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Remote Direct Memory Access (RDMA) is a memory technology that allows remote devices to directly write
to and read from each other’s memory, bypassing components such as the CPU and operating system. This
enables low-latency high-throughput networking, as required for many modern data centres, HPC applications
and AI/ML workloads. However, baseline RDMA comprises a highly permissive weak memory model that is
di�cult to use in practice and has only recently been formalised.

In this paper, we introduce the Library of Composable Objects (LOCO), a formally veri�ed library for building
multi-node objects on RDMA, �lling the gap between shared memory and distributed system programming.
LOCO objects are well-encapsulated and take advantage of the strong locality and the weak consistency
characteristics of RDMA. They have performance comparable to custom RDMA systems (e.g. distributed
maps), but with a far simpler programming model amenable to formal proofs of correctness.

To support veri�cation, we develop a novel modular declarative veri�cation framework, calledM�����,
that is �exible enough to model multinode objects and is independent of a memory consistency model. We
instantiateM����� with the RDMA memory model, and use it to verify correctness of LOCO libraries.
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1 Introduction
The remote direct memory access (RDMA) protocol provides a load/store interface, allowing a
machine to access the memory of a remote machine across a network without communicating
with the remote processor. The memory accesses are performed directly by the network interface
card (NIC), bypassing the software networking stack on both ends of the connection. As such,
RDMA achieves low-latency, high-throughput communication, making it a key technology in many
production-grade data centres such as those at Microsoft [Zhu et al. 2015], Google [Lu et al. 2018],
Alibaba [Wang et al. 2023b], and Meta [Gangidi et al. 2024].

Despite its memory-like interface, RDMA is a hardware-accelerated networking protocol, and
has traditionally been programmed as such—not as shared memory. This has resulted in a very
weak memory model with out-of-order behaviours visible even in a sequential setting [Ambal et al.
2024]. Consider, for example, the following program, where all memories are zero-initialised.

I := G ; // RDMA put: write the value of local variable G to remote location I
G := 1 // update local variable G to 1

Somewhat counterintuitively, this program can result in I getting the value 1, with the following
execution steps: (1) the put instruction (I := G ) is o�oaded to the NIC; (2) the CPU executes G := 1
updating the value of G in the local memory; and (3) the NIC executes the put instruction, fetching
the new value of G from local memory before performing the remote write.
Since programming RDMA directly is challenging, prior work has developed custom RDMA

libraries. Most existing libraries are monolithic: they encapsulate a useful distributed protocol
(such as consensus [Aguilera et al. 2020] or distributed storage [Dragojević et al. 2014; Wang et al.
2022]) as a single, global entity—not one that can be reused by other RDMA libraries. Some other
libraries (e.g. [Cai et al. 2018; Wang et al. 2020]) provide a simple high-level memory abstraction
that hides all the complexities of a highly non-uniform, weakly consistent network memory, but
also loses a lot of the performance that can be achieved by knowing the system layout [Liu and
Mellor-Crummey 2014; Majo and Gross 2017; Tang et al. 2013]. Other intermediate layers, such as
MPI [Message Passing Interface Forum 2023] or NCCL [NVIDIA Corporation 2020] are designed
explicitly for networks and present a message passing interface that is ideal for embarrassingly
parallel or task-oriented work�ows, but ill-suited for irregular and data-dependent workloads, such
as data stores or stateful transactional systems, for which shared-memory solutions excel [Liu
et al. 2021]. Although these library implementations are impressive engineering artefacts and have
often been carefully tuned to achieve very good performance, they are almost impossible to verify
formally due to their lack of modularity.

In this paper, we argue for a new way for programming RDMA applications—and more generally
systems with non-uniform weakly consistent memories—with �exible libraries that can expose
the non-uniform memory aspects and that support formal veri�cation. Key to our approach is
composability—namely, the ability to put together smaller/simpler objects to build larger ones—and
this composability is re�ected both in the design and implementation of our library as well as in
the formal proofs about its correctness.

LOCO. As a �rst contribution, we introduce the Library of Composable Objects (LOCO). A LOCO
object is a concurrent object as in Herlihy and Wing [1990], exposing a collection of methods, but
storing its state in a distributed fashion across all participating nodes. Familiar examples include
cross-node locks, barriers, queues, and maps. LOCO objects provide encapsulation and can be
composed together to build other LOCO objects. We de�ne objects encapsulating the underlying
RDMA operations and the local CPU instructions, and use them to build intermediate objects, such
as ring bu�ers, which in turn are used to build larger objects, such as a key-value store (see Fig. 1).
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The source code for LOCO is available on Github [ ]. Additionally, a previous preprint version of
this paper focused on the LOCO library was published on arXiv [Hodgkins et al. 2025].

������� [EV]

�������� (§3.3)

shared
vars (§3.4)

barrier
(§4)

ring bu�er
(§5)

mixed-size
writes [EV]

key-value store (§6.2)

atomic
vars

queue locks
[EV]

�������

Fig. 1. LOCO libraries with their dependencies

For concreteness, we implement and verify
LOCO objects over ������� (which combines
an RDMAnetworking fabric with Intel x86-TSO
nodes), making use of an existing formalisation
by Ambal et al. [2024]. ������� is, however,
too low-level for our purposes: it does not pro-
vide a compositional way to wait for RDMA
operations to complete, making it impossible
to encapsulate it as a LOCO object. For this
reason, we introduce ��������, a thin layer of
abstraction over �������, that attaches identi-
�ers to RDMA operations and allows threads to
perform a Wait operation to wait for all RDMA
operations with a given identi�er to �nish executing. To attain good performance, the practical
implementation of the Wait operation in LOCO is quite involved. Nevertheless, we prove the
correctness of a simpli�ed version over the underlying ������� model.

MOWGLI. As a second contribution, we introduce M����� (MOdular Weak Graph-based
LIbraries), a generic, modular framework for modelling and verifying weak libraries. M�����
is generic in that it makes no assumptions about the underlying memory model (e.g. RDMA or TSO)
in its core theory; and it is modular in that it allows proof decomposition at library interfaces and
reasoning about individual components without referring to the internals of other components.
We instantiateM����� with �������� and establish the correctness of all the LOCO libraries

that do not depend on atomic read-modify-write (RMW) RDMA operations because the latter are
not covered by the existing ������� model. The veri�ed libraries are highlighted in Fig. 1.

M����� represents program executions as graphs, whose nodes are called events and represent
either a simple operation like a read or a write, or a more complex operation such as a method call.
Following the declarative approach of Raad et al. [2019] and Stefanesco et al. [2024], we specify each
concurrent object with a set of axioms (i.e., consistency predicates) over events. As we shall see
in §2.3, however, events are too coarse-grained to model the intricate synchronisation guarantees
of RDMA operations.
We therefore introduce the novel notion of a subevent, allowing one to split complex library

operations into multiple subevents, each with a di�erent stamp (representing, e.g., the node af-
fected by the subevent). Stamps are meta-categories of behaviours, shared by all libraries, and are
independent from programs. Stamps are then used to induce ordering among (sub)events. Within a
thread, they are used to de�ne the preserved program order (ppo) [Alglave et al. 2014], which relates
(sub)events executed by a thread that may not be reordered. Across threads and nodes, stamps are
used to de�ne the synchronisation order (so) [Dongol et al. 2018] between methods calls of the same
library. Together ppo and so are used to de�ne the happens-before relation.

Our main result supporting modular proofs in M����� is a new locality result that decomposes
proving correctness of a system into proofs about the correctness of its individual components.
This is akin to the notion of compositionality for linearisability [Herlihy and Wing 1990], but
generalised to a partially ordered setting. In our veri�cation of LOCO, this allows us to verify a
library, then use the speci�cation of the library in any program that uses the library. Moreover, we
show that our locality result supports both horizontal composition, where a library is used within a
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G =0 I=0
I := G
Poll(2)
G := 1

(a) I=03 I = 17

G =0 I=0
I := G
I := G
Poll(2)
G := 1

(b) I=03 I=13

G =0 I=0
I := G
I := G
Poll(2)
Poll(2)
G := 1

(c) I=03 I=17

Fig. 2. Polling under �������

G =0 I=0
I :=3 G
Wait(3)
G := 1

(a) I=03 I = 17

G =0 I=0
I :=4 G
I :=3 G
Wait(3)
G := 1

(b) I=03 I=17

Fig. 3. Waiting under ��������

client program, and vertical composition, where a library is developed from other libraries via a
series of abstractions.

Contributions. In summary, we make the following contributions:
• We de�ne a new consistency model, ��������, that supports a Wait operation that allows CPUs
to wait for the con�rmation (by the NIC) for a speci�c group of remote operations. We verify the
correctness of the �������� implementation over the existing ������� model.

• We develop LOCO [ ], a �exible, modular object library for RDMA, and demonstrate its compo-
sitionality by using simpler objects to build more advanced objects: e.g., a barrier, a ring bu�er, a
linearisable key-value store, a transactional locking scheme, and a distributed DC/DC converter.

• We introduce a newmodular formal framework,M�����, for specifying and verifying concurrent
libraries over weakly consistent memory and distributed architectures.

• We instantiate M����� to verify correctness of the aforementioned LOCO libraries.
• We benchmark LOCO’s barrier and ring bu�er objects and show that they outperform the
highly-tuned OpenMPI implementations of the same objects.

2 Overview of LOCO and MOWGLI
In this section, we provide an informal, more detailed overview of LOCO and M�����. We present
LOCO’s base memory model, ��������, in §2.1, then discuss the key libraries that we consider.
In §2.3, we provide an overview of our M����� veri�cation framework.

2.1 The �������� Memory Model
We start by informally describing LOCO’s base memory model, ��������, and contrast it to
������� [Ambal et al. 2024] via a set of simple examples. Both models provide put operations
(G := ~) for writing to remote memory and get operations (~ := G) for reading from remote
memory, which are executed asynchronously. The models di�er in how a thread can wait for these
asynchronous operations to terminate.

In �������, waiting is achieved with the Poll primitive. Consider the programs in Fig. 2, which
comprise two nodes, with a variable G in node 1 and a variable I in node 2. In the �rst program,
Fig. 2a, node 1 comprises a single thread that �rst puts the value of G to the remote location I
(located in node 2), and then polls node 2, which causes the thread to wait until the put has been
executed, and �nally updates G to 1. This means that the �nal value of I is 0, and not 1. Note that in
the absence of the Poll operation, the �nal outcome I = 1 would be permitted since the instruction
I := G could simply be o�oaded to the NIC, followed by the update of G to 1. When I := G is later
executed by the NIC, it will load the value 1 for G .

Synchronisation via Poll is however brittle, and sensitive to the number of instructions occurring
before the Poll. For example, as shown in Fig. 2b, the �nal outcome I = 1 is once again permitted
because the Poll only waits for the earliest unpolled operation to be executed at node 2. In particular,
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although Poll does wait for the �rst put instruction, the second put may be o�oaded to the NIC and
the local write G := 1 executed before the second put (I := G) is executed. This weak behaviour is
also allowed if we replace the �rst operation with any RDMA operation, even unrelated to locations
G and I. This demonstrates that ������� programs are not compositional: we cannot reason about a
property (e.g. the �nal value of I) by focusing only on the part of the program that seems relevant;
only monolithic analysis of the full program is possible. To prevent the weak behaviour of Fig. 2b,
one must add a second Poll operation as shown in Fig. 2c.
In ��������, synchronisation is performed with the Wait operation. RDMA operations are

associated with a work identi�er, e.g. 3 in Fig. 3a, which can be waited upon with a Wait operation.
Thus, unlike Poll, which waits for the �rst unpolled operation, �������� can wait for a speci�c
put or get operation. This improves robustness since the Wait is independent of the number of
instructions that have been executed by each thread. For example, in Fig. 3b, the Wait can target
the second put instruction using the work identi�er 3 and exclude the unintended outcome I = 1.

While Wait makes targeting a remote operation easier, it does not provide more synchronisation
guarantees than the Poll operation. Waiting for a put operation (I := G ) only guarantees that the

~=0 G =0
G :=3 1
Wait(3)
0 := ~

~ :=4 1
Wait(4)
1 := G

(0,1) = (0, 0) 3

~,F =0 G, I=0
G := 1
2 :=3 I
Wait(3)
0 := ~

~ := 1
3 :=4 F
Wait(4)
1 := G

(0,1) = (0, 0) 7

Fig. 4. Preventing RDMA store bu�ering

local value of G has been read, not that the remote
location I has been modi�ed. Thus, as shown in
Fig. 4, the store bu�ering behaviour across nodes is
possible even if we wait for every remote operation.
In contrast, waiting for a get operation (G := I) does
guarantee it has fully completed, i.e. that I has been
read and G modi�ed. This can be exploited to prevent
the store bu�ering behaviour. RDMA ordering rules
ensure that later gets execute after previous puts towards the same remote node. Thus, waiting for
a (seemingly unrelated) get operation can be used to ascertain the completion of previous remote
writes.

We present the formal de�nitions of �������� in §3.3 using a declarative style. Although, like
�������, it is also possible to derive an equivalent operational model, we elide these details since
the proof technique that we use (see §2.3) directly uses the declarative semantics.

Note that the actual implementation of Wait in LOCO is non-trivial, relying on a highly optimised
code path to track outstanding operations and match them to an associated Wait. This extension
to the RDMA interface is described within Section 2.2, with a more complete treatment in the
extended version [EV].

2.2 LOCO Libraries
LOCO provides a set of commonly used distributed objects, which we call channels, built on top of
��������. Channels are named and composable. To communicate over a channel, each participating
node constructs a local channel object, or channel endpoint, with the same name. Each channel
endpoint allocates zero or more named local regions of network memory when constructed, and
delivers the metadata necessary to access these local memory regions to the other endpoints during
the setup process.

Channels make it easy to develop RDMA applications and prove their correctness, for minimal
performance loss. A LOCO application will usually consist of many channels (objects) of many dif-
ferent channel types (classes). In addition, each channel can itself instantiate member sub-channels.
For instance, a key-value store might include several mutexes as sub-channels to synchronise access
to its contents.
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~ = 0 G = 0

G := 1
GF�� (2)
0 := ~

~ := 1
GF�� (1)
1 := G

(0,1) = (0, 0) 7

Fig. 5. Using GF��

Shared Variable Library (��, §3.4). One of the most basic components of
LOCO is the shared variable library. Each shared variable is replicated across
all (participating) nodes in the network and supports Write�� and Read��
operations, which only access the local copy of the variable. Any updates to
the variable may be pushed to the other replicas by the modifying node with
a Bcast�� operation.1 We provide examples in §2.3, Fig. 9.
The shared variable library also provides a mechanism for synchronising

di�erent nodes using a global fence (GF��) operation. GF�� takes the node(s) on which the fence
should be performed as a parameter and causes the executing thread to wait until all prior operations
executed by the thread towards the given nodes have fully completed. This is stronger than using
the Wait primitive, as the global fence also ensures the remote write parts have completed. An
example program using a GF�� is the store bu�ering setting given in Fig. 5, which disallows the �nal
outcome (0,1) = (0, 0), but allows all other combinations for 0 and 1 with values from {0, 1}. As
can be guessed from the similarity with Fig. 4, this global fence can be implemented by submitting
get operations and waiting for them.

~ = 0 G = 0

G := 1
BAR��� (I)
0 := ~

~ := 1
BAR��� (I)
1 := G

(0,1) = (1, 1) 3

Fig. 6. Using BAR���

Barrier Library (���, §4). A commonly used object in distributed sys-
tems is a barrier, which provides a stronger synchronisation guarantee
than global fences. All threads synchronising on a barrier must �nish their
operations before execution continues. For example, consider the program
in Fig. 6, which only allows the �nal outcome (0,1) = (1, 1) and forbids
all other outcomes. Here, nodes 1 and 2 synchronise on the barrier I, and
hence nodes 1 and 2 both wait until both writes to G and ~ have completed.

Ring Bu�er Library (���, §5). Similarly useful is a ring bu�er, which allows one to develop
producer-consumer systems. LOCO’s ring bu�er supports a one-to-many broadcast, and is the
most sophisticated of the libraries that we consider.

1 class barrier : public loco:: channel {
2 unsigned count;
3 loco::var_array <unsigned > arr;
4 public:
5 void waiting () {
6 // complete outstanding RDMA ops
7 loco:: global_fence ();
8 count ++; // increment our counter
9 arr[loco:: my_node ()].store(count);
10 arr[loco:: my_node ()]. push_broadcast

(); //and push
11 bool waiting = true;
12 while(waiting){ // wait for others
13 waiting = false; // to match
14 for (auto& i : arr) {
15 if (i.load() < count){
16 waiting = true;
17 break ;}
18 } } } };

Fig. 7. Complete C++ code for the LOCO barrier

Mixed-Size Writes (���, in extended version).
The �nal library we consider is the mixed-size write
library, which allows safe transmission of data span-
ning multiple words. Here, due to the asynchrony
between the CPU and the NIC, it is possible for
corrupted data to be transmitted that does not cor-
respond to any write performed by the CPU. There
are multiple solutions to this problem; we consider
a simple solution that transmits a hash alongside
the data.

LOCO API Example. As an example of the
LOCO C++ API, Fig. 7 shows our implementation
of a barrier object, based on Gupta et al. [2002]. The
class uses an array (arr) of shared variables as a
sub-object [Jha et al. 2019, 2017], demonstrating
composition. As with a traditional shared memory
barrier, it is used to synchronise all participants at a certain point in execution. For each use of the
1It is also possible for replicas to pull the new value from a source node when a shared variable is modi�ed, but we do not
model this aspect because it is not used in the libraries we consider. Moreover, LOCO also de�nes a stronger form of a
shared variable called an owned variable, which provides a mechanism for de�ning a variable’s owner that provides a single
authoritative version of the variable (describing its true value), de�ning a single-writer multi-reader register.
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barrier, participants increment their local count variable, then broadcast the new value to others
using their index in the array. They then wait locally, leaving the barrier only when all participants
have a count in the array not less than their own. This code is a near-complete implementation of
a single-threaded barrier in LOCO, missing only a boilerplate constructor.

Implementing ��������. In general, RDMA operations are assigned a unique ID at initialisation.
Subsequent queries to a corresponding completion queue (i.e. via the Poll operation) indicate the
oldest ID that has been received at the remote node and acknowledged. As mentioned in Section 2.1,
this default system results in non-local e�ects.
In contrast, LOCO’s backend allows for a practical implementation of �������� with a high-

performance and composable system for tracking RDMA operations. LOCO uses a dedicated polling
thread to query the completion queue and notify the application of tracked RDMA operations.
If the application wishes to monitor the progress of a single RDMA operation (or a set of them,
e.g. for a broadcast to all remote nodes), it creates a special ack_key object with the associated
operation IDs. In ��������, ack_key objects are abstracted by work identi�ers (see §2.1). When all
associated IDs have been dequeued by the polling thread, the ack_key object is marked completed.
The ack_key object exports methods to check its status, i.e. the Wait operation simply looks for a
completed status. Communication between the application and the polling thread for outstanding
operation IDs is managed via a single-writer, multiple-reader lock-free queue [Morrison and Afek
2013]. A full description of this system can be found in the extended version [EV].

Additional LOCO Libraries. In addition to the proven libraries that are the focus of this paper,
LOCO [ ] [Hodgkins et al. 2025] contains a number of additional objects that rely on an RDMA
read-modify-write primitive currently missing from the formalisation provided in �������. These
include an atomic variable library for accessing these operations, a set of locks (both ticket and
test-and-set with optional local �at-combining [Hendler et al. 2010]), and a shared FiFo queue
porting the cyclic ring queue [Morrison and Afek 2013]. We intend to fully prove the correctness
of these libraries in future work.

LOCO-Based Applications. Asmentioned earlier, LOCO enables one to quickly build distributed
applications. We demonstrate this by using LOCO to construct a linearisable key-value store (§6.2),
a transactional locking scheme [EV], and a distributed DC/DC converter [EV]. Additional obvious
targets for LOCO include distributed shared memories [Kaxiras et al. 2015; Keleher et al. 1994],
distributed communication collectives [Graham et al. 2006], and other HPC communication library
backends (e.g. global arrays [Nieplocha et al. 1994; Zheng et al. 2014]).

2.3 Towards a Modular Verification Framework for LOCO
To support reasoning about LOCO libraries, we develop a modular veri�cation framework for
�������� programs. Our point of departure is the Yacovet framework [Raad et al. 2019; Stefanesco
et al. 2024] that was used to reason about weak shared memory within a single node. Yacovet,
however, is not expressive enough to model �������� programs, and so we need to develop a frame-
work that can take into account both sources of weak consistency: shared-memory concurrency
(TSO) and distribution (RDMA). This poses three main challenges.

Lack of Causality. �������� assumes the TSO memory model [Alglave et al. 2014; Owens et al.
2009] for each CPU within each node. This means that well-known e�ects such as store bu�ering
(see Fig. 8a) are possible, where both reads in the two threads read from the initial state. Despite this
weakness, TSO guarantees causal consistency, i.e. message passing (see Fig. 8b), where the right
thread reading the new value 1 for ~ guarantees that it also reads 1 for G . Formally, this is due to a
relation known as preserved program order (ppo) between the read ofF , the write of this value to G ,
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G,~ = 0

G := 1
0 := ~

~ := 1
1 := G

(0,1) = (0, 0) 3

(a) Store bu�ering

G,~ = 0,F = 1

G := F
~ := 1

0 := ~
1 := G

(0,1) = (1, 0) 7

(b) Message passing

G,~ = 0 F = 1

G := F
~ := 1

0 := ~
1 := G

(0,1) = (1, 0) 3

(c) Remote message passing

Fig. 8. TSO e�ects of ��������

SVar G = 0
I = 0

I := 1
G :=�� 1
Bcast�� (G)

0 :=�� G
1 := I

(0,1) = (1, 0) 7

(a) Broadcast MP

SVar G,~ = 0, 0
I = 0

I := 1
G :=�� 1
Bcast�� (G)

0 :=�� ~
1 := I

2 :=�� G
~ :=�� 2
Bcast�� (~)

(0,1) = (1, 0) 3

(b) Three-node broadcast

SVar G,~ = 0, 0

G :=�� 1
Bcast�� (G)
0 :=�� ~
G :=�� 2

2 :=�� G
~ :=�� 2
Bcast�� (~)

1 :=�� G

(0,1, 2) = (1, 2, 1) 3

(c) Broadcast dependency cycle

Fig. 9. Broadcast synchronisation

and the write to ~. However, under ��������, when interacting with the NIC, causal consistency
is no longer guaranteed (see Fig. 8c). This leads to our �rst modelling challenge: �������� has
a much weaker ppo relation than TSO [Alglave et al. 2014]. Here, compositionality is critical to
ensure proofs for scalability; we o�er this through our locality result (Theorem 3.14).

Fine-Grained Synchronisation. A second challenge in specifying RDMA libraries is that the
same method call may interact with di�erent library methods in di�erent ways. To make this
problem concrete, consider a version of message passing in Fig. 9a, where node 1 updates the
remote variable I (located in node 2), and then broadcasts a new value of a shared variable G to
signal that the remote value has changed. In Fig. 9a, when node 2 sees the new value of G , it means
that the (earlier) write to I must have also taken e�ect. To represent this, we require that I := 1
happens before Bcast�� (G) and that Bcast�� (G) happens before 0 :=�� G . These orders must be
part of the declarative semantics, in some shape or form, to disallow the behaviour (0,1) = (1, 0).
However, naively specifying broadcast in this way is problematic. Consider the example in

Fig. 9b, where node 1 behaves as before, but the “signal variable” G is picked up by node 3 and a
new signal using ~ is broadcast by node 3. This time, when node 2 receives the signal on ~ (i.e.
0 = 1), there is actually no guarantee that the write on I has completed. The outcome (0,1) = (1, 0)
is allowed, as communication between each pair of nodes is independent. Thus we must not have a
happens-before dependency between the write to I (from node 1) and the read on I.

For an even more precarious example, consider Fig. 9c, which is a possible behaviour of LOCO’s
broadcast library. The �nal outcome (0,1, 2) = (1, 2, 1) is only possible if node 1 broadcasts G = 1 to
node 2, and G = 2 to node 3 with a single broadcast. The broadcast is allowed to pick up the later
value 2 since the CPU might run the command G :=�� 2 before the NIC reads the value of G . As
mentioned above, reading the result of a broadcast must create happens-before order so that we
can preclude behaviours like in Fig. 9a. In this example, we thus need a sequence of dependencies:
G :=�� 1 ! Bcast�� (G) ! 2 :=�� G ! ~ :=�� 2 ! Bcast�� (~) ! 0 :=�� ~ ! G :=�� 2 !
Bcast�� (G) ! 1 :=�� G . This sequence seemingly contains a dependency cycle from Bcast�� (G)
to itself, and thus any reasonable system of dependencies on events would not allow this valid
behaviour.
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We �x this apparent cycle by splitting the broadcast event into its four basic components called
subevents: (1) reading G to send to node 2 (stamp aNLR2); (2) writing G on node 2 (stamp aNRW2);
(3) reading G to send to node 3 (stamp aNLR3); (4) writing G on node 3 (stamp aNRW3). With this
we can create a more �ne-grain sequence of dependencies: G :=�� 1 ! hBcast�� (G), aNLR2i !
hBcast�� (G), aNRW2i ! 2 :=�� G ! . . . ! G :=�� 2 ! hBcast�� (G), aNLR3i ! hBcast�� (G), aNRW3i
! 1 :=�� G . For each remote node the broadcast reads before writing, and we have a dependency
between writing on node 2 and reading for node 3, but this does not create a dependency cycle at
the level of the subevents and we can authorise the behaviour of Fig. 9c.
Stamps are shared by all libraries and also allow us to precisely de�ne ppo, i.e. which pairs of

e�ects are required to execute in order, even across libraries. For instance in example Fig. 9a we
have a dependency hI := 1, aNRW2i

ppo��! hBcast�� (G), aNRW2i guaranteeing that the contents of I
and G on node 2 are modi�ed in order. However, note that this is more subtle than a dependency
between events as the location G might still be read by the broadcast before the content of I is
modi�ed, i.e. hBcast�� (G), aNLR2i ! hI := 1, aNRW2i ! hBcast�� (G), aNRW2i, as is allowed by the
semantics of RDMA.

Modularity. A �nal challenge in developing M����� is to support modularity through both
horizontal composition (the use of libraries in a client program) and vertical composition (the
development of libraries using other libraries as a subcomponent). M����� presents a generic
framework that is independent of a memory model to support such proofs through a locality
theorem. It allows the simultaneous use of multiple libraries within a single program, and de�nes
a semantics when the speci�cation of a library is used in place of an implementation. Finally, it
provides local methods for proving that a library implementation satis�es its speci�cation.

3 The M����� Framework and the Shared Variable Library
In this section we de�neM�����’s meta-language and general theory for modelling weak memory
libraries, as well as its notion of compositionality that enables modular proofs. We note that our
language and theory is generic and could be applied to other memory models. We present the
syntax and semantics ofM����� in §3.1 and model for formalising libraries in §3.2. Throughout
the section, we use the shared variable library (��) as a running example and de�ne its consistency
in §3.4. Then we present library abstraction in §3.5 and our main locality result in §3.6.

3.1 Syntax and Semantics
In this section, we present the syntax and semantics of our basic programming language. Our
language is inspired by Cminor [Appel and Blazy 2007] and Yacovet [Stefanesco et al. 2024].

Programs. We assume a type Val of values, a type Loc ✓ Val of locations2, and a typeMethod
of methods. The syntax of sequential programs is given by the following grammar:

E, E8 2 Val < 2 Method f 2 Val ! SeqProg : 2 N+

SeqProg 3 p ::= E | <(E1, . . . , E: ) | let p f | loop p | break: E
A method call is parameterised by a sequence of input values. In later sections, we will instantiate
< to basic operations such as read and write, as well as operations corresponding to method calls
of a high-level library.

For a function f mapping values to sequential programs, the syntax let p f denotes the execution
of p with an output that is then used as an input for f. This constructor is a generalisation of
2InM�����, every argument of a method call is a value. Thus identi�ers (G, ~, . . .) are called “locations” by the libraries
but are seen as values by the meta-language.
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the more standard let-in syntax, and for a program p2 with a free meta-variable G we can de�ne
letG = p1 in p2 as let p1 (_E .p2 [G := E]). We can also model sequential composition, i.e. p1; p2,
as syntactic sugar for let p1 (__. p2) using a constant function that discards its input. The syntax
let p f also allows programs to perform branching and pattern-matching, via a function mapping
di�erent kinds of values to di�erent continuations. In particular, if E then p1 else p2 can be
taken as syntactic sugar for let E {true 7! p1, false 7! p2}.

Finally, our syntax includes loop p that in�nitely executes the program p, as well as the break: E
construct which exits : levels of nested loops and returns E . While uncommon, these constructs
can be used to de�ne usual while and for loops.
We assume top-level concurrency. We assume a �xed number ) of threads and let Tid ¨

{1, 2, . . . ,) } be the set of all threads. A concurrent program is thus given by a tupleep = hp1, . . . , p) i,
where each thread C corresponds to a program pC 2 SeqProg. Note that we allow libraries to
discriminate threads, and so the position of a program inep matters, e.g. the program hp1, . . . , p) i
is not equivalent to hp) , . . . , p1i. For instance, a pair of RDMA threads have di�erent interactions
depending on whether they run on the same node or not.

Example 3.1 (Shared Variables). For our RDMA libraries, we assume a set of nodes, Node, of �xed
size. Each thread C is associated to a node n(C). The �� library uses the following methods:

<(eE) ::= Write�� (G, E) | Read�� (G) | Bcast�� (G,3, {=1, . . . ,=: }) | Wait�� (3) | GF�� ({=1, . . . ,=: })
Write�� (G, E) writes a new value E to the location G of the current node. Read�� (G) reads the

location G of the current node and returns its value. Bcast�� (G,3, {=1, . . . ,=: }) broadcasts the local
value of G and overwrites the values of the copies of G on the nodes {=1, . . . ,=: }, which might
include the local node. Wait�� (3) waits for previous broadcasts of the thread marked with the
same work identi�er 3 2 Wid. As mentioned in the overview, this operation only guarantees that
the local values of the broadcasts have been read, but not that remote copies have been modi�ed.
Finally, the global fence operation GF�� ({=1, . . . ,=: }) ensures every previous operation of the thread
towards one of the nodes in the argument is fully �nished, including the writing part of broadcasts.

Plain Executions. The semantics of a program is given by an execution, which is a graph over
events. Each event has a label taken from the set Lab ¨ Method⇥Val⇤ ⇥Val, i.e. a triple comprising
the method, the input values, and the output value. Labels are used to de�ne events, which are
elements of the set Event ¨ Tid⇥EventId⇥Lab, where EventId ¨ N. For each event hC, ], ;i 2 Event,
we have that C 2 Tid is the thread that executes the label ; 2 Lab, and ] is a unique identi�er for the
event. For an event e = hC, ], ;i, we note t(e) ¨ C .

De�nition 3.2. We say that h⇢, poi is a plain execution i� ⇢ ✓ Event, po ✓ ⇢ ⇥ ⇢, and
po =

–
C 2Tid po|C where every po|C (i.e. po restricted to the events of thread C ) is a total order.

Here, po represents program order i.e. he1, e2i 2 po i� e1 is executed before e2 by the same thread.
We write ;⌧ ¨ h;, ;i for the empty execution and {e}⌧ ¨ h{e} , ;i for the execution with a

single event e. Given two executions,⌧1 = h⇢1, po1i and⌧2 = h⇢2, po2i, with disjoint sets of events
(i.e. ⇢1 \⇢2 = ;), we de�ne their sequential composition,⌧1;⌧2 , by ordering all events of⌧1 before
those of ⌧2. Similarly, we de�ne their parallel composition, ⌧1k⌧2, by taking the union of ⌧1 and
⌧2. That is,

⌧1;⌧2 ¨ h⇢1 [ ⇢2, po1 [ po2 [ (⇢1 ⇥ ⇢2)i ⌧1k⌧2 ¨ h⇢1 [ ⇢2, po1 [ po2i
The plain semantics of a program p executed by a thread C is given by JpKC , which is a set of pairs of
the form hA ,⌧i, where A is the output and⌧ is a plain execution. This set represents all conceivable
unfoldings of the program into method calls, even those that will be rejected by the semantics of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 71. Publication date: January 2026.



A Verified High-Performance Composable Object Library for Remote Direct Memory Access 71:11

the corresponding libraries. Each output is a pair hE,:i, where E is a value and : a break number,
indicating the program terminates by requesting to exit : nested loops and returning the value E .

JEKC ¨ {hhE, 0i, ;⌧ i} Jbreak: EKC ¨ {hhE,:i, ;⌧ i}
J<(eE)KC ¨ {hhE 0, 0i, {hC, ], h<,eE, E 0ii}⌧ i | E 0 2 Val ^ ] 2 EventId}

Jlet p fKC ¨
�
hA ,⌧1;⌧2i

�� hhE, 0i,⌧1i 2 JpKC ^ hA ,⌧2i 2 Jf EKC
 

[
�
hhE,:i,⌧1i

�� hhE,:i,⌧1i 2 JpKC ^ : < 0
 

Jloop pKC ¨
ÿ
92N

�
hhE,:i,⌧0; . . . ;⌧ 9 i

�� (80  8 < 9 . hh_, 0i,⌧8i 2 JpKC ) ^ hhE,: + 1i,⌧ 9 i 2 JpKC
 

The execution of a value E simply returns hE, 0i with an empty graph. Similarly, the execution of
break: E returns hE,:i with a non-zero break number and an empty graph.

The plain semantics of J<(eE)KC considers every value E 0 as a possible output of the method call.
For each, we can create a graph⌧ with a single event hC, _, h<,eE, E 0ii, and the corresponding output
for the program is then hE 0, 0i with a break number of 0.
The execution of let p f has two kinds of plain semantics. Either the execution of p requests a

break, i.e. hhE,:i,⌧1i 2 JpKC with : < 0, in which case let p f breaks as well with the same output.
Or p terminates with a break number of zero, and the output value E of p is given to f. In this second
case, the plain execution of let p f is the sequential composition of the plain executions for p and
(f E), and its output value is the one of (f E).
Finally, the execution of loop p can be unfolded and corresponds to the execution of p any

number 9 + 1 of times. The �rst 9 times, p returns without requesting a break and its output value
is ignored. The ( 9 + 1)th execution of p returns a value E and break number : + 1, and loop p
propagates hE,:i with a decremented break number. The plain execution of the loop is then the
sequential composition of the plain executions of the 9 + 1 iterations of p.

We lift the plain semantics to the level of concurrent programs and de�ne

JepK ¨ �
hhE1, . . . , E) i, kC 2Tid ⌧C i

�� 8C 2 Tid.hhEC , 0i,⌧C i 2 JpC KC
 

Concurrent programs only properly terminate if each thread terminates with a break number of 0.
In which case, the output of the concurrent program is the parallel composition of the values and
plain executions of the di�erent threads.

Executions. We generate executions from plain executions by (1) extending the model with
subevents, then (2) introducing additional relations describing synchronisation and happens-before
order. We will later de�ne consistency conditions for executions in the context of libraries.

We assume a �xed set of stamps, Stamp = {01, . . .}, and a relation to ✓ Stamp ⇥ Stamp. We will
use stamps to de�ne subevents and to to de�ne preserved program order over subevents within an
execution.

De�nition 3.3. We say that h⇢, po, stmp, so, hbi is an execution i� each of the following holds:
• h⇢, poi is a plain execution.
• stmp : ⇢ ! P(Stamp) is a function that associates each event with a non-empty set of
stamps and induces a set of subevents, SEvent ¨ {he,0i | e 2 ⇢ ^ 0 2 stmp(e)}.

• so ✓ SEvent ⇥ SEvent and hb ✓ SEvent ⇥ SEvent are relations on SEvent de�ning synchroni-
sation order and happens-before order, respectively.

To de�ne consistency, we must ultimately relate po, so, and hb. However, in many weak memory
models such as RDMA, including all of po into hb is too restrictive. We therefore make use of a
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Second Stamp

to
single families

1 2 3 4 5 6 7 8 9 10 11
aCR aCW aCAS aMF aWT aNLR= aNRW= aNRR= aNLW= aRF= aGF=

Fi
rs
tS

ta
m
p si
ng

le

A aCR 3 3 3 3 3 3 3 3 3 3 3
B aCW 7 3 3 3 7 3 3 3 3 3 3
C aCAS 3 3 3 3 3 3 3 3 3 3 3
D aMF 3 3 3 3 3 3 3 3 3 3 3
E aWT 3 3 3 3 3 3 3 3 3 3 3

fa
m
ili
es

F aNLR= 7 7 7 7 7 �� �� �� �� �� ��
G aNRW= 7 7 7 7 7 7 �� �� �� 7 ��
H aNRR= 7 7 7 7 7 7 7 7 �� �� ��
I aNLW= 7 7 7 7 7 7 7 7 �� 7 ��
J aRF= 7 7 7 7 7 �� �� �� �� �� ��
K aGF= 3 3 3 3 3 3 3 3 3 3 3

Fig. 10. Stamp order to for the RDMA libraries. Lines indicate the earlier stamp, columns the later. A cell
marked 3 indicates that the stamps are ordered, and that the po ordering of subevents with these stamps is
preserved. A cell marked 7 indicates that the stamps are not ordered, and that such subevents can execute
out of order. Finally, �� indicates the stamps are ordered i� they have the same node index.

weaker relation called preserved program order, ppo ✓ SEvent ⇥ SEvent, which we derive from po
and to as follows:

ppo ¨ {hhe1,01i, he2,02ii | he1, e2i 2 po ^ 01 2 stmp(e1) ^ 02 2 stmp(e2) ^ h01,02i 2 to}
For our RDMA libraries, we de�ne 11 kinds of stamps. We have aCR representing a CPU read;

aCW representing a CPU write; aCAS for an atomic read-modify-write operation; aMF for a TSO
memory fence; aWT for a wait operation; aNLR= for a NIC local read; aNRW= for a NIC remote write;
aNRR= for a NIC remote read; aNLW= for a NIC local write; aRF= for a NIC remote fence; and aGF=
for a global fence operation. The last 6 are families of stamps, as we create a di�erent copy for each
node = 2 Node.
The stamp order to we use is de�ned in Fig. 10. We note 3 when two stamps are ordered, 7

when they are not ordered, and �� when they are ordered i� they have the same index node. For
instance, the 7 in cell B1 indicates that when a CPU write is in program order before a CPU read,
there is no ordering guarantee between the two operations, as we assume the CPUs follow the TSO
memory model, and the read might execute �rst.

Example 3.4 (ppo for Shared Variables). For the �� library, we use the stamping function stmpSV:

stmpSV (h_, _, hWrite��, _, _ii) = {aCW}
stmpSV (h_, _, hRead��, _, _ii) = {aCR}
stmpSV (h_, _, hWait��, _, _ii) = {aWT}

stmpSV (h_, _, hGF��, ({=1, . . . ,=: }), _ii) =
�
aGF=1 , . . . , aGF=:

 
stmpSV (h_, _, hBcast��, (_, _, {=1, . . . ,=: }), _ii) =

�
aNLR=1 , aNRW=1 , . . . , aNLR=: , aNRW=:

 
Broadcasts are associated with a NIC local read and NIC remote write stamp for each remote node
they are broadcasting towards. Similarly, global fence operations are associated with a global fence
stamp for each node.
With this, the stamp order is enough to enforce the behaviour of the global fence. If we have a

program Bcast�� (G,3, {. . . ,=, . . .}); GF�� ({. . . ,=, . . .}), the plain execution has two events e⌫' and
e⌧� , and the de�nitions of stmpSV and to (cell G11 in Fig. 10) imply he⌫', aNRW=i

ppo��! he⌧� , aGF=i.
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3.2 Libraries
In this section, we describe how libraries and library consistency are modelled in our framework.

De�nition 3.5. We say that a triple h", loc, Ci is a library i� each of the following holds.

(1) " ✓ Method is a set of methods.
(2) loc : Event|" ! P(Loc) is a function associating each method call to a set of locations

accessed by the method call.
(3) C is a consistency predicate over executions, respecting the following two properties.

• Monotonicity: If h⇢, po, stmp, so, hbi 2 C (i.e. is consistent), and (ppo [ so)+ ✓ hb0 ✓ hb,
then h⇢, po, stmp, so, hb0i 2 C.

• Decomposability: If h(⇢1 ] ⇢2), po, stmp, so, hbi 2 C and loc(⇢1) \ loc(⇢2) = ;, then
h⇢1, po|⇢1 , stmp|⇢1 , so|⇢1 , hb|⇢1i 2 C.

Usually, including for all of the examples considered in this paper, the locations accessed by a
method call are a subset of its arguments. E.g., we say that Write(G, E) only accesses G . Monotonicity
states that removing constraints cannot disallow a behaviour; this is trivially respected by all
reasonable libraries. Decomposability states that method calls manipulating di�erent locations
can be considered independently. Crucially, this means combining independent programs cannot
create additional behaviours; a prerequisite for modular veri�cation. This holds for almost all
libraries, and usually only breaks when programs have access to meta-information (e.g. the number
of instructions of the whole program).
However, decomposability does not hold for �������. As show in Fig. 2, the program I := G ;

Poll(2);G := 1 does not allow the outcome I = 1, while a combined program p; I := G ; Poll(2);G := 1
might, even when p seems independent (i.e. does not use locations I and G). This composition
problem fundamentally prevents modular veri�cation of ������� programs. It is the reason we
develop the alternative semantics of ��������, while ensuring the two semantics are as close as
possible.

Notation. For a library !, we have Event|!." = {h_, _, h<, _, _ii 2 Event | < 2 !."}. We use
Event|! to refer to Event|!." . Moreover, loc(e) is used to denote !.loc(e), where ! is the library
containing e (i.e. e 2 Event|!) and for ⇢ ✓ Event, we de�ne loc(⇢) ¨ –

e2⇢ loc(e). From this, we
can also de�ne the locations loc(ep) of a programep as loc(ep) ¨ –

h�,h⇢,�ii2JepK loc(⇢).
Given a relation A and a set �, we write A+ for the transitive closure of A ; A ⇤ for its re�exive

transitive closure; A�1 for the inverse of A ; A |� for A \ (�⇥�); and [�] for the identity relation on�,
i.e. {h0,0i | 0 2 �}. We write A1; A2 for the relational composition of A1 and A2: {h0,1i | 92 . h0, 2i 2
A1 ^ h2,1i 2 A2}.

Consistent Execution. Two libraries are compatible if their sets of methods are disjoint. We use
⇤ to denote a set of pairwise compatible libraries.

De�nition 3.6. Let ⇤ be a set of pairwise compatible libraries. An execution h⇢, po, stmp, so, hbi
is ⇤-consistent i� each of the following holds.

• (ppo [ so)+ ✓ hb and hb is a strict partial order (i.e. both irre�exive and transitive).
• ⇢ =

–
!2⇤ ⇢ |! and so =

–
!2⇤ so|! .

• For all ! 2 ⇤, we have h⇢ |!, po|!, stmp|!, so|!, hb|!i 2 !.C.

Although the de�nition of ⇤-consistency allows hb relations that are bigger than (ppo [ so)+, we
usually have hb = (ppo [ so)+ for the program executions we are interested in.
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Given a concurrent programep using libraries ⇤, we note outcome⇤ (ep) the set of all output values
of its ⇤-consistent executions.

outcome⇤ (ep) ¨ �eE �� 9h⇢, po, stmp, so, hbi ⇤-consistent. heE, h⇢, poii 2 JepK 
3.3 The �������� Library
�������� is used as the lowest library of our tower of abstraction (Fig. 1). As mentioned in §3.4,
it is the implementation target for the shared variable library (��). It is an adaptation of �������
where the poll instruction is replaced by a more intuitive wait operation.

The �������� library uses the following 8 methods.

<(eE) ::= Write(G, E) | Read(G) | CAS(G, E1, E2) | Mfence()
| Get(G,~,3) | Put(G,~,3) | Wait(3) | Rfence(=)

The �rst line covers usual TSO operations: Write(G, E) is a CPU write; Read(G) is a CPU read;
CAS(G, E1, E2) is an atomic compare-and-swap operation that overwrites G to E2 i� G contained E1,
and returns the old value of G ; and Mfence() is a TSO memory fence �ushing the store bu�er.
The second line covers RDMA-speci�c operations: Get(G,~,3) (noted G :=3 ~ in our examples)

is a get3 operation with work identi�er 3 performing a NIC remote read on ~ and a NIC local write
on G ; similarly Put(G,~,3) (noted G :=3 ~) is a put operation with work identi�er 3 performing
a NIC local read on ~ and a NIC remote write on G ; Wait(3) waits for previous operations with
work identi�er 3 ; and �nally Rfence(=) is an RDMA remote fence for the communication channel
towards = that does not block the CPU.
We assume that each location G is associated with a speci�c node n(G). From this, given

h⇢, poi, there is a single valid stamping function stmpRL. Notably we have stmpRL (Get(G,~,3)) =�
aNRRn(~) , aNLWn(~)

 
and stmpRL (Put(G,~,3)) =

�
aNLRn(G ) , aNRWn(G )

 
. Put and get operations per-

form both a NIC read and a NIC write, and as such are associated to two stamps, where the remote
node can be deduced from the location. Also, a succeeding CAS has a single stamp aCAS, while a
failing CAS has stamps {aMF, aCR}, as it behaves as both a memory fence (aMF) and a CPU read
(aCR).

The formal semantics requires several functions and relations: vR, vW, rf, and mo, with roles
similar to the semantics of �� (cf. §3.4), as well as the NIC-�ush-order relation nfo representing the
PCIe guarantees that NIC reads �ush previous NIC writes. The consistency predicate for ��������
is then stated from these relations and some derived relations, similarly to §3.4.

3.4 Example: Consistency for Shared Variables
As mentioned in Example 3.1, �� uses the methods " = {Write��, Read��, Bcast��, Wait��, GF��}.
Since only the method and arguments matter for the location function, we use loc(<(eE)) to denote
loc(h_, _, h<,eE, _ii), where loc(Write�� (G, _)) = loc(Read�� (G)) = loc(Bcast�� (G, _, _)) = {G}
for events accessing a location G , and loc(e) = ; otherwise for methods Wait�� and GF��.

Notation. For a subevent s, we note s.e and s.0 its two components. Given an execution G =
h⇢, po, stmp, so, hbi and a stamp 0, we write G.0 for {s 2 G.SEvent | s.0 = 0}. For families, by
abuse of notation, we also write e.g. G.aNRR for

–
=2Node G.aNRR= . We extend the notation loc to

subevents by writing loc(s) for loc(s.e). We de�ne the set of reads as G.R ¨ G.aCR [ G.aCAS [
G.aNLR [ G.aNRR and writes as G.W ¨ G.aCW [ G.aCAS [ G.aNLW [ G.aNRW. We write G.WG ¨
{s 2 G.W | loc(s) = {G}} to constrain the set to writes on a speci�c location G . We also use

3In the RDMA speci�cation, Get and Put are referred to as respectively “RDMA Read” and “RDMA Write” operations. We
use the terms get and put to prevent confusion, as each of these perform both a read and a write subevents.
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|C to restrict a set or relation to a speci�c thread. E.g. ⇢ |C = {e | e 2 ⇢ ^ t(e) = C} and po|C =
[⇢ |C ]; po; [⇢ |C ].
For the �� library, we additionally de�ne G.W= ¨ {he, aCWi | n(t(e)) = =} [ G.aNRW= as the set

of write subevents occurring on node =. This includes CPU writes on the node, as well as broadcast
writes towards = from all threads. We also note G.W=

G ¨ G.WG \ G.W= as expected. Similarly,
G.R= ¨ {s | s 2 G.R ^ n(t(s)) = =} covers reads occurring on =, either by a CPU read or as part
of a broadcast.

Consistency. We now work towards a de�nition of consistency for shared variables.

De�nition 3.7. For an execution G = h⇢, po, stmpSV, _, _i, we de�ne the following:
• The value-read function vR : G.R ! Val that associates each read subevent with the value
returned, if available, i.e. if e = h_, _, hRead��, _, Eii, then vR (e) = E .

• The value-written function vW : G.W ! Val that associates each write subevent with a value
G, i.e. if e = h_, _, hWrite��, (_, E), _ii, then vW (e) = E .

• A reads-from relation, rf ¨
–

= rf= , where each rf= ✓ G.W=⇥G.R= is a relation on subevents
of the same location and node with matching values, i.e. if hs1, s2i 2 rf= then loc(s1) =
loc(s2) and vW (s1) = vR (s2).

• A modi�cation-order relation mo ¨
–

G,= mo=G describing the order in which writes on G on
node = reach memory.

We de�ne well-formedness for rf and mo as follows. For each remote, a broadcast writes the
corresponding read value: if s1 = he, aNLR=i 2 G.SEvent and s2 = he, aNRW=i 2 G.SEvent, then
vR (s1) = vW (s2). Each rf= is functional on its range, i.e. every read in G.R= is related to at most
one write in G.W= . If a read is not related to a write, it reads the initial value of zero, i.e. if
s2 2 G.R= ^ h_, s2i 8 rf= then vR (s2) = 0. Finally, each mo=G is a strict total order on G.W=

G .
We further de�ne the reads-from-internal relation as rfi ¨ [aCW]; (po \ rf); [aCR] (which cor-

responds to CPU reads and writes using the same TSO store bu�er), and the reads-from-external
relation as rfe ¨ rf \ rfi. As we shall see in Def. 3.8, rfi does not contribute to synchronisation order,
whereas rfe does. Moreover, given an execution G and well-formed rf andmo, we derive additional
relations.

pf ¨
⇢
hhe1, aNLR=i, he2, aWTii

���� he1, e2i 2 po ^
✓
93 . e1 = h_, _, hBcast��, (_, _,3), _ii

^ e2 = h_, _, hWait��, (3), _ii

◆�

rb= ¨
⇢
hA ,Fi 2 G.R= ⇥ G.W=

���� loc(A ) = loc(F)
^

�
hA ,Fi 2 ((rf=)�1;mo=) _ A 8 img(rf=)

�� rb ¨
ÿ
=

rb=

iso ¨ {hhe, aNLR=i, he, aNRW=ii | e = h_, _, hBcast��, (_, _, {. . . ,=, . . .}), _ii 2 ⇢}
The polls-from relation pf states that a Wait�� operation synchronises with the NIC local read

subevents of previous broadcasts that use the same work identi�er. The reads-before relation rb
states that a read A executes before a speci�c writeF on the same node and location. This is either
because A reads the initial value of 0, or because A reads from a write that is mo-beforeF . Finally,
the internal-synchronisation-order relation iso states that, within a broadcast, for each remote node
the reading part occurs before the writing part.

We can then de�ne the consistency predicate ��.C as follows.

De�nition 3.8 (��-consistency). h⇢, po, stmp, so, hbi is ��-consistent if:
• stmp = stmpSV (de�ned in §3.1);
• there exists well-formed vR, vW, rf, and mo, such that [aCR]; (po�1 \ rb); [aCW] = ; and
so = iso [ rfe [ pf [ rb [mo.
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It is straightforward to check that this consistency predicate satis�es monotonicity and decom-
posability. For CPU reads and writes, we ask that rb does not contradict the program order. E.g., a
program Write�� (G, 1); Read�� (G) must return 1 and cannot return 0, even if the semantics of TSO
allows for the read to �nish before the write.
There is no need to explicitly include conditions on hb in the consistency of the library, as the

global consistency condition (cf. Def. 3.6) already enforces that (ppo [ so [ hb)+ is irre�exive.

3.5 Library Implementations
We now describe a mechanism for implementing the method calls of a library by an implementation.
Our ideas build on Yacovet [Stefanesco et al. 2024], but have been adapted to our setting, which
comprises a much weaker happens-before relation (based on ppo instead of po). In particular,
M�����’s notions of implementation, soundness, and abstraction are similar to Yacovet (but
simpler), but the notion of “local soundness” is more complicated due to the use of ppo and
subevents.
An implementation for a library ! is a function � : (Tid ⇥ !." ⇥ Val⇤) ! SeqProg associating

every method call of the library ! to a sequential program.

De�nition 3.9. We say that � is well de�ned for a library ! using ⇤ i� for all C 2 Tid,< 2 !."
andeE 2 Val⇤, we have:
(1) ! 8 ⇤, and � (C,<,eE) only calls methods of the libraries of ⇤.
(2) hh�,: + 1i,�i 8 J� (C,<,eE)KC , i.e. the implementation of a method call<(eE) cannot return

with a non-zero break number, and thus cannot cause a loop containing a call to<(eE) to
break inappropriately.

(3) if hhE, 0i, h⇢, poii 2 J� (C,<,eE)KC then ⇢ < ;, i.e. if an implementation successfully executes, it
must contain at least one method call.

We note loc(� ) the set of all locations that can be accessed by the implementation of � : loc(� ) ¨–
C,<,eE –(�,h⇢,�i )2J� (C ,<,eE)KC loc(⇢). We then de�ne a function T_U� to map an implementation � to

a concurrent program as follows.

TEUC ,� ¨ E T<(E1, . . . , E: )UC ,� ¨
(
� (C,<, hE1, . . . , E:i) if< 2 !."

<(E1, . . . , E: ) otherwise

Tloop pUC ,� ¨ loop TpUC,� Tlet p fUC ,� ¨ letTpUC,� (_E .Tf EUC ,� )
Tbreak: EUC ,� ¨ break: E Thp1, . . . , p) iU� ¨ hTp1U1,!, . . . , Tp)U) ,!i

As an example, we can de�ne the implementation �SV of the broadcast library into ��������.
For each location G of the broadcast library, we create a location G= for each node = 2 Node. We
also create a dummy location per node, ?= for = 2 Node, and we use an additional dummy work
identi�er 30.

�SV (C, Write��, (G, E)) ¨ Write(Gn(C ) , E)
�SV (C, Read��, (G)) ¨ Read(Gn(C ) )

�SV (C, Bcast��, (G,3, {=1, . . . ,=: })) ¨ Put(G=1 , Gn(C ) ,3); . . . ; Put(G=: , Gn(C ) ,3)
�SV (C, Wait��, (3)) ¨ Wait(3)

�SV (C, GF��, ({=1, . . . ,=: })) ¨ Get(?n(C ) ,?=1 ,30); . . . ; Get(?n(C ) ,?=: ,30); Wait(30)
where {Write, Read, Put, Get, Wait} are methods of the �������� library (see §3.3).

A read/write on a thread C accesses the location of its node n(C). A broadcast executes multiple Put
operations. Each of them reads the location of its node and overwrites the location of a designated
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node. A wait operation works similarly to ��������. Finally, a global fence executes a Get operation
towards each node requiring fencing, and waits for the completion of all the Get operations. As
mentioned in the overview, this ensures that all previous NIC operations towards these nodes are
completely �nished.
We can easily see that �SV is well de�ned, as it cannot return a break number greater than zero,

and every (succeeding) implementation generates at least one event.
Using these de�nitions, we arrive at a notion of a sound implementation, which holds whenever

the implementation is a re�nement of the library speci�cation.

De�nition 3.10. We say that � is a sound implementation of ! using ⇤ if, for any programep such
that loc(� ) \ loc(ep) = ;, we have that outcome⇤ (TepU� ) ✓ outcome⇤]{!} (ep).
For a concurrent program ep using methods of (⇤ ] {!}), TepU� only uses methods of ⇤. The

implementation � is sound if the translation does not introduce any new outcomes. We can assume
� andep use disjoint locations to avoid capture of location names.

3.6 Abstractions and Locality
We now work towards the modular proof technique for verifying soundness of an implementa-
tion against a library in M�����. As is common in proofs of re�nement, we use an abstraction
function [Abadi and Lamport 1991] mapping the concrete implementation to its abstract library
speci�cation. For 5 : � ! ⌫ and A ✓ � ⇥�, we note 5 (A ) ¨ {h5 (G), 5 (~)i | hG,~i 2 A }.
De�nition 3.11. Suppose � is a well-de�ned implementation of a library ! using ⇤, and that

⌧ = h⇢, poi and ⌧ 0 = h⇢0, po0i are plain executions using methods of ⇤ and ! respectively. We say
that a surjective function 5 : ⇢ ! ⇢0 abstracts ⌧ to ⌧ 0, denoted abs5� ,! (⌧,⌧ 0), i�

• ⇢ |! = ; (i.e. ⌧ contains no calls to the abstract library !) and ⇢0 |! = ⇢0 (i.e. ⌧ 0 only contains
calls to the abstract library !);

• 5 (po) ✓ (po0)⇤ and 8e1, e2, h5 (e1), 5 (e2)i 2 po0 =) he1, e2i 2 po; and
• if e0 = hC, ], h<,eE, E 0ii 2 ⇢0 then hhE 0, 0i,⌧ | 5 �1 (e0 )i 2 J� (C,<,eE)KC

Intuitively, abs5� ,! (⌧,⌧ 0) means there is some abstract concurrent programep on library ! such
that h_,⌧ 0i 2 JpK is a plain execution of the abstract program, h_,⌧i 2 JTpU� K is a plain execution
of its implementation, and⌧ and⌧ 0 behave similarly. The abstraction function 5 maps every event
of the implementation to the abstract method call it was created for. The second requirement states
that the program order is preserved in both directions. The last requirement states that, for each
abstract event e0, its implementation ⌧ | 5 �1 (e0 ) behaves properly. We ask that this subgraph be a
valid plain execution of the implementation with the same output value.

L���� 3.12. Given ep on library ! and a well-de�ned implementation � of !, if heE,⌧i 2 JTepU� K
then there exists heE,⌧ 0i 2 JepK and 5 such that abs5� ,! (⌧,⌧ 0).

Finally, we can de�ne a notion of local soundness for an implementation.

De�nition 3.13. We say that a well de�ned implementation � of a library ! is locally sound i�,
whenever we have a ⇤-consistent execution G = h⇢, po, stmp, so, hbi and abs5� ,! (h⇢, poi, h⇢0, po0i),
then there exists stmp0, so0, and a concretisation function 6 : h⇢0, po0, stmp0i.SEvent ! G.SEvent
such that:

• 6(he0,00i) = he,0i implies 5 (e) = e0 and
– For all 00 such that h00,00i 2 to, there exists he1,01i 2 G.SEvent such that 5 (e1) = e0,
h00,01i 2 to, and hhe1,01i, he,0ii 2 hb⇤;
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– For all 00 such that h00,00i 2 to, there exists he2,02i 2 G.SEvent such that 5 (e2) = e0,
h02,00i 2 to, and hhe,0i, he2,02ii 2 hb⇤.

• 6(so0) ✓ hb;
• For all hb0 transitive such that (ppo0 [ so0)+ ✓ hb0 and 6(hb0) ✓ hb, we have
h⇢0, po0, stmp0, so0, hb0i 2 !.C, where ppo0 ¨ h⇢0, po0, stmp0i.ppo.

Unlike the notion of soundness (cf. Def. 3.10) expressed using an arbitrary program, local sound-
ness is expressed using an arbitrary abstraction. It states that whenever we have an abstraction
from h⇢, poi to h⇢0, po0i and we know the implementation h⇢, poi has a ⇤-consistent execution G,
then the abstract plain execution h⇢0, po0i also has an !-consistent execution (third point) and the
implementation respects the synchronisation promises made by the abstract library ! (�rst and
second point).

To translate the synchronisation promises, we require a concretisation function 6 that maps every
subevent of the abstraction to a subevent in their implementation. The library ! makes two kinds
of synchronisation promises: to (via stamps) and so0. If we have hs01, s02i 2 so0 in the abstraction,
then we require that the concretisation of s01 synchronises with the concretisation of s02, i.e. we ask
that 6(so0) ✓ hb.
Whenever the abstraction contains a subevent of the form he0,00i, the usage of the stamp 00

carries an obligation. The subevent promises to synchronise with any earlier or later subevent, not
necessarily from library !, according to the to relation (cf. Fig. 10 for RDMA). In most cases, the
concretisation uses the same stamp, i.e. 6(he0,00i) = he,0i with 00 = 0, and the property is trivially
respected by the implementation with he1,01i = he2,02i = he,0i. Otherwise we have 00 < 0, and
so for any earlier (resp. later) stamp 00 that 00 should synchronise with, we need to justify this
synchronisation happens in the implementation, i.e. that we have he1,01i

hb⇤��! he,0i, where 01 can
perform the expected stamp synchronisation h00,01i 2 to.
An important point to note is that hb is potentially bigger than (ppo [ so)+. In which case, we

need to prove the result for any reasonable hb0 bigger than (ppo0 [ so0)+. Thus local soundness
states that if the implementation has a ⇤-consistent execution with additional constraints, then
the abstraction similarly has an !-consistent execution with these additional constraints. This is
required for the implementation to work in any context, i.e. for programs using ! in conjunction to
other libraries, as expressed by the following theorem.

T������ 3.14. If a well-de�ned implementation is locally sound, then it is sound.

P����. See the extended version [EV]. É

In the case of the shared variable library, we can use this proof technique to verify the imple-
mentation �SV.

T������ 3.15. �SV is locally sound, and hence �SV is sound.

P����. See the extended version [EV]. É

4 Barrier Library
As discussed informally in §2.2, LOCO implements a barrier library (���), which supports synchro-
nisation of threads across multiple threads. Note that each barrier corresponds to a set of threads,
which we refer to as the “participating threads” of a barrier. Each participating thread must wait for
all operations towards all participating threads (including its own) that are po-before each barrier
to be completed. We �rst present a generic speci�cation for barriers with participating nodes in
§4.1, and the LOCO barrier and its correctness proof in §4.2. In §4.3 we discuss an issue with such a
barrier that only synchronises participating nodes and a possible �x.
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4.1 Generic Barrier Specification
The barrier library (���) only has the single method BAR��� : Loc ! (), taking a location as an input
and producing no output. Thus, we have loc(BAR��� (G)) = {G}. The input location G de�nes the set
of threads that synchronise via BAR��� (G). In our model, we assume a function b : Loc ! P(Tid)
associating each location G with a set of threads that perform a barrier synchronisation on G .
While the LOCO barrier implementation (see §4.2) supports synchronisation across nodes

connected by RDMA, our speci�cation is more general and abstracts away the notion of nodes.
Instead, our library de�nes synchronisation between threads, providing freedom to implement
di�erent synchronisation mechanisms depending on whether the threads are on the same or on
di�erent nodes.

SinceM����� allows libraries to be de�ned in isolation, we only consider ⇢ containing barrier
calls. Let ⇢G ¨ {e 2 ⇢ | loc(e) = {G}} denote the set of barrier calls on the location G .

De�nition 4.1 (���-consistency). We say that G = h⇢, po, stmp, so, hbi is ���-consistent i�:
• stmp = stmpBAL, de�ned as stmpBAL (h_, _, hBAR���, (G), ()ii) =

–
C 2b(G )

�
aGFn(C )

 
[ {aCR};

• for all G and e 2 ⇢G , t(e) 2 b(G); i.e. non-participating threads do not participate;
• for all G 2 Loc, there is an integer 2G such that for all thread C 2 b(G) we have #(⇢G |C ) = 2G ;
i.e. each participating thread makes exactly 2G calls to the barrier on G ;

• there is an ordering function > : ⇢ ! N such that for all location G :
– if e 2 ⇢G then 1  > (e)  2G ;
– if e1, e2 2 ⇢G and he1, e2i 2 po then > (e1) < > (e2); and

• so =
–

G2Loc
–

182G
�
hhe1, aGF=i, he2, aCRii

�� e1, e2 2 (⇢G \ >�1 (8))
 

This predicate clearly respects monotonicity (since hb is unrestricted) and decomposability (since
each location is treated independently).
The function > associates each barrier call to the number of times the location has been used

by this thread, in program order. We say that e1 and e2 synchronise together i� loc(e1) = loc(e2)
and > (e1) = > (e2). The stamps of the form aGF correspond to the entry points of the barrier calls,
waiting for previous operations to �nish before the synchronisation. The stamp aCR represents
the exit point of the barrier, after the synchronisation. The synchronisation is then an so ordering
between aGF and aCR for barrier calls that synchronise together.

4.2 LOCO Implementation
For C 8 b(G): � bBAL (C, BAR���, (G)) ¨ loop {()}

For C 2 b(G) = {C1, . . . , C: } :
� bBAL (C, BAR���, (G)) ¨

let B= = {n(C8 ) | C8 2 b(G)} in
GF�� (B=);
let E = Read�� (GC ) in
Write�� (GC , E + 1);
Bcast�� (GC , _, (B= \ {n(C)}));
loop {

let E 0 = Read�� (GC1 ) in
if E 0 > E then break1 () else () };

. . .
loop {

let E 0 = Read�� (GC: ) in
if E 0 > E then break1 () else () }
Fig. 11. �bBAL implementation

Given b : Loc ! P(Tid), for each location G with
b(G) = {C1, . . . , C: } synchronising : threads, we cre-
ate a set of : shared variables (i.e. �� locations)�
GC1 , . . . , GC:

 
. Each shared variable GC is used as a

counter indicating how many times thread C has ex-
ecuted a barrier on G . The LOCO implementation
decomposes the barrier into three steps: (1) wait
for previous operations to �nish; (2) increase your
counter; (3) wait for the counters of other threads
to increase. We de�ne the implementation � bBAL in
Fig. 11. Clearly, the implementation is well de�ned:
it cannot return a break number greater than zero,
since all break commands have a break number of 1
and are inside loops; and every succeeding imple-
mentation generates at least one event.
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If a method call is made by a non-participating thread, the call is invalid and we implement it using
a non-terminating loop. This is necessary for soundness, as the outcomes of the implementation
must be valid, and in this situation the ��� speci�cation does not allow any valid outcomes.

If a method call is made by a participating thread C , the implementation starts with a global fence
ensuring any previous operation towards any relevant node is fully �nished. Then, it increments
its counter GC to indicate to other threads that the barrier has been reached and executed. The value
of GC is immediately available to other threads on the same node, and is made available to other
participating nodes using a broadcast. Note that the broadcast does not perform a loopback (i.e.
we exclude n(C) from the targets), as asking the NIC to overwrite GC with itself might cause the
new value of a later barrier call to be reverted to the current value. Then, we repeatedly read the
(local) values of the other counters GC8 and wait for each of them to indicate other threads have
reached their matching barrier call. Note that there is no reason to wait for the broadcast to �nish:
the implementation on C might go ahead before other threads are aware that C reached the barrier,
but that does not break the guarantees provided by the barrier.

T������ 4.2. The implementation � bBAL is locally sound.

P����. See the extended version [EV]. É

4.3 Supporting Transitivity
G = 0

G := 1
BAR��� (11)

BAR��� (11)
BAR��� (12)

BAR��� (12)
0 := G

0 = 0 3

Fig. 12. Allowed weak barrier behaviour

The barrier semantics in §4.1 only performs a global fence
on nodes with participating threads. While this appears in-
tuitive and reduces assumptions about other nodes, barrier
synchronisation using such a library is not transitive. For
example, consider the program in Fig. 12. Since G := 1 is an
operation towards node 3, the barrier BAR��� (11) does not wait for it to �nish, allowing 0 = 0.

Such a transitive barrier can straightforwardly be obtained by synchronising across all nodes, in-
stead of just “participating” threads. For the speci�cation, we de�ne stmpBAL (h_, _, hBAR���, (G), ()ii) =–

=2Node {aGF=} [ {aCR} and for the implementation, we de�ne � bBAL (C, BAR���, (G)) ¨ let B= =
Node in . . .. This stronger version is the one implemented in LOCO (see Fig. 7).

5 Ring Bu�er Library
The ring bu�er library (���) provides methods for a single-writer-multiple-reader FiFo queue for
messages of any size, where each message is duplicated as necessary and can be read once by each
reader. Here, we present its speci�cation (§5.1), and an implementation and correctness proof (§5.2).

5.1 Ring Bu�er Specification
The ring bu�er library has two methods SubmitRBL : Loc ⇥ Val⇤ ! B and ReceiveRBL : Loc !
Val⇤ ] {?}, with loc(SubmitRBL (G, _)) = loc(ReceiveRBL (G)) = {G}. SubmitRBL (G,eE) tries to add
a new messageeE to the ring bu�er G . It can either fail if the ring bu�er is full, returning false, or
succeed returning true. ReceiveRBL (G) tries to read a message from the ring bu�er G . It can either
succeed if there is at least one pending message, returning the next message, or fail if there is no
pending messages, returning ?.

In our model, we assume two functions wthd : Loc ! Tid and rthd : Loc ! P(Tid) associating
each location G with a writing thread wthd(G) and a set of reader threads rthd(G). For subevents,
we de�ne the stamping function stmpRBL as follows:

stmpRBL (hC, _, hSubmitRBL, (G, _), trueii) ¨
�
aNRWn(C 0 )

�� C 0 2 rthd(G) ^ n(C 0) < n(C)
 
[ {aCW}

stmpRBL (hC, _, hSubmitRBL, (G, _), falseii) ¨ {aWT}
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stmpRBL (h_, _, hReceiveRBL, (G),eEii) ¨ {aCR}
stmpRBL (h_, _, hReceiveRBL, (G),?ii) ¨ {aWT}

A successful call to SubmitRBL (with return value true) is denoted by a write stamp for each
relevant node: the stamp aCW is used by the writer node, and the stamps aNRWn(C 0 ) are used by the
corresponding remote nodes. Failing calls (with return value false or ?) are depicted by the stamp
aWT. Finally, a succeeding ReceiveRBL call uses the reading stamp aCR.

We note di�erent sets corresponding to calls to SubmitRBL succeeding (W) and calls to ReceiveRBL
failing (F ) or succeeding (R). Calls to SubmitRBL failing are ignored by the speci�cation.

W=
G ¨

�
he, aNRW=i

�� e = hC, _, hSubmitRBL, (G, _), trueii 2 ⇢ ^ aNRW= 2 stmpRBL (e)
 

[
�
he, aCWi

�� e = hC, _, hSubmitRBL, (G, _), trueii 2 ⇢ ^ n(C) = =
 

F =
G ¨

�
he, aWTi

�� e = hC, _, hReceiveRBL, (G),?ii 2 ⇢ ^ n(C) = =
 

R=
G ¨

�
he, aCRi

�� e = hC, _, hReceiveRBL, (G),eEii 2 ⇢ ^ n(C) = =
 

We then de�ne the reads-from relation rf matching successful SubmitRBL and ReceiveRBL events.

De�nition 5.1. Given G = h⇢, po, stmpRBL, _, _i, we say that rf is well-formed i� each of the
following holds:
(1) rf =

–
=,G rf=G with rf=G ✓ W=

G ⇥ R=
G

(2) rf=G is total and functional on its range, i.e. each read subevent in R=
G is related to exactly one

write subevent inW=
G .

(3) If (h_, _, hSubmitRBL, (G,eE), trueii,0) rf�! (h_, _, hReceiveRBL, (G),eE 0ii,00) then eE = eE 0, i.e.
related events write and read the same tuple of values.

(4) If hs1, s2i 2 rf, hs1, s3i 2 rf, and B2 < B3, then t(s2) < t(s3), i.e. each thread can read each
message at most once.

(5) If s1, s2 2 W=
G , hs1, s2i 2 po, and hs2, s4i 2 rf, then there is s3 such that hs1, s3i 2 rf, and

hs3, s4i 2 po, i.e. threads cannot jump a message.

We de�ne the fails-before relation fb expressing that a failing ReceiveRBL occurs before a suc-
ceeding SubmitRBL as follows:

fb ¨
ÿ
=,G

�
F =
G ⇥W=

G \ (po�1; rf�1)
�

If s1 2 W=
G and s3 2 F =

G , then the contents written by s1 is not available when s3 is executed. Either
there is s2 such that hs1, s2i 2 rf and hs2, s3i 2 po, in which case the message has been read; or
there is no such s2 and we have hs3, s1i 2 fb to express that the message was not yet written.

De�nition 5.2 (���-consistency). We say that an execution G = h⇢, po, stmpRBL, so, hbi is ���-
consistent i�:

• if hC, _, hSubmitRBL, (G, _), _ii 2 ⇢ then C = wthd(G); and if hC, _, hReceiveRBL, (G), _ii 2 ⇢
then C 2 rthd(G); and

• there exists a well-formed rf such that so = rf [ fb.

Note that this de�nition allows the writer thread to also be a reader, and nodes to have multiple
reading threads. Moreover, the consistency predicate does not tell us anything about failing writes;
they may fail spuriously.
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For wthd(G) = C ^ rthd(G) = {C1; . . . ; C: } :
� wthd,rthdS,RBL (C, SubmitRBL, (G,eE = (E1, . . . , E+ )) ¨
let B= = {n(C8 ) | C8 2 rthd(G)} \ {n(C)} in

let+ = len(eE) in
let� = Read�� (⌘G ) in
let�1 = Read�� (⌘GC1 ) in
. . .

let�: = Read�� (⌘GC: ) in
let" = min({�1, . . . ,�: }) in
if (� �") + (+ + 1) > ( then false else {
Write�� (G�%( ,+ ); Bcast�� (G�%( , _, B=);
Write�� (G (�+1)%( , E1); Bcast�� (G (�+1)%( , _, B=);
. . .

Write�� (G (�++ )%( , E+ ); Bcast�� (G (�++ )%( , _, B=);
Wait�� (3G );
Write�� (⌘G ,� ++ + 1); Bcast�� (⌘G ,3G , B=);
true };

For C 8 rthd(G):
� wthd,rthdS,RBL (C, ReceiveRBL, (G)) ¨ loop {()}

For C 2 rthd(G):
� wthd,rthdS,RBL (C, ReceiveRBL, (G)) ¨
let� = Read�� (⌘GC ) in
let� 0 = Read�� (⌘G ) in
if � � � 0 then ? else {

let+ = Read�� (G�%( ) in
let E1 = Read�� (G (�+1)%( ) in
. . .

let E+ = Read�� (G (�++ )%( ) in
Write�� (⌘GC ,� ++ + 1);
if n(wthd(G)) = n(C) then () else

{ Bcast�� (⌘GC , _, {n(wthd(G))}) };
(E1, . . . , E+ ) };

Fig. 14. Implementation �wthd,rthdS,RBL of the ring bu�er library into ��

0 := SubmitRBL (G, 1)
GF�� ({=2})
2 := ReceiveRBL (~)

1 := SubmitRBL (~, 1)
GF�� ({=1})
3 := ReceiveRBL (G)

(0,1, 2,3) = (true, true,?,?) 7

Fig. 13. Alternative ring bu�er semantics

Alternative weaker semantics. Instead of requir-
ing so = rf [ fb, we could give an alternative speci�-
cation with so = rf and hb�1 \ fb = ;. The latter says
that you still cannot ignore (fb) a write that you know
(hb) has �nished; but if you do ignore a write, you do
not have to export the guarantee (so) that the write has not �nished. For instance, take the litmus
test in Fig. 13. With the semantics in Def. 5.2, at least one of the two ReceiveRBL has to succeed.
With the weaker semantics, they are allowed to both fail, even when both SubmitRBL calls succeed.

5.2 LOCO Implementation
As before, we assume given the functions wthd : Loc ! Tid and rthd : Loc ! P(Tid). We also
assume an integer ( representing the size of the ring bu�er. We implement the ring bu�er library
(���) using the shared variable library (��). For each location G with rthd(G) = {C1, . . . , C: } we
create the shared variable (i.e. �� locations) G0, . . . , G(�1 for the content of the bu�er, as well as
shared variables ⌘G for the writer and ⌘GC1 ; . . . ;⌘

G
C: for the readers. We also use a work identi�er 3G .

Events that do not respect rthd or wthd are implemented using an in�nite loop (i.e. loop {()}),
similarly to other implementations. Otherwise, we use the implementation � wthd,rthdS,RBL given in Fig. 14,
where % represents the modulo operation.

The value of ⌘G represents the next place to write for the writing thread. The value of ⌘GC8
represents the next place thread C8 needs to read. If ⌘G = ⌘GC8 then thread C8 is up-to-date and needs
to wait for the writer to send additional data. If the di�erence between ⌘G and ⌘GC8 gets close to ( ,
then the bu�er is full and the writer cannot send any more data.
In the implementation of SubmitRBL, the value " represents the minimum of all ⌘GC8 . As such,

(� �") represents the amount of space currently in use. Since (+ + 1) represents the number
of cells necessary to submit a new message (the size + itself is also submitted), we can proceed if
� �" ++ + 1  ( , i.e. if there is enough free space.
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Since, for a speci�c remote node, the broadcasts complete in order, when a reader sees the new
value of ⌘G it means the written data is available. We need to take care that the broadcast of ⌘G must
read from the write of the same function call, and not from the write of a later call to SubmitRBL.
Otherwise, the value of ⌘G for the second submit might be available to readers before the data of
the second submit. For this, we simply need to wait for the broadcast of previous function calls,
using Wait�� (3G ), before modifying ⌘G .
When thread C8 wants to receive, it only proceeds if ⌘G > ⌘GC8 , otherwise C8 is up-to-date and

returns ?. After reading a message, the reader updates ⌘GC8 to signal to the writer the space of the
message is no longer in use. If the reader is on the same node as the writer, there is no need for a
broadcast, otherwise the reader broadcasts to the node of the writer.
With this implementation, each participating node possesses only one copy of the data, and

potentially multiple readers per node can read from the same memory locations.

T������ 5.3. The implementation � wthd,rthdS,RBL is locally sound.

P����. See the extended version [EV]. É

6 Evaluation
In this section, we explore the performance of our LOCO primitives, then use them to build a high
performance key-value store. Further applications can be found in the extended version [EV].

All results were collected using c6525 � 25g nodes on the Cloudlab platform [clo [n. d.]]. These
machines each have a 16-core AMD 7302P CPU, running Ubuntu 22.04. Nodes communicate over a
25 Gbps Ethernet fabric using Mellanox ConnectX-5 NICs.

6.1 LOCO Primitives
First, we compare the performance of the veri�ed barrier (���) and ring bu�er (���) primitives to
equivalent operations in OpenMPI [Gabriel et al. 2004], a message-passing library commonly used
to build distributed applications. We compare against OpenMPI 5.0.5, using the PML/UCX backend
for RoCE support. Results are shown in Figure 15.
For the barrier experiments, we compare to the MPI_Barrier operation, varying both thread

count per node and node count. The MPI barrier does not actually provide synchronization,
expecting the user to instead appropriately track and fence operations before using the primitive.
We compare the barrier to our LOCO barrier, both with and without the synchronization fence, and
show that the LOCO barrier with equivalent semantics (no fence) performs as well or better than
the MPI barrier. Note the MPI barrier dynamically switches between several internal algorithms
adjusting to load leading to non-smooth performance across the test domain.
For the ring bu�er experiments, we compare a ring bu�er broadcast to the MPI_Ibcast (non-

blocking broadcast) operation. We measure across di�erent node counts and amounts of “network
load”, that is, the number = of outstanding broadcast operations in the network, along with total
node count. A single node acts as the sender: it starts by sending = broadcasts, then sends a new one
every time a prior message completes. All other nodes wait to receive and acknowledge messages.
Messages have a �xed size of 64 bytes. Here, we �nd that the formally veri�ed LOCO ring bu�er
provides better broadcast performance than MPI in most con�gurations, with MPI performance
falling drastically as the number of outstanding messages rises.

6.2 Example Application: A Key-Value Store
Beyond our microbenchmarks, we describe an example LOCO application: a key-value store, built
using composable LOCO primitives.
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Fig. 15. Comparison of barrier and broadcast operations for LOCO and OpenMPI.

Fig. 16. kvstore read and write operations

Our kvstore object is a distributed key-value
store with a lookup operation that takes no locks,
and insertion, deletion, and update operations pro-
tected by locks. Lookup and update are depicted in
Fig. 16. Each node allocates a remotely-accessible
memory region that is used to store values and
consistency metadata (a checksum for atomicity, a
counter for garbage collection, and a valid bit).
Each node also maintains a local index (a C++

unordered_map), protected by a local reader-writer
lock, which records the locations of all keys in the
kvstore as (node_id, array_index) pairs, along
with a counter matching the one stored with the
data. The kvstore is linearisable, with a proof given in the extended version [EV] – our proof is
simpli�ed by leveraging the compositional properties of LOCO. Note that ������� does not have a
semantics for locks or RDMA read-modify-write operations, which means that this proof currently
does not use M�����. We consider an extension of ������� with synchronisation operations (and
hence a full proof of kvstore) to be future work. Almost all RDMA maps [Barthels et al. 2015; Kalia
et al. 2014; Li et al. 2023; Lu et al. 2024; Wang et al. 2022] lack any formal safety speci�cation (we
are only aware of two [Dragojević et al. 2014],[Alquraan et al. 2024]), likely due to di�culties in
encapsulation, which the LOCO philosophy solves.
We compared our key-value store design against Sherman [she [n. d.]; Wang et al. 2022] and

the MicroDB from Scythe [scy [n. d.]; Lu et al. 2024], two state-of-the-art RDMA key-value stores.
We also compare against Redis-cluster [Ltd. 2021] as a non-RDMA baseline. Results are shown
in Figure 17. We measured throughput on read-only, mixed read-write, and write-only operation
distributions, across both uniform and Zip�an (\ = 0.99) key distributions, and across di�erent
node counts and per-node thread counts. Each data point is the geometric mean of 5 runs with a 20
second duration, not including pre�ll.
All benchmarks use a 10MB keyspace, �lled to 80% capacity with 64-bit keys and values. All

benchmarks use the CityHash64 key hashing function [Pike and Alakuijala [n. d.]], and the YCSB-C
implementation of a Zip�an distribution [ycs [n. d.]].
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Fig. 17. Throughput comparison of key-value stores.

We modi�ed Sherman to issue a fence (GF��) between lock-protected writes and lock releases to
solve a bug related to consistency issues. Our kvstore also issues a fence for the same reason. For
both, this fence incurs a 15% overhead.

For LOCO, Sherman, and Redis, write operations are updates. For Scythe, we found that stressing
update operations led to program instability and very low throughput, so we use the performance
of insertion operations as an upper bound on write performance. For Redis, we con�gure a cluster
with no replication or persistence. Since each Redis server instance uses 4 threads, we create
ceil(num_threads/4) server instances for a given thread count. We use Memtier [Ltd. 2024] as
a benchmark client. Each node runs a single Memtier instance with threads equal to the thread
count, and 128 clients per thread (matching the LOCO large window size).

In addition, all systems expose a parameter we call the window size, which speci�es the maximum
number of outstanding operations per application thread (note this is not a batch size – each
operation is started and completed individually). Increasing LOCO’s window size to 128 yielded
signi�cant improvement (the “large window” series). However, increasing Sherman’s and Scythe’s
window sizes appeared to cause internal errors, so the main results for all systems except Redis
(see above) use a window size of 3 for accurate comparison.

LOCO outperforms Sherman on read-only con�gurations. We believe this is because Sherman
reads whole sections of the tree from remote memory, while the LOCO design looks up the location
locally and only remotely reads the value. On the other hand, LOCO’s advantage over Sherman for
Zip�an writes likely comes from the better performance under contention.
Sherman outperforms LOCO (with a window size of 3) on mixed read-write and write-only

distributions on uniform keys, while the reverse is true for Zip�an keys. Sherman’s advantage here
is likely due to the fact that, unlike LOCO, Sherman colocates locks with data, allowing them to
issue lock releases in a batch with writes.

7 Related and Future Work
Although the formal semantics of RDMA has only recently been established [Ambal et al. 2024],
our work is able to take advantage of earlier results in weak memory hardware [Alglave et al.
2014; Flur et al. 2016] and programming languages [Batty et al. 2011; Lahav et al. 2017]. We do not
provide their details here since they are rather expansive.
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RDMA Semantics. Prior works on RDMA semantics include coreRMA [Dan et al. 2016] (which
formalises RDMA over the SC memory model) and ������� [Ambal et al. 2024], a more realistic
formal model that is very close to the Verbs library [linux-rdma 2018], describing the behaviour of
RDMA over TSO. These semantics are however low-level and are di�cult for programmers to use
directly, as illustrated by examples such as those in Fig. 2.

RDMA Libraries. Much prior work in RDMA focuses on upper-level primitives, e.g. consensus
protocols [Aguilera et al. 2019, 2020; Izraelevitz et al. 2023; Jha et al. 2019; Poke and Hoe�er 2015],
distributed maps or databases [Alquraan et al. 2024; Barthels et al. 2015; Dragojević et al. 2014, 2015;
Gavrielatos et al. 2020; Kalia et al. 2014; Li et al. 2023;Wang et al. 2022], graph processing [Wang et al.
2023a], distributed learning [Ren et al. 2017; Xue et al. 2019], stand-alone data structures [Brock et al.
2019; Devarajan et al. 2020], disaggregated scheduling [Ruan et al. 2023a,b] or �le systems [Yang et al.
2019, 2020]. These works focus on the �nal application, rather than considering the programming
model as its own, partitionable problem. As a result, the intermediate library between RDMA
and the exported primitive is usually ad-hoc and tightly coupled to the application, or e�ectively
non-existent. In general, these applied, speci�c, projects manage raw memory explicitly statically
allocated to particular nodes, use ad-hoc atomicity and consistencymechanisms, and do not consider
the possibility of primitive reuse. This design is not a fundamentally �awed approach, but it does
raise the possibility of a better mechanism, which likely could underlie all the above solutions.
Some works have considered this intermediate layer explicitly, however, the general approach

for this intermediate layer has been to encapsulate local and remote memory as distributed shared
memory, that is, a �at, uniform, coherent, and consistent address space hiding the relaxed consistency
and non-uniform performance of the underlying RDMA network. These works generally focus
on transparently (or mostly-transparently [Ruan et al. 2020; Zhang et al. 2022]) porting existing
shared memory applications. We argue that this technique, either with purely software-based
virtualisation [Cai et al. 2018; Gouk et al. 2022; Ruan et al. 2020; Wang et al. 2020; Zhang et al. 2022],
or by extending hardware [Calciu et al. 2021], is unlikely to gain traction because the performance
will always be worse than an approach which takes into account the underlying memory network.

Other programming models have simply used RDMA to implement existing distributed system
abstractions. For example, both MPI [Message Passing Interface Forum 2023] and NCCL [NVIDIA
Corporation 2020] can use RDMA for inter-node communication. However, fundamentally, these
are message passing programming models with explicit send and receive primitives. While MPI
does support some remote memory accesses, this support is best seen as a zero-copy send/receive
mechanism where synchronisation is either coarse-grained and in�exible, or simply nonexistent.
While message-passing is well-suited for data�ow applications (e.g. machine learning and signal
processing) and highly parallel scale-out workloads (e.g. physical simulation), it is less useful
for workloads that exhibit data-dependent communication [Liu et al. 2021], such as transaction
processing or graph computations. In these applications, cross-node synchronisation is unavoidable
and unpredictable, so the ideal performance strategy shifts from simply avoiding synchronisation
to minimising contention, accelerating synchronisation use, and reducing data movement.

Compared to prior art, LOCO aims to build composable, reusable, and performant primitives for
complicated memory networks, suitable for irregular workloads. No such option currently exists in
the literature.

Veri�cation. Our proofs have followed the declarative style [Raad et al. 2019; Stefanesco et al.
2024] enabling modular veri�cation. ������� [Ambal et al. 2024] also includes an operational
model, which could form a basis for a program logic (e.g., [Bila et al. 2022; Lahav et al. 2023]),
ultimately enabling operational abstractions and proofs of re�nement [Dalvandi and Dongol 2022].
Other modular approaches include modular proofs through separation logics [Jung et al. 2018],
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but this additionally requires a separation logic encoding of the �������� memory model (and
an associated proof of soundness) before it can be applied to verify libraries such as LOCO. We
consider operational proofs and those involving separation logic as a topic for future work.
Nagasamudram et al. [2024] have veri�ed, in Rocq, key properties of a coordination service

known as Derecho [Jha et al. 2018], which can be con�gured to run over RDMA. However, their
proofs start with a very high-level model called a shared-state table, which is an array of shared
variables (cf. Fig. 7). Unlike our work, these assumed shared state table semantics have not been
connected to any formal RDMA semantics. In future work, it would be interesting to connect our
work to middleware such as Derecho, ultimately leading to a fully veri�ed RDMA application stack.

There is a rich literature of work around model checking under weak and persistent memory
[Abdulla et al. 2023; Kokologiannakis and Vafeiadis 2021] including recent works that tackle
re�nement and linearisability [Golovin et al. 2025; Raad et al. 2024]. It would be interesting to know
whether these techniques can be extended to support ������� (and by extension ��������).

8 Conclusion
In this paper, we describe LOCO, a veri�ed library for building composable and reusable objects
in network memory and its associated proof system M�����. Our results show that LOCO can
expose the full performance of underlying network memory to applications, while simultaneously
easing proof burden.
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