
U-Turn: Enhancing Incorrectness Analysis by Reversing
Direction
FLAVIO ASCARI, University of Konstanz, Germany
ROBERTO BRUNI, University of Pisa, Italy
ROBERTA GORI, University of Pisa, Italy
AZALEA RAAD, Imperial College London, United Kingdom

O’Hearn’s Incorrectness Logic (IL) has sparked renewed interest in static analyses that aim to detect program
errors rather than prove their absence, thereby avoiding false alarms—a critical factor for practical adoption
in industrial settings. As new incorrectness logics emerge to capture diverse error-related properties, a
key question arises: can combining correctness and incorrectness techniques enhance precision, expressiveness,
automation, or scalability? Notable frameworks, such as outcome logic, UNTer, local completeness logic,
and exact separation logic, unify multiple analyses within a single proof system. In this work, we adopt a
complementary strategy. Rather than designing a uni�ed logic, we combine IL, which identi�es reachable
error states, with Su�cient Incorrectness Logic (SIL), which �nds input states potentially leading to those
errors. As a result, we get a more informative and e�ective analysis than either logic in isolation. Rather than
sequencing them, our key innovation is reusing heuristic choices from the �rst analysis to steer the second. In
fact, both IL and SIL rely on under-approximation and thus their automation legitimizes heuristics that avoid
exhaustive path enumeration (e.g., selective disjunct pruning, loop unrolling). Concretely, we instrument
the proof rules of the second logic with derivations from the �rst to inductively guide rule selection and
application. To our knowledge, this is the �rst rule format enabling such inter-analysis instrumentation. This
combined analysis aids debugging and testing by revealing both reachable errors and their causes, and opens
new avenues for embedding incorrectness insights into scalable, expressive, automated code contracts.

CCS Concepts: • Theory of computation! Logic and veri�cation; Proof theory; Programming logic.

Additional Key Words and Phrases: Su�cient Incorrectness Logic, Incorrectness Logic

ACM Reference Format:
Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad. 2026. U-Turn: Enhancing Incorrectness Analysis
by Reversing Direction. Proc. ACM Program. Lang. 10, POPL, Article 46 (January 2026), 27 pages. https:
//doi.org/10.1145/3776688

1 Introduction
Formal methods apply mathematical reasoning to software development, aiming to guarantee
correctness, reliability, and security of programs through automated analyses. Over the last decades
these techniques have led to a number of high-pro�le successes. For example, the Astrée static
analyzer uses abstract interpretation to prove the absence of run-time errors in safety-critical C code
[Blanchet et al. 2003], Microsoft’s SLAM project (and its Static Driver Veri�er tool) applied model
checking to millions of lines of Windows driver code, uncovering subtle bugs in API usage [Ball and
Rajamani 2001], the CompCert project produced a formally veri�ed C compiler: its machine-checked
proof of semantic preservation guarantees that any property proved on the source code holds on the

Authors’ Contact Information: Flavio Ascari, University of Konstanz, Konstanz, Germany, �avio.ascari@phd.unipi.it; Roberto
Bruni, University of Pisa, Pisa, Italy, roberto.bruni@unipi.it; Roberta Gori, University of Pisa, Pisa, Italy, roberta.gori@unipi.it;
Azalea Raad, Imperial College London, London, United Kingdom, azalea.raad@imperial.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).
ACM 2475-1421/2026/1-ART46
https://doi.org/10.1145/3776688

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

https://orcid.org/0000-0003-4624-9752
https://orcid.org/0000-0002-7771-4154
https://orcid.org/0000-0002-7424-9576
https://orcid.org/0000-0002-2319-3242
https://doi.org/10.1145/3776688
https://doi.org/10.1145/3776688
https://orcid.org/0000-0003-4624-9752
https://orcid.org/0000-0002-7771-4154
https://orcid.org/0000-0002-7771-4154
https://orcid.org/0000-0002-7424-9576
https://orcid.org/0000-0002-2319-3242
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776688

46:2 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

compiled executable [Leroy 2009]. Other tools have shown similar impact: the VCC veri�er checks
annotated concurrent C programs against strong safety and functional properties [Baudin et al.
2021], and the Frama-C platform provides a collaborative, extensible suite of static and deductive
analyzers for C, supported by a large academic/industrial community [Baudin et al. 2021].

Despite these achievements, the widespread adoption of formal veri�cation in general software
development remains limited. A key obstacle is their focus on proving correctness of the program,
which often leads to so-called false alarms. They are warnings produced by the analysis that do not
correspond to actual bugs in the code. Such spurious errors stem from over-approximation and
are particularly frustrating for experienced engineers, who tend to perceive them as distractions
rather than helpful insights. This issue becomes even more pronounced in industrial settings,
where code is rarely correct on the �rst attempt. Instead, code development typically follows an
iterative process of writing, testing, and re�nement. These considerations have prompted a shift
in perspective, from verifying correctness to detecting incorrectness. As a result, there is a growing
interest in developing formal methods that are aimed at actively uncover bugs rather than prove
their absence. In industrial contexts, under-approximation techniques—such as testing and bounded
model checking—are often preferred because they avoid false positives. A notable development in
this direction is Incorrectness Logic (IL) [O’Hearn 2020], a program logic speci�cally designed for
bug detection: any error state appearing in the postcondition is guaranteed to be reachable from
some input state satisfying the precondition. IL has inspired the creation of practical tools, such
as Pulse, which builds on Incorrectness Separation Logic [Raad et al. 2020], and Pulse-X [Le et al.
2022]. This foundational work has sparked a new line of research on principled under-approximate
approaches to bug detection [Ascari et al. 2025a; Möller et al. 2021; Zilberstein et al. 2023], as well
as on the development of industrial-strength tools for scalable bug �nding [Distefano et al. 2019;
Sadowski et al. 2018].

When dealing with real-world applications that must be both e�ective and scalable, some form
of approximation is unavoidable. This is a direct consequence of Rice’s theorem [Rice 1953], which
states that any non-trivial semantic property of programs is undecidable. Therefore, approaches
based on under-approximation o�er a practical means of scaling analyses, as they allow discarding
part of the information while preserving soundness. As an example, the inference rules of logics for
under-approximation can discard disjuncts or bound the number of loops of iterative commands.
Such abstractions are especially valuable in industrial settings, where incomplete information is
the norm and nondeterministic behaviors may emerge simply due to the lack of source code or
speci�cations for external library calls. In these scenarios, under-approximations enable analysis
tools to e�ciently produce sound results, often at the expense of completeness—that is, the tools
may fail to detect all errors—by relying on heuristics that automate the analysis.

The Problem. While early approaches in the literature typically focused on proving either cor-
rectness or incorrectness, several successful proposals have since emerged that combine these
complementary techniques, resulting in methods that are either more powerful (e.g., [Bradley 2011;
Bruni et al. 2023]) or capable of expressing a broader range of properties (e.g., [Raad et al. 2024a;
Zilberstein et al. 2023]). The work that we present here follows this line of thought, �rmly grounded
in the Aristotelian conviction that “the whole is greater than the sum of its parts.” In particular,
we aim at combining Incorrectness Logic (IL) [O’Hearn 2020] with Su�cient Incorrectness Logic
(SIL) [Ascari et al. 2025a]. While the goal of IL is to discover reachable error states—such that any
error state in the postcondition can be reached from some input state satisfying the precondition—the
goal of SIL, once the postcondition characterizes potential errors, is to identify their sources. In
fact, SIL guarantees that every state in the precondition has an execution leading to an error state in
the postcondition. Both IL and SIL are based on under-approximations; however, while IL can be

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:3

expressed using a forward semantics, SIL relies on a backward semantics. IL postconditions expose
only true errors, and when paired with the corresponding SIL preconditions, they can be presented
to programmers as both reachable errors themselves together with the input states that lead to
them, thus aiding the debugging process. This suggests their combination is more informative
than what each logic can tell individually. Indeed, even if sometimes the path conditions leading
to an error can be made explicit in the post of IL triples by means of logical variables—variables
not appearing in the program and thus never modi�ed during execution—that can keep track of
initial values, the next example shows that IL triples may not be informative enough to provide the
programmer with the input conditions from which to start debugging. This is the case, for example,
when the constraints are related to the shape of the heap.

Example 1.1. Consider the following program:

r , tmp := [x]; if (tmp == 0) { free(x); error() }

This code fragment reads a value from the pointer G and expects a value di�erent from 0. However,
if it loads 0, it �rst deallocates G to reclaim resources before throwing an error. In this case,
the path condition leading to the error is that G points to 0, but this cannot be encoded in the
postcondition using logical variables because the heap has changed from the pre to the post, due to
the execution of free(x). In principle, the Incorrectness Separation Logic (ISL) [Raad et al. 2020]
triple [G 7! 0] r [4A : tmp = 0 ⇤ G 67!] which highlights the error precondition G 7! 0 is provable.
However, ISL (and IL) validity condition does not guarantee that some error state is necessarily
reachable from all states satisfying the precondition. For instance, a straightforward application of
ISL proof system proves the triple [tmp = tmp

0] r [4A : tmp = 0 ⇤ G 67!], which does not contain
any reference to G 7! 0 as the condition leading to the error.

The previous example suggests that the use of SIL, starting from the error postcondition identi�ed
through IL, could be useful for generating a warning that also highlights the input that led to the
error state, namely the precondition G 7! 0 in the previous example. Our proposal is not to combine
IL and SIL in a single proof system where both triples can be derived, but rather to propose a novel
proof system that taken a derivation in one logic uses such proof tree to automatically instruct the
inference of a triple in the other logic. Next example shows that this can be particularly useful.

Example 1.2. With SIL backward analysis, it is not always possible to determine which execution
paths will produce the error. Although this limitation also exists in IL, the highly nondeterministic
nature of SIL’s backward semantics makes the problem particularly severe. Consider the following
program, which inevitably exhibits an erroneous behavior:

r , x := 10; while (x > 0) { x-- }; error()

Unfortunately, for detecting that true is a valid SIL pre to an error postcondition, an analyzer has
to guess that the loop must be executed 10 times. For instance, if the analyzer decides to unroll
the loop (backward) only twice, it will derive the triple hG = 2i while (x > 0) { x-- } htruei,
which would propagate as h10 = 2i x := 10 hG = 2i using Hoare’s axiom for assignment, which
does not expose any cause for the error—in fact, false is always a valid under-approximation.

To ensure it tracks back to some source of errors, SIL analysis should take into account all
possible nondeterministic backward-oriented executions, which is infeasible. Therefore, there is
the need for good heuristics to prune the search. Another example of the problems raised by high
degree of nondeterminism is related to pointer aliasing. While aliasing created during a function
execution is easy to detect and track in a forward analysis, it is much harder to infer in a backward
analysis; therefore, to �nd non-trivial preconditions, all possible aliasing must be considered until

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:4 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

htrue ⇤ E 7! I ⇤ I 7! � ⇤ (G = I _ G 67!) i
y := [v];

htrue ⇤ E 7! � ⇤ ~ 7! � ⇤ (G = ~ _ G 67!) i
free(y);

hG 67! ⇤ E 7! � ⇤ emp ⇤ truei
y := alloc();

hG 67! ⇤ E 7! � ⇤ truei
[v] := y;

hG 67! ⇤ truei

Fig. 1. SIL derivation for the reallocation case of push_back [Ascari et al. 2025a, Fig. 6]

reaching a program point where we can prove they are not admissible. Again, the same issue can
happen in a forward analysis, but in practice functions seldom receive two aliased pointers as
parameters. On the contrary, it is very common to create some temporary aliases of a pointer for
local manipulation, that are discarded before the function returns.

Example 1.3. Consider this code fragment, which models the reallocation case of C++ push_back

function (see Example 4.4):

y := [v]; free(y); y := alloc(); [v] := y

and the Separation Logic precondition (E 7! G ⇤G 7! �). Executing the assignment y := [v] aliases
G and ~, so that the free(y) deallocates the pointer G . It is easy to �nd this information in the
preceding line of the forward analysis, where ~ gets assigned the value pointed by E that is exactly
G , and �nd that at the end G is deallocated. By contrast, if we start from the error postcondition
(G 67! ⇤ true) with a backward analysis, this information is not known until we reach the caller
of this code fragment, and therefore we have to consider both possibilities in the pre. This can be
seen in the SIL derivation in Fig. 1 (�rst presented in Ascari et al. [2025a]), that must account for
both cases, whether they are aliased (G = I) or they are not (I 67! ⇤ G 67!).

The idea of combining IL and SIL analyses has already appeared in the literature. Notably, in
Raad et al. [2024a], the authors point out the importance of both forward and backward under-
approximation information, and exploit it to reason about termination, introducing the new UNTer
proof system. UNTer logics e�ectively prove triples that are valid for both IL and SIL. When turning
to the implementation, they realize that Pulse (an industrial-strength automated tool in use at Meta)
already implemented an analysis that computed triples valid both in IL and SIL (albeit without
realizing it explicitly), demonstrating the strength and impact of this combined approach. However,
integrating forward and backward reasoning into a single proof system presents certain challenges.

Designing a proof system that supports both directions crucially relies on formulating appropri-
ate axioms for atomic commands. For instance, while in SIL both classical axioms for assignment
used in Hoare logic—Hoare’s backward substitution rule [Hoare 1969] and Floyd’s forward trans-
former [Floyd 1967]—remain valid, ensuring similar validity and completeness in a uni�ed system
is non-trivial. The axioms are:

{@ [0/G]} x := a {@} {Hoare} {?} x := a {9G 0 .? [G 0/G] ^ G = 0[G 0/G]} {Floyd}

where @ [0/G] denotes the capture-avoiding substitution of all free occurrences of G in @ with 0.
Floyd’s forward axiom is also valid in IL, but Hoare’s axiom is not [O’Hearn 2020, §4]. Of course,
one natural solution is to consider Floyd’s forward axiom, which is valid for both IL and SIL triples.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:5

However, this raises an important question: is this the most general axiom we can design for
assignments? Could it be that the most general axiom is neither of the previously proposed ones,
which were tailored speci�cally for forward or backward reasoning?

Another key question is: which direction should be prioritized? In other words, should we begin
with the precondition and attempt to infer the appropriate postcondition in a forward style (as
done in IL and UNTer), or should we start from the postcondition and infer the corresponding
precondition in a backward style (as done in SIL)? In the case of assignment, Floyd’s axiom would
be the natural candidate for the �rst approach and Hoare’s axiom for the second. In a combined
proof system such as UNTer’s, proving a triple usually requires the user to make an informed
guess for the appropriate pre- and postconditions to use. In fact, it is not the case that for any
precondition ? (respectively, any postcondition @) we can �nd a corresponding triple that is valid
in both IL and SIL. This aspect can be particularly challenging, especially when reasoning about
unknown or partially known code, as the user must provide valid triples even in the absence of full
information.

Contribution. In response to the above questions, we make two key contributions.
First, we address the problem of formulating axioms for atomic commands that ensure derivation

of all and only triples that are valid in both IL and SIL. To this aim, we propose an axiom schema
for atomic commands that is sound and complete. From this schema, we derive axioms for atomic
commands that are correct by construction, and we demonstrate how such axioms can be instan-
tiated within the UNTer proof system. Moreover, our contribution goes further: by introducing
this general schema, we establish a methodology that can be systematically applied to any atomic
command. As a concrete example, we consider non-deterministic assignment—a command not
previously supported in UNTer—and immediately derive a new sound and complete axiom for it.
Our second contribution addresses the direction of the analysis. Instead of proposing a single,

combined proof system that naturally favors one or the other direction, we suggest a “smart
sequential composition” of one analysis followed by the other one. In particular, in this paper, we
instantiate this idea by focusing on the strategy that applies IL followed by SIL—that is, where
the results of IL analysis serve as the starting point for SIL. However, the opposite strategy is also
possible and we brie�y outline it in the paper. As mentioned earlier, IL helps identifying reachable
error states, and SIL complements this information by producing inputs and warnings that aid the
programmer in debugging their code. We introduce U-Turn proof system, which allows to follow
any IL derivation with a backward SIL analysis. This combination is not only more informative—
since the result satis�es the properties guaranteed by each individual method—but, to the best of
our knowledge, it is also the �rst case where the heuristic exploited by one method is used to guide
the application of the other.

Example 1.4. We brie�y revisit the previous examples to show how U-Turn solves their issues.
In Example 1.1, the issue is solved by doing a SIL backward step starting from the error postcon-

dition found by IL. Moreover, this backward step is guided by the forward analysis, that considered
the then-branch of the conditional statement, therefore SIL will only analyze it and skip the analysis
of the else-branch, �nding the desired precondition hG 7! 0i.

In Example 1.2, a �rst forward step with IL needs to unroll the loop until it exits (i.e., 10 times) to
�nd the postcondition [4A : G = 0]. Taking this information into account, the backward SIL step
can unroll the loop the same number of times to derive hG = 10i while (x > 0) { x-- } htruei,
which will then propagate as h10 = 10i x := 10 hG = 10i recovering the error precondition hCAD4i.

In Example 1.3, SIL was already able to infer the error precondition by itself (see [Ascari et al.
2025a, Ex. 5.2]), but it had to consider both the aliasing and not aliasing of ~ and G . However, the
forward IL analysis already has the information that G and ~ will be aliased. U-Turn is able to

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:6 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

transfer this information, forcing SIL to only consider this latter case and drop the other possibility.
We show the details of this interaction in Example 4.4.

Structure of the Paper. The paper is structured as follows. In Section 2 we set the notation and
introduce relevant concepts from the literature. In Section 3 we present our �rst contribution,
the forward-backward axiom schema for atomic commands. In Section 4 we detail our second
contribution, the U-Turn proof system. In Section 5 we outline possible directions for future works.
Proofs and additional technical material can be found in the extended version [Ascari et al. 2025b].

2 Background
2.1 Regular Commands
Following the trend of many other incorrectness logics [Ascari et al. 2025a; O’Hearn 2020; Raad
et al. 2020, 2024a] we consider a language of regular commands. We use standard de�nitions for
arithmetic expressions a 2 AExp and Boolean expressions b 2 BExp:

AExp 3 a ::= = | G | a + a | a � a | a · a | . . . BExp 3 b ::= false | ¬b | b ^ b | a ⇣ a

where ⇣2 {=,<, , <, . . . } accounts for all standard comparison operators.
The syntax of regular commands r 2 RCmd is:

ACmd 3 c ::= skip | x := a | b? | x := nondet() RCmd 3 r ::= c | r; r | r � r | r⇤ (1)

Note that we include an explicit nondeterministic assignment x := nondet() as one of the
atomic commands in the language, as well as nondeterministic choice � and iteration (·)⇤.

This formulation accommodates a standard imperative while-language [Winskel 1993] with the
encoding below:

if (b) {r1} else {r2} , (b?; r1) � ((¬b)?; r2)
while (b) {r} , (b?; r)⇤; (¬b)?

To give a semantics to regular commands, we consider a �nite set of variables Var. Let stores
f 2 ⌃ , (Var! Z) be (total) functions from variables to values. As usual, store update is denoted
by f [G 7! E]. Evaluation of arithmetic and boolean expressions in a store f , denoted by L·Mf , is
standard. We consider a collecting denotational semantics for regular commands. We de�ne it as a
function J·K : RCmd! ⌃! ®(⌃), which is then lifted to J·K : RCmd! ®(⌃) ! ®(⌃) by union.
The semantics of atomic commands c 2 ACmd and (2 ®(⌃) is de�ned as follows:

JskipKf , {f} Jx := aKf ,
�
f [G 7! LaMf]

Jb?Kf , {f | LbMf = tt} Jx := nondet()Kf , {f [G 7! E] | E 2 Z}

We then de�ne the semantics of composite regular commands by induction as follows:

Jr1; r2Kf , Jr2K(Jr1Kf) Jr1 � r2Kf , Jr1Kf [Jr2Kf Jr⇤Kf ,
ÿ
=�0

JrK=f (2)

Roughly speaking, given a set of stores (✓ ⌃, the collecting forward semantics JrK(is the set of
output states reachable from input states in (by executing r.
The forward semantics can also be viewed as a binary relation over ⌃, relating a pair of states

(f,f 0) if and only if f 0 2 JrKf . Following the presentation of SIL [Ascari et al. 2025a, §3.1], we
de�ne the backward semantics J �r K as the function inducing the opposite relation, that is

f 2 J �r Kf 0 () f 0 2 JrKf or, equivalently, J �r Kf 0 , {f | f 0 2 JrKf}. (3)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:7

` [>: : %] x := a [>: : Jx := aK%] [assign] ` [>: : %] b? [>: : % ^ 1] [assume]

` [>: : %] x := nondet() [>: : 9G .%] [nondet] ` [>: : %] skip [>: : %] [skip]

` [%1] r [&1] ` [%2] r [&2]
` [%1 _ %2] r [&1 _&2]

[disj] % (= % 0 ` [% 0] r [& 0] & 0 (= &

` [%] r [&] [cons]

` [%] r1 ['] ` ['] r2 [&]
` [%] r1; r2 [&] [seq] ` [4A : %] r [4A : %] [er-id]

` [%] r1 [&]
` [%] r1 � r2 [&] [choiceL] ` [%] r2 [&]

` [%] r1 � r2 [&] [choiceR]

` [%] r⇤ [%] [iter0] ` [%] r⇤; r [&]
` [%] r⇤ [&] [unroll]

Fig. 2. Incorrectness Logic rules for regular commands [O’Hearn 2020]

As before, we additively lift the de�nition of backward semantics to set of states by union. Roughly
speaking, J �r K(is the set of input states that can reach some output state in (.1

2.2 Assertion Language
In the paper, we interpret assertions as sets of states. They are described by the following grammar:

Asl 3 %,& ::= % =) & | 9G .% | b | JrK% | J �r K%

Encoding of other logical connectives is standard (eg. ¬% , % =) false, note that false is part
of the syntax of b). We include in our assertion language constructors for the collecting semantics.
While this is theoretically sound, an implementation requires an equivalent closed formula for the
semantics, which may or may not be available depending on the command r. For instance, there
are such closed formulae for both the forward and backward semantics of all atomic commands in
our language:

Jx := aK% ⌘ 9E .% [E/G] ^ G = 0[E/G] J ������x := aK& ⌘ & [0/G]

Jb?K% ⌘ % ^ 1 J �b?K& ⌘ & ^ 1

JskipK% ⌘ % J ���skipK& ⌘ &

Jx := nondet()K% ⌘ 9G .% J ��������������x := nondet()K& ⌘ 9G .&

where E is a fresh variable (i.e., E does not appear in % , G or 0). Note that the formulae for assignment
are precisely the forward transformer of Floyd’s axiom for the forward semantics and Hoare’s
backward substitution for the backward semantics. In the rest of the paper we will often use
Jx := aK% instead of the more verbose 9E .% [E/G] ^ G = 0[E/G].

We observe the following relation between forward and backward semantics of assignments.

L���� 2.1. Given an assertion % , de�ne & , Jx := aK% . Then % =) J ������x := aK& = & [0/G].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:8 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

2.3 Incorrectness Logic
Incorrectness Logic (IL) was �rst introduced in O’Hearn [2020] as a foundation for formal methods
aimed to prove program incorrectness rather than correctness. The idea of IL is to consider a subset
of program behaviors rather than a superset. This way, any erroneous behavior identi�ed by the
analysis is intrinsic to the program and not a false alarm induced by the approximation. The ability
to consider only subsets of the behaviors by dropping disjuncts and bounded loop unrolling enables
scalability at the expense of precision, a worth trade-o� in many industrial settings [Godefroid
2005].

Formally, the validity of an IL triple [%] r [&] is de�ned by the under-approximation condition
JrK% ◆ & , which is equivalent to

8f 0 2 & .9f 2 % .f 0 2 JrKf .

In other words, any state f 0 in the postcondition& is reachable by a real execution of the program
starting from some state in % , so that all the bugs in & are reachable.
A hallmark of proof systems based on IL is to tag post, but not pre, with a �ag to distinguish

between normal and erroneous termination, respectively �agged using the green marker >: and the
red marker 4A . In this paper, we instead follow the approach of Bruni et al. [2021, § 6] (see also Ascari
et al. [2025a, Remark 3.9]): instead of attaching �ags solely to the postconditions of triples, we enrich
the entire state space with them. This is re�ected as well in the assertion language, and we assume
the semantics of any command acts as the identity on er-roneous states, i.e., JrK(4A : f) = 4A : f for
any r 2 RCmd and f 2 ⌃. The bene�t of this approach is a more uniform treatment of �ags, but it
does not introduce any conceptual di�erence. This leads us to the modi�ed proof system in Fig. 2.
Untagged assertions %,& can contain any disjunction of >: and 4A states, while tagged assertions
>: : % and 4A : % can only contain states with the speci�ed tag. Axioms for atomic commands are
obtained from IL by forcing the pre to only contain >: states. The only new rule is [er-id], that
re�ects the identity semantics of any command on 4A states.

As usual, we write ✏ [%] r [&] for a valid triple and ` [%] r [&] for a provable one.
T������ 2.2 (IL ��������� [O’H���� 2020]). Any provable IL triple is valid:

` [%] r [&] =) ✏ [%] r [&] .

2.4 Su�icient Incorrectness Logic
While IL only �nds true bugs in the post, it does not guarantee anything about the states in the pre.
Particularly, thanks to rule [cons], it is always possible to weaken the pre to include states unrelated
to the bugs found in the post. This limitation was acknowledged (sometimes less explicitly), e.g.,
in Ascari et al. [2025a]; Le et al. [2022]; Zilberstein et al. [2023]. A proposed solution is a logic
that constrains the pre instead of the post, with the meaning that every state in the pre can reach
at least one state in the post. Such a logic had multiple names in the literature, e.g., Lisbon logic
[O’Hearn 2020; Zilberstein et al. 2023], backward under-approximate triples [Le et al. 2022; Möller
et al. 2021; Raad et al. 2024a], or Su�cient Incorrectness Logic [Ascari et al. 2025a].
In this paper, we are interested in combining forward and backward under-approximation,

therefore we take inspiration from the presentation in Ascari et al. [2025a], but we enrich their
rules with error �ags to better match the IL rules (these changes were already sketched in Ascari
et al. [2025a, § 5.6]). The resulting proof system is in Fig. 3. Note that the IL and SIL proof systems
have remarkably similar structural rules: the only di�erences are the rules of consequence and
the in�nitary rule for iteration ([BackwardsVariant] in O’Hearn [2020] for IL, hiteri in Ascari et al.
1This was �rst presented by Hoare [1978, §5.3] as the weakest possible precondition calculus. Note that this de�nition is
di�erent from Dijkstra’s weakest (liberal) precondition [Dijkstra 1975]

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:9

` h>: : & [0/G]i x := a h>: : &i hassigni ` h>: : & ^ 1i b? h>: : &i hassumei

` h>: : 9G .&i x := nondet() h>: : &i hnondeti ` h>: : &i skip h>: : &i hskipi

` h%1i r h&1i ` h%2i r h&2i
` h%1 _ %2i r h&1 _&2i

hdisji % =) % 0 ` h% 0i r h& 0i & 0 =) &

` h%i r h&i hconsi

` h%i r1 h'i ` h'i r2 h&i
` h%i r1; r2 h&i

hseqi ` h4A : %i r h4A : %i her-idi

` h%i r1 h&i
` h%i r1 � r2 h&i

hchoiceLi ` h%i r2 h&i
` h%i r1 � r2 h&i

hchoiceRi

` h%i r⇤ h%i hiter0i
` h%i r⇤; r h&i
` h%i r⇤ h&i hunrolli

Fig. 3. Su�icient Incorrectness Logic rules for regular commands [Ascari et al. 2025a]

[2025a] for SIL), but the latter is omitted in this paper. This will allow us to follow derivations in
one proof systems using the other one.

Validity of a SIL triple h%i r h&i is de�ned by the equation J �r K& ◆ % , which is equivalent to
8f 2 % .9f 0 2 & .f 0 2 JrKf .

Again, we write ` h%i r h&i for a provable triple and ✏ h%i r h&i for a valid one.

T������ 2.3 (SIL ��������� [A����� �� ��. 2025�]). Any provable SIL triple is valid:

` h%i r h&i =) ✏ h%i r h&i .
We conclude observing the following simple facts about valid SIL and IL triples

L���� 2.4. For any regular command r and any assertions % and & , it holds:
(1) If ✏ h%i r h&i and & = ú, then % = ú
(2) If ✏ [%] r [&] and % = ú, then & = ú
C�������� 2.5. For any regular command r and any assertions % and & , it holds:
(1) If ✏ h%i r h&i and % < ú, then & < ú
(2) If ✏ [%] r [&] and & < ú, then % < ú

2.5 Separation Logic
In this section we give a brief primer on Separation Logic (see, eg., O’Hearn [2019] for an overview
and O’Hearn et al. [2001] for a more technical explanation).
First, we augment the program syntax with primitives to operate on the heap. We consider a

di�erent set of heap atomic commands HACmd, and use them to obtain the full language of heap
regular commands HRCmd:

HACmd 3 c ::= skip | x := a | b? | x := nondet()

| x := alloc() | free(x) | x := [y] | [x] := y

HRCmd 3 r ::= c | r; r | r � r | r⇤

Roughly speaking, the semantics of heap regular commands is interpreted over sets of pairs
Store ⇥ Heaplet. A heaplet is a partial function ⌘ 2 Heaplet = (Zô Val] {X}), where the input is
interpreted as a memory address. Intuitively, a heaplet ⌘ only describes a portion of the global heap:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:10 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

` [>: : G = G 0 ⇤ ~ 7! 4] x := [y] [>: : G = 4 [G 0/G] ⇤ ~ 7! 4 [G 0/G]] [Load(ISL)]

G 8 fv(0)
` h>: : ~ 7! 0 ⇤ @ [0/G]i x := [y] h>: : ~ 7! 0 ⇤ @i hLoad(SepSIL)i

` [>: : G 67!] [x] := y [4A : G 67!] [StoreEr(ISL)]

` h>: : G 67! i [x] := y h4A : G 67! i hStoreEr(SepSIL)i

Fig. 4. Relevant excerpt of ISL [Raad et al. 2020] and Separation SIL [Ascari et al. 2025a] rules.

any location not in the domain of ⌘ is unknown (it may be not allocated or belong to a di�erent
heaplet); the special value X denotes a known-to-be-deallocated location. We use notation ⌘[; 7! E]
for function update (possibly adding ; to the domain of ⌘), [] for the empty heaplet (ie. the heaplet
with an empty domain) and a list notation [; 7! E] as a shorthand for [] [; 7! E] (ie. the heaplet
mapping ; to E and unde�ned anywhere else).
The assertion language for Separation Logic is an instance of the logic of bunched implica-

tions [Pym et al. 2004]. We use the following grammar:

Asl 3 %,& ::= % =) & | 9G .% | b | JrK% | J �r K% | emp | G 7! a | G 67! | % ⇤&

The interpretation of spatial constructs (emp, 7!, 67! and ⇤) is as follows. emp is valid on any
state (B, []), independently of the store B . G 7! E is valid on any state (B, [B (G) 7! E]), where the
heaplet contains only location B (G): this means the memory address stored in variable G points to
the value E . Similarly, G 67! holds on (B, [B (G) 7! X]). Finally, the separation conjunction % ⇤& holds
on any state where the heaplet can be split in two sub-heaplets with disjoint domains, one satisfying
% and the other satisfying & . The disjointness condition ensures that only one of the two sub-
formulae can take ownership of each location, and it is the key ingredient to enable distinguishing
features of separation logics (eg. the frame rule).

Example 2.6. Consider the assertion (true ⇤ E 7! � ⇤~ 7! � ⇤ (G = ~ _ G 67!)) from Example 1.3.
Using distribution laws of ⇤ and _ we can rewrite it as

(true ⇤ E 7! � ⇤ ~ 7! � ⇤ G = ~) _ (true ⇤ E 7! � ⇤ ~ 7! � ⇤ G 67!)

On the one hand, the �rst disjunct explicitly says that G and ~ are aliased. On the other hand, the
other disjunct implicitly says that they are not aliased: the separate conjunction (~ 7! � ⇤ G 67!)
ensures that the addresses stored in G and ~ are di�erent. In fact, if they were the same location ; , it
would be impossible to split the heaplet in such a way that ; is in the domains of both the (disjoint)
sub-heaplets satisfying ~ 7! � and G 67! , respectively.

Both IL and SIL have been extended to a separation counterpart, Incorrectness Separation
Logic and Separation SIL, respectively. They validate the same axioms as their non-separation
counterparts, together with rules for the new atomic commands (an excerpt is in Fig. 4) and the
frame rule:

` [?] c [@] comp(c, 5)
` [? ⇤ 5] c [@ ⇤ 5] [Frame(ISL)] ` h?i c h@i comp(c, 5)

` h? ⇤ 5 i c h@ ⇤ 5 i hFrame(SepSIL)i

where comp(c, 5) means that command c does not modify any of the free variables of assertion 5 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:11

2.6 UNTer
UNTer [Raad et al. 2024a] is a proof system inspired by IL aimed at proving the presence of
(non)termination bug. To do so, alongside forward under-approximation (IL) triples, it introduces
backward under-approximation (SIL) triples. One of the key observations is that forward and
backward under-approximation share most of the structural rules, with the most notable exception
being the rule of consequence. This leads to a simple automation of backward under-approximation,
since it can just reuse most of the reasoning engine already implemented for forward under-
approximation (via the use of indexed disjunctions and matched dropping, as described in Raad
et al. [2024a, § 2, Forward versus Backward Under-Approximate Triples]). In particular, by presenting
a kernel set of IL-inspired rules [Raad et al. 2024a, Fig. 1, `† proof system] that does not include the
rule of consequence, UNTer details a proof system that can prove triples valid for both IL and SIL
at the same time. Such a kernel set contains the same rules as the IL proof system in Fig. 2 with the
following di�erences: the rule [cons] is replaced with dropping of indexed disjuncts and the rule
[assume] is replaced by the rule

`† [% ^ 1] b? [% ^ ⌫] assume

Similarly, the separation logic instance of UNTer uses the same axioms as ISL, except for the rule
of consequence and [assume], changed as above.
UNTer kernel proof system is proved sound with respect to both validity as IL and SIL triples

(only one at a time) [Raad et al. 2024a, Th. 7]. Moreover, when the consequence rule of IL (resp. SIL)
is added to the kernel set of rules, the resulting proof systems becomes also complete for IL (resp.
SIL) [Raad et al. 2024a, Th. 8]. To our knowledge, there is no completeness result concerning only
the kernel set of rules with respect to triples that are valid both for IL and SIL at the same time.

3 Forward/Backward Axioms for Atomic Commands
In UNTer [Raad et al. 2024a, Fig. 7] the authors proves that IL (and ISL) axioms for atomic commands
are also valid as SIL triples. However, these axioms are based on Incorrectness Separation Logic
and hand-crafted. Therefore, it is natural to ask the following two questions.

(1) Are these axiom as general as possible?
(2) Is there a general procedure to derive axioms for new atomic commands, not relying on

pre-existing ISL axioms?

The �rst question is partially answered in the positive by UNTer completeness result [Raad
et al. 2024a, § 6]: since the resulting proof system is complete, each axiom together with the rule
of consequence of IL (resp. SIL) is able to prove every valid IL (resp. SIL) triple for that particular
atomic command. However, nothing is said about completeness with respect to triples that are
both IL and SIL at the same time: is it possible to prove any such triple without resorting to the
consequence rule of either logic (which can make the triple unsound for the other logic)?

We tackle this problem by addressing the second question. In more detail, we propose an axiom
schema for atomic commands that is sound and complete for triples that are both IL and SIL. From
this, we derive axioms for atomic commands that are sound and complete by construction, and
we then show that we can derive such axioms in UNTer. However, our contribution goes beyond
this: by providing this general schema, we give a methodology that can be applied to any atomic
command. As an example, we will consider non-deterministic assignment, a command missing in
UNTer, and derive a new axiom for it.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:12 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

P���������� 3.1. For every command c and assertions % , & , the pre (% ^ J �c K&) and the post
(& ^ JcK%) makes both a valid IL and SIL triple:

✏ [% ^ J �c K&] c [& ^ JcK%] ^ ✏ h% ^ J �c K&i c h& ^ JcK%i
We show below some examples of applications of this schema. Note that we will often replace

the (forward or backward) semantics with the equivalent formula from Section 2.2.

Example 3.2. For assignments, the above schema yields the axiom:
[% ^& [0/G]] x := a [& ^ Jx := aK%] .

This is equivalent to the UNTer/IL axiom, that is precisely Floyd’s forward axiom. Setting & = true
in our axiom yields precisely the UNTer axiom. Conversely, substituting % with (% ^& [0/G]) in
the UNTer axiom yields ours, after some equivalence-preserving transformation of the formula in
the post.

For Boolean guards, the above schema yields the axiom:
[% ^& ^ 1] b? [% ^& ^ 1] .

Again, to derive the UNTer axiom `† [% ^ 1] b? [% ^ 1] it su�ces to take & = true in our axiom.
Conversely, substituting % with (% ^&) in the UNTer axiom yields ours.

To show how our schema can be used to handle new constructs, we consider nondeterministic
assignment, which was not explicitly discussed in UNTer.

Example 3.3. Recalling that for nondeterministic assignment

Jx := nondet()K% = 9G .% J ��������������x := nondet()K& = 9G .&
we obtain the axiom

[% ^ 9G .&] x := nondet() [& ^ 9G .%]
that is new and stronger than other proposals. In UNTer, nondeterministic assignments are not
present in the programming language. IL and SIL use, respectively, the axioms

` [%] x := nondet() [9G .%] ` h9G .&i x := nondet() h&i
which can be combined in

[9G .%] x := nondet() [9G .%]
However, this latter axiom is weaker than the proposal obtained with our methodology. For instance,
it cannot be exploited to prove the triple [true] x := nondet() [G > 0].

Interestingly, ISL [Raad et al. 2020] uses the axiom [havoc]
` [G = =] x := nondet() [G =<]

that is equivalent to ours. In fact, assuming = and< are free names in % ,& , we can prove our axiom
from [havoc] (together with [frame] and [exist]) with the following derivation:

[G = =] x := nondet() [G =<] [havoc]

[G = = ^ % [=/G]] x := nondet() [G =< ^ % [=/G]] [frame]

[9=.(G = = ^ % [=/G])] x := nondet() [9=.(G =< ^ % [=/G])] [exist]

[% ^& [</G]] x := nondet() [G =< ^ 9=.% [=/G] ^& [</G]] [frame]

[% ^ 9<.& [</G]] x := nondet() [& ^ 9=.% [=/G]] [exist]

Conversely, we can derive [havoc] from our axiom just by taking % = (G = =) and & = (G = <).
More abstractly, we know the valid triple [G = =] x := nondet() [G =<] (as well as any other
valid triple) is derivable by completeness of our axiom schema (Proposition 3.5 below).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:13

Example 3.4. Let us consider an arti�cial example to show how we can apply our schema to new
expressions. Consider a new atomic command x++? that nondeterministically can opt to increment
x or leave it unchanged. Semantically, it is equivalent to the code skip � (x := x+1). From this,
we derive its forward and backward semantics

Jx++?K% = % _ % [G � 1/G] J ���x++?K& = & _& [G + 1/G]
so that our schema readily yields the axiom

[% ^ (& _& [G + 1/G])] x++? [& ^ (% _ % [G � 1/G])]
This axiom schema is also complete. To prove this, we show that any triple valid for both IL and

SIL can be rewritten as [% ^ J �c K&] c [& ^ JcK%], thus being provable with our axiom schema.

P���������� 3.5. For every command c and sets of states % ,& , if both the IL triple ✏ [%] c [&] and
the SIL triple ✏ h%i c h&i are valid, then both % ^ J �c K& = % and & ^ JcK% = & .

3.1 Heap-Manipulating Axioms
The result in the previous section considers a simple, imperative language. In theory, the approach
can be extended directly to heap-manipulating commands by changing the semantics. However,
this approach does not take into account the locality principle of separation logic, according to
which one should de�ne small axioms—whose pre- and postconditions deal with the minimal
amount of information needed to execute the command—that can be extended by need to larger
heaps thanks to a suitable frame rule, the hallmark of separation logics.
To recover local axioms, we can consider a local semantics J·K! instead of the global J·K. We

de�ne such a semantics based on the relation foot in Raad et al. [2020, § 4.1]. Intuitively, foot(c)
relates a pair of states (B,⌘), (B0,⌘0) if executing c starting from (B,⌘) can yield the �nal state (B0,⌘0)
and ⌘ is a minimal heaplet allowing for such an execution. In other words, if we remove any location
from ⌘ then the command c can no longer execute from the reduced state.
We can then de�ne the local semantics JcK! as the functional version of the foot relation:

JcK! (B,⌘) = {(B0,⌘0) | ((B,⌘), (B0,⌘0)) 2 foot(c)} and then extended by additivity to sets of states.
Leveraging their footprint theorem [Raad et al. 2020, Th. 2], we obtain an analogous decomposition
of the (global) semantics in terms of local semantics and frames:

P���������� 3.6. For any command c, assertions % , ' such that JcK! f is de�ned for every f 2 %
JcK(% ⇤ ') = (JcK! %) ⇤ '

From this, we obtain a “local axiom schema” for heap manipulating commands:

P���������� 3.7. For every command c and assertions % , & , the pre (% ^ J �c K! &) and the post
(& ^ JcK! %) makes both a valid ISL and Separation SIL triple:

✏ [% ^ J �c K! &] c [& ^ JcK! %] ^ ✏ h% ^ J �c K! &i c h& ^ JcK! %i
The proof is identical to that of Proposition 3.1 by recalling that J �c K! is a subset of J �c K. Moreover,

the locality of J �· K! forces locality in the axiom thanks to the conjunction ^: even if, for instance,
% talks about locations outside the footprint of c, these are �ltered out by the J �c K! & conjunct in
the precondition, forcing locality.

As an example, we apply our schema to derive the axiom for a load command.

Example 3.8. Consider a load command x := [y]. Its local forward and backward semantics are:
Jx := [y]K! (~ 7! E ^ %) = ~ 7! E ^ 9I .(% [I/G] ^ G = E)

J ��������x := [y]K! (~ 7! E ^&) = ~ 7! E ^& [E/G]

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:14 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

Note the additional conjunct~ 7! E in the input states: this ensures that the heap(let) is only de�ned
on the location pointed by ~, that is exactly the footprint of the load statement.

Our schema applied to these semantics yields the triple

[% ^ (~ 7! E ^& [E/G])] x := [y] [& ^ (~ 7! E ^ 9I.(% [I/G] ^ G = E))]
which can be simpli�ed to

[~ 7! E ^ % ^& [E/G]] x := [y] [~ 7! E ^ G = E ^& ^ 9I .% [I/G]]
From this, we can recover the load axiom in ISL/UNTer [Raad et al. 2024b, Fig. 10] (both use the
same axiom). To do so, we �rst instance our axiom by taking & , (true) and % , (G = G 0 ^ E = 4),
and then use rule [exists] to hide E . The precondition simpli�es as

9E .(~ 7! E ^ (G = G 0 ^ E = 4) ^ (true) [E/G])
⌘ 9E .(~ 7! 4 ^ G = G 0 ^ E = 4)
⌘ ~ 7! 4 ^ G = G 0

and the postcondition simpli�es as

9E .(~ 7! E ^ G = E ^ (true) ^ 9I .(G = G 0 ^ E = 4) [I/G])
⌘ 9E .(~ 7! E ^ G = E ^ 9I.(I = G 0 ^ E = 4 [I/G]))
⌘ 9E .(~ 7! E ^ G = E ^ E = 4 [G 0/G])
⌘ ~ 7! 4 [G 0/G] ^ G = 4 [G 0/G]

thus recovering exactly the UNTer axiom.

4 U-Turn: Following IL Derivations with SIL
The approach in the previous section provides a technique to derive axioms that are valid in both IL
and SIL. Paired with UNTer, it enables a single analysis resulting in a triple with a double guarantee:
all errors in the post are reachable from states in the pre and all states in the pre can lead to some
error in the post. However, our axiom schema requires previous knowledge of both % and & , that is
both the pre and the post of the expected triple or at least some over-approximation of them. Since
the analysis typically follows the control �ow either in the forward or backward direction, it is
often the case that only one of the two is available (the pre in a forward analysis and the post in a
backward one). A possible solution would be to use a default value (such as true) for the unknown
pre- or postcondition.

In this section, we tackle the problem from a completely di�erent angle. Instead of doing a single
analysis, whose result is valid both for IL and SIL but that is tied to either the forward or backward
�ow in its computation, we perform two consecutive analyses. We start with a forward, IL-based
analysis, and then we trace it backward using SIL principles. In doing so, we take advantage of the
information discovered during the forward analysis. We call U-Turn the resulting proof system.

Intuitively, each IL derivation outlines those code paths that have been explored to �nd the result.
For instance, if the proof uses [choiceL] to analyze an if statement, it means that we are only
considering the then-branch path in the code, dropping the analysis of the else-branch. Similarly,
usage of rules [iter0] and [unroll] details how many loop unrolling have been performed. This
information is incredibly valuable for a backward step with SIL, because it guides the proof search
down paths that are guaranteed to succeed. While this strategy does not ensure completeness by
itself (i.e., we may still miss some sources of the errors in the post) it is often useful to report some
su�cient preconditions for the errors rather than aiming to collect all of them.

To formally develop this idea, we consider U-Turn judgments of the form

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:15

3
` [%] r [&] ` h%

0i r h& 0i

where 3 is a proof tree, built from the rules in Fig. 2, for the provable IL triple ` [%] r [&]. With a
slight abuse of notation, when 3 is a proof tree whose conclusion is ` [%] r [&], we often highlight
such conclusion explicitly for clarity in U-Turn judgments. As discussed above, the derivation 3
contains useful information on the code paths that is not summarized in the �nal IL triple. We will
discuss how such reasoning is implemented by some U-turn rules.

De�nition 4.1 (Judgment validity). Given a proof tree 3 for the provable IL triple ` [%] r [&]

(using the IL proof system in Fig. 2), we say that the U-Turn judgment 3
` [%] r [&] ` h%

0i r h& 0i

is valid, written 3
` [%] r [&] ✏ h%

0i r h& 0i, if

(1) ✏ h% 0i r h& 0i,
(2) % 0 ✓ % ,
(3) & 0 ✓ & ,
(4) either % 0 = & 0 = ;, or both % 0,& 0 < ;.
A valid U-Turn judgment entails the validity of the corresponding SIL triple h% 0i r h& 0i (con-

dition (1)) and that both % 0 and & 0 are subsets of the corresponding IL pre/posts (conditions (2)
and (3)). In the post, this inclusion means we are allowed to only focus on a subset & 0 of the states
found in the post & . This freedom is primarily a technical requirement used within derivations,
rather than a mechanism for discarding errors found by the IL analysis, for instance to drop some
non-interesting ok states. This requirement is immediately evident when considering, e.g., the
analysis of two consecutive code fragments: given the IL derivation:

31
` [%] r1 [']

32
` ['] r2 [&]

` [%] r1; r2 [&]
we use SIL to trace back the sources of errors in & that reside in ' w.r.t. executing r2, which may
lead to a proper subset '0 ⇢ ' of IL postcondition for r1 in

31
` [%] r1 ['] .

Hence the need to be able, inductively, to start the inference process in SIL along r1 starting from
any subset '0 of ' rather than from ' itself. Condition (4) is a bit more involved. If & 0 is not empty
we care about reachability of some �nal state in & , and forcing % 0 to be non-empty means we
�nd (some) states in % that surely lead to errors in & . If instead & 0 is empty it means we are not
considering any of the states found by the IL analysis in the post & , so by taking % 0 = ; we ignore
completely the program path that ends at & 0. This gives us the freedom to drop some of the code
paths explored in the IL triple if we deem them not interesting. Formally, condition (4) is justi�ed
by Lemma 2.4.1: if & 0 is empty, % 0 must be empty as well since we require ✏ h% 0i r h& 0i.
As a main contribution, we de�ne the U-Turn proof system for such judgments. A relevant

excerpt on which we focus is given in Fig. 5. Most U-Turn rules can only be applied when the IL
derivation 3 ends with the application of a speci�c IL rule, and in that case they share its name.
This constraint means that the SIL derivation in the U-Turn proof system will mimic the IL one.

Rule [assigni can only be applied when IL uses its own axiom [assign]. It allows one to take
any subset of the strongest post and go backward from there, then conjoin it with % to ensure the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:16 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

& 0 =) Jx := aK%

` [>: : %] x := a [>: : Jx := aK%] ` h>: : % ^& 0 [0/G]i x := a h>: : & 0i
[assigni

& 0 =) 9G .%

` [>: : %] x := nondet() [>: : 9G .%] ` h>: : % ^ 9G .& 0i x := nondet() h>: : & 0i
[nondeti

& 0 =) % ^ 1

` [>: : %] b? [>: : % ^ 1] ` h>: : & 0i b? h>: : & 0i
[assumei & 0 =) %

` [4A : %] r [4A : %] ` h4A : &
0i r h4A : & 0i

[er-idi

31
` [%1] r [&1]

` h% 01i r h& 01i
32

` [%2] r [&2]
` h% 02i r h& 02i

31
` [%1] r [&1]

32
` [%2] r [&2]

` [%1 _ %2] r [&1 _&2]
` h% 01 _ % 02i r h& 01 _& 02i

[disji
3

` [%] r [&] ` hfalsei r hfalsei
[emptyi

31
` [%] r1 [']

` h% 0i r1 h'0i
32

` ['] r2 [&]
` h'0i r2 h& 0i

31
` [%] r1 [']

32
` ['] r2 [&]

` [%] r1; r2 [&]
` h% 0i r1; r2 h& 0i

[seqi

3
` [%] r1 [&] ` h%

0i r1 h& 0i

3
` [%] r1 [&]
` [%] r1 � r2 [&]

` h% 0i r1 � r2 h& 0i

[choiceLi

& 0 =) %

` [%] r⇤ [%] ` h&
0i r⇤ h& 0i

[iter0i

3
` [%] r⇤; r [&] ` h%

0i r⇤; r h& 0i

3
` [%] r⇤; r [&]
` [%] r⇤ [&]

` h% 0i r⇤ h& 0i

[unrolli

3
` [% 0] r [& 0] ` h%

00i r h& 00i & 00 =) &

% 0 =) %
3

` [% 0] r [& 0] & =) & 0

` [%] r [&]
` h% 00i r h& 00i

[consILi

false . % 0 =) % 00
3

` [%] r [&] ` h%
00i r h& 00i & 00 =) & 0 =) &

3
` [%] r [&] ` h%

0i r h& 0i
[consSILi

Fig. 5. The U-Turn proof system (excerpt). The full proof system can be found in Ascari et al. [2025b].

% 0 ✓ % validity condition of the triple. Rules [nondeti and [assumei work similarly, and analogous
rules are available for other atoms.
If the IL derivation exploited [disj] to split the precondition in two disjuncts and analyze them

separately, U-Turn requires the SIL step to do the same: it analyzes the two resulting post&1 and&2
separately and then joins the results. Similarly, whenever the IL derivation composes sequentially
two sub-proofs using [seq], U-Turn forces SIL to do the same with the rule [seqi. Moreover, if IL
found that the error originated before r and just propagated it through the command with [er-id],
the corresponding U-Turn rule [er-idi propagates backward the error as-is.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:17

// program rlen

s := init(l);

l := 100;

i := len(s)

init(l) {

s := alloc(l + 1);

// initialize s[0..l-1]

if (l != 3) {

s[l] := �\0�;

}

return s

}

len(s) {

i := 0;

while (s[i] != �\0�) {

i := i + 1;

}

return i

}

Fig. 6. The program rlen discussed in Example 4.3.

Rule [emptyi is peculiar in that it can be applied regardless of the IL derivation. However, it
can only be applied when the post is false, and it derives the (only) valid pre false. Intuitively, this
corresponds to not analyzing r when we do not care about any state it can reach.

Rules [choiceLi, [iter0i and [unrolli show how U-Turn forces SIL to follow the same code paths
analyzed by IL. In all three rules, if IL decides to follow a speci�c code path (the left branch in an if,
skip a loop or unroll it once) then SIL is forced to follow the exact same path.
If the IL derivation contains any application of its rule of consequence [cons], U-Turn skips it

with [consILi: when using the proof system for a backward analysis, the constraint & 00 =) &
will always be satis�ed because & 00 will be the pre in some subsequent code fragment whose pre in
the IL triple is & . Intuitively, since IL rule of consequence does not change the explored code paths,
it is not relevant for U-Turn.
Lastly, at any point in the derivation, U-Turn can use SIL rule of consequence via [consSILi,

provided it does not weaken the triple so much that it breaks one of the validity conditions of U-Turn.
As we will discuss later, if rule [consSILi is never used, then we will have stronger guarantees
about the result of the analysis (see Theorem 4.7).

The U-Turn proof system is sound. The proof is a standard induction on the derivation tree.

T������ 4.2 (S��������). Any provable U-Turn judgment is valid.

We present now two examples of how U-Turn guides and helps the SIL proof search.

Example 4.3. For this example we consider the separation logic instance of both IL and SIL (ISL
and Separation SIL respectively). Since structural rules are the same as IL and SIL, we only have to
adapt atoms, which is straightforward using the corresponding atoms from the two logics and add
the frame rule. We also assume both logics include arrays, the extension being straightforward
(see, e.g., the treatment in Reynolds [2002]).

Consider the faulty program rlen in Fig. 6. First, it initializes a string B with length ; . However,
when ; = 3, it misses the null terminator. Then, a client tries to compute the length of the string,
iterating over it and looking for the null terminator. This makes the bug emerge whenever the
initial value of ; is 3, but this information is obfuscated after the assignment l := 100.

For presentation purposes, we write Æ0 for 00,01,02,03 and ?E (=) for (00 < ”\0”^ · · ·^0= < ”\0”).
Since our syntax does not allow variable dereferencing in boolean expressions, we desugar the
guard of the while-loop (s[i] != �\0�) using a temporary variable si that is assigned to si :=

s[0] before the loop and to si := s[i] inside it. Using ISL, we can prove the following triple as
shown in Fig. 7.

[>: : true] rlen [4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ 8 = 4 ^ ?E (3)]
The ISL proof system �nds the error: it considers the “else” branch of the if statement in init to

�nd that the code path where ; = 3 yields a string without the null terminator ”\0”, that later leads

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:18 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 0 ^ B8 = 00]
(si != �\0�)?;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 0 ^ B8 = 00]
i := i + 1;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 1 ^ B8 = 00]
si := s[i]

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 1 ^ B8 = 01]

(a) Linearized ISL proof for the first iteration of the
body of the while loop in len.

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 3 ^ B8 = 03]
(si != �\0�)?;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 3 ^ B8 = 03]
i := i + 1;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03]
si := s[i]

[4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03]

(b) Linearized ISL proof for the last iteration of the
body of the while loop in len.

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2)]
i := 0;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 0]
si := s[i];

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 0 ^ B8 = 00]
r1 ;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 1 ^ B8 = 01]
r1 ;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 2 ^ B8 = 02]
r1 ;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 3 ^ B8 = 03]
r1 ;

[4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03]
(si == �\0�)?

[4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03]

(c) Sketch of the ISL proof for len. We call r1 the body of the while loop. Since by using [unroll] and [iter0]
the proof unrolls the loop 4 times, we do the same here: hence, the four repetitions of r1 instead of r⇤1 .

[>: : true]
s := init(l);

[>: : 9Æ0.B 7! Æ0 ^ ; = 3 ^ ?E (2)]
l := 100;

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2)]
i := len(s);

[4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ 8 = 4 ^ ?E (3)]

(d) Sketch of the ISL proof for rlen. We hide the local variable B8 of len using ISL rule [local].

Fig. 7. Sketch of the ISL derivation for [true] rlen [4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ 8 = 4 ^ ?E (3)].

to the error in len by unrolling the while loop 3 times. However, the ISL triple does not highlight
the cause of error, that is the condition ; = 3 at the beginning of the program.

In theory, Separation SIL can �nd the source of this error. However, doing so requires guessing
the correct amount of unrolling for the while loop in len, since there is no indication in the post
that 4 is the number of iterations: this information comes from an earlier program point, that
Separation SIL has not explored yet.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:19

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 3 ^ B8 = 03] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 3 ^ B8 = 03 ^ B8 < ”\0”i
(si != �\0�)?; "
[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 3 ^ B8 = 03] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 3 ^ B8 = 03i
i := i + 1; "
[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03i
si := s[i] "
[4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03] ! h4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03i

(a) Linearized U-Turn proof for the last iteration of the body of the while loop in len. Note that B8 < ”\0” in
the first line is redundant since B8 = 02 and ?E (3) contains 02 < ”\0”.

[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2)] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 0 = 0i
i := 0; "
[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 0] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 0 ^ 00 = 00i
si := s[i]; "
[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 0 ^ B8 = 00] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 0 ^ B8 = 00i
r1 ; "
[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 1 ^ B8 = 01] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 1 ^ B8 = 01i
r1 ; "
[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 2 ^ B8 = 02] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 2 ^ B8 = 02i
r1 ; "
[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2) ^ 8 = 3 ^ B8 = 03] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 3 ^ B8 = 03i
r1 ; "
[4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03] h4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03i
(si == �\0�)? "
[4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03] ! h4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ 8 = 4 ^ ?E (3) i

(b) Sketch of the U-Turn derivation for len. Following Fig. 7, we call r1 the body of the while loop and unroll
it four times. This is enforced by the proof system since the IL derivation did the same.

[>: : true] h>: : ; = 3i
s := init(l); "
[>: : 9Æ0.B 7! Æ0 ^ ; = 3 ^ ?E (2)] h>: : 9Æ0.B 7! Æ0 ^ 100 = 100 ^ ?E (3) ^ ; = 3i
l := 100; "
[>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (2)] h>: : 9Æ0.B 7! Æ0 ^ ; = 100 ^ len(s) = 4 ^ ?E (3) i
i := len(s); "
[4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ ?E (3) ^ 8 = 4 ^ B8 = 03] ! h4A : 9Æ0.B 7! Æ0 ^ ; = 100 ^ 8 = 4 ^ ?E (3) i

(c) Sketch of the U-Turn proof for rlen.

Fig. 8. Sketch of the U-Turn derivation for len. We write it linearized, annotating program points with both
the IL and the SIL assertion. The former are the same as Fig. 7. The la�er are be�er read bo�om-up and form
the SIL triple obtained following the IL derivation that lead to the corresponding IL assertions.

In this example, the synergy between IL and SIL is essential. In fact, the ISL derivation unrolled
the while loop exactly 4 times, because it knew the right number from the condition ; = 3 in init.
Separation SIL can thus exploit this information: by unrolling the loop 4 times, it �nds exactly the
error source, that is ; = 3. This information sharing is formally captured by our combined proof
system, whose derivation is shown in Fig. 8. To help readability, the arrows indicate the order of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:20 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

// program r

x := [v];

push_back(v);

[x] := 42;

push_back(v) {

(y := [v];

free(y);

y := alloc();

[v] := y;)

� (skip;)

}

Fig. 9. The program push_back discussed in Example 4.4.

deductions: �rst we perform a forward analysis of the code using ISL proof system (the �ow of
deduction is shown on the left hand side of the �gures), which produced the assertions within
square brackets, then, once the error is found, we use the proof system of U-Turn to derive SIL
triples, i.e., the assertions within angle brackets, by backward analysis (accordingly, the �ow of
deduction is moved to the right hand side of the �gures).

Note the introduction of some constraints in some SIL assertions to ensure that they are subsets
of the corresponding ISL assertions. For instance, SIL would not require that B8 = 03 before the
assignment si := s[i] in Fig. 8a, or that ; = 3 before the assignment l := 100, but since the
IL assertions prescribe these additional constraints, they appear in the SIL assertions too. This
witnesses another way IL can transfer information to SIL, that we expand in the next example.

Example 4.4. Consider the push_back example in Fig. 9, already examined in both ISL [Raad
et al. 2020] and Separation SIL [Ascari et al. 2025a] papers.
Roughly speaking, a ISL analysis can �nd an error in the assignment [x] := 42 if it picks the

left branch in push_back, where v gets reallocated. For Separation SIL to �nd such an error, it has
not only to explore the same branch in push_back (the same code path), but also to guess that y is
aliased to x. This (possible) aliasing can be detected automatically [Ascari et al. 2025a, §5.5], but
the SIL backward analysis has no way to know which one is the right choice until earlier in the
program (so later in the analysis). Therefore, it must consider both the cases where y and x are
aliased and when they are not aliased. This is embodied by the disjunction (G = I _ G 67!) found in
the precondition of push_back [Ascari et al. 2025a, Fig. 6]. Namely, the computed precondition is
made of three disjuncts, corresponding to as many disjunct situations:

(true ⇤ E 7! I ⇤ I 7! � ⇤ G = I)_ reallocation in push_back, y and x aliased
(true ⇤ E 7! I ⇤ I 7! � ⇤ G 67!)_ reallocation in push_back, y and x distinct
(true ⇤ G 67!) no reallocation in push_back

Note that only the last line correspond directly to a di�erent program path than the others.
However, the U-Turn proof system is able to share enough information between the two analyses
to prune also the second disjunct. Intuitively, the ISL analysis contains the information that y and x
are aliased in the assertions computed during the analysis (in a forward analysis it is easy to know
that E 7! G already when y := [v] is executed). The requirement that SIL assertions imply the IL
assertions at the same program point forces this information transfer.
We focus on the left branch of push_back only, that we name r1 . We take the ISL derivation

from Raad et al. [2020, Fig. 3] and apply U-Turn to it in Fig. 10. This proves the Separation SIL triple

hE 7! G ⇤ G 7! �i r1 hE 7! ~ ⇤ G 67! ⇤ ~ 7! �i
as opposed to the triple

htrue ⇤ E 7! I ⇤ I 7! � ⇤ (G = I _ G 67!)i r1 hG 67! ⇤ truei

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:21

[E 7! G ⇤ G 7! �] hE 7! G ⇤ G 7! �i
y := [v]; "
[E 7! G ⇤ G 7! � ⇤ ~ = G] hE 7! G ⇤ G 7! � ⇤ ~ = G i
free(y); "
[E 7! G ⇤ G 67! ⇤ ~ = G] hE 7! G ⇤ G 67! ⇤ ~ = G (instead of ~ = G _ ~ 67!) i
y := alloc(); "
[E 7! G ⇤ G 67! ⇤ ~ 7! �] hE 7! G (instead of E 7! �) ⇤ G 67! ⇤ ~ 7! �i
[v] := y; "
[E 7! ~ ⇤ G 67! ⇤ ~ 7! �] ! hE 7! ~ ⇤ G 67! ⇤ ~ 7! �i

Fig. 10. Sketch of the U-Turn derivation for push_back, linearized. We annotate program points with both the
IL and the SIL assertion. The former should be read top down, the la�er bo�om-up. In the SIL assertions, we
write in gray what we would obtain by plain application of the Separation SIL axioms, without the additional
constraint to be a stronger assertion than the corresponding IL one.

Listing 1. Pseudocode of the UTurn algorithm.
UTurn :: ILProofTree -> Assertion -> Assertion

-- As stated in the theorem we assume that (false != Q�) and (Q� -> Q)

-- Atomic commands

UTurn (ILAssign [P] x:=a [Q]) Q� = (P /\ Q�[a/x])

UTurn (ILAssume [P] b? [Q]) Q� = Q�

UTurn (ILNondet [P] x:=* [Q]) Q� = (P /\ 9x. Q�)

-- Structural rules

UTurn (ILSeq d1 d2 [P] r [Q]) Q� =

let R� = UTurn d2 Q� in
let P� = UTurn d1 R� in P�

UTurn (ILErId [P] r [Q]) Q� = Q�

UTurn (ILChoiceL d [P] r1 � r2 [Q]) Q� = UTurn d Q�

UTurn (ILIter0 [P] r* [Q]) Q� = Q�

UTurn (ILUnroll d [P] r* [Q]) Q� = UTurn d Q�

-- Other rules

UTurn (ILCons d� [P�] r [Q�]) Q�� = let P�� = UTurn d� Q�� in P��

UTurn (ILDisj d [P] r [Q]) Q�� =

let (d1 [P1] r [Q1]), (d2 [P2] r [Q2]) = d in
let Q1� = Q� /\ Q1, Q2 � = Q� /\ Q2 in
let P1� = if Q1� == False then False else UTurn d1 Q1� in
let P2� = if Q2� == False then False else UTurn d2 Q2� in P1� \/ P2 �

from Ascari et al. [2025a, Fig. 6]. Particularly, in the triple returned by U-Turn there is only the
disjunct where G = I, while Separation SIL alone must consider both, cluttering the analysis with
useless disjuncts. This is possible due to the information in the IL assertion implicitly �owing into
the SIL derivation via the % 0 =) % constraint in the soundness of the U-Turn judgment.

4.1 Progress and Automation
Since U-Turn must follow the IL derivation closely but imposes additional constraints, it is a

non-trivial and practically relevant question whether or not it is always possible to complete a
U-Turn proof given any IL derivation 3 . The next theorem not only answers in the a�rmative, but

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:22 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

foo(b) {

x := nondet();
if (b ^ x < 0) { p := alloc() }

else { p := null };

[p] := x;

return p

}

Fig. 11. The program foo discussed in Example 4.6.

also provides a high-level algorithm to do so. We call this algorithm UTurn, and we present it in
Listing 1 (we omit cases for rules not in Fig. 5).

T������ 4.5. Given a derivation 3 for the IL triple ` [%] r [&] and a & 0 such that false . & 0 =)
& , let % 0 = UTurn d Q’. Then, % 0 . false and it holds:

3
` [%] r [&] ` h%

0i r h& 0i

Theorem 4.5 guarantees that given any proof tree 3 for the IL triple ` [%] r [&] and any (non-
empty) subset of the errors & 0 =) & , the UTurn algorithm always yields a % 0 . false such that

the judgment 3
` [%] r [&] ` h%

0i r h& 0i is provable in U-Turn.

Roughly speaking, the UTurn algorithm inspects the last rule applied by the IL triple and applies
the homonymous U-Turn rule, always processing the right subtree of [seqi �rst. This produces
a backward-fashioned derivation, where the post of the current rule is always provided by the
previous step, and the pre is computed as prescribed by the applied rule. This inductive procedure
solves the implicit nondeterminism related to which strengthened postcondition & 0 to use in many
U-Turn rules.
As a special case, it is worth mentioning that, given a single error state f 2 & , it is always

possible to �nd a non-empty % 0, i.e., some causes for reaching f , by considering & 0 = {f}.
Note that in Examples 4.3 and 4.4 we basically applied the algorithm UTurn to perform the U-Turn

derivations: this is because the algorithm follows naturally from the U-Turn rules, and therefore it
gives the most natural (albeit not the only) way to use the proof system.

4.2 Following SIL Derivations with IL
In the previous sections, we presented U-Turn for following IL derivations backward with SIL. As
anticipated, the reverse combination is also possible, namely to follow a SIL derivation forward
with IL, obtaining a proof system that we informally call Turn-U. For brevity, we neither spell out
the rules of Turn-U nor list the corresponding pseudo-code, because they are entirely dual to the
ones in Fig. 5 and Listing 1. We show below how Turn-U can be useful with an example.

Example 4.6. Consider the procedure foo(b) in Fig. 11, where we use nondet() to model some
opaque library call for which no summary is available. We want to produce a summary for foo
telling us when it can cause errors, so we start with a SIL analysis from the postcondition h4A : truei,
and we obtain the precondition h>: : 1i (some of the intermediate assertions are detailed in the
combined derivation below). Unfortunately, this precondition is not informative enough: �rst, it

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:23

h>: : 1 i ! [>: : 1]
" x := nondet(); #
h>: : 1 ^ G < 0i [>: : 1 ^ G < 0]
" if (b ^ x < 0) { . . . } else { p := null }; #
h>: : ? = =D;; i [>: : 1 ^ G < 0 ^ ? = =D;;]
" [p] := x; #
h4A : truei [4A : 1 ^ G < 0 ^ ? = =D;;]

Fig. 12. Sketch of the Turn-U proof for the program foo.

does not describe precisely which errors can happen in foo and where; second, it does not say
anything about the opaque library call. To �x these two issues, we trace SIL derivation forward using
Turn-U. Note that the SIL analysis already found out that the error is caused by the else-branch of
the if, so that IL can analyze only that branch instead of having to check both. Therefore, following
the SIL analysis, we obtain the derivation in Fig. 12, where we elided the then-branch since it gets
ignored:

Contrary to previous U-Turn derivations, the �ow of deduction is now reversed, as illustrated by
the arrows. The analysis started from the postcondition 4A : true with the SIL derivation �owing
bottom up (on the left hand side of the �gure, along the assertions within angle brackets) until the
precondition >: : 1 is found and then �ow is reversed by Turn-U (as shown on the right hand side
of the �gure, along the assertions within square brackets).

Note that the IL postcondition is very informative: not only it includes that ? = =D;; , the actual
cause of the error (the attempt to dereference a null-pointer), but also that G < 0, therefore giving
some information on the result of the (opaque) library call to reach the error. Note that SIL cannot
encode it in the precondition because it refers to states before the library call and therefore cannot
embed any information about the output of the call.

4.3 Relation with UNTer
We started this section by moving away from the perspective of directly proving triples that are
valid for both IL and SIL. This lead us to �rst prove an IL triple, and then exploit its proof tree to
derive a corresponding SIL triple. It turns out our approach remains close in spirit: if the U-Turn
proof does not use SIL consequence rule, the resulting triple is valid in both IL and SIL.

T������ 4.7. If the judgment 3
` [%] r [&] ` h%

0i r h& 0i is provable without using rule [consSILi,

then ✏ [% 0] r [& 0].
We prove this theorem by showing that it is possible to follow again the U-Turn derivation with

IL, in the spirit of what we discussed in the previous section. This suggest that it may be possible to
obtain the same result even in the presence of SIL consequence rule by executing another forward
step to ensure the triple obtained is valid in IL.
We can ensure this by modifying the U-Turn proof system to add a side condition on rule

[consSILi. The premises of [consSILi provide a SIL derivation for the triple h% 0i r h& 0i, on which
we can apply the Turn-U proof system. This will �nd a triple [% 000] r [& 000] with % 000 =) % 0 and
& 000 =) & 0. By symmetry with U-Turn, if the Turn-U proof did not use the rule of consequences
of IL hconsIL] (a dual of [consSILi, where Turn-U can use the IL rule of consequence [cons] with
some additional constraints) , the resulting triple is valid in SIL. We argue that, in practice, there is
no need to use the rule hconsIL] in this latter Turn-U derivation. In fact, the main application of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:24 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

the rule of consequence in under-approximation logics is to drop disjuncts whenever the formulae
involved becomes unmanageably large. However, we already know that, for instance, % 000 =)
% 0 =) % , and similarly the assertions at every point of the Turn-U derivation are smaller than
the corresponding assertions in the original IL derivation. Therefore, since we already completed
the original IL derivation, any formula appearing in it is manageable, so the ones in this Turn-U
derivation must be, too. Then, since this Turn-U proof can be carried out without rule hconsIL], the
resulting triple is valid in both IL and SIL and can thus be used to continue the U-Turn derivation,
proving a triple that is both IL and SIL in the end.
Note that the algorithm UTurn never applies [consSILi. Therefore, thanks to Theorem 4.7, it

always �nds triples that are valid both in SIL and IL. The same holds for the algorithm TurnU.
This result opens up a direct comparison with UNTer: since both proof systems �nd triples that

are valid both in IL and SIL, why should we prefer one or the other? There are several points that
distinguish the two. On the one hand, UNTer is able to reason about (non)termination of programs,
something that U-Turn cannot do. On the other hand, we think the new way of combining triples
exempli�ed by U-Turn is interesting in itself.

On a more technical level, most UNTer rules are inspired by IL in such a way to be applicable to a
generic pre (except the rule Assume, only applicable to "speci�c" pre and post, cf. Section 2.6). This
means that they are not immediately applicable (algorithmically, for backward analysis) to generic
post-conditions, unlike U-Turn rules. As a downside, UNTer works in a single-pass algorithm, while
U-Turn requires �rst a forward, IL-based step followed by a backward SIL-based step, leading to a
two-passes algorithm.
When considering completeness of the two approaches there is no clear winner either. On the

one hand, UNTer has no completeness result for triples that are valid in both IL and SIL at the same
time. On the other hand, U-Turn is incomplete as well, in the traditional sense of the word (that is,
every valid judgment is provable). However, nailing down the right notion of completeness for
U-Turn is not a straightforward task. The above notion of completeness is very strong: namely,
given any derivation 3 for an IL triple ` [%] r [&] and any valid SIL triple ✏ h% 0i r h& 0i such that

% 0 =) % and & 0 =) & , the resulting U-Turn judgment 3
` [%] r [&] ` h%

0i r h& 0i is provable.

A di�erent but still relevant notion would be to require, for any provable IL triple ` [%] r [&] and
valid SIL triple ✏ h% 0i r h& 0i, the existence of a proof tree 3 for ` [%] r [&] making the above U-Turn
judgment provable. Currently, we are still unsure whether this is the case. We leave this question
as future work.

5 Conclusions
Postconditions of triples in Incorrectness Logic—a forward under-approximation analysis—only
expose errors that are reachable from the preconditions, but not all initial states described by the
pre necessarily lead to errors. Conversely, the preconditions of triples in Su�cient Incorrectness
Logic—a backward under-approximation analysis—include only initial states that can cause some
of the errors in the postcondition, but not necessarily all of them. When the same triple is valid in
both logics we have the best of both worlds: we are guaranteed that any initial state in the pre is
the source of some error in the post and that all errors in the post are reachable from states in the
pre. This form of summaries provides a highly valuable feedback for developers, because there are
no false alarms and the sources of errors can facilitate testing and debugging activities.

In this paper we have explored the combination of forward and backward under-approximation
approaches, to improve the precision of the analysis and to be able to match reachable errors with
their sources. We are not the �rst ones to consider such a combined analysis: for instance, UNTer

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:25

logic already considered under-approximation triples that are valid in both directions, although, in
that case, the emphasis is on exploiting backward under-approximation triples for non-termination
analysis [Raad et al. 2024a]. We advance the state-of-the-art on this combination in two ways. First,
the axioms for atomic commands in UNTer are handcrafted starting from the availability of a tool
for forward analysis, namely PulseX. Therefore they required human ingenuity and are di�cult to
extend with new primitives. Moreover, they cannot be applied to either generic preconditions or
postconditions. In this respect, we have provided a methodology to derive axiom schemes that are
sound and complete by construction, thus solving all the above issues. Second, we propose a new
way to combine IL and SIL analyses: rather than trying to derive directly a triple valid in both logics,
we suggest a clever composition of the two techniques, where after deriving a valid triple in one
logic we re�ne the proof to get a triple valid in both logics in an automatic way. Following these
ideas, we de�ned a novel proof system, called U-Turn, whose judgments present a novel shape to
compose derivations in di�erent logics. Our main results show that U-Turn is sound, that it is able
to derive triples valid in both SIL and IL under suitable assumption, and show how this inference
can be automated. Interestingly, U-Turn can be used to re�ne a preliminary IL analysis using SIL
or vice versa. Moreover, we have shown that whenever some additional form of approximation is
necessary in one direction, e.g., to improve the performance of the analysis by dropping further
disjuncts, the two ways of invoking U-Turn can mutually cooperate.

Future Works. There are many interesting directions we plan to explore further.
First, the shape of U-Turn judgments opens the possibility to combine di�erent proof systems

by reusing a derivation in one logic to drive the inference in the other. It would be interesting to
see how far this principle can be extended to mix over- and under-approximations. To this aim,
we need to further investigate which kinds of completeness are best suited to characterize the
resulting proof systems, both from a purely technical perspective and with respect to applications.

Second, the use of under-approximation approaches to incorrectness reasoning has already been
paired with abstract interpretation techniques for correctness analysis, and we would like to extend
U-Turn in this respect. In Bruni et al. [2021] the authors introduce Local Completeness Logic to
combine the derivation of IL triples [%] r [&] with over-approximation in an abstract domain �
in order to guarantee that the same under-approximation can be used for both correctness and
incorrectness reasoning. We are con�dent that the local completeness technique can be smoothly
extended to backward under-approximation and possibly integrated with U-Turn so that at least
one source of errors will be exposed by the analysis whenever some error is possible.

Third, we plan to integrate our proof system in tools such as Pulse-X or Pulse1. We envision two
possibilities. The most natural one would be to instrument the forward analysis of incorrectness
to record the minimal information from which the entire IL derivation 3 can be reconstructed
and then execute UTurn a posteriori, starting from the whole postcondition & proved by 3 . The
other would be to directly interleave UTurn application during forward analysis. Whenever the IL
postcondition computed so far by the analysis must be strengthened to match the precondition
required by the next code fragment, the backward propagation using UTurn would guarantee that
any derived IL triple will be also a SIL triple. Notably, backward propagation can also be run in
parallel with the continuation of the IL analysis.

Fourth, the growing interest around hyperlogics for studying relational and hyperproperties [Ben-
ton 2004; Clarkson and Schneider 2008; Cousot and Wang 2025; Dardinier and Müller 2024; Sousa
and Dillig 2016] can provide some challenging analysis scenarios, where U-Turn approach can play
a fundamental role in tackling the complexity of the state-space by means of under-approximation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

46:26 Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad

Acknowledgments
We sincerely thank the anonymous reviewers for their valuable feedback that helped us to improve
the presentation and clarify many aspects of our contribution.

This research has been partially supported by the Italian Ministero dell’Università e della Ricerca
under Grant No. P2022HXNSC, PRIN 2022 PNRR – Resource Awareness in Programming: Algebra,
Rewriting, and Analysis (RAP), by the project SEcurity and RIghts In the CyberSpace (SERICS), code
PE00000014 - CUP H73C2200089001, under the National Recovery and Resilience Plan (NRRP)
funded by the European Union - NextGenerationEU, by the INdAM-GNCS Project, code CUP_-
E53C22001930001, Reversibilità In SIstemi COncorrenti: analisi Quantitative e Funzionali (RISICO),
and by the University of Pisa PRA_2022_99 Formal methods for the healthcare domain based on
spatial information (FM4HD). Azalea Raad is supported by a UKRI fellowship MR/V024299/1, by the
EPSRC grant EP/X037029/1, and by VeTSS.

References
Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. 2025a. Revealing Sources of (Memory) Errors via

Backward Analysis. Proc. ACM Program. Lang. 9, OOPSLA1, Article 127 (4 2025), 28 pages. doi:10.1145/3720486
Flavio Ascari, Roberto Bruni, Roberta Gori, and Azalea Raad. 2025b. U-Turn: Enhancing Incorrectness Analysis by Reversing

Direction (extended version). arXiv:2510.09292 [cs.LO] doi:10.48550/ARXIV.2510.09292
Thomas Ball and Sriram K. Rajamani. 2001. The SLAM Toolkit. In Computer Aided Veri�cation, 13th International Conference,

CAV 2001, Paris, France, July 18-22, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2102), Gérard Berry, Hubert
Comon, and Alain Finkel (Eds.). Springer, 260–264. doi:10.1007/3-540-44585-4_25

Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent Kirchner, Nikolai Kosmatov, André Maroneze,
Valentin Perrelle, Virgile Prevosto, Julien Signoles, and Nicky Williams. 2021. The dogged pursuit of bug-free C programs:
the Frama-C software analysis platform. Commun. ACM 64, 8 (2021), 56–68. doi:10.1145/3470569

Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January
14-16, 2004, Neil D. Jones and Xavier Leroy (Eds.). ACM, 14–25. doi:10.1145/964001.964003

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. 2003. A Static Analyzer for Large Safety-Critical Software. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation 2003, San Diego, California, USA, June 9-11, 2003, Ron
Cytron and Rajiv Gupta (Eds.). ACM, 196–207. doi:10.1145/781131.781153

Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In Veri�cation, Model Checking, and Abstract
Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings (Lecture Notes
in Computer Science, Vol. 6538), Ranjit Jhala and David A. Schmidt (Eds.). Springer, 70–87. doi:10.1007/978-3-642-18275-4_7

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract
Interpretations. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July
2, 2021. IEEE, 1–13. doi:10.1109/LICS52264.2021.9470608

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2023. A Correctness and Incorrectness Program
Logic. J. ACM 70, 2 (2023), 15:1–15:45. doi:10.1145/3582267

Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In Proceedings of the 21st IEEE Computer Security
Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania, USA, 23-25 June 2008. IEEE Computer Society, 51–65.
doi:10.1109/CSF.2008.7

Patrick Cousot and Je�ery Wang. 2025. Calculational Design of Hyperlogics by Abstract Interpretation. Proc. ACM Program.
Lang. 9, POPL (2025), 446–478. doi:10.1145/3704852

Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proc. ACM Program.
Lang. 8, PLDI (2024), 1485–1509. doi:10.1145/3656437

Edsger W. Dijkstra. 1975. Guarded commands, non-determinacy and a calculus for the derivation of programs. In Proceedings
of the International Conference on Reliable Software 1975, Los Angeles, California, USA, April 21-23, 1975, Martin L. Shooman
and Raymond T. Yeh (Eds.). ACM, 2. doi:10.1145/800027.808417

Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling Static Analyses at Facebook.
Commun. ACM 62, 8 (2019), 62–70. doi:10.1145/3338112

Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium on Applied Mathematics 19 (1967),
19–32. http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

https://doi.org/10.1145/3720486
https://arxiv.org/abs/2510.09292
https://doi.org/10.48550/ARXIV.2510.09292
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1145/3470569
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/781131.781153
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3582267
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1145/3704852
https://doi.org/10.1145/3656437
https://doi.org/10.1145/800027.808417
https://doi.org/10.1145/3338112
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf

U-Turn: Enhancing Incorrectness Analysis by Reversing Direction 46:27

Patrice Godefroid. 2005. The Soundness of Bugs is What Matters (Position Statement). https://patricegodefroid.github.io/
public_ps�les/bugs2005.pdf

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576–580.
doi:10.1145/363235.363259

C. A. R. Hoare. 1978. Some Properties of Predicate Transformers. J. ACM 25, 3 (1978), 461–480. doi:10.1145/322077.322088
Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Finding Real Bugs in Big

Programs with Incorrectness Logic. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–27. doi:10.1145/3527325
Xavier Leroy. 2009. Formal Veri�cation of a Realistic Compiler. Commun. ACM 52, 7 (2009), 107–115. doi:10.1145/1538788.

1538814
Bernhard Möller, Peter W. O’Hearn, and Tony Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In

Relational and Algebraic Methods in Computer Science - 19th International Conference, RAMiCS 2021, Marseille, France,
November 2-5, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 13027), Uli Fahrenberg, Mai Gehrke, Luigi
Santocanale, and Michael Winter (Eds.). Springer, 325–343. doi:10.1007/978-3-030-88701-8_20

Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95. doi:10.1145/3211968
Peter W. O’Hearn. 2020. Incorrectness logic. Proc. ACM Program. Lang. 4, POPL (2020), 10:1–10:32. doi:10.1145/3371078
Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France,
September 10-13, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2142), Laurent Fribourg (Ed.). Springer, 1–19.
doi:10.1007/3-540-44802-0_1

David J. Pym, Peter W. O’Hearn, and Hongseok Yang. 2004. Possible worlds and resources: the semantics of BI. Theor.
Comput. Sci. 315, 1 (2004), 257–305. doi:10.1016/J.TCS.2003.11.020

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, and Jules Villard. 2020. Local Reasoning About
the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Veri�cation - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12225),
Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, 225–252. doi:10.1007/978-3-030-53291-8_14

Azalea Raad, Julien Vanegue, and Peter W. O’Hearn. 2024a. Non-termination Proving at Scale. Proc. ACM Program. Lang. 8,
OOPSLA2 (2024), 246–274. doi:10.1145/3689720

Azalea Raad, Julien Vanegue, and Peter W. O’Hearn. 2024b. Non-termination Proving at Scale - Extended Version. https:
//www.soundandcomplete.org/papers/OOPSLA2024/Unter/

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on Logic
in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74.
doi:10.1109/LICS.2002.1029817

H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision Problems. Trans. Amer. Math. Soc. 74, 2 (1953),
358–366. doi:10.1090/S0002-9947-1953-0053041-6

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from Building
Static Analysis Tools at Google. Commun. ACM 61, 4 (March 2018), 58–66. doi:10.1145/3188720

Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 57–69. doi:10.1145/2908080.2908092

G. Winskel. 1993. The Formal Semantics of Programming Languages: an Introduction. MIT press.
Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness and

Incorrectness Reasoning. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 522–550. doi:10.1145/3586045

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 46. Publication date: January 2026.

https://patricegodefroid.github.io/public_psfiles/bugs2005.pdf
https://patricegodefroid.github.io/public_psfiles/bugs2005.pdf
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/322077.322088
https://doi.org/10.1145/3527325
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3371078
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1016/J.TCS.2003.11.020
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3689720
https://www.soundandcomplete.org/papers/OOPSLA2024/Unter/
https://www.soundandcomplete.org/papers/OOPSLA2024/Unter/
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1090/S0002-9947-1953-0053041-6
https://doi.org/10.1145/3188720
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/3586045

	Abstract
	1 Introduction
	2 Background
	2.1 Regular Commands
	2.2 Assertion Language
	2.3 Incorrectness Logic
	2.4 Sufficient Incorrectness Logic
	2.5 Separation Logic
	2.6 UNTer

	3 Forward/Backward Axioms for Atomic Commands
	3.1 Heap-Manipulating Axioms

	4 U-Turn: Following IL Derivations with SIL
	4.1 Progress and Automation
	4.2 Following SIL Derivations with IL
	4.3 Relation with UNTer

	5 Conclusions
	Acknowledgments
	References

