiplicative unit is only satis�ed by the empty
element 1 2M, i.e. when< è � implies< = 1 [Galmiche et al. 2005]. Consequently, the entailment
% ⇤& ` % ^& does not always hold, and we cannot forget information. In fact, this is the original
approach to separation logic taken by O’Hearn and Pym [1999].

B�SL is neither a�ne nor linear – the entailment % ⇤& ` % ^& holds in certain restricted cases.
Indeed, B�SL is partially a�ne, a category of logics �rst described by Charguéraud [2020], whereby
only a class of (not necessarily all) assertions are designated as a�ne, namely those that can be
‘dropped’. In B�SL, we de�ne an assertion to be a�ne, written a�ine(%), as follows:

a�ine(%)
def
() for all W,⇡, F , `, (W,⇡, (F , `)) è % implies ` (⌦) = 1

Intuitively, this means only normalised assertions (e.g. - ⇠ P for a probability measure P) are a�ne
and assertions with unnormalised components (e.g. L(4) when 4 < 1, or NormConst) are not a�ne.
A�ne assertions enjoy the property that they can be dropped, as stated in Proposition 4.9 below.

P���������� 4.9 (������ ����������). The following entailments hold:
E�⇤�W���1
a�ine(&)

% ⇤& ` %

E�⇤�W���2
a�ine(%)

% ⇤& ` &

E�⇤�W���
a�ine(%) a�ine(&)

% ⇤& ` % ^&

Conditioning G
c
 � ⇢ | % . As explained in §2, the conditioning assertion G

c
 � ⇢ | % lets us use

the assertion % to describe the behaviour of a state ` assuming ⇢ = G and (W,⇡, F , `) è ⇢ ⇠ c . Its
semantics is as follows. To show that % holds conditionally for almost every G , we require that
(W,⇡, F , `+G) è % holds for almost all G , where `+ is a Borel measure extending ` and `+G is the
measure `+ conditioned on ⇢ = G . The Borel measure extension condition is a technical condition to
ensure the existence of the conditioned space {`+G }G2�, which are a family of f-�nite measures that
exist by Theorem 4.7. We can now see how the conditioning modality interacts with the likelihood
assertion L(4) by revisiting B����C���. Suppose - ⇠ Unif (0, 1) and we assert the likelihood of
- = G to be G as in the example of Figure 4; then the state satis�es the proposition G

Unif (0,1)
 ����� - | L(G).

The resulting distribution is proportional to the Beta(2, 1) distribution because Bayes’ theorem
states that Pr[- 2 * | Flip1 = 1] =

Ø 1
0 1* (G) · 2G dG = Beta(* | 2, 1). Now, in order to derive the

desired postcondition (- ⇠ Beta(2, 1) with a normalising constant), we need to internalise a notion
of Bayes’ theorem within B�SL.

The Internal Bayes’ Theorem. In disintegration theory, the following theorem states that the
Radon-Nikodym derivative of the two absolutely-continuous measures -⇤` ⌧ c is almost surely
equal to the total measure of a c-disintegration (Lemma 4.10). Using this result, we can internalise
Bayes’ theorem as a B�SL bi-entailment (Theorem 4.11).

L���� 4.10 ([C���� ��� P������ 1997, T������ 2]). Let {`G }G2� be an (- , c)-disintegration
of `. Then c dominates the pushforward -⇤` and for c-almost-all G 2 �, d-⇤`

dc (G) = `G (⌦).

T������ 4.11 (�������� B����’ �������). For any Borel measurable function 5 : A ! [0,1)
and random expression �;� `re ⇢ : A, the following bi-entailment holds:

priorz }| {
G

c
 � ⇢ |

likelihoodz }| {
L(5 (G)) a`

posteriorz }| {
⇢ ⇠ 5 · c

P����. Let< = (F , `) 2 M, (W,⇡,<) be a con�guration and - (l) := ⇢ (W) (⇡ (l)). To prove
the ` direction, we assume (W,⇡, (F , `)) è G

c
 � ⇢ | L(5 (G)). Then for any Borel extension `+ and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:25

(- , c)-disintegration {`+G }G2� we know (W,⇡, (F , `+G |F)) èL(5 (G)) holds for c-almost-all G 2 �.
This implies `+G (⌦) = 5 (G) holds for c-almost-all G 2 �, which implies for all � 2 ⌃�:

-⇤` (�) = -⇤`
+
(�) =

π
�
`+G (-

�1
(�)) c (dG) =

π
�
`+G (⌦) c (dG) =

π
�
5 dc = (5 · c) (�).

The �rst equality follows from our assumption that `+ is a Borel extension of `. The second equality
is a disintegration axiom; the third holds because 1� (G)`+G (⌦) = -⇤`+G (�); and the last holds because
for almost all G , we have (W,⇡, (F , `+G |F)) è L(5 (G)). Hence, we know (W,⇡, (F , `)) è ⇢ ⇠ 5 · c .
To prove the a direction, we assume (W,⇡, (F , `)) è ⇢ ⇠ 5 · c holds; then (W,⇡, (F , `)) è own ⇢

by de�nition of è. Next, for any Borel extension `+ and (- , c)-disintegration {`+G }G2�, we know
(W,⇡, (F , `+G |F)) è L(5 (G)) holds for c-almost-all G 2 � because for any � 2 ⌃�:π

�
`+G (⌦) c (dG) =

π
�

d-⇤`
dc

dc =
π
�

d(5 · c)

dc
dc =

π
�
5 dc .

The �rst equality follows from Lemma 4.10; the second follows from our assumption. Note that
-⇤` = 5 · c is absolutely continuous with respect to c as (5 · c) (�) = 0 for any c-null-set � . É

Hoare Triple {%}" {- .&}. The interpretation of a Hoare triple in B�SL is similar to that of L����,
but with one key di�erence: a B�SL Hoare triple denotes partial correctness. A partial correctness
triple {%}" {&} states that if a state satis�es % and executing" from that state terminates, then the
resulting state satis�es& . One reason of assuming termination is due to its undecidability. Similarly,
determining whether a probabilistic program has a zero normalising constant is undecidable Staton
[2020, §2.2.4] – this is not a relevant concern for existing probabilistic logics (including L����) as they
do not support Bayesian updating. As such, B�SL triples denote partial correctness. Speci�cally,
{%} " {- .&} holds i� starting from a state <pre := (Fpre, `pre) satisfying the precondition %
and an arbitrary frame <fr (such that <pre • <fr is de�ned), if ‘J"K normalises to a non-zero
constant from<pre •<fr’, then there must exist a random variable - and a postcondition state
<post := (Fpost, `post) that satis�es & and is compatible with the frame<fr such that<post •<fr is
also de�ned and ‘executing" from<pre results in<post’.

To express that ‘J"K normalises to a non-zero constant from<pre •<fr’, we require that `+0 ({l 2
⌦ | J"W K(⇡ (l),A)}) > 0, where `+0 is a Borel extension of<pre •<fr. This means there exists a
measurable set of ⌦ with non-zero-`+0 measure such that executing J"W K with random variables ⇡
generated from the seed l leads to a non-zero normalising constant. Similar to L����, we quantify
over arbitrary extensions of random variables ⇡ext to prove a substitution lemma (see Lemma D.4).

To express ‘executing" from the state<pre results in<post’, we require that the following hold
for any measurable set* :π

⌦
J"W K(⇡ (l), {G | (⇡ext (l),⇡ (l), G) 2 * }) `+0 (dl) = `+1 {l | (⇡ext (l),⇡ (l),- (l)) 2 * }.

where `+0 is a Borel measure that extends<pre•<fr, and `+1 is a Borel measure that extends `post•<fr.
Comparing the B�SL semantics to the standard denotational semantics of B��� in the category
of B-�nite kernels, the behaviour of the Hoare triple can be characterised by Proposition 4.12.
Intuitively, suppose `+0 is a state that satis�es precondition % and `+1 is a state that satis�es the
postcondition & . Then the resulting measure of J"W K with random variables ⇡ along the random
source `+0 is equal to the ‘output’ random variable - with the random source `+1 , as stated below.

P���������� 4.12. Let (W,⇡, `) è % , MA be the space of all measures of A, and J�K : Syn !
sfKrn be the semantic functor de�ned in Ho et al. [2025, §B]. Suppose � ` " : g and {%}"{- .&}

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:26 Shing Hin Ho, Nicolas Wu, and Azalea Raad

holds with respect to `+0 and `+1 . Then the following diagram commutes:

M⌦ MJ�K MJgK

1 M⌦ MJgK

⇡⇤ J"W K⇤

`+0

`+1 -⇤

We �nally show that the B�SL proof system in Figure 9 is sound, with the full proof given in
Ho et al. [2025, §E]. We write è {%}" {- .&} to denote that (W,⇡,<) è {%}" {- .&} holds for all
(W,⇡,<).

T������ 4.13 (���������). The B�SL proof system is sound: for all %,",& , if ` {%}"{- .&} is
derivable using the rules in Figure 9, then è {%}" {- .&} holds.

5 Conclusions, Related and Future Work
We developed B�SL by extending probabilistic separation logic to verify Bayesian programs/s-
tatistical models. To this end, we devised a semantic model rich enough to encode probabilistic
programming concepts such as conditional distributions, unnormalised distributions, Bayesian
updating and improper priors. We then demonstrated the utility of B�SL by proving properties
such as correlation, expected values and posterior distributions in various statistical models.

Related Work: Semantics of BPPLs. The semantics of randomised languages is well-established:
starting from the seminal work of Kozen [1981] on linear operator semantics, there are numerous
works on semantic domains for probability and non-determinism, e.g. by Jones and Plotkin [1989].
These led to the study of Bayesian inference from a programming language theory perspective
[Gordon et al. 2014; van de Meent et al. 2021] with research on their operational [Borgström
et al. 2016] and denotational semantics [Dahlqvist and Kozen 2019; Huot et al. 2023]. Based on
the theory of concrete sheaves [Matache et al. 2022], Heunen et al. [2017]; Vákár et al. [2019]
developed a category known as (l-)quasi-Borel space (Qbs) for reasoning about higher-order,
recursive Bayesian probabilistic programs and proved the existence of a strong monad of B-�nite
measures for a monadic semantics of higher-order BPPLs. The B�SL proof system is underpinned
by the category of B-�nite kernels developed by Staton [2017].

Related Work: Probabilistic Separation Logics. Separation logic (SL) developed a modular theory
for reasoning about computational resources [O’Hearn and Pym 1999] for pointer-manipulating
programs. This led to the development of abstract models for SL [Calcagno et al. 2007; Galmiche
et al. 2005; Jung et al. 2018]. Barthe et al. gave a probabilistic interpretation of SL in P�� (probabilistic
SL) and proved the correctness of algorithms such as the one-time pad cipher.

One of the overarching themes of probabilistic separation logics is the investigation of conditional
probability. Bao et al. [2021a] developed DIBI based on bunched implications (BI) by extending P��
with the ‘;’ connective for describing conditional independence of random variables, while Bao
et al. [2021b] developed L��� for reasoning about negative dependence of random variables. Li et al.
[2023] proposed L����, a measure-theoretic interpretation of probabilistic SL that supports desirable
features such as continuous distributions and ‘mathematical’ random variables. L���� handles
conditional independence by introducing the conditioning modality, which was later adopted by
B���B��� [Bao et al. 2025] (a relational probabilistic SL) and ��OL [Zilberstein et al. 2024] (a
concurrent probabilistic program logic). Recently, Li et al. [2024] developed a categorical model of
L���� by drawing an analogy between random sampling and fresh name generations in the theory
of nominal sets. B�SL generalises the model of L���� and brings a novel perspective of conditional

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

Bayesian Separation Logic 54:27

Table 2. Features of probabilistic separation/bunched logics

P�� D��� L��� L���� ��OL B���B��� B�SL

Discrete distribution ÿ ÿ ÿ ÿ ÿ ÿ ÿ
Probabilistic independence ÿ ÿ ÿ ÿ ÿ ÿ ÿ
Continuous distribution ÿ ÿ
Negative dependence ÿ

Conditional independence ÿ ÿ ÿ ÿ ÿ
Conditioning modality ÿ ÿ ÿ ÿ

Concurrency ÿ
Relational reasoning ÿ
Bayesian reasoning ÿ

reasoning by supporting Bayesian updating, hence giving an axiomatic semantics of probabilistic
programming via SL. We summarise the features of probabilistic separation/BI logics in Table 2.

Related Work: Program Logic for Bayesian Conditioning. Based on quasi-Borel spaces, Sato et al.
[2019] derived a family of program logics known as PPV. Their semantic insight is that the logical
assertions in the category Qbs corresponds to �brations, and used a technique known as categorical
>>-lifting [Katsumata et al. 2018] to give semantics to predicates and derive logics for a condtioning
construct known as query. By contrast, our model is more closely inspired by measure theory,
and we use a resource monoid of a well-behaved subset of f-�nite measure spaces over [0, 1]N
to give semantics to assertions. An interesting direction of future work is to determine whether
our de�nition of Hoare triples is an instance of categorical >>-lifting. Practically, while PPV can
handle higher-order functions, our approach, apart from a �rst-class handling of probabilistic
independence, has the following advantages: (1) B�SL has a general modality for expressing
conditional distributions: Sato et al. [2019] develop a program logic on top of quasi-Borel spaces
(Qbs), while the probability theory of Qbs is very promising, it is still under active development.
For example, consider the (quasi-Borel) space of measurable real functions RR, it is currently
an open question whether conditioning makes sense for RR. Our logic uses standard measure
spaces, for which the probability theory is well-established. This allows us to derive a general
conditioning modality compatible with Bayesian update. As a consequence, our logic can, via a
�rst-class modality, express conditional probability distributions, which is useful for expressing
properties such as conditional expectation/independence. (2) Also, random variables (in the sense of
measurable functions from the sample space) are �rst-class obejcts in B�SL, as opposed to variable
names in PPV. An immediate implication is that programs in PPV need to be written in a speci�c
form to retain information about its distribution via the query construct.

Future Work. We will consider three avenues of future research. First, we will mechanise B�SL
and its soundness proof in a theorem prover such as Rocq. Second, we will extend B�SL to support
more sophisticated language features including (1) mutable states; (2) recursion; and (3) higher-order
functions. These extensions will allow us to express programs in a class of statistical models known
as Bayesian nonparametric models [Mak et al. 2021; Orbanz and Teh 2017], namely statistical models
with an unbounded number of random variables [van de Meent et al. 2021]. Finally, we will apply
B�SL to develop program simpli�cation/symbolic execution tools for probabilistic programs.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

54:28 Shing Hin Ho, Nicolas Wu, and Azalea Raad

Acknowledgments
We thank the POPL 2026 reviewers and the members of the Veritas Lab and the Functional Program-
ming Group at Imperial for their constructive feedback. We thank John Li for helpful discussions on
the technical aspects of the Lilac separation logic. We thank Alberto Croquevielle for his insights
on the measure-theoretic components of the proofs. Azalea Raad is supported by a UKRI fellowship
MR/V024299/1, by the EPSRC grant EP/X037029/1, and by VeTSS.

References
Sheldon Axler. 2019. Measure, Integration & Real Analysis. Springer International Publishing. doi:10.1007/978-3-030-33143-6
Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021a. A Bunched Logic for Conditional Independence. In 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–14. doi:10.1109/LICS52264.2021.9470712
Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan. 2025. Bluebell: An Alliance of Relational Lifting and Independence for

Probabilistic Reasoning. Proc. ACM Program. Lang. 9, POPL, Article 58 (Jan. 2025), 31 pages. doi:10.1145/3704894
Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2021b. A Separation Logic for Negative Dependence. CoRR

abs/2111.14917 (2021). arXiv:2111.14917 https://arxiv.org/abs/2111.14917
Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A Probabilistic Separation Logic. CoRR abs/1907.10708 (2019).

arXiv:1907.10708 http://arxiv.org/abs/1907.10708
Patrick Billingsley. 1995. Probability and measure (3. ed ed.). Wiley, New York [u.a.].
Johannes Borgström, Ugo Dal Lago, Andrew Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for

universal probabilistic programming. SIGPLAN Not. 51, 9 (Sept. 2016), 33–46. doi:10.1145/3022670.2951942
Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. 2011. Handbook of Markov Chain Monte Carlo. Chapman

and Hall/CRC. doi:10.1201/b10905
Cristiano Calcagno, Peter O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In 22nd Annual

IEEE Symposium on Logic in Computer Science (LICS 2007). 366–378. doi:10.1109/LICS.2007.30
Bob Carpenter, Andrew Gelman, Matthew Ho�man, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,

Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. Journal of Statistical Software
76, 1 (2017), 1–32. doi:10.18637/jss.v076.i01

Joseph Chang and David Pollard. 1997. Conditioning as disintegration. Statistica Neerlandica 51, 3 (1997), 287–317.
doi:10.1111/1467-9574.00056

Arthur Charguéraud. 2020. Separation logic for sequential programs (functional pearl). Proc. ACM Program. Lang. 4, ICFP,
Article 116 (Aug. 2020), 34 pages. doi:10.1145/3408998

Ulices Santa Cruz and Yasser Shoukry. 2022. NNLander-VeriF: A Neural Network Formal Veri�cation Framework for
Vision-Based Autonomous Aircraft Landing. arXiv:2203.15841 [cs.LG] https://arxiv.org/abs/2203.15841

Marco Cusumano-Towner, Feras Saad, Alexander Lew, and Vikash Mansinghka. 2019. Gen: a general-purpose probabilistic
programming system with programmable inference. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2019). 221–236. doi:10.1145/3314221.3314642

Fredrik Dahlqvist and Dexter Kozen. 2019. Semantics of higher-order probabilistic programs with conditioning. Proc. ACM
Program. Lang. 4, POPL, Article 57 (Dec. 2019), 29 pages. doi:10.1145/3371125

David Fremlin. 2011. Measure Theory: Topological Measure Spaces. Volume 4. Torres Fremlin.
Didier Galmiche, Daniel Méry, and David Pym. 2005. The semantics of BI and resource tableaux. Mathematical Structures in

Computer Science 15, 6 (2005), 1033–1088. doi:10.1017/S0960129505004858
Stuart Geman and Donald Geman. 1984. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6, 6 (1984), 721–741. doi:10.1109/TPAMI.1984.4767596
Andrew Gordon, Thomas Henzinger, Aditya Nori, and Sriram Rajamani. 2014. Probabilistic Programming. In Proceedings of

the on Future of Software Engineering. ACM, 167–181. doi:10.1145/2593882.2593900
Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order probability

theory (LICS ’17). IEEE Press, Article 77, 12 pages. doi:doi/10.5555/3329995.3330072
Shing Hin Ho, Nicolas Wu, and Azalea Raad. 2025. Bayesian Separation Logic. arXiv:2507.15530 [cs.PL] https://arxiv.org/

abs/2507.15530
Mathieu Huot, Alexander Lew, Vikash Mansinghka, and Sam Staton. 2023. lPAP Spaces: Reasoning Denotationally About

Higher-Order, Recursive Probabilistic and Di�erentiable Programs. In 2023 38th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS). 1–14. doi:10.1109/LICS56636.2023.10175739

Claire Jones and Gordon Plotkin. 1989. A probabilistic powerdomain of evaluations. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science. IEEE Press, 186–195. doi:10.1109/LICS.1989.39173

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

https://doi.org/10.1007/978-3-030-33143-6
https://doi.org/10.1109/LICS52264.2021.9470712
https://doi.org/10.1145/3704894
https://arxiv.org/abs/2111.14917
https://arxiv.org/abs/2111.14917
https://arxiv.org/abs/1907.10708
http://arxiv.org/abs/1907.10708
https://doi.org/10.1145/3022670.2951942
https://doi.org/10.1201/b10905
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1111/1467-9574.00056
https://doi.org/10.1145/3408998
https://arxiv.org/abs/2203.15841
https://arxiv.org/abs/2203.15841
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1145/3371125
https://doi.org/10.1017/S0960129505004858
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1145/2593882.2593900
https://doi.org/doi/10.5555/3329995.3330072
https://arxiv.org/abs/2507.15530
https://arxiv.org/abs/2507.15530
https://arxiv.org/abs/2507.15530
https://doi.org/10.1109/LICS56636.2023.10175739
https://doi.org/10.1109/LICS.1989.39173

Bayesian Separation Logic 54:29

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground
up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),
e20. doi:10.1017/S0956796818000151

Shin-ya Katsumata, Tetsuya Sato, and Tarmo Uustalu. 2018. Codensity Lifting of Monads and its Dual. Logical Methods in
Computer Science Volume 14, Issue 4, Article 6 (Oct 2018). doi:10.23638/LMCS-14(4:6)2018

Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. System Sci. 22, 3 (1981), 328–350. doi:10.1016/0022-
0000(81)90036-2

Peter M. Lee. 2012. Bayesian Statistics: An Introduction (4th ed.). Wiley Publishing.
John Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Separation Logic for Conditional Probability. Proc. ACM

Program. Lang. 7, PLDI, Article 112 (jun 2023), 24 pages. doi:10.1145/3591226
John Li, Jon Aytac, Philip Johnson-Freyd, Amal Ahmed, and Steven Holtzen. 2024. A Nominal Approach to Probabilistic

Separation Logic. In Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’24). Article
55, 14 pages. doi:10.1145/3661814.3662135

Carol Mak, Fabian Zaiser, and Luke Ong. 2021. Nonparametric Hamiltonian Monte Carlo. In Proceedings of the 38th
International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 139). PMLR, 7336–7347.
https://proceedings.mlr.press/v139/mak21a.html

Cristina Matache, Sean Moss, and Sam Staton. 2022. Concrete categories and higher-order recursion: With applications
including probability, di�erentiability, and full abstraction (LICS ’22). Article 57, 14 pages. doi:10.1145/3531130.3533370

Richard McElreath. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (2nd ed.). Chapman and
Hall/CRC. doi:10.1201/9780429029608

Natalia Muehlemann, Tianjian Zhou, Rajat Mukherjee, Munshi Imran Hossain, Satrajit Roychoudhury, and Estelle Russek-
Cohen. 2023. A Tutorial on Modern Bayesian Methods in Clinical Trials. Therapeutic Innovation & Regulatory Science 57,
3 (2023), 402–416. doi:10.1007/s43441-023-00515-3

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by
program transformation in Hakaru (system description). In International Symposium on Functional and Logic Programming
- 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Springer, 62–79. doi:10.1007/978-
3-319-29604-3_5

Peter O’Hearn and David Pym. 1999. The Logic of Bunched Implications. Bulletin of Symbolic Logic 5, 2 (1999), 215–244.
doi:10.2307/421090

Peter Orbanz and Yee Teh. 2017. Bayesian Nonparametric Models. 107–116. doi:10.1007/978-1-4899-7687-1_928
John Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings of the 17th Annual IEEE

Symposium on Logic in Computer Science (LICS ’02). IEEE Computer Society, USA, 55–74. doi:10.1109/LICS.2002.1029817
Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Justin Hsu. 2019. Formal veri�cation of

higher-order probabilistic programs: reasoning about approximation, convergence, Bayesian inference, and optimization.
Proc. ACM Program. Lang. 3, POPL, Article 38 (Jan. 2019), 30 pages. doi:10.1145/3290351

David Simmons. 2012. Conditional measures and conditional expectation; Rohlin’s Disintegration Theorem. Discrete and
Continuous Dynamical Systems 32 (07 2012). doi:10.3934/dcds.2012.32.2565

Natalia Slusarz, Ekaterina Komendantskaya, Matthew L. Daggitt, and Robert Stewart. 2022. Di�erentiable Logics for Neural
Network Training and Veri�cation. arXiv:2207.06741 [cs.AI] https://arxiv.org/abs/2207.06741

Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In Programming Languages and Systems. Springer
Berlin Heidelberg, Berlin, Heidelberg, 855–879. doi:10.1007/978-3-662-54434-1_32

Sam Staton. 2020. Probabilistic Programs as Measures. In Foundations of Probabilistic Programming. Cambridge University
Press, 43–74. doi:10.1017/9781108770750.003

Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proc. ACM Program.
Lang. 3, POPL, Article 64 (Jan. 2019), 30 pages. doi:10.1145/3290377

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016. Design and Implementation of Probabilistic
Programming Language Anglican. CoRR abs/1608.05263 (2016). arXiv:1608.05263 http://arxiv.org/abs/1608.05263

Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A domain theory for statistical probabilistic programming. Proc. ACM
Program. Lang. 3, POPL, Article 36 (Jan. 2019), 29 pages. doi:10.1145/3290349

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2021. An Introduction to Probabilistic Program-
ming. arXiv:1809.10756 [stat.ML] https://arxiv.org/abs/1809.10756

Matthijs Vákár and Luke Ong. 2018. On S-Finite Measures and Kernels. arXiv:1810.01837 [math.PR] https://arxiv.org/abs/
1810.01837

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. 2024. Probabilistic Concurrent Reasoning in Outcome Logic:
Independence, Conditioning, and Invariants. arXiv:2411.11662 [cs.LO] https://arxiv.org/abs/2411.11662

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 54. Publication date: January 2026.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.23638/LMCS-14(4:6)2018
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3661814.3662135
https://proceedings.mlr.press/v139/mak21a.html
https://doi.org/10.1145/3531130.3533370
https://doi.org/10.1201/9780429029608
https://doi.org/10.1007/s43441-023-00515-3
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.2307/421090
https://doi.org/10.1007/978-1-4899-7687-1_928
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3290351
https://doi.org/10.3934/dcds.2012.32.2565
https://arxiv.org/abs/2207.06741
https://arxiv.org/abs/2207.06741
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1017/9781108770750.003
https://doi.org/10.1145/3290377
https://arxiv.org/abs/1608.05263
http://arxiv.org/abs/1608.05263
https://doi.org/10.1145/3290349
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1810.01837
https://arxiv.org/abs/1810.01837
https://arxiv.org/abs/1810.01837
https://arxiv.org/abs/2411.11662
https://arxiv.org/abs/2411.11662

	Abstract
	1 Introduction
	2 Overview
	3 Verifying Statistical Models with BaSL
	3.1 BaSL Programming Language and Proof System
	3.2 Conjugate Priors as Hoare Triples: Verifying a Parameter Estimation Algorithm
	3.3 Verifying the `Hello World' of Probabilistic Programming: Burglar Alarm
	3.4 Reasoning about Independence and Correlations: The Collider Bayesian Network
	3.5 Modelling Improper Prior: Correctness of the Semantic Lebesgue Measure
	3.6 Representing the Posterior of a Bayesian Clustering Algorithm
	3.7 Rewriting Probabilistic Programs

	4 The Semantics of BaSL
	4.1 Background: A Resource Monoid for Randomisation
	4.2 The Need for an Extended Resource Model of Randomness
	4.3 The Kripke Resource Model of BaSL
	4.4 Semantics of BaSL Assertions

	5 Conclusions, Related and Future Work
	Acknowledgments
	References

