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Compositional Non-Termination Proving
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Program termination is a classic non-safety property that cannot in general be witnessed by a finite trace.
This makes testing for non-termination challenging, and also makes it a natural target for symbolic proof.
To confirm that non-termination is a practical and not theoretical problem, we provide a manual analysis of
CVE’s due to non-termination, corresponding to security issues such as DOS vulnerabilities, finding 916 since
2000. Discovering non-termination is an under-approximate problem. We thus present UNTer, a sound and
complete under-approximate logic for proving non-termination. We then extend UNTer with separation logic
and develop UNTersl for programs that manipulate the heap. UNTersl yields a compositional proof method,
which is amenable to automation via program analysis tools based on under-approximation and bi-abduction.
We briefly describe a prototype tool, Pulse∞, under development, which extends the compositional the Pulse
analyser from Facebook.

Additional Key Words and Phrases: Divergence, non-termination, under-approximation, incorrectness logic

1 INTRODUCTION

Why Prove Non-termination? Non-termination is a fundamental problem in computer science,
dating back to the halting problem. Assuming an unbounded memory or tape, neither it nor its
complement is recursively enumerable, making it difficult to approach using testing. This makes
non-termination an attractive target for symbolic proof techniques.

Apart from its fundamental nature, one can also ask: is non-termination a practical problem? To
understand this better we carried out a manual evaluation of CVE’s, security bugs such as denial
of service which are due to non-termination. We found 916 such CVE’s between 2000 and 2022.
Sometimes, for ongoing computations such as operating systems, potential non-termination is
desirable and unavoidable. But, we may conclude that import and do have an effect.

Interestingly, we did not detect any reduction in non-termination CVE’s during this period. For
example, we found 4 such bugs from 2000 and 28 from 2022. We stress that our manual approach
might have missed some non-termination CVE’s, there is more code in 2022 than in 2000, and the
classification of non-termination CVE’s might be non-uniform. This data, however, motivated our
work on the science and engineering of tools for detecting non-termination bugs.

Why Compositional? A compositional analysis is one where the analysis result of a composite
program is computed from those of its constituent parts [5]. Compositionality enables program
analysis to be deployed as part of a code review process, where code snippets in a pull request are
analysed without the need to re-analyse the entire program (or even to have an entire program,
which might not yet exist). A case study from Facebook [14] describes how deploying a compo-
sitional static analysis tool on pull requests achieved a 70% fix rate, while the same analysis had
a near 0% fix rate for a batch deployment (where a list of bugs is given outside of code review).
This illustrates how a deployment of static analysis that meets programmers in their workflows
can have considerable advantages over ones that ask them to leave their flow. (See the Facebook
article [14] and a related article from Google [26] for more information.)

It stands to reason that if an accurate non-termination prover is developed which is fast enough
to be deployed at pull-request time, then it would have the potential to have more non-termination
bugs fixed, early. We will not in this paper go so far as setting up an industrial deployment of
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non-termination proving in the CICD system of a company, but we take the Facebook/Google
experience referenced above as motivation for our scientific goals: to establish a compositional proof
method together with an algorithm which allow for automatic compositional program analysis,
and initial experiments to probe its feasibility.

Our Approach. Proving non-termination is an under-approximation problem as the aim is to
establish the existence of non-terminating executions. Therefore, for compositional reasoning it is
natural to consider a formalism akin to incorrectness logic (IL) [23], which brings the compositional
nature of Hoare logic to bug proving. It turns out the form of under-approximation we need is a
reversed form of that in IL, based on what is called the ‘backwards under-approximate triple’ by
Möller et al. [22] and the ‘total Hoare triple’ by de Vries and Koutavas [13].
The backwards under-approximate (BUA) triple ⊢B

[
𝑝
]
C

[
ok : 𝑞

]
denotes that 𝑝 is a subset of

the states from which 𝑞 can be reached executing C. That is, from any state in 𝑝 it is possible
to reach some state in 𝑞 by executing C. This triple is forwards in terms of reachability, but
backwards in terms of under-approximation (mirroring IL): 𝑞 under-approximates the weakest
possible precondition, wpp, of C on 𝑞: 𝑝 ⊆ wpp(C, 𝑞). Here, wpp is the inverse image of the C
(relational) semantics, obtained by running Dijkstra’s strongest post-condition on the reversal of C.

To this form of under-approximate (UA) triples we add another, for divergence. Specifically, we
develop under-approximate non-termination logic (UNTer), where we write ⊢

[
𝑝
]
C [∞] to denote

that every state in 𝑝 leads to a divergent (infinite) execution via C. Note that this does not state
that every execution diverges; rather, each pre-state leads to some divergent execution. Given these
triples we can state a proof rule for divergence as follows:

⊢B
[
𝑝 ∧ 𝐵

]
C

[
ok : 𝑝 ∧ 𝐵

][
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

The idea behind this rule is very simple. As 𝑝 ∧ 𝐵 holds initially, we know that after one loop
iteration we can get to a state where 𝑝 ∧ 𝐵 continues to hold because of the triple in the premise.
And in that case we can take one more step, ad infinitum.

This proof method is related intuitively to a method of non-termination testing whereby one
looks for a concrete state to which a loop returns: this would witness divergence as one can get
back to the same state again. As a testing method this approach is incomplete, in the presence of
unbounded resources (e.g. a Turing machine tape) which gives rise to infinitely many states: then
it is possible to diverge with returning to the same state twice. But the logical proof method uses a
logical assertion and not a concrete state, and is in fact complete for proving non-termination as
we prove later (take 𝑝 to be the set of all states that lead to divergence).

The proof method is also related to the idea of ‘recurrence sets’ in a fundamental paper of Gupta
et al. [17]. We say more on the relation to their and other work in §9.

Our aim is to automate divergence proof rules such as that above. There are several key observa-
tions in our approach. First, and remarkably, if we apply the strategy used commonly in abstract
interpretation, namely iterating the abstract semantics of loops until we reach a fixpoint, then will
have proven non-termination of a loop when a fixpoint is reached. In abstract interpretation this
would not imply divergence, but with our under-approximate UNTer logic it does. However, while
we can employ the usual method of fixpoint iteration, since not all loops diverge, we additionally
need a way to stop the analysis before a fixpoint is reached. It turns out that we can employ similar
techniques to IL and bounded model checking, by simply stopping after some fixed number of
iterations even when we do not have a fixpoint. This flexibility is not available in Hoare logic, or in
over-approximate abstract interpretation, where stopping early is unsound.
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Compositional Non-Termination Proving 3

Second, by detailing the relationship to the original IL we reveal additional possibilities for
automation. Indeed, the BUA proof system is almost the same as that of IL, with the difference
limited to the rule of consequence (see §3, §4). The use of the backwards predicate transformer
wpp perhaps suggests to attempt a backwards program analysis, at least for a whole-program
analysis: given a post, such an analysis would compute an under-approximation of backwards
reachability at each program point; in a sense, themirror image of Floyd’smethod of calculating over-
approximations for forwards reachability. However, a forwards-running analysis is also possible, as
long as we abduce preconditions as we go forwards: this semantics calculates a collection of triples
at each program point, connecting procedure-entry to the program point. In addition to furnishing a
compositional inter-procedural analysis, abduction is necessary here: there is no forwards predicate
transformer semantics, evidenced by the fact that for some programs C and pre-conditions 𝑝 there
is no post-condition delivering a valid triple ⊢B

[
𝑝
]
C

[
ok : ??

]
.

The third key point for automation is that the close connection between the BUA and original
IL proof theories suggests a method of automation that leverages separation logic [18], and which
is obtained by small changes and a fundamental addition to the existing Pulse program analyser
[19] from Facebook. We observe that Pulse uses a restricted version of the rule of consequence,
making it compatible both with BUA and IL triples. We thus develop UNTersl as an extension of
UNTer (with divergent triples) with separation logic We then extend Pulse with divergent triples
and develop Pulse

∞, a prototype compositional non-termination prover underpinned by UNTersl.

Contributions and Outline. Our contributions in this paper are as follows.

§2 We provide a manual classification of CVE’s related to non-termination, providing data to
go with existing anecdata, confirming the real-world prevalence of non-termination bugs
important enough to be judged as critical security issues.

§3 We present an intuitive overview of BUA and IL reasoning, and describe how we extend
them to reason about non-termination.

§4 We present UNTer as a BUA proof system and extend it to account for non-termination,
yielding a compositional proof method.

§5 We present several examples of divergence and show how we can detect them using UNTer.
§6 We present the semantic model of UNTer and show that it is sound and complete.
§7 We develop UNTersl by extending UNTer with separation logic for heap reasoning.
§8 We observe that an existing under-approximate reasoning tool, Pulse, can be simply extended

to provide a compositional, incremental prover for non-termination, Pulse∞: we outline our
prototype implementation of Pulse∞ which is in progress.

§9 We discuss the related work and future work.

Additional Material. The proofs of all stated theorems in the paper are given in the accompa-
nying technical appendix.

2 DIVERGENCE VULNERABILITIES
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Fig. 1. Vulnerability trend for divergence bugs

Divergence bugs are widespread across a number of
programming languages. We present several exam-
ples taken from the Common Vulnerabilities and Ex-
posures (CVE) database and categorize them along
common cases of vulnerabilities – see Fig. 1 for the
prevalence of divergence bugs. We focus on control-
flow-related divergent behaviours brought about on
certain inputs. In particular, we focus on capturing

https://www.cve.org/
https://www.cve.org/
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behaviours where termination is not intended (un-
like interactive programs whose non-termination is
expected and induced from an infinite message loop
treating streams of incoming input requests), and
guarantee that our approach focuses on detecting
the most widespread vulnerability classes in publicly available code. We have selected a number of
bugs that show a wide cross-section of programming languages and control-flow conditions.

Infinite Loops. Recursive implementations are common in parsers. In some cases, the loop
condition is driven by the value of an integer variable (e.g. remaining stream bytes to be read),
which can be dynamically set within the parsing loop as the parser reads the input. If the decrement
value of such variable in an iteration is set to 0, the loop makes no more progress leading to an
unintended divergence. Specifically, when a parsing sub-function 𝑓 is called to treat a sub-case of
input data type, if 𝑓 returns 0, then the loop makes no progress reading input. Such an example
was found in the popular Wireshark network analyser, leading to CVE-2022-3190 (see §G.1).

Infinite Recursion. Infinite recursion bugs are one of the main sources of divergence. Infinite
recursion bugs are well-known to parser developers when the recursive parsing function allows
input variable expansion or other generative capability, such that when the newly generated input
after expanding variables is parsed through a recursive call, the number of subsequently needed
recursive calls remains non-null. Such a case was seen in the widely used Log4j logging library for
Java programs, leading to CVE 2021-45105 (see §G.2).

Out-of-Order Transition Divergence. Unintended divergence can result from a loop or recur-
sive call to a parsing function where certain input values or record data types are expected to be
treated in a certain order, and an out-of-order encoding results in an infinite cycle. In certain cases,
special input tag types are intended to be found at certain parsing stages as to disallow spurious
transitions. Such a vulnerability was discovered in the GraphQL language interpreter, where the
string type name can be encoded in the input such that the parsing handler calls itself repeatedly
(see §G.3 for an example vulnerability affecting Go programs).

Zero-Sized Input Divergence. Container data structures (e.g. lists or vectors) are typically imple-
mented with access primitives where adding or removing elements can be achieved independently
of the current number of elements in the container. This is done by maintaining a meta-data size
field. When such data structures are implemented with linear memory access in mind, an additional
size field is needed to ascertain the size of an element in the data structure. Whether such element
is of a fixed or variable size, an element with zero size can lead to a container iterator that diverges
when traversing the structure without making progress. Such a problem was identified in the Linux
kernel, leading to CVE-2020-25641 and was fixed in Linux kernel version 3.13 (see §G.4).

Offset-EncodedDivergence. In parser programs it is sometimes possible for the input to describe
the actual input offset at which the data object is found. When such input offset indirection occurs,
a parsing loop or recursive function can diverge by returning to previously parsed input in a way
that will redo previously completed work and diverge. An example of this bug can be found in the
popular graphic software Blender, written in C. Additional state would be required to ensure that
the current input offset is restored after such out-of-band element is read (see §G.5).

Exception-Induced Divergence. Some parser implementations use exceptions to treat special or
error cases where a recovery logic must be encoded in a catch or except block. Exception-induced
spurious transitions can then be encoded such that the induction variable is never increment-
ed/decremented, leading to divergence. A particular example of such vulnerability can be found

https://nvd.nist.gov/vuln/detail/CVE-2022-3190
https://nvd.nist.gov/vuln/detail/cve-2021-45105


197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Compositional Non-Termination Proving 5

in the Sklearn industry-standard library for machine learning and data analysis in Python, where
a convergence-based discretisation algorithm can be made to never terminate if the exceptional
execution path fails to break from the appropriate number of loop nesting levels (see §G.6).

Algebraic Divergence. Divergence bugs can be found in mathematical software, where specific
algebraic conditions are expected on the input to reach a fixpoint in an iterative or recursive
function. The OpenSSL cryptographic library contains such code, where a modular square root
implementation for an elliptic curve group expects the residue of the recursive operation to reach
value 1 eventually, but invalid input parameters fail to meet this condition, leading to CVE-2022-
0778. This vulnerability allowed remote SSL/TLS connections to get stuck in an infinite loop (see
§G.7). This example illustrates that even security code can be vulnerable to divergence bugs!

3 OVERVIEW

Incorrectness Logic and Under-Approximate Reasoning. As Godefroid [16] argues, the main
value of analysis tools lies in the discovery of bugs, not in the proof of program correctness. A bug
presented to a developer is often a more convincing utility of a tool than a correctness proof, which
is often carried out under certain assumptions that may not hold. This is evidenced by the recent
trend in under-approximate reasoning techniques [23–25] and their significant success at finding
bugs on an industrial scale [19, 4]. Specifically, Incorrectness logic (IL) [23] was recently introduced
as an under-approximate formal foundation for bug detection. It was later extended to enable
compositional bug detection in heap-manipulating programs [24], and to support concurrency [25].
IL and its later extensions are instances of under-approximate reasoning and are associated with
no-false-positives theorems, ensuring that all bugs identified by them are true positives.
Intuitively, the under-approximate nature of IL stems from considering a subset of program

behaviours. More concretely, given a program C whose behaviours (traces) is given by the set 𝑆 ,
IL reasoning considers a subset (under-approximated) 𝑆𝑢 ⊆ 𝑆 of the C behaviours. This makes
IL ideally suited for bug-detection as it guarantees no-false-positives: if one detects a bug in the
smaller set 𝑆𝑢 , then the bug is also guaranteed to be in 𝑆 and thus exhibited by C. This is in
contrast to over-approximate reasoning techniques such as Hoare logic, where one considers a
superset (over-approximated) set 𝑆𝑜 ⊇ 𝑆 of C behaviours, making them ideal for verification (as
they guarantee no false negatives): if one can show that the larger set 𝑆𝑜 contains only correct
behaviours, then the smaller set 𝑆 also contains correct behaviours only.
An IL triple, also referred to as a forward, under-approximate (FUA) triple, is of the form ⊢F [𝑝]

C [𝜖 :𝑞], where F hints at its forwards under-approximation, denoting that 𝑞 is a subset of program
behaviours when C is run (forward) from the states in 𝑝 . In other words, an FUA triple describes
backward reachability: every post-state in 𝑞 is reachable by runningC forward on some pre-state in 𝑝 .
The 𝜖 denotes an exit condition and may be either ok, to denote a normal execution or er to denote
an erroneous execution. For instance, executing an explicit error statement (e.g. assert(false))
terminates erroneously and the underlying states are unchanged; this is given by the FUA triple
⊢F [𝑝] error [er : 𝑝]. The under-approximate nature of FUA triples is best illustrated by their rules
for reasoning about branches and loops. To show that a behaviour is possible when executing
C1 +C2 (where + denotes non-deterministic choice), it is sufficient to show the behaviour is possible
when executing one of the branches, i.e. executing C𝑖 for some (rather than all) 𝑖 ∈ {1, 2}, as shown
in ChoiceF below (left). Similarly, to show a behaviour is possible when executing C★ (where C★

denotes a non-deterministic loop, executing C for zero or more iterations), it suffices to show it is
possible when executing C for a particular number 𝑛 ∈ N of iterations, as shown in LoopF below

https://nvd.nist.gov/vuln/detail/CVE-2022-0778
https://nvd.nist.gov/vuln/detail/CVE-2022-0778
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(right), where C𝑛 denotes executing C for 𝑛 times.
ChoiceF
⊢F [𝑝] C𝑖 [𝜖 :𝑞] for some 𝑖 ∈ {1, 2}

⊢F [𝑝] C1 + C2 [𝜖 :𝑞]

LoopF
⊢F [𝑝] C𝑛 [𝜖 :𝑞] for some 𝑛 ∈ N

⊢F [𝑝] C★ [𝜖 :𝑞]

Non-termination and Under-Approximate Reasoning. Existing literature includes a large
body of work [12, 15, 21, 2, 10, 3, 9, 6] on termination analysis, proving that a program C always
terminates by showing that all traces of C terminate for all given inputs. Showing that a program
C terminates is compatible with over-approximate reasoning frameworks. Specifically, when the
traces of C are given by the set 𝑆 , showing that all traces in a larger set 𝑆𝑜 ⊇ 𝑆 terminate is sufficient
for showing that all traces in 𝑆 terminate. Showing termination is difficult in the presence of loops.
In particular, to show that a loop 𝐿 terminates typically involves the challenging task of establishing
a loop invariant as well as a well-founded measure (a.k.a. a ranking function) that is decreased after
each iteration [12, 15]. Establishing such invariants and measures is far from straightforward and
typically involves reasoning about ordinal (rather than cardinal) numbers.

Showing that a program C does not terminate is compatible with under-approximate reasoning
frameworks: when the traces (behaviours) of C are given by the set 𝑆 , showing that the traces in
a smaller (under-approximate), possibly singleton, set 𝑆𝑢 ⊆ 𝑆 do not terminate is sufficient for
showing that C does not terminate.

Inspired by the success of under-approximate analysis techniques and their industrial application
of detecting bugs at scale, we develop under-approximate, non-termination logic (UNTer) as the
first formal, under-approximate foundation for detecting non-termination bugs. As with existing
under-approximate techniques, UNTer is associated with a no-false-positives theorem, ensuring
that all non-termination bugs identified are true positives. More concretely, UNTer enables deriving
under-approximate, divergent triples of the form

[
𝑝
]
C [∞], stating that starting from the states in 𝑝

program C has divergent (non-terminating) traces. Note that
[
𝑝
]
C [∞] does not state that C never

terminates (i.e. that all traces of C are divergent), but rather that it is possible for C not to terminate
(i.e. some traces of C are divergent). For instance, given the program C ≜ skip + (while (true) skip),
the triple

[
true

]
C [∞] is valid, since starting from any state (in true) C can always diverge by

taking the right branch, even though taking the left branch would immediately lead to termination.

Divergent Triples and FUA Triples. As in the existing formal systems for reasoning about
programs (be they over- or under-approximate), we should ideally reason about non-termination
in a compositional fashion. For instance, given C𝐿 ≜ 𝑥 := 1;while (𝑥 > 0) 𝑥++ and an arbitrary
initial value 𝑣 , to show that the triple

[
𝑥 = 𝑣

]
C [∞] holds (i.e. C𝐿 does not terminate starting from

states satisfying 𝑥 = 𝑣), we should ideally show that 1) running 𝑥 := 1 on states in which 𝑥 = 𝑣

terminates and modifies the states to those where 𝑥 = 1; and 2) running while (𝑥 > 0) 𝑥++ on
states where 𝑥 = 1 diverges, i.e.

[
𝑥 = 1

]
while (𝑥 > 0) 𝑥++ [∞]. To do (1), we need to reason about

non-divergent (terminating) program executions in an under-approximate fashion. At first glance,
this seems an ideal job for FUA triples as they under-approximate reachable program behaviours
upon termination; as such, to establish (1), we could simply show ⊢F

[
𝑥 = 𝑣

]
𝑥 := 1

[
ok : 𝑥 = 1

]
.

A key feature of our UNTer framework is proof rules for establishing when a loop does not
terminate. As a first naive attempt, we can propose the LoopBad rule below (left), stating that if
initially the while condition 𝐵 holds, and executing one iteration of the loop body C starting from
𝑝 leaves the states (𝑝) and the loop condition (𝐵) unchanged, then while (𝐵) C diverges.

LoopBad
⊢F

[
𝑝 ∧ 𝐵

]
C

[
ok : 𝑝 ∧ 𝐵

][
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

LoopFix
⊢B

[
𝑝 ∧ 𝐵

]
C

[
ok : 𝑝 ∧ 𝐵

][
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]
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On closer inspection, however, this rule is unsound. Consider the program while (𝑥 > 0) 𝑥−−; this
program always terminates regardless of the value of 𝑥 (for non-positive values the loop is never
entered; positive values are eventually decremented to zero). As such, the triple

[
𝑥 > 0

]
while (𝑥 >

0) 𝑥−− [∞] is invalid. Nevertheless, we can derive it using LoopBad by showing ⊢F
[
𝑥 > 0

]
𝑥−−[

ok : 𝑥 > 0
]
. Specifically, the ⊢F

[
𝑥 > 0

]
𝑥−−

[
ok : 𝑥 > 0

]
triple stipulates that every post-state in

𝑥 > 0 be reachable from some pre-state in 𝑥 > 0, which is indeed the case. More concretely, consider
an arbitrary post-state s𝑞 ∈ 𝑥 > 0 and let s𝑞 (𝑥) = 𝑣 (i.e. 𝑥 holds value 𝑣 in s𝑞) for some 𝑣 > 0. State
s𝑞 is then reachable by running 𝑥−− on a state s𝑝 = s𝑞 [𝑥 ↦→ 𝑣+1] and s𝑝 ∈ 𝑥 > 0 (as 𝑣 > 0).

Backward Under-Approximate Triples. Intuitively, the problem lies in the backward reacha-
bility of FUA triples: it stipulates that each post-state be reachable from some pre-state, which does
not necessarily lead to divergence. In other words, having a backward chain of C executions from
𝑝 ∧𝐵 to 𝑝 ∧𝐵 does not yield an infinite execution. Instead, we need a forward chain of C executions
from 𝑝 ∧ 𝐵 to 𝑝 ∧ 𝐵, as we can then repeat this execution forward ad infinitum. This is captured
in the LoopFix rule above (right), where a backward, under-approximate (BUA) triple ⊢B [𝑝] C
[𝜖 :𝑞] states that every pre-state in 𝑝 reaches some post-state in 𝑞 by executing C. Therefore, if we
show that each iteration of the loop body transitions each pre-state in 𝑝 ∧ 𝐵 to some post-state
also in 𝑝 ∧ 𝐵, then we can repeat this transition infinitely, leading to divergence. Note that in the
example above, we cannot show ⊢B

[
𝑥 > 0

]
𝑥−−

[
ok : 𝑥 > 0

]
(unlike the ⊢F variant): given state

s𝑝 ∈ 𝑥 > 0 with s𝑝 (𝑥) = 1, running 𝑥−− on s𝑝 yields a state s𝑞 = s𝑝 [𝑥 ↦→ 0], which is not in 𝑥 > 0.
As such, using LoopFix, we cannot derive the invalid triple

[
𝑥 > 0

]
while (𝑥 > 0) 𝑥−− [∞]. Note

that while BUA triples describe forward reachability, they denote backward under-approximation:
𝑝 ⊆ wpp(C, 𝑞), where wpp(C, 𝑞) denotes running C backwards from 𝑞. That is, BUA triples mirror
FUA ones (which describe backward reachability but forward under-approximation).
In order to present our divergence proof rules in a compositional fashion, we thus use BUA

triples to describe normal, terminating executions. For instance, in order to show that C1;C2 does
not terminate starting from 𝑝 , we can show either C1 does not terminate starting from 𝑝 (i.e.

[
𝑝
]

C1 [∞]), or C1 terminates normally transforming the states to 𝑞, and C2 does not terminate starting
from 𝑞 (i.e. ⊢B

[
𝑝
]
C1

[
ok : 𝑞

]
and

[
𝑞
]
C2 [∞]). This is captured by the Div-Seq1 and Div-Seq2 rules

in Fig. 3 (§4), where we present our full set of proof rules for detecting divergence.

Forward versus Backward Under-Approximate Triples. As with FUA triples, BUA triples are
also inherently under-approximate. Most notably, as we show in §4, the BUA rules for reasoning
about branches and loops are identical to their FUA counterparts; i.e. the ⊢F in ChoiceF and LoopF
above can simply be replaced with ⊢B (see Fig. 2). Indeed, almost all FUA and BUA proof rules
coincide, and the only difference between FUA and BUA rules lie in their associated rules of
consequence, namely the ConsF (for FUA) and ConsB (for BUA) rules in Fig. 2 (p. 11). However,
as we describe shortly, in the practical context of industrially-deployed (under-approximate) bug
detection tools such as Pulse [19], it is straightforward to reconcile this difference between FUA
and BUA and to develop a unified, under-approximate reasoning framework.
The main application of the FUA rule of consequence, ConsF, is in conjunction with the rule

of disjunction, Disj in Fig. 2 (p. 11). More concretely, when a given program contains multiple
branches, thanks to the ChoiceF rule, we can analyse each branch (and not necessarily all branches)
in isolation and generate a separate triple. Subsequently, we can merge them into a single triple
using Disj. However, when there are many branches (and subsequently many disjuncts in the pre-
and post-states), we can simply use ConsF to drop some of the disjuncts in the post-states. (Note
that using ConsB analogously allows us to drop some of the disjuncts in the pre-states.)
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However, as our conversations with the lead engineer behind Pulse have revealed, in the practical
setting of such tools this scenario rarely arises, and it is handled differently when it does. Specifically,
different triples of a program are not merged very often, as it is simpler and more efficient to keep
them separate. Second, when triples are merged, they are done so in a fashion that additionally
tracks the correspondence between the disjuncts in the pre- and post-states. Specifically, note
that the Disj rule is lossy: while in its premise we know that the post-states in 𝑞1 (resp. 𝑞2) are
reached from the pre-sates in 𝑝1 (resp. 𝑝2), we lose this correspondence in the conclusion and
only know that the post-states in 𝑞1 ∨ 𝑞2 are reached from the pre-sates in 𝑝1 ∨ 𝑝2. As such, when
merging the triples ⊢F [𝑝1] C [𝜖 :𝑞1] and ⊢F [𝑝2] C [𝜖 :𝑞2] into ⊢F [𝑝1 ∨ 𝑝2] C [𝜖 :𝑞1 ∨ 𝑞2], Pulse
additionally tracks the correspondence between 𝑝1 and 𝑞1 (resp. 𝑝2 and 𝑞2). This is beneficial when
later dropping branches: when dropping the disjuncts in the post-states (e.g. 𝑞2), we can also drop
their associated pre-states (𝑝2). This allows us to avoid accumulating ‘clutter’ in the pre-states and
is tantamount to dropping a full triple rather than its post-states only.

We thus follow a similar approach here which allows us to unify FUA and BUA reasoning. More
concretely, we introduce the notion of indexed disjunctions, 𝑃,𝑄 ∈ N fin→ P(State). Intuitively,
an indexed disjunction 𝑃 can be flattened into a standard disjunction as

∨
𝑖∈dom(𝑃 ) 𝑃 (𝑖). We write

[𝑃] C [𝜖 :𝑄] as a shorthand for dom(𝑃)=dom(𝑄) ∧ ∀𝑖 ∈ dom(𝑃). [𝑃 (𝑖)] C [𝜖 :𝑄 (𝑖)], denoting a
merged set of triples. Note that a triple [𝑝] C [𝜖 :𝑞] can be simply lifted to [𝑃] C [𝜖 :𝑄], where
dom(𝑃)=dom(𝑄)= {0} with 𝑃 (0)=𝑝 and 𝑄 (0)=𝑞. We can then use the DisjTrack rule (Fig. 2 on
p. 11) to merge indexed disjuncts – note that the dom(𝑃1) ∩ dom(𝑃2) = ∅ premise can be simply
satisfied by renaming the domain of 𝑃2. Observe that unlike the Disj rule, DisjTrack is not lossy and
preserves the pre-post correspondence. Finally, the unified rule of consequence, Cons (Fig. 2), allows
us to drop matching disjuncts from both the pre- and post-states, where 𝑃 ↓ 𝐼 denotes restricting
the domain of 𝑃 to 𝐼 . The unified Cons rule can be used for both FUA and BUA reasoning.

Unified Triples and Bug Catching Tools. Note that the rules in Fig. 2, excluding ConsB, ConsF
and Disj (and instead including Cons and DisjTrack) correspond to the reasoning principles used in
the industrially deployed Pulse tool. That is, although Pulse is formally underpinned by IL (with
FUA triples), it does not use ConsF and Disj, and instead uses Cons and DisjTrack, meaning that
using our unified rules (suitable for both FUA and BUA reasoning) has no practical ramifications,
and we can use Pulse as it is! This is indeed great news: in order to reason about divergence, we
can extend Pulse without changing its underlying principles, and simply add our divergence rules.

Theoretical Connection between BUA and FUA Triples. As mentioned above, with the ex-
ception of their associated rules of consequence (ConsF and ConsB in Fig. 2) all other FUA and BUA
reasoning principles and proof rules coincide. In §6 we further bolster this intuition by showing
that given any under-approximate triple [𝑝] C [𝜖 :𝑞], if [𝑝] C [𝜖 :𝑞] is a valid FUA triple and its
pre-states (𝑝) are FUA-minimal, then [𝑝] C [𝜖 :𝑞] is also a valid BUA triple. The pre-states 𝑝 are
FUA-minimal if for all smaller pre-sates 𝑝 ′ ⊂ 𝑝 , the triple [𝑝 ′] C [𝜖 :𝑞] is not a valid FUA triple.
Intuitively, this ensures that pre-states 𝑝 have not been arbitrarily weakened (grown) using ConsF.
Conversely, we show that given an under-approximate triple [𝑝] C [𝜖 :𝑞], if [𝑝] C [𝜖 :𝑞] is a

valid BUA triple and its post-states (𝑞) are BUA-minimal, then [𝑝] C [𝜖 :𝑞] is also a valid FUA triple.
Analogously, 𝑞 is BUA-minimal if for all smaller 𝑞′ ⊂ 𝑞, the triple [𝑝] C [𝜖 :𝑞′] is not a valid BUA
triple. This ensures that the post-states 𝑞 have not been arbitrarily weakened using ConsB.

Formal Interpretation of Divergent Triples. As discussed above, we write a divergent triple
of the form

[
𝑝
]
C [∞] to denote that C has some divergent trace(s) (i.e. in an under-approximate

fashion) starting from 𝑝 . The next question to answer when interpreting such triples is whether
there is some divergent trace starting from every state in 𝑝 or some state in 𝑝 . Observe that both
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interpretations are under-approximate as they pertain to some rather than all traces of C. Although
the latter interpretation is a weaker statement, it is nevertheless sufficient for an under-approximate
divergence detection framework: to establish divergence it suffices to show some divergent trace
is possible from some initial state in 𝑝 . However, under this weaker interpretation, inspecting a
divergent triple

[
𝑝
]
C [∞] yields little information on how the divergence arises (which may be

needed for debugging and fixing the cause of divergence): as 𝑝 may contain many states, it is
unclear which state(s) in 𝑝 lead(s) to divergence (unless 𝑝 describes a single state). On the other
hand, the former, stronger interpretation provides more information for debugging and fixing the
cause of divergence as it states that starting from any state in 𝑝 the program has a divergent trace.
Although more useful, at first glance this stronger interpretation may seem too strong and

antithetic to the spirit of under-approximation in UNTer. However, this additional strength is not
accompanied by a theoretical or practical cost. In theoretical terms, rather than considering an
arbitrarily large set of pre-states that contain some states that may lead to divergence, one can
always shrink the pre-states to contain exactly those states that lead to divergence. More concretely,
when starting from a state s executing C may diverge, one can establish

[
𝑝
]
C [∞] by defining 𝑝

as the singleton set {s}, rather than an arbitrarily large set that contains s. In practical terms, this
stronger interpretation incurs no additional cost when extending existing an under-approximate
tool such as Pulse with divergence proof rules. In particular, the divergence rules in Fig. 3 (p. 12) fall
into one of two categories: 1) base rules, where the premises contain BUA triples only (e.g. LoopFix
above or Div-Loop in Fig. 3); or 2) inductive cases, where the premises contain other divergent
triples (e.g. Div-Seq1 in Fig. 3) or a combination of divergent and BUA triples (e.g. Div-Seq2 in Fig. 3).
For the base cases such as LoopFix, thanks to the forward reachability of BUA triples, we already
establish the desired result for every pre-state. Moreover, as discussed above, the BUA and FUA
reasoning principles are almost identical and can be easily unified for practical purposes. As such,
extending exiting under-approximate tools with a base case under a strong interpretation incurs
no additional cost. Similarly, establishing an inductive case requires establishing its premises, and
since neither their BUA premises (as argued above) nor their divergent premises (by inductive
hypothesis) incur an additional cost, establishing an inductive case under a strong interpretation
incurs no additional cost. We therefore opt for the stronger under-approximate interpretation of
divergent triples:

[
𝑝
]
C [∞] denotes that every state in 𝑝 leads to some divergent trace.

4 THE UNTer FRAMEWORK

We present the UNTer framework for detecting non-termination bugs. To present the key ideas
underpinning UNTer more clearly, here we develop it as an analogue of Hoare logic/incorrectness
logic (IL), in that UNTer enables global and not local (compositional) reasoning as in separation
logic (SL) [18] and incorrectness separation logic (ISL) [24]. Later in §7 we develop an extension of
UNTer that marries the compositionality of SL/ISL with the divergence reasoning of UNTer.

Programming Language. To keep our presentation concise, we employ a simple imperative
programming language given by the C grammar below. Our language comprises the standard
constructs of skip, assignment (𝑥 := 𝑒), assume statements (assume(𝐵)), scoped variable declaration
(local 𝑥 in C), sequential composition (C1;C2), non-deterministic choice (C1 + C2) and loops (C★),
as well as explicit error statements (error, which can be thought of e.g. as assert(false)).

C ::= skip | 𝑥 := 𝑒 | assume(𝐵) | local 𝑥 in C | error | C1 + C2 | C1;C2 | C★

As is standard, deterministic choice and loops can be encoded using their non-deterministic counter-
parts and assume statements. Specifically, if (𝐵) thenC1 else C2 can be encoded as (assume(𝐵);C1)+
(assume(¬𝐵);C2), and while (𝐵) C can be encoded as (assume(𝐵);C)★; assume(¬𝐵).
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Assertions (Sets of States). The UNTer assertion language is given by the simple grammar
below, comprising classical (first-order logic) and Boolean assertions, where ⊕ ∈ {=,≠, <, ≤, · · · }.
Other classical connectives can be encoded using existing ones (e.g. ¬𝑝 ≜ 𝑝 ⇒ false). We use 𝑝 , 𝑞,
𝑟 and their variants (e.g. 𝑝 ′) as metavariables for assertions. An assertion describes a set of states,
where each state is a (variable) store in Store ≜ Var → Val, mapping program variables to values.

Ast ∋ 𝑝, 𝑞, 𝑟 ::= false | 𝑝 ⇒ 𝑞 | ∃𝑥 . 𝑝 | 𝑒 ⊕ 𝑒 ′

An expressions 𝑒 is interpreted under a variable store, written as s(𝑒); this interpretation is standard
and elided here. We interpret assertions as sets of states, and thus write false for ∅, 𝑝 ⇒ 𝑞 for
𝑝 ⊆ 𝑞, 𝑝 ∧ 𝑞 for 𝑝 ∩ 𝑞, 𝑝 ∨ 𝑞 for 𝑝 ∪ 𝑞, and so forth. Similarly, 𝑒 ⊕ 𝑒 ′ denotes sets of states (stores)
in which s(𝑒) ⊕ s(𝑒 ′) holds. As discussed in §3, we introduce the notion of indexed disjunctions,
𝑃,𝑄 ∈ N fin→ P(State), as a map from numbers to assertions (disjuncts); i.e. 𝑃 ≡ ∨

𝑖∈dom(𝑃 ) 𝑃 (𝑖).

UNTer Under-Approximate Proof Rules for Termination. Recall from §3 that to reason
about divergence in a piecemeal fashion, we reason about terminating sub-programs via (under-
approximate) BUA triples. We present the UNTer under-approximate proof rules for terminating
programs in Fig. 2. The rules denoted by ⊢† are 𝐹𝑈𝐴 and 𝐵𝑈𝐴 rules in that they are valid when
interpreted in either the forward (⊢F) or backward ⊢B direction. Note that as discussed in §3, with
the exception of ConsF and ConsB rules, all rules in Fig. 2 are valid FUA and BUA triples.
The Skip, Error, Seq, SeqEr, Choice, Loop0, Loop and Disj rules are identical to those of existing

FUA logics [23–25]. Specifically, executing skip and error leave the state unchanged (Skip and
Error), where the former terminates normally while the latter terminates erroneously; Disj allows
us to merge two triples into one in a lossy fashion (as discussed in §3); the behaviour of a branching
program can be under-approximated as the behaviour of some of its branches (Choice); and the
behaviour of a loop can be under-approximated through bounded unrolling as zero (Loop0) or
more (Loop) iterations. Note that while in correctness frameworks we can over-approximate a loop
behaviour via an invariant, i.e. an assertion that holds after any number of iterations (including
zero), in FUA/BUA frameworks we can under-approximate a loop behaviour via a subvariant as
an indexed assertion 𝑝 , where 𝑝 (𝑛) describes the state after 𝑛 iterations. This is captured by Loop-
Subvariant: for an arbitrary 𝑘 , if executing C terminates normally and transforms 𝑝 (𝑛) to 𝑝 (𝑛+1)
for all 𝑛 < 𝑘 , then 𝑝 (𝑘) can be reached by executing C

★ (i.e. executing C for 𝑘 iterations) from
the initial states 𝑝 (0). The SeqEr captures the short-circuiting behaviour of erroneous executions:
if executing C1 terminates erroneously, then executing C1;C2 also terminates erroneously. By
contrast, Seq captures the case where executing C1 does not encounter an error: if executing C1
terminates normally transforming the states in 𝑝 to those in 𝑟 , and executing C2 terminates as 𝜖
(either ok or er) and transforms 𝑟 to 𝑞, then executing C1;C2 terminates as 𝜖 , transforming 𝑝 to 𝑞.

The Assign rule is identical to the standard Floyd assignment rule and holds for both FUA and
BUA. Observe that as noted by O’Hearn [23], the Hoare assignment rule is not sound for FUA. That
is, ⊢F

[
𝑝 [𝑒/𝑥]

]
𝑥 := 𝑒

[
ok : 𝑝

]
is not sound (e.g. let 𝑒 = 42 and 𝑝 be 𝑥 = 𝑦, then the state s ∈ 𝑝 such

that s(𝑥) = s(𝑦) = 17 cannot be reached by executing 𝑥 := 42 on any state in 𝑝 [42/𝑥]. By contrast,
the Hoare assignment rule is sound for BUA, i.e. ⊢B

[
𝑝 [𝑒/𝑥]

]
𝑥 := 𝑒

[
ok : 𝑝

]
is a sound BUA triple.

However, this difference between BUA and FUA does not have a practical ramification as the Floyds
assignment rule (in Assign) is sufficient to enable automated reasoning in Pulse.
The Assume, Local and Constancy rules are analogous to the FUA rules of [23]. Concretely,

executing assume(𝐵) terminates normally and leaves the state unchanged, provided that 𝐵 holds
beforehand. When executing the scoped variable declaration local 𝑥 in C, the information about 𝑥
is erased by existentially quantifying it in the pre- and post-states. The Constancy rule is used to
adapt triples in different contexts and states: if an assertion 𝑟 holds before executing C, it also holds
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Skip
⊢†
[
𝑝
]
skip

[
ok :𝑝

] Assign
⊢†
[
𝑝
]
𝑥 := 𝑒

[
ok :∃𝑦.𝑝 [𝑦/𝑥] ∧ 𝑥 =𝑒 [𝑦/𝑥]

] Assume
⊢†
[
𝑝∧𝐵

]
assume(𝐵)

[
ok : 𝑝∧𝐵

]
Error
⊢†[𝑝] error [er : 𝑝]

Seq
⊢†
[
𝑝
]
C1

[
ok : 𝑟

]
⊢†[𝑟 ] C2 [𝜖 :𝑞]

⊢†[𝑝] C1;C2 [𝜖 :𝑞]

SeqEr
⊢†[𝑝] C1 [er : 𝑞]

⊢†[𝑝] C1;C2 [er : 𝑞]
Choice
⊢†[𝑝] C𝑖 [𝜖 :𝑞] for some 𝑖 ∈ {1, 2}

⊢†[𝑝] C1 + C2 [𝜖 :𝑞]

Loop0
⊢†
[
𝑝
]
C
★
[
ok : 𝑝

] Loop
⊢†[𝑝] C★;C [𝜖 :𝑞]
⊢†[𝑝] C★ [𝜖 :𝑞]

Loop-Subvariant
∀𝑛 < 𝑘. ⊢†

[
𝑝 (𝑛)

]
C

[
ok :𝑝 (𝑛+1)

]
⊢†
[
𝑝 (0)

]
C
★
[
ok : 𝑝 (𝑘)

] Local
⊢†[𝑝] C [𝜖 :𝑞]

⊢†[∃𝑥 .𝑝] local 𝑥 in C [𝜖 :∃𝑥 .𝑞]

Subst
⊢†[𝑝]C [𝜖 :𝑞] 𝑥 ∉ fv(𝑝,C, 𝑞)

(⊢†[𝑝] C [𝜖 :𝑞]) [𝑦/𝑥]
Disj
⊢†[𝑝1] C [𝜖 :𝑞1] ⊢†[𝑝2] C [𝜖 :𝑞2]

⊢†[𝑝1 ∨ 𝑝2] C [𝜖 :𝑞1 ∨ 𝑞2]

Constancy
⊢†[𝑝] C [𝜖 :𝑞] fv(𝑟 ) ∩mod(C) = ∅

⊢†[𝑝 ∧ 𝑟 ] C [𝜖 :𝑞 ∧ 𝑟 ]
ConsF
𝑝 ′ ⊆ 𝑝 ⊢F [𝑝 ′] C [𝜖 :𝑞′] 𝑞 ⊆ 𝑞′

⊢F [𝑝] C [𝜖 :𝑞]

ConsB
𝑝 ⊆ 𝑝 ′ ⊢B [𝑝 ′] C [𝜖 :𝑞′] 𝑞′ ⊆ 𝑞

⊢B [𝑝] C [𝜖 :𝑞]
DisjTrack
⊢†[𝑃1] C [𝜖 :𝑄1] ⊢†[𝑃2] C [𝜖 :𝑄2]

⊢†[𝑃1 ⊎ 𝑃2] C [𝜖 :𝑄1 ⊎𝑄2]

Cons
⊢†[𝑃] C [𝜖 :𝑄] 𝐼 ⊆ dom(𝑃)

⊢†[𝑃 ↓ 𝐼 ] C [𝜖 :𝑄 ↓ 𝐼 ]
IfTrue

⊢†[𝑝 ∧ 𝐵] C1 [𝜖 :𝑞]
⊢†[𝑝 ∧ 𝐵] if (𝐵) thenC1 else C2 [𝜖 :𝑞]

IfFalse
⊢†[𝑝 ∧ ¬𝐵] C2 [𝜖 :𝑞]

⊢†[𝑝 ∧ ¬𝐵] if (𝐵) thenC1 else C2 [𝜖 :𝑞]

ConsEq
𝑝 ⇔ 𝑝 ′ ⊢†[𝑝 ′] C [𝜖 :𝑞′] 𝑞′ ⇔ 𝑞

⊢†[𝑝] C [𝜖 :𝑞]

WhileFalse
⊢†
[
𝑝 ∧ ¬𝐵

]
while (𝐵) C

[
ok : 𝑝 ∧ ¬𝐵

]
WhileSubvariant
∀𝑛 < 𝑘. ⊢†

[
𝑝 (𝑛) ∧ 𝐵

]
C

[
ok : 𝑝 (𝑛+1) ∧ 𝐵

]
⊢†[𝑝 (𝑘) ∧ 𝐵] C [𝜖 :𝑞 ∧ ¬𝐵]

⊢†[𝑝 (0) ∧ 𝐵] while (𝐵) C [𝜖 :𝑞 ∧ ¬𝐵]

Fig. 2. Under-approximate proof rules where † in each rule can be instantiated as F or B; the highlighted

rules can be derived from other rules (see §A).

afterwards provided that it does not refer to free variables that may have been modified by C. This
is captured by the fv(𝑟 ) ∩mod(C) = ∅, where fv(𝑟 ) denotes the free variables of 𝑟 and mod(C)
denotes the variables modified by C (i.e. those on the left-hand side of assignments).

As discussed in §3, ConsF and ConsB are the FUA and BUA rules of consequence, respectively. We
reconcile the two in the unified rule of consequence, Cons, by using indexed disjunctions, where
dom(𝑃 ↓ 𝐼 ) = 𝐼 and ∀𝑖 ∈ 𝐼 . (𝑃 ↓ 𝐼 ) (𝑖) = 𝑃 (𝑖). Finally, using indexed disjunctions in DisjTrack we
can merge triples in a non-lossy fashion, preserving the pre-post correspondence.
The remaining highlighted rules can be derived from existing rules (see §A). The IfTrue (resp.

IfFalse) is analogous to its non-deterministic counterpart (Choice) and simply requires that the
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Div-Seq1
⊢
[
𝑝
]
C1 [∞]

⊢
[
𝑝
]
C1;C2 [∞]

Div-Seq2
⊢B

[
𝑝
]
C1

[
ok : 𝑞

]
⊢
[
𝑞
]
C2 [∞]

⊢
[
𝑝
]
C1;C2 [∞]

Div-Choice
⊢
[
𝑝
]
C𝑖 [∞] for some 𝑖 ∈ {1, 2}
⊢
[
𝑝
]
C1 + C2 [∞]

Div-LoopUnfold
⊢
[
𝑝
]
C;C★ [∞]

⊢
[
𝑝
]
C
★ [∞]

Div-Loop
⊢B

[
𝑝
]
C

[
ok : 𝑞

]
𝑞 ⊆ 𝑝

⊢
[
𝑝
]
C
★ [∞]

Div-Subvariant
∀𝑛 ∈ N. ⊢B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
⊢
[
𝑝 (0)

]
C
★ [∞]

Div-Cons
⊢
[
𝑝 ′]

C [∞] 𝑝 ⊆ 𝑝 ′

⊢
[
𝑝
]
C [∞]

Div-Local
⊢
[
𝑝
]
C [∞]

⊢
[
∃𝑥 . 𝑝

]
local 𝑥 in C [∞]

Div-While
⊢B

[
𝑝 ∧ 𝐵

]
C

[
ok : 𝑞 ∧ 𝐵

]
𝑞 ⊆ 𝑝

⊢
[
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

Div-LoopNest
⊢
[
𝑝
]
C [∞]

⊢
[
𝑝
]
C
★ [∞]

Div-WhileNest
⊢
[
𝑝 ∧ 𝐵

]
C [∞]

⊢
[
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

Div-WhileSubvariant
∀𝑛 ∈ N. ⊢B

[
𝑝 (𝑛) ∧ 𝐵

]
C

[
ok : 𝑝 (𝑛+1) ∧ 𝐵

]
⊢
[
𝑝 (0) ∧ 𝐵

]
while (𝐵) C [∞]

Fig. 3. The UNTer divergence rules, where the highlighted rules can be derived from other rules

condition 𝐵 hold (resp. not hold) at the beginning. The ConsEq simply replaces implication (subset
inclusion) in the premises of ConsF and ConsB with equivalence. The WhileFalse states that the
pre-states are unchanged by the loop if the condition 𝐵 does not hold to begin with (i.e. the loop
is never entered). The WhileSubvariant is analogous to Loop-Subvariant and states that if for all
𝑛 < 𝑘 an execution of C transforms 𝑝 (𝑛) ∧ 𝐵 to 𝑝 (𝑛+1) ∧ 𝐵, i.e. loop condition 𝐵 remains true in
the first 𝑘−1 iterations, and the 𝑘 th iteration results in the states in 𝑞 ∧ ¬𝐵 (i.e. it invalidates the
loop condition), then while (𝐵) C terminates, transforming the initial states in 𝑝 (0) ∧ 𝐵 to 𝑞 ∧ ¬𝐵.

UNTer Divergent Proof Rules for Non-Termination. We present the (syntactic) proof rules
for divergence in Fig. 3. Recall from §3 that we opt for the stronger interpretation of divergent
triples, where

[
𝑝
]
C [∞] states that every state in 𝑝 leads to some divergent trace. We provide the

formal semantic interpretation of divergent triples later in §6.
In order to show that C1;C2 has a divergent trace starting from 𝑝 , we can show either C1 has a

divergent trace starting from 𝑝 (Div-Seq1), or C1 terminates normally transforming the states to 𝑞
and C2 does not terminate starting from 𝑞 (Div-Seq2). To show that the branching program C1 + C2
has a divergent trace starting from 𝑝 , it suffices to show that some branch C𝑖 has a divergent trace
from 𝑝 , i.e. in an under-approximate fashion. The Div-Cons denotes the rule of consequence for
divergence: if C has some divergent trace starting from any state in 𝑝 ′ and 𝑝 ⊆ 𝑝 ′, then C also has
some divergent trace starting from any state in 𝑝 . [

𝑝
]
C [∞]

(given)[
𝑝
]
C;C★ [∞]

(Div-Seq1)[
𝑝
]
C
★ [∞]

(Div-LoopUnfold)

The remaining rules capture divergence for loops. Specifi-
cally, Div-LoopUnfold allows us to establish divergence after
unrolling the loop once. This can be used for showing diver-
gence in the case of nested loops, where the inner loop di-
verges. Specifically, using a combination of Div-Seq1 and Div-
LoopUnfold we can derive Div-LoopNest as shown across, stating that if one iteration of the loop
body (e.g. a nested loop) has a divergent trace, then the loop itself also has a divergent trace.

The Div-Loop rule states that if one iteration of a loop body terminates normally and transforms
the states in 𝑝 to ones in 𝑞 (i.e. ⊢B

[
𝑝
]
C

[
ok : 𝑞

]
) and 𝑞 ⊆ 𝑝 , then C

★ has a divergent trace starting
from 𝑝 . Intuitively, the forward triple in the premise, 𝐴 ≜ ⊢B

[
𝑝
]
C

[
ok : 𝑞

]
, allows us to construct

an infinite trace of C★ from any state in 𝑝 : given a state in s0 ∈ 𝑝 , (from𝐴) executing C on s0 results
in a state s1 ∈ 𝑞 ⊆ 𝑝 , and thus (from 𝐴) executing C on s1 results in a state s2 ∈ 𝑞 ⊆ 𝑝 , ad infinitum.
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while (𝑥 = 0)
skip

(a)

while (𝑥 ≥ 0)
𝑥 := 𝑥+1

(b)

𝑥 := 1
𝑦 := 2;
while (𝑥+𝑦 > 1)
𝑥 := 3 − 𝑥

𝑦 := 3 − 𝑦

(c)

while (𝑦 < 100)
if (𝑦 ≤ 50)
𝑥 := 𝑥+1

else

𝑦 := 𝑦+1
(d)

while (𝑦 < 100)
𝑥 := 0;
while (𝑥 ≤ 100)

if (𝑥 = 100)
𝑦 := 0

𝑥 := 𝑥+1
𝑦 := 𝑦+1

(e)

𝑥 := 42; 𝑦 := 1;
while (𝑦 < 100)

while (𝑥 ≤ 100)
if (𝑥 = 100)
𝑥 := 1
𝑦 := 2 × 𝑦

else𝑥 := 𝑥+1
𝑦 := 𝑦+1

(f)

Fig. 4. Several examples of programs with non-terminating behaviours where 𝑥,𝑦 initially hold 0

The Div-Subvariant is the subvariant rule for divergence: if an iteration of the loop body termi-
nates normally and transforms 𝑝 (𝑛) to 𝑝 (𝑛+1) for an arbitrary 𝑛, then C

★ has a divergent trace
starting from the initial states 𝑝 (0). Note that given any loop body C, if C does not contain a
conditional (if or while) statement and executing C does not encounter an error, then the non-
deterministic loop C

★ always has a divergent trace. However, this is not necessarily the case with
conditional if/while statements (encoded via assume statements). This is illustrated in the Div-While
rule, requiring that the loop condition 𝐵 hold at the end of an iteration, which is not always the
case. For instance, for while (𝑥 = 0) 𝑥 := 1 we fail to establish 𝑥 = 0 after an iteration of 𝑥 := 1.
As before, all highlighted rules in Fig. 3 can be derived from other rules (see §A). For instance,

Div-WhileNest can be derived from Div-LoopNest, Seq and Assume.

5 EXAMPLES

We present several simple examples of divergent programs (with divergent loops) and demonstrate
how we can use our UNTer proof system to detect them. All divergent behaviours presented here,
and many more, have also been detected using our Pulse∞ prototype (see §8).

Example 1 (Fig. 4a). Consider the simple example in Fig. 4a comprising a simple divergent loop.
We can detect this using Div-While (with 𝑝 = 𝑞 = true) as shown below:

⊢B
[
𝑥 = 0

]
skip

[
ok : 𝑥 = 0

] (Skip)[
𝑥 = 0

]
while (𝑥 = 0) skip [∞]

(Div-While)

Example 2 (Fig. 4b). Consider the simple example in Fig. 4b comprising a simple while loop with
a buggy check. We can detect this using Div-While (with 𝑝 = true and 𝑞 = 𝑥 > 1) as shown below:

⊢B
[
𝑥 ≥ 0

]
𝑥 := 𝑥+1

[
ok : ∃𝑣 . 𝑣 ≥ 0 ∧ 𝑥 = 𝑣+1

] (Assign)

⊢B
[
𝑥 ≥ 0

]
𝑥 := 𝑥+1

[
ok : 𝑥 ≥ 1 ∧ 𝑥 ≥ 0

] (ConsEq)
𝑥 ≥ 1 ⊆ 𝑥 ≥ 0[

𝑥 ≥ 0
]
while (𝑥 ≥ 0) 𝑥 := 𝑥+1 [∞]

(Div-While)

Example 3 (Fig. 4c). Consider the example in Fig. 4c. Prior to the first iteration of the loop
𝑥+𝑦 = 3 holds, and although the values of 𝑥 and 𝑦 are updated in each iteration, their sum remains
unchanged after each iteration (i.e. 𝑥+𝑦 = 3) and thus the loop diverges. We present an UNTer
proof outline of this divergent behaviour on the left of Fig. 5. For brevity, rather than giving full
derivations, we follow the classical Hoare logic proof outline, annotating each line of the code with
its pre- and post-states. We further commentate each proof step and write e.g. //Assign to denote
an application of Assign. As in Hoare logic proof outlines, we assume that Seq is applied at every
step; i.e. later instructions are executed only if the earlier ones execute normally (with ok).
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1. [𝑥 = 0 ∧ 𝑦 = 0]
2. 𝑥 := 1; //Assign, ConsEq
3.

[
ok:𝑥 = 1 ∧ 𝑦 = 0

]
4. 𝑦 := 2; //Assign, ConsEq
5.

[
ok:𝑥 = 1 ∧ 𝑦 = 2

]
//Div-Cons

6.
[
ok:𝑥+𝑦 = 3 ∧ 𝑥+𝑦 > 1

]
7. while (𝑥+𝑦 > 1)

D
iv
-W

hi
le

8. [𝑥+𝑦 = 3 ∧ 𝑥+𝑦 > 1]
9. 𝑥 := 3 − 𝑥 //Assign

10.
[
ok:∃𝑣𝑥 . 𝑣𝑥+𝑦 = 3 ∧ 𝑣𝑥+𝑦 > 1

∧ 𝑥 = 3 − 𝑣𝑥

]
11. 𝑦 := 3 − 𝑦 //Assign

12.
[
ok:∃𝑣𝑥 , 𝑣𝑦 . 𝑣𝑥+𝑣𝑦 = 3 ∧ 𝑣𝑥+𝑣𝑦 > 1

∧ 𝑥 = 3 − 𝑣𝑥 ∧ 𝑦 = 3 − 𝑣𝑦

]
//ConsEq
13.

[
ok:𝑥+𝑦 = 3 ∧ 𝑥+𝑦 > 1

]
14. [∞]

1. [𝑥 = 0 ∧ 𝑦 = 0]
//Div-Cons
2. [𝑦 = 0 ∧ 𝑦 < 100]
3. while (𝑦 < 100)

D
iv
-W

hi
le

4. [𝑦 = 0 ∧ 𝑦 < 100]
//ConsEq
5. [𝑦 = 0 ∧ 𝑦 < 100 ∧ 𝑦 ≤ 50]
6. if (𝑦 ≤ 50)

If
Tr

ue

7. [𝑦 = 0 ∧ 𝑦 < 100 ∧ 𝑦 ≤ 50]
8. 𝑥 := 𝑥+1 //Assign

9.
[
ok:∃𝑣𝑥 . 𝑦 = 0 ∧ 𝑦 < 100

∧ 𝑦 ≤ 50 ∧ 𝑥 = 𝑣𝑥+1

]
//ConsEq
10.

[
ok:𝑦 = 0 ∧ 𝑦 < 100

]
11. else · · ·

12.
[
ok:𝑦 = 0 ∧ 𝑦 < 100

]
13. [∞]

Fig. 5. Proof sketches of the divergence bugs in Fig. 4c (left) and Fig. 4d (right)

Let 𝑝 ≜ 𝑥+𝑦 = 3∧𝑥+𝑦 > 1; after the initial assignment to 𝑥 and𝑦 and applications of ConsEq and
Div-Cons, we establish 𝑝 (line 6). We then apply Div-While (lines 6–14) to show that the loop body
leaves the set of states 𝑝 unchanged (lines 8–13). The proof of lines 8–13 is then straightforward,
and simply involves the applications of Assign and ConsEq.

Example 4 (Fig. 4d). Consider the example in Fig. 4d. At first glance it may seem that the loop
terminates since the value of𝑦 is incremented in the else branch of each iteration. However, starting
from𝑦 = 0, the then branch is taken in each iteration (since𝑦 ≤ 50) and thus𝑦 is never incremented,
resulting in divergence. We present an UNTer proof outline of this divergent behaviour on the
right of Fig. 5. After applying ConsEq to rewrite 𝑝 equivalently as 𝑝 ∧ 𝑦 ≤ 50 (line 5), we apply
IfTrue to show we can take the then branch and arrive at 𝑝 (lines 7–10).

Example 5 (Fig. 4e). Consider the example in Fig. 4e with nested loops. Note that the value of 𝑥
is incremented at the end of each iteration of the inner loop and thus the inner loop terminates. By
contrast, although 𝑦 is incremented at the end of each iteration of the outer loop and thus it may
seem at first glance that the outer loop terminates, on closer inspection the value of 𝑦 us reset to 0
in the last iteration of the inner loop. As such, at the end of each iteration of the outer loop 𝑦 is
incremented and updated 1, and thus the outer loop diverges.

We present an UNTer proof outline of this at the top of Fig. 6. After applying Div-Cons to obtain
𝑦 < 100, we apply Div-While (lines 2–23) to show that the loop body leaves 𝑦 < 100 unchanged
(lines 4–22). After the assignment on line 5, we apply ConsEq to rewrite the states as 𝑝 (0) ∧𝑥 ≤ 100
(line 7), with 𝑝 (𝑛) defined below the proof at the top of Fig. 6. We then apply WhileSubvariant to
show that at the end of the execution of the inner loop we arrive at 𝑦=0 ∧ 𝑥 =101 ∧ 𝑥 ≰ 100 (lines
7–21). Note that WhileSubvariant has two premises, which we establish in two columns on lines
9–14 and 15–20. On lines 9–14 we show that for 𝑛 < 100, each iteration of the loop transforms
𝑝 (𝑛) ∧ 𝑥 ≤ 100 to 𝑝 (𝑛+1) ∧ 𝑥 ≤ 100; on lines 15–20 we show that in the final iteration of the loop
with 𝑝 (100) (i.e. when 𝑥 = 100), we reset 𝑦 to 0 and increment 𝑥 , arriving at 𝑦=0∧𝑥 =101∧𝑥 ≰ 100
which is included in 𝑦<100 (line 22), as per the second premise of Div-While.
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1. [𝑥 = 0 ∧ 𝑦 = 0] //Div-Cons
2. [𝑦 < 100]
3. while (𝑦 < 100)

D
iv
-W

hi
le

4. [𝑦 < 100]
5. 𝑥 := 0 //Assign
6.

[
ok:𝑦 < 100 ∧ 𝑥 = 0

]
//ConsEq

7.
[
ok:𝑝 (0) ∧ 𝑥 ≤ 100

]
8. while (𝑥 ≤ 100)

W
hi
le
Su

bv
ar

ia
nt 9. ∀𝑛 < 100. [𝑝 (𝑛) ∧ 𝑛<100 ∧ 𝑥 ≤ 100]

10. if (𝑥 = 100) 𝑦 := 0
11. else skip // IfFalse, Skip
12.

[
ok:𝑝 (𝑛) ∧ 𝑛<100 ∧ 𝑥≤100

]
13. 𝑥 := 𝑥+1 //Assign, ConsEq
14.

[
ok:𝑝 (𝑛+1) ∧ 𝑥 ≤ 100

]
15. [𝑝 (100) ∧ 𝑥 ≤ 100]
16. if (𝑥 = 100) 𝑦 := 0
17. else skip // IfTrue,Assign
18.

[
ok:𝑝 (100) ∧ 𝑥 ≤ 100 ∧ 𝑦 = 0

]
19. 𝑥 := 𝑥+1 //Assign, ConsEq
20.

[
ok:𝑦 = 0 ∧ 𝑥 = 101 ∧ 𝑥 ≰ 100

]
21.

[
ok:𝑦 = 0 ∧ 𝑥 = 101 ∧ 𝑥 ≰ 100

]
22.

[
ok:𝑦 < 100

]
23. [∞]
where for all 𝑛 ∈ N : 𝑝 (𝑛) ≜ 𝑥 = 𝑛 ∧ 𝑦 < 100

1. [𝑥 = 0 ∧ 𝑦 = 0]
2. 𝑥 := 42; 𝑦 := 1; //Assign, ConsEq
3.

[
ok:𝑥 = 42 ∧ 𝑦 = 1

]
//Div-Cons

4.
[
ok:𝑥 ≤ 100 ∧ 𝑦 < 100

]
5. while (𝑦 < 100)

D
iv
-W

hi
le
N
es
t

6. [𝑥 ≤ 100 ∧ 𝑦 < 100] //Div-Cons
7. [𝑥 ≤ 100]
8. while (𝑥 ≤ 100)

D
iv
-W

hi
le

9. [𝑥 ≤ 100] //ConsEq
10. [𝑥 < 100 ∨ 𝑥 = 100]

D
is
j

11. [𝑥 < 100]
12. if (𝑥 = 100) 𝑥 := 1; 𝑦 := 2×𝑦
13. else𝑥 := 𝑥+1

// IfFalse,Assign, ConsEq
14.

[
ok:𝑥 ≤ 100

]
15. [𝑥 = 100]
16. if (𝑥 = 100) 𝑥 := 1; 𝑦 := 2×𝑦
17. else𝑥 := 𝑥+1

// IfTrue,Assign, ConsB
18.

[
ok:𝑥 ≤ 100

]
19.

[
ok:𝑥 ≤ 100

]
20. [∞]

21. [∞]
Fig. 6. Proof sketch of divergence in Fig. 4e (above), where the two columns on lines 9–14 and 15–20 denote

the proof sketches of the two premises of WhileSubvariant; proof sketch of divergence in Fig. 4f (below),

where the two columns on lines 11–14 and 15–18 denote the proof sketches of the two premises of Disj.

Example 6 (Fig. 4f). Consider the nested loops in Fig. 4f. Note that starting with 𝑥 = 42 (after the
initial assignment), the else branch of the inner loop increments 𝑥 in all but the last iteration of the
inner loop (since 𝑥 = 100), whereupon the value of 𝑥 is reset to 1; i.e. the inner loop diverges.

We present an UNTer proof outline of this divergent behaviour at the bottom of Fig. 6. After the
initial assignments (line 2) and applying Div-Cons to arrive at 𝑥 ≤ 100 ∧ 𝑦 < 100 (line 4), we apply
Div-WhileNest (lines 4–21) to show that the loop body diverges (lines 6–20). Once again, we apply
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Div-Cons to weaken the states to 𝑥 ≤ 100 (line 7) and subsequently apply Div-While (lines 7–20) to
show that the body of the inner loop leaves the states 𝑥 ≤ 100 unchanged (lines 9–19). To do this,
we first rewrite 𝑥 ≤ 100 equivalently as 𝑥 < 100 ∨ 𝑥 = 100 (line 10), and then apply Disj to show
that either disjunct results in 𝑥 ≤ 100 states (the two columns on lines 11–14 and 15–18). The proof
of each disjunct is then straightforward and is obtained by reasoning about the associated branch.

6 THE UNTer MODEL AND SEMANTICS

UNTer Operational Semantics. Although in sequential settings the semantics is typically
given in the big-step fashion [23, 24], we opt for small-step semantics instead. This is because
big-step semantics by definition describe terminating executions, while our aim is to formalise
divergent triples. Specifically, we formalise the semantics of a divergent triple as an infinite, non-
terminating execution trace. The UNTer small-step transitions are straightforward and are of the
form C, s −→ C, s′, 𝜖 , where C and s respectively denote the current command and store (state), C′

and s′ denote their continuations (what they reduce to) and 𝜖 denotes the exit condition, describing
whether reducing C to C

′ took place normally (ok) or erroneously (er). For brevity we present the
UNTer small-step transitions in the technical appendix (§B.1).

Semantic BUA and FUA Triples. Recall that intuitively a BUA triple ⊢B [𝑝] C [𝜖 :𝑞] states that
every pre-state s𝑝 in 𝑝 reaches some post-state s𝑞 in 𝑞 under 𝜖 by executing C. Analogously, a FUA
triple ⊢F [𝑝] C [𝜖 :𝑞] states that every post-state s𝑞 in 𝑞 can be reached from some pre-state s𝑝 in 𝑝

under 𝜖 by executing C. Put formally, in both cases we must have C, s𝑝
𝑛−→ −, s𝑞, 𝜖 , denoting that

executing C terminates after 𝑛 steps under 𝜖 and transforms s𝑝 to s𝑞 (see Def. 1 below).

Definition 1 (Semantic BUA and FUA triples). A BUA triple is valid, written |=B [𝑝] C [𝜖 :𝑞], iff
for all s𝑝 ∈ 𝑝 , there exists s𝑞 ∈ 𝑞 and 𝑛 such that C, s𝑝

𝑛−→ −, s𝑞, 𝜖 , where:

C, s
𝑛−→ C

′, s′, 𝜖
def⇐⇒ (𝑛=0 ∧ C=C′=skip ∧ s=s′ ∧ 𝜖=ok) ∨ (𝑛=1 ∧ 𝜖 ∈ ErExit ∧ C, s −→ C

′, s′, 𝜖)
∨ (∃𝑘,C′′, s′′. 𝑛=𝑘+1 ∧ C, s −→ C

′′, s′′, ok ∧ C
′′, s′′

𝑘−→ C
′, s′, 𝜖)

and C, s −→ C
′, s′, 𝜖 is the UNTer small-step transitions given in §B.1 (Fig. 8). A FUA triple is valid,

written |=F [𝑝] C [𝜖 :𝑞], iff for all s𝑞 ∈ 𝑞, there exists s𝑝 ∈ 𝑝 and 𝑛 such that C, s𝑝
𝑛−→ −, s𝑞, 𝜖 .

The first disjunct in C, s
𝑛−→ C

′, s′ states that any state can be reached under ok in zero steps
without changing the underlying state, provided that C is simply skip. The second disjunct captures
the short-circuit semantics of errors: a state s′ can be reached in one step under er when C takes
an erroneous step. Analogously, the last disjunct captures the inductive cases (𝑛=𝑘+1), where C
takes an ok step, and s′ is subsequently reached in 𝑘 steps under 𝜖 .
We next show that the BUA and FUA proof systems presented in Fig. 2 are both sound and

complete, with the full proof given in the technical appendix (§B.2 and §C.1).

Theorem 7 (BUA and FUA soundness). For all 𝑝 , 𝑞, C and 𝜖 :

1) if ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 2, then |=B [𝑝] C [𝜖 :𝑞] holds; and
2) if ⊢F [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 2, then |=F [𝑝] C [𝜖 :𝑞] holds.

Theorem 8 (BUA and FUA completeness). For all 𝑝 , 𝑞, C and 𝜖 :

1) if |=B [𝑝] C [𝜖 :𝑞] holds, then ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 2; and
2) if |=F [𝑝] C [𝜖 :𝑞] holds, then ⊢F [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 2.

We next present the formal interpretation of divergent triples.
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Definition 2 (Semantic divergent triples). A divergent triple is valid, written |=
[
𝑝
]
C [∞], iff for

all s ∈ 𝑝 , there exists an infinite series of C1,C2, · · · , s1, s2, · · · and 𝑛1, 𝑛2, · · · such that C, s {𝑛1

C1, s1, ok {𝑛2
C2, s2, ok {𝑛3 · · · , where the chain C, s {𝑛1

C1, s1, ok {𝑛2
C2, s2, ok {𝑛3 · · · is a

shorthand for C, s {𝑛1
C1, s1, ok ∧ C1, s1 {𝑛2

C2, s2, ok ∧ · · · , and{𝑛 is defined as follows:

C, s {𝑛
C
′, s′, 𝜖

def⇐⇒ (𝑛 = 1 ∧ C, s −→ C
′, s′, 𝜖)

∨ (∃𝑘, s′′,C′′. 𝑛=𝑘+1 ∧ C, s −→ C
′′, s′′, ok ∧ C

′′, s′′ {𝑘
C
′, s′, 𝜖)

Note that unlike theC, s
𝑛−→ C

′, s′ transitions in Def. 1 which describe terminating traces (either via
short-circuiting or by reduction to skip), the C, s {𝑛

C
′, s′ transitions do not stipulate termination

and simply state that executing C from s for 𝑛 steps reduces to C
′ and results in s′.

We next formalise the relationship between FUA and BUA triples (see p. 8), with the proof in §D.

Theorem 9. For all 𝑝 , C, 𝑞, 𝜖 :
1) if |=F [𝑝] C [𝜖 :𝑞] and minpre (𝑝,C, 𝑞) hold, then |=B [𝑝] C [𝜖 :𝑞] also holds; and
2) if |=B [𝑝] C [𝜖 :𝑞] and minpost (𝑝,C, 𝑞) hold, then |=F [𝑝] C [𝜖 :𝑞] also holds, where:

minpre (𝑝,C, 𝑞)
def
⇐⇒∀𝑝 ′. 𝑝 ′⊂𝑝 ⇒ ̸|=F

[
𝑝 ′
]
C [𝜖 :𝑞] minpost (𝑝,C, 𝑞)

def
⇐⇒∀𝑞′. 𝑞′⊂𝑞 ⇒ ̸|=B [𝑝]C

[
𝜖 :𝑞′

]
Finally, we show that the divergence proof system presented in Fig. 3 is both sound and complete,

with the full proof given in the technical appendix (§B.3 and §C.2).

Theorem 10 (Divergence soundness and completeness). For all 𝑝 and C, if ⊢
[
𝑝
]
C [∞] is derivable

using the rules in Fig. 3, then |=
[
𝑝
]
C [∞] holds. For all 𝑝 and C, if |=

[
𝑝
]
C [∞] holds, then ⊢

[
𝑝
]
C

[∞] is derivable using the rules in Fig. 3.

7 EXTENSION TO SEPARATION LOGIC

We describe how we develop UNTersl by extending UNTer with the compositional reasoning
principles of separation logic (SL) [18]. Raad et al. [24] have developed incorrectness separation
logic (ISL) by extending the FUA-based incorrectness logic (IL) [23] with separation logic. As Raad
et al. [24] argue, the original model of SL is unsound for FUA reasoning, and thus they adapt the
original model to recover the soundness of ISL (see §E for details). We adopt the model of Raad
et al. [24] and show that it is also sound for BUA reasoning.

UNTer
sl

Programming Language and Assertions. To account for operations that access
the heap, in UNTersl we extend our programming language from §4 with the following heap-
manipulating operations (below, left) for allocation (𝑥 := alloc()), deallocation (free(𝑥)), reading
from the heap (lookup, 𝑥 := [𝑦]) and writing to the heap (mutation, [𝑥] := 𝑦). We similarly extend
the UNTer assertions as follows (below, right) by adding structural assertions to describe heaps.

Comm∋C ::= · · · | 𝑥 := alloc() | free(𝑥)
| 𝑥 := [𝑦] | [𝑥] := 𝑦

Ast ∋ 𝑝, 𝑞, 𝑟 ::= · · · | emp | 𝑒 ↦→𝑒 ′

| 𝑒 ̸↦→ | 𝑝 ∗ 𝑞
The UNTersl assertions describe sets of states, where a state comprises a (variable) store and a heap.
The existing UNTer assertions from §4 then simply describe states in which the heap is empty
and the store satisfies the assertion (as in UNTer). The structural assertions above are those of ISL
[24] (which themselves are those of SL [18] extended with 𝑒 ̸↦→ ), and describe a set of states by
constraining the shape of the underlying heap. More concretely, emp describes states in which the
heap is empty; 𝑒 ↦→𝑒 ′ describes states in which the heap comprises a single location denoted by 𝑒
containing the value denoted by 𝑒 ′; similarly, 𝑒 ̸↦→ describes states in which the heap comprises a
single location at 𝑒 containing the designated value ⊥; and 𝑝 ∗ 𝑞 describes states in which the heap
can be split into two disjoint sub-heaps, one satisfying 𝑝 and the other 𝑞. Note that whilst 𝑒 ↦→𝑒 ′
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AssignSL
⊢†
[
𝑥=𝑥 ′] 𝑥 :=𝑒 [ok :𝑥=𝑒 [𝑥 ′/𝑥]

] Store
⊢†
[
𝑥 ↦→𝑒

]
[𝑥] := 𝑦

[
ok :𝑥 ↦→𝑦

] StoreEr
⊢†[𝑥 ̸↦→] [𝑥] := 𝑦 [er : 𝑥 ̸↦→]

StoreNull
⊢†[𝑥=null] [𝑥] := 𝑦 [er : 𝑥=null]

Frame
⊢†[𝑝]C [𝜖 :𝑞] mod(C) ∩ fv(𝑟 )=∅

⊢†[𝑝 ∗ 𝑟 ] C [𝜖 :𝑞 ∗ 𝑟 ]

Div-Frame
⊢
[
𝑝
]
C [∞]

⊢
[
𝑝 ∗ 𝑟

]
C [∞]

Fig. 7. UNTer
sl

proof rules (excerpt), where 𝑥 and 𝑥 ′ are distinct variables and † in each rule can be

instantiated as F or B; see Fig. 9 in §E for the full set of UNTer
sl

rules.

states that the location at 𝑒 is allocated (and contains value 𝑒 ′), 𝑒 ̸↦→ states that the location at 𝑒 is
deallocated. We write 𝑒 ↦→− as a shorthand for ∃𝑣 . 𝑒 ↦→𝑣 .

UNTer
sl

Proof Rules (Syntactic UNTer
sl

Triples). We present an excerpt of the UNTersl
proof rules in Fig. 7; please see Fig. 9 in §E for the full set of rules. Note that all UNTer rules (both
BUA and FUA) in Fig. 2, except Constancy and Assign, are also UNTersl rules and are omitted from
Fig. 9. In particular, we replace Constancy with the more powerful Frame rule and give a local rule
for assignment (see below). As with ISL (and in contrast to UNTer), UNTersl triples are local in
that their pre-states only contain the resources needed by the program. For instance, as assignment
requires no heap resources, as shown in AssignSL the pre-state of skip is simply given by the pure
(non-heap) assertion 𝑥 =𝑥 ′, recording the old value of 𝑥 which can be used in the post-state.

As in SL and ISL, the crux of UNTersl lies in the Frame rule, allowing one to extend the pre- and
post-states with disjoint resources in 𝑟 , where fv(𝑟 ) returns the set of free variables in 𝑟 , andmod(C)
returns the set of (program) variables modified by C (i.e. those on the left-hand of ‘:=’ in assignment,
lookup and allocation). These definitions are standard and elided. Heap manipulation rule are
identical to those of ISL. For instance, Store describes a successful heap mutation, while StoreEr
and StoreNull state that mutating 𝑥 causes an error when 𝑥 is deallocated or null, respectively.
The UNTersl divergent proof rules are identical to those of UNTer in Fig. 3, except that the

terminating (BUA) UNTer triples in the premises (e.g. the first premise of Div-Seq2) are replaced
with their UNTersl counterparts. Additionally, we can extend the framing principle to divergent
triples as shown in Div-Frame. That is, if C has a divergent trace starting from the states in 𝑝 , then
it also has divergent traces starting from the states in 𝑝 ∗ 𝑟 .

UNTer
sl
Model and Semantics. Aswell as a (variable) store, in UNTersl each state additionally

includes a heap (memory); i.e. an UNTersl state, 𝜎 ∈ Statesl ≜ Store×Heap, is a pair of the form
(s, h), comprising a store s ∈ Store ≜ Var → Val (as in UNTer) and a heap h ∈ Heap. The set
of heaps is Heap ≜ Loc

fin
⇀ Val ⊎ {⊥}; that is, each heap is a partial map from locations to either

values (for allocated locations) or the designated ⊥ value (for deallocated locations).
The semantics of UNTersl assertions are as those of ISL and elided here (see §E). As with UNTer,

we define the UNTersl semantics through small-step transitions, where the semantics of constructs
imported from UNTer are as in UNTer and are simply lifted to operate on UNTersl states. The
transitions of to heap-manipulating operations are standard and elided here (see Fig. 10 in §E).

Semantic BUA, FUA and Divergent triples in UNTer
sl. The formal interpretations of BUA,

FUA and divergent triples in UNTersl are identical to their UNTer counterparts, except that the
UNTer states (stores) are replaced with corresponding UNTersl states (pairs of stores and heaps).
More concretely, a BUA triple in UNTersl is valid, written |=B [𝑝] C [𝜖 :𝑞], iff for all 𝜎𝑝 ∈ 𝑝 ,

there exists 𝜎𝑞 ∈ 𝑞 and 𝑛 such that C, 𝜎𝑝
𝑛−→ −, 𝜎𝑞, 𝜖 , where C, 𝜎

𝑛−→ −, 𝜎 ′, 𝜖 is as defined in Def. 1
with the UNTer states s, s′, s′′ replaced with corresponding UNTersl states 𝜎 , 𝜎 ′ and 𝜎 ′′, and where
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C, 𝜎 −→ C
′, 𝜎 ′, 𝜖 corresponds to UNTersl transitions described above. A FUA triple in UNTersl is

valid, written |=F [𝑝] C [𝜖 :𝑞], iff for all 𝜎𝑞 ∈ 𝑞, there exists 𝜎𝑝 ∈ 𝑝 and 𝑛 such that C, 𝜎𝑝
𝑛−→ −, 𝜎𝑞, 𝜖 .

Analogously, a divergent triple in UNTersl is valid, written |=
[
𝑝
]
C [∞], iff for all 𝜎 ∈ 𝑝 , there

exists an infinite series of C1,C2, · · · , 𝜎1, 𝜎2, · · · and 𝑛1, 𝑛2, · · · such that C, 𝜎 {𝑛1
C1, 𝜎1, ok {𝑛2

C2, 𝜎2, ok {𝑛3 · · · , where{𝑛 is as defined Def. 2 with UNTer states s, s′, s′′ replaced with corre-
sponding UNTersl states 𝜎 , 𝜎 ′ and 𝜎 ′′, and where C, 𝜎 −→ C

′, 𝜎 ′, 𝜖 denotes UNTersl transitions.
Finally, we show that the BUA, FUA and divergent proof system of UNTersl presented in Fig. 9

is sound, with the full proof given in the technical appendix (§F).

Theorem 11 (UNTersl soundness). For all 𝑝 , 𝑞, C and 𝜖 :

1) if ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 9, then |=B [𝑝] C [𝜖 :𝑞] holds;
2) if ⊢F [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 9, then |=F [𝑝] C [𝜖 :𝑞] holds; and
3) if ⊢

[
𝑝
]
C [∞] is derivable using the rules in Fig. 9, then |=

[
𝑝
]
C [∞] holds.

8 PROTOTYPE IMPLEMENTATION

We describe our work-in-progress prototype implementation, Pulse∞, based on UNTersl theory
and as an extension of Pulse. Pulse∞ currently only detects the most obvious kinds of divergence
bugs than can be characterised by UNTersl. As such, we plan on adding more features to Pulse∞ to
support detection of additional divergence bug classes, including function calls, gotos and exception
handling, which are all control-flow patterns that are supported by Pulse out of the box.

Pulse∞ Execution Domain. We generalise the Pulse execution domain in Pulse
∞ by adding a

new kind of error state InfiniteExecution on top of the existing ok and er states of Pulse. For every
back-edge of the program, Pulse∞ checks the lasso property between the pre- and the post-states
as

[
𝑝
]
C
★
[
ok : 𝑝

]
; i.e. there exists a pre-state before the back-edge that is also a post-state. Each

Pulse state contains 1) a disjunctive part that encodes the set of reachable states in a big disjunction,
one disjunct per path, without merging path conditions; and 2) a non-disjunctive part that encodes
other environment conditions that hold for all paths. Pulse∞ retains this product domain structure
and our divergence extension only requires updating the disjunctive part of the Pulse state.

Abstract Interpreter. The Pulse checker implementation is based on an abstract interpretation
subsystem of Infer known as Infer.AI, providing generic abstract domain primitives (e.g. top, bottom,
and join) as well as generic widening and narrowing extensions for convergence acceleration.
Pulse

∞, as with Pulse, only uses widening to encode visiting the analysed program back-edges.
Unlike Pulse, however, in Pulse

∞ we also need to define widening for the disjunctive domain part
of the state to check that a given state 𝜎𝑝 is reachable from itself for a given path. If such condition
is found during widening, the new InfiniteExecution error state is added to the post-condition, and
this error state is eventually reported when it bubbles up in the active Pulse state queue.

Scalability. The abduction and separation logic features of Pulse allow our analysis to be scalable,
and running Pulse

∞ on thousands of projects yields no perceptible performance change compared
to Pulse, thus validating Pulse as a potential framework for compositional non-termination proving
in practice. Further development and evaluation of Pulse∞ at scale is planned for future work.

9 RELATEDWORK

There are of course very many individual reports of personal experience with non-termination
bugs which many readers will no doubt have experienced. Our work gathering CVE’s related to
non-termination was an attempt to collect data on important such bugs occurring in practice. A
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recent empirical study is also worth noting, which looked at non-termination bugs in OSS projects,
finding 445 non-termination bugs from 3,142 GitHub commits [27].

There has been significant work on automatedmethods for proving termination; see the survey by
Cook et al. [11]. When a termination prover fails, the question of whether the failed proof identifies
a termination bug or if it is a false positive is more difficult than proving safety: termination bugs
cannot be generally witnessed with finite traces (assuming unbounded resources in the computation
model, that is). However, as Godefroid argues [16], the main value of analysis tools lies in the
discovery of bugs, not in the proof of program correctness. Thus, it is valuable to consider proving
non-termination, even without waiting for the wide deployment of termination verifiers.
The fundamental work of Gupta et al. [17] looked at using proof to find non-termination bugs.

They work with a transition system consisting of initial and final states and a transition relation,
and they identify the concept of a recurrence set 𝑅 as (i) a non-empty intersection with the initial set
of states, and (ii) reachability of 𝑅 from every state satisfying 𝑅. Reachability in (ii) corresponds to
⊢B

[
𝑅
]
C

[
ok : 𝑅

]
. One might argue that the relation between the UNTer proof system for ⊢B

[
𝑝
]

C

[
ok : 𝑞

]
and the model of Gupta et al. [17] is analogous to the relation between Hoare’s logic and

Floyd’s proof method [1]: using the under-approximate triples provides a route to compositional
reasoning. There are many detailed differences beyond these points. They first run a concolic
executor to gather assertions at program points, especially loop entry, but then employ an encoding
in arithmetic to determine reachability facts for loop bodies, and they treat the heap concretely
(as this encoding is difficult otherwise). By contrast, we reason about reachability both of the loop
stems and bodies in the same logical system, and we use separation logic to reason abstractly about
heaps (SL-based analyses were not available at the time of Gupta et al. [17]).

Our prototype, Pulse∞, inherits the strengths and weaknesses of Pulse. In terms of its strengths,
it is easy to run Pulse

∞ on program snippets, to scale it to large programs, and to incorporate it in
a CI-based deployment on pull requests. In terms of its weaknesses, Pulse has a weak treatment
of arithmetic, meaning that tricky examples (as in [17]) may not be provable. The strengths and
weaknesses of [17] are the converse. We do not believe the weaknesses of either are inevitable; e.g.
by adding a stronger arithmetic solver to Pulse

∞ it would obviously be possible to prove tricky
examples; the question is the effect this would have on performance.
After Gupta et al. [17], there have been many further papers on automatic non-termination

proving or checking. Cook et al. [8], Chen et al. [7] introduce novel ideas on the use of over-
approximation, going beyond the under-approximate logics here. Le et al. [20] introduce a separation
logic for proving both termination and non-termination, using temporal predicates in preconditions,
and we are not sure of the relation to the under-approximate approach here.

The idea of finding non-termination bugs using proof is appealing, and it is perhaps not intuitively
too complicated. Although this paper is but a step on the way, it is not unreasonable to hope that
non-termination proof techniques, with further maturation, might be developed to a degree where
they could be routinely deployed in engineering practice.
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A DERIVED RULES

IfTrue Derivation

⊢†
[
𝑝 ∧ 𝐵

]
assume(𝐵)

[
ok : 𝑝 ∧ 𝐵

] (Assume)
⊢†
[
𝑝 ∧ 𝐵

]
C1

[
ok : 𝑞

] (given)

⊢†[𝑝 ∧ 𝐵] assume(𝐵);C1 [𝜖 :𝑞] (Seq)

⊢†[𝑝 ∧ 𝐵] (assume(𝐵);C1) + (assume(¬𝐵);C2) [𝜖 :𝑞] (Choice)

⊢†[𝑝 ∧ 𝐵] if (𝐵) thenC1 else C2 [𝜖 :𝑞] (If encoding)

IfFalse Derivation

⊢†
[
𝑝 ∧ ¬𝐵

]
assume(¬𝐵)

[
ok : 𝑝 ∧ ¬𝐵

] (Assume)
⊢†
[
𝑝 ∧ ¬𝐵

]
C2

[
ok : 𝑞

] (given)

⊢†[𝑝 ∧ ¬𝐵] assume(¬𝐵);C2 [𝜖 :𝑞] (Seq)

⊢†[𝑝 ∧ ¬𝐵] (assume(𝐵);C1) + (assume(¬𝐵);C2) [𝜖 :𝑞] (Choice)

⊢†[𝑝 ∧ ¬𝐵] if (𝐵) thenC1 else C2 [𝜖 :𝑞] (If encoding)

ConsEq Derivation (BUA case)

𝑝 ⇔ 𝑝 ′ (given)

𝑝 ⊆ 𝑝 ′ ⊢B [𝑝 ′] C [𝜖 :𝑞′] (given) 𝑞 ⇔ 𝑞′
(given)

𝑞′ ⊆ 𝑞

⊢B [𝑝] C [𝜖 :𝑞] (ConsF)

ConsEq Derivation (FUA case)

𝑝 ⇔ 𝑝 ′ (given)

𝑝 ′ ⊆ 𝑝 ⊢F [𝑝 ′] C [𝜖 :𝑞′] (given) 𝑞 ⇔ 𝑞′
(given)

𝑞 ⊆ 𝑞′

⊢F [𝑝] C [𝜖 :𝑞] (ConsB)

WhileFalse Derivation

⊢†
[
𝑝 ∧ ¬𝐵

]
(assume(𝐵);C)★

[
ok : 𝑝 ∧ ¬𝐵

] (Loop0)
⊢†
[
𝑝 ∧ ¬𝐵

]
assume(¬𝐵)

[
ok : 𝑝 ∧ ¬𝐵

] (Assume)

⊢†
[
𝑝 ∧ ¬𝐵

]
(assume(𝐵);C)★; assume(¬𝐵)

[
ok : 𝑝 ∧ ¬𝐵

] (Seq)

⊢†
[
𝑝 ∧ ¬𝐵

]
while (𝐵) C

[
ok : 𝑝 ∧ ¬𝐵

] (while encoding)

WhileSubvariant Derivation
In the following, let 𝑟 (𝑛) ≜ 𝑝 (𝑛) ∧ 𝐵 for all 𝑛 ∈ N:

(1) (2)
⊢†
[
𝑝 (0) ∧ 𝐵

]
(assume(𝐵);C)★; assume(𝐵);C

[
ok : 𝑞 ∧ ¬𝐵

] (Seq)

⊢†
[
𝑝 (0) ∧ 𝐵

]
(assume(𝐵);C)★

[
ok : 𝑞 ∧ ¬𝐵

] (Loop)
⊢†
[
𝑞 ∧ ¬𝐵

]
assume(¬𝐵)

[
ok : 𝑞 ∧ ¬𝐵

] (Assume)

⊢†
[
𝑝 (0) ∧ 𝐵

]
(assume(𝐵);C)★; assume(¬𝐵)

[
ok : 𝑞 ∧ ¬𝐵

] (Seq)

⊢†
[
𝑝 (0) ∧ 𝐵

]
while (𝐵) C

[
ok : 𝑞 ∧ ¬𝐵

] (while encoding)
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with

∀𝑛 < 𝑘. ⊢†
[
𝑟 (𝑛)

]
assume(𝐵)

[
ok : 𝑟 (𝑛)

] Assume
∀𝑛 < 𝑘. ⊢†

[
𝑟 (𝑛)

]
C

[
ok : 𝑟 (𝑛+1)

] (given)

∀𝑛 < 𝑘. ⊢†
[
𝑟 (𝑛)

]
assume(𝐵);C

[
ok : 𝑟 (𝑛+1)

] (Seq)

⊢†
[
𝑟 (0)

]
(assume(𝐵);C)★

[
ok : 𝑟 (𝑘)

] (Loop-Subvariant)

⊢†
[
𝑝 (0) ∧ 𝐵

]
(assume(𝐵);C)★

[
ok : 𝑝 (𝑘) ∧ 𝐵

] (definition of 𝑟 )

(1)

and

⊢†
[
𝑝 (𝑘) ∧ 𝐵

]
assume(𝐵)

[
ok : 𝑝 (𝑘) ∧ 𝐵

] (Assume)
⊢†
[
𝑝 (𝑘) ∧ 𝐵

]
C

[
ok : 𝑞 ∧ ¬𝐵

] (given)

⊢†
[
𝑝 (𝑘) ∧ 𝐵

]
assume(𝐵);C

[
ok : 𝑞 ∧ ¬𝐵

] (Seq)

(2)

Div-LoopNest Derivation
In the following, let 𝑞(𝑛) ≜ 𝑝 (𝑛) ∧ 𝐵 for all 𝑛 ∈ N:

[
𝑝
]
C [∞]

(given)[
𝑝
]
C;C★ [∞]

(Div-Seq1)[
𝑝
]
C
★ [∞]

(Div-LoopUnfold)

Div-While Derivation

⊢B
[
𝑝 ∧ 𝐵

]
assume(𝐵)

[
ok : 𝑝 ∧ 𝐵

] (Assume)
⊢B

[
𝑝 ∧ 𝐵

]
C

[
ok : 𝑞 ∧ 𝐵

] (given)
⊢B

[
𝑝 ∧ 𝐵

]
assume(𝐵);C

[
ok : 𝑞 ∧ 𝐵

] (Seq) 𝑞 ⊆ 𝑝
(given)

𝑞 ∧ 𝐵 ⊆ 𝑝 ∧ 𝐵[
𝑝 ∧ 𝐵

]
(assume(𝐵);C)★ [∞]

(Div-Loop)[
𝑝 ∧ 𝐵

]
(assume(𝐵);C)★; assume(¬𝐵) [∞]

(Div-Seq1)[
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

(while encoding)

Div-WhileNest Derivation

⊢B
[
𝑝 ∧ 𝐵

]
assume(𝐵)

[
ok : 𝑝 ∧ 𝐵

] (Assume) [
𝑝 ∧ 𝐵

]
C [∞]

(given)[
𝑝 ∧ 𝐵

]
assume(𝐵);C [∞]

(Div-Seq2)[
𝑝 ∧ 𝐵

]
(assume(𝐵);C)★ [∞]

(Div-LoopNest)[
𝑝 ∧ 𝐵

]
(assume(𝐵);C)★; assume(¬𝐵) [∞]

(Div-Seq1)[
𝑝 ∧ 𝐵

]
while (𝐵) C [∞]

(while encoding)

Div-WhileSubvariant Derivation
In the following, let 𝑞(𝑛) ≜ 𝑝 (𝑛) ∧ 𝐵 for all 𝑛 ∈ N:
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∀𝑛 ∈ N. ⊢B
[
𝑞(𝑛)

]
assume(𝐵)

[
ok : 𝑞(𝑛)

] (Assume)
∀𝑛 ∈ N. ⊢B

[
𝑞(𝑛)

]
C

[
ok : 𝑞(𝑛+1)

] (given)

∀𝑛 ∈ N. ⊢B
[
𝑞(𝑛)

]
(assume(𝐵);C)

[
ok : 𝑞(𝑛+1)

] (Seq)[
𝑞(0)

]
(assume(𝐵);C)★ [∞]

(Div-Subvariant)[
𝑝 (0) ∧ 𝐵

]
(assume(𝐵);C)★ [∞]

(definition of 𝑞(0))[
𝑝 (0) ∧ 𝐵

]
(assume(𝐵);C)★; assume(¬𝐵) [∞]

(Div-Seq1)[
𝑝 (0) ∧ 𝐵

]
while (𝐵) C [∞]

(while encoding)
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S-Local
s′ = s[𝑥 ↦→ 𝑣] 𝑣 ∈ Val

local 𝑥 in C, s −→ C; end(𝑥, s(𝑥)), s′

S-LocalEnd
s′ = s[𝑥 ↦→ 𝑣]

end(𝑥, 𝑣), s −→ skip, s′

S-Assign
s′ = s[𝑥 ↦→ s(𝑒)]

𝑥 := 𝑒, s −→ skip, s′, ok

S-Assume
s(𝐵) = true

assume(𝐵), s −→ skip, s, ok

S-Error
error, s −→ skip, s, er

S-Choice
𝑖 ∈ {1, 2}

C1+C2, s −→ C𝑖 , s, ok

S-Seq1
C1, s −→ C′1, s

′, 𝜖

C1;C2, s −→ C′1;C2, s
′, 𝜖

S-SeqSkip
skip;C, s −→ C, s, ok

S-Loop0
C
★, s −→ skip, s, ok

S-Loop
C
★, s −→ C;C★, s, ok

Fig. 8. The UNTer small-step operational semantics

B UNTer SEMANTICS AND SOUNDNESS

Instrumented Commands and Operational Semantics. Although in sequential settings the
semantics is given in the big-step fashion [23, 24], we opt for small-step semantics instead. This
is because big-step semantics by definition describe terminating executions, while our aim is to
formalise the semantics of divergent triples. Specifically, as we describe below, we formalise the
semantics of a divergent triple as an infinite, non-terminating execution trace.

Note that local 𝑥 in C declares a variable 𝑥 whose scope is limited to C. To describe the semantics
of local 𝑥 in C in a small-step fashion, we introduce instrumented commands, defined by the grammar
below (where C is as defined in §4), which additionally include the end(𝑥, 𝑣) construct, recording
the existing (old) value of 𝑥 when redeclaring 𝑥 in a new scope.

C ::= C | end(𝑥, 𝑣) | C1;C2
We present our small-step semantics in Fig. 8, with transitions of the form C, s −→ C′, s′, 𝜖 , where C
and s respectively denote the current (instrumented) command and store (state), C′ and s′ denote
their continuations (what they reduce to) and 𝜖 denotes the exit condition, describing whether
reducingC toC′ took place normally (ok) or erroneously (er). As shown in S-Local, when evaluating
local 𝑥 in C under a state s ∈ Store, we assign an arbitrary value 𝑣 to 𝑥 in s, and continue with
executing C followed by end(𝑥, s(𝑥)). That is, we record the existing value of 𝑥 , s(𝑥), so that we
can restore it once the execution of C has ended, as reflected in the S-LocalEnd transition.
The remaining transition rules are standard: assigning 𝑒 to 𝑥 simply evaluates 𝑒 in the current

state (denoted by s(𝑒)) and updates the value of 𝑥 in the state, terminating normally; assume(𝐵)
reduces to skip normally when 𝐵 evaluates to true in the current state; error reduces to skip

erroneously; and C1 + C2 non-deterministically reduces to one of its branches (C𝑖 with 𝑖 ∈ {1, 2}).
When reducing C1;C2, we either reduce the left-hand side until it reduces to skip (S-Seq1), or
continue with the right-hand side when the left side is skip (S-SeqSkip). Finally, we either reduce a
loop to skip, i.e. unroll it zero times (S-Loop0), or unroll it once and continue with C

★ (S-Loop).

B.1 UNTer Semantics

Lemma 1. For all 𝑛, s, s′, C, C′, if C, s
𝑛−→ C

′, s′, ok, then C
′ = skip.

Proof. By induction on 𝑛.

Base case 𝑛=0
Pick arbitrary s, s′, C, C′ such that C, s

0−→ C
′, s′, ok. From the definition of

0−→ we then have C′=skip,
as required.
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Inductive case 𝑛=𝑘+1
Pick arbitrary s, s′, C, C′ such that C, s

𝑛−→ C
′, s′, ok. From the definition of

𝑛−→ we know there exists
C
′′, s′′ such that C, s −→ C

′′, s′′, ok and C
′′, s′′

𝑘−→ C
′, s′, ok. As such, from C

′′, s′′
𝑘−→ C

′, s′, ok and the
inductive hypothesis we have C′=skip, as required. □

B.2 Soundness of BUA and FUA Rules

Proposition 12. For all 𝑟, s,C, 𝑛, s′, 𝜖 , if s ∈ 𝑟 , fv(𝑟 ) ∩mod(C) = ∅ and C, s
𝑛−→ −, s′, 𝜖 , then s′ ∈ 𝑟 .

Lemma 2. For all s, s′, s′′, C1, C2, C′, 𝑖 , 𝑗 , 𝜖 , if C1, s
𝑖−→ −, s′′, ok and C2, s′′

𝑗
−→ C

′, s′, 𝜖 , then there
exists 𝑛 such that C1;C2, s

𝑛−→ C
′, s′, 𝜖 .

Proof. Pick arbitrary s, s′, s′′, C1, C2, C′, C′′, 𝑖 , 𝑗 , 𝜖 , such that C1, s
𝑖−→ C

′′, s′′, ok and C2, s′′
𝑗
−→

C
′, s′, 𝜖 . We proceed by induction on 𝑖 .

Case 𝑖 = 0
From C1, s

0−→ C
′′, s′′, ok we know C1 = C

′′ = skip and s = s′′. As such, since C1 = skip and
s = s′′, from S-SeqSkip we have C1;C2, s −→ C2, s′′, ok. Consequently, from C2, s′′

𝑗
−→ C

′, s′, 𝜖 and the
definition of

𝑗+1
−−→ we have C1;C2, s

𝑗+1
−−→ C

′, s′, 𝜖 , as required.

Case 𝑖 = 𝑘+1
From the definition ofC1, s

𝑖−→ C
′′, s′′, ok we then know there existsC3, s3 such thatC1, s −→ C3, s3, ok

and C3, s3
𝑘−→ C

′′, s′′, ok. As such, from the inductive hypothesis, C3, s3
𝑘−→ C

′′, s′′, ok and C2, s′′
𝑗
−→

C
′, s′, 𝜖 we know there exists 𝑛 such that C3;C2, s3

𝑛−→ C
′, s′, 𝜖 . Moreover, as C1, s −→ C3, s3, ok,

from S-Seq1 we have C1;C2, s −→ C3;C2, s3, ok. Consequently, as C1;C2, s −→ C3;C2, s3, ok and
C3;C2, s3

𝑛−→ C
′, s′, 𝜖 , from the definition of

𝑛+1−−→ we have C1;C2, s
𝑛+1−−→ C

′, s′, 𝜖 , as required. □

Lemma 3. For all s, s′, C1, C2, C′, 𝑖 , if C1, s
𝑖−→ C

′, s′, er, then C1;C2, s
𝑖−→ C

′;C2, s′, er.

Proof. Pick arbitrary s, s′, C1, C2, C′, 𝑖 such that C1, s
𝑖−→ C

′, s′, er . We proceed by induction on 𝑖 .

Case 𝑖 = 1
From C1, s

1−→ C
′, s′, er we know C1, s −→ C

′, s′, er . As such, from S-Seq1 we have C1;C2, s −→
C
′;C2, s′, er . Consequently, from the definition of

1−→ we have C1;C2, s
1−→ C

′;C2, s′, er , as required.

Case 𝑖 = 𝑘+1
From the definition of C1, s

𝑖−→ C
′, s′, er we then know there exists C3, s3 such that C1, s −→

C3, s3, ok and C3, s3
𝑘−→ C

′, s′, er . As such, from the inductive hypothesis and C3, s3
𝑘−→ C

′, s′, er

we know C3;C2, s3
𝑘−→ C

′;C2, s′, er . Moreover, as C1, s −→ C3, s3, ok, from S-Seq1 we have C1;C2, s −→
C3;C2, s3, ok. Consequently, as C1;C2, s −→ C3;C2, s3, ok and C3;C2, s3

𝑘−→ C
′;C2, s′, er , from the

definition of
𝑘+1−−→ we have C1;C2, s

𝑘+1−−→ C
′;C2, s′, er , as required. □

Lemma 4. For all 𝑛,C1,C2, s, s′, 𝜖 , if C1;C2, s
𝑛−→ −, s′, 𝜖 then either 𝜖 = er and C1, s

𝑛−→ −, s′, 𝜖 , or
there exists 𝑖, 𝑗 ≤ 𝑛, s′′ such that C1, s

𝑖−→ −, s′′, ok and C2, s′′
𝑗
−→ −, s′, 𝜖 .

Proof. By induction on 𝑛.
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Base case 𝑛=0
Pick arbitrary C1,C2, s, s′, 𝜖 such that C1;C2, s

0−→ −, s′, 𝜖 . This case does not arise as C1;C2, s
0−→

−, s′, 𝜖 would imply C1;C2 = skip, leading to a contradiction.

Base case 𝑛=1 and 𝜖=er
Pick arbitrary C1,C2, s, s′, 𝜖 such that C1;C2, s

1−→ −, s′, er . From the definition of C1;C2, s
1−→ −, s′, er

we know C1;C2, s −→ −, s′, er , and thus by inversion on C1;C2, s −→ −, s′, er we know C1, s
1−→ −, s′, er ,

as required.

Inductive case 𝑛=𝑘+1
Pick arbitrary C1,C2, s, s′, 𝜖 such that C1;C2, s

𝑛−→ −, s′, 𝜖 . From the definition of
𝑛−→ we then know

there exist C′, s′′ such that C1;C2, s −→ C
′, s′′, ok and C′, s′′

𝑘−→ −, s′, 𝜖 . From inversion on C1;C2, s −→
C
′, s′′, ok there are two cases to consider: 1) C1 = skip, C′ = C2, s′′ = s, i.e. C1;C2, s −→ C2, s, ok; or

2) there exists C′
1 such that C1, s −→ C

′
1, s

′′, ok and C
′ = C

′
1;C2.

In case (1), by definition we have C1, s
0−→ skip, s′′, ok. Moreover, as C′ = C2, from C

′, s′′
𝑘−→ −, s′, 𝜖

we have C2, s′′
𝑘−→ −, s′, 𝜖 . That is, as 0 ≤ 𝑛 and 𝑘 ≤ 𝑛, we have C1, s

0−→ skip, s′′, ok and C2, s′′
𝑘−→

−, s′, 𝜖 , as required.
In case (2), as C′ = C

′
1;C2 and C

′, s′′
𝑘−→ −, s′, 𝜖 , from the inductive hypothesis we know either a)

𝜖=er andC′
1, s

′′ 𝑘−→ −, s′, 𝜖 ; or b) there exist 𝑖, 𝑗 ≤ 𝑘, s2 such thatC′
1, s

′′ 𝑖−→ −, s2, ok andC2, s2
𝑗
−→ −, s′, 𝜖 .

In case (2.a), as 𝜖=er , C1, s −→ C
′
1, s

′′, ok and C
′
1, s

′′ 𝑘−→ −, s′, 𝜖 , from the definition of
𝑛−→ we have

C1, s
𝑛−→ −, s′, er , as required.

In case (2.b), as 𝑖 ≤ 𝑘 , C1, s −→ C
′
1, s

′′, ok and C′
1, s

′′ 𝑖−→ −, s2, ok, from the definition of
𝑖+1−−→we know

there exists𝑚=𝑖+1 ≤ 𝑘+1 = 𝑛 such that C1, s
𝑚−→ −, s2, ok. Moreover, we also know there exists

𝑗 ≤ 𝑘 < 𝑛 such that C2, s2
𝑗
−→ −, s′, 𝜖 . That is, we know there exist𝑚, 𝑗 ≤ 𝑛 such that C1, s

𝑚−→ −, s2, ok
and C2, s2

𝑗
−→ −, s′, 𝜖 , as required. □

Lemma 5. For all 𝑛,C, s, s′, 𝜖 , if C★;C, s
𝑛−→ −, s′, 𝜖 then there exists𝑚 such that C;C★, s

𝑚−→ −, s′, 𝜖 .

Proof. By strong induction on 𝑛.

Base case 𝑛=0
Pick arbitrary C, s, s′, 𝜖 such that C★;C, s

0−→ −, s′, 𝜖 . This case does not arise as C★;C, s
0−→ −, s′, 𝜖

would imply C
★;C = skip, leading to a contradiction.

Base case 𝑛=1
Pick arbitrary C, s, s′, 𝜖 such that C★;C, s

1−→ −, s′, 𝜖 . This case also does not arise. Specifically,
from C

★;C, s
1−→ −, s′, 𝜖 we know that 𝜖 = er and C

★;C, s −→ −, s′, 𝜖 , i.e. C★;C, s −→ −, s′, er . By
inversion, the only transition that could apply is that of S-Seq1, meaning that there exists C′ such
that C★, s −→ −, s′, er . However, by inversion, no transition in Fig. 8 allows us to take an erroneous
transition of the form C

★, s −→ −, s′, er .

Inductive case 𝑛=𝑘+1
Pick arbitrary C, s, s′, 𝜖,C′ such that C★;C, s

𝑛−→ C
′, s′, 𝜖 . From C

★;C, s
𝑛−→ −, s′, 𝜖 we know there

exists s′′,C′ such that C★;C, s −→ C
′, s′′, ok and C

′, s′′
𝑘−→ −, s′, 𝜖 . From C

★;C, s −→ C
′, s′′, ok and by
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inversion through S-Seq1 we know there exists C′
1 such that C★, s −→ C

′
1, s

′′, ok and C
′ = C

′
1;C.

By inversion on C
★, s −→ C

′
1, s

′′, ok there are two cases to consider: 1) Through S-Loop0 we have
C
′
1 = skip and s′′ = s, i.e. C★, s −→ skip, s, ok; or 2) Through S-Loop we have C′

1 = C;C★ and s′′ = s,
i.e. C★, s −→ C;C★, s, ok.

In case (1), from C
′, s′′

𝑘−→ −, s′, 𝜖 , C′ = C
′
1;C and the assumption of the case we have skip;C, s

𝑘−→
−, s′, 𝜖 . As such, from the definition of

𝑘−→ and inversion we know the cases where 𝑘=0 or 𝑘=1∧𝜖 = er
do not arise, and that skip;C, s −→ C, s, ok and C, s

𝑘−1−−→ −, s′, 𝜖 . There are now to subcases to consider:
a) 𝜖=ok; or b) 𝜖=er .

In case (1.a), we have C, s
𝑘−1−−→ −, s′, ok. Moreover, from S-Loop0 we have C★, s′ −→ skip, s′, ok, and

thus since by definitionwe also have skip, s′
0−→ skip, s′, ok, by definitionwe haveC★, s′

1−→ skip, s′, ok.
As such, from C, s

𝑘−1−−→ −, s′, ok, C★, s′
1−→ skip, s′, ok and Lemma 2 we know there exists𝑚 such that

C;C★, s
𝑚−→ −, s′, ok, i.e. C;C★, s

𝑚−→ −, s′, 𝜖 , as required.
In case (1.b), we have C, s

𝑘−1−−→ −, s′, er . As such, from Lemma 3 we have C;C★, s
𝑘−1−−→ −, s′, er , i.e.

there exists𝑚 such that C;C★, s
𝑚−→ −, s′, 𝜖 , as required.

In case (2), as C′
1 = C;C★, s′′ = s, C′ = C

′
1;C and C

′, s′′
𝑘−→ −, s′, 𝜖 , we know C;C★;C, s

𝑘−→ −, s′, 𝜖 .
From Lemma 4 we then know there are two cases to consider: a) 𝜖=er and C, s

𝑘−→ −, s′, 𝜖 ; or b) there
exists 𝑖, 𝑗 ≤ 𝑛, s1 such that C, s

𝑖−→ −, s1, ok and C
★;C, s1

𝑗
−→ −, s′, 𝜖 .

In case (2.a), as 𝜖=er and C, s
𝑘−→ −, s′, 𝜖 , from Lemma 3 we have C;C★, s

𝑘−→ −, s′, 𝜖 , as required.
In case (2.b), as 𝑗 ≤ 𝑘 and C★;C, s1

𝑗
−→ −, s′, 𝜖 , from the inductive hypothesis we know there exists

𝑎 such that C;C★, s1
𝑎−→ −, s′, 𝜖 . Moreover, from S-Loop we have C★, s1 −→ C;C★, s1, ok. As such, from

C;C★, s1
𝑎−→ −, s′, 𝜖 and the definition of

𝑎+1−−→ we have C★, s1
𝑎+1−−→ −, s′, 𝜖 . Consequently, since from

the assumption of case (2.b) we also have C, s
𝑖−→ −, s1, ok, from Lemma 2 we know there exists𝑚

such that C;C★, s
𝑚−→ −, s′, 𝜖 , as required. □

Lemma 6. For all 𝑝,C, if ∀𝑛 ∈ N. |=B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
, then ∀𝑘, 𝑖 ∈ N. |=B

[
𝑝 (𝑖)

]
C
★[

ok : 𝑝 (𝑖+𝑘)
]
.

Proof. Pick arbitrary 𝑝,C such that ∀𝑛 ∈ N. |=B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
. We proceed by induc-

tion on 𝑘 .

Base case 𝑘=0
Pick an arbitrary 𝑖 ∈ N. We are then required to show |=B

[
𝑝 (𝑖)

]
C
★
[
ok : 𝑝 (𝑖)

]
. Pick an arbitrary

s ∈ 𝑝 (𝑖). From S-Loop0 we have C★, s −→ skip, s, ok. As such, as we have skip, s
0−→ skip, s, ok (from

the definition of
0−→), by definition we have C★, s

1−→ skip, s, ok. Consequently, we have s ∈ 𝑝 (𝑖) and
C
★, s

1−→ skip, s, ok, as required.

Inductive case 𝑘= 𝑗+1
Pick an arbitrary 𝑖 ∈ N and s ∈ 𝑝 (𝑖). From ∀𝑛 ∈ N. |=B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
we know |=B

[
𝑝 (𝑖)

]
C

[
ok : 𝑝 (𝑖+1)

]
holds, and thus since s ∈ 𝑝 (𝑖), from the definition of |=B we then know there exists

s′′ ∈ 𝑝 (𝑖+1),𝑚 such that C, s
𝑚−→ −, s′′, ok.
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On the other hand, from the inductive hypothesis we know ∀𝑎 ∈ N. |=B

[
𝑝 (𝑎)

]
C
★
[
ok : 𝑝 (𝑎+ 𝑗)

]
.

As such, from the inductive hypothesis we have |=B

[
𝑝 (𝑖+1)

]
C
★
[
ok : 𝑝 (𝑖+1+ 𝑗)

]
, i.e. |=B

[
𝑝 (𝑖+1)

]
C
★
[
ok : 𝑝 (𝑖+𝑘)

]
. Consequently, since s′′ ∈ 𝑝 (𝑖+1), from the definition of |=B we know there

exists s′ ∈ 𝑝 (𝑖+𝑘), 𝑏 such that C★, s′′,
𝑏−→ −, s′, ok. Therefore, from Lemma 2, C, s

𝑚−→ −, s′′, ok and
C
★, s′′,

𝑏−→ −, s′, ok we know there exists 𝑐 such that C;C★, s,
𝑐−→ −, s′, ok.

Furthermore, from S-Loop we simply have C
★, s,−→ C;C★, s, ok. As such, since we also have

C;C★, s,
𝑐−→ −, s′, ok, from the definition of

𝑐+1−−→ we have C★, s,
𝑐+1−−→ −, s′, ok. That is, we have s′ ∈

𝑝 (𝑖+𝑘) such that C★, s,
𝑐+1−−→ −, s′, ok, as required. □

Lemma 7 (BUA soundness). For all 𝑝 , C, 𝑞, 𝜖 , if ⊢B [𝑝] C [𝜖 :𝑞] can be proven using the proof rules
in Fig. 2, then |=B [𝑝] C [𝜖 :𝑞] holds.

Proof. By induction on the structure of rules in Fig. 2.

Case Skip
Pick arbitrary 𝑝 such that ⊢B

[
𝑝
]
skip

[
ok : 𝑝

]
. Pick an arbitrary s ∈ 𝑝 . From the semantics of skip

we then have skip, s
0−→ skip, s, ok and s ∈ 𝑝 , as required.

Case Assign
Pick arbitrary 𝑝 such that ⊢B

[
𝑝
]
𝑥 := 𝑒

[
ok : ∃𝑦. 𝑝 [𝑦/𝑥] ∧ 𝑥 = 𝑒 [𝑦/𝑥]

]
. Pick an arbitrary s ∈ 𝑝 . Let

s(𝑥) = 𝑣𝑥 , s(𝑒) = 𝑣𝑒 and s′ = s[𝑥 ↦→ 𝑣𝑒 ]. From S-Assign we then have 𝑥 := 𝑒, s −→ skip, s′, ok. As
such, since we also have skip, s′

0−→ skip, s′, ok, by definition we have 𝑥 := 𝑒, s
1−→ skip, s′, ok.

As s(𝑥) = 𝑣𝑥 and s(𝑒) = 𝑣𝑒 , by definition we have s(𝑒 [𝑣𝑥/𝑥]) = 𝑣𝑒 and s′(𝑒 [𝑣𝑥/𝑥]) = 𝑣𝑒 . As
s ∈ 𝑝 and s(𝑥) = 𝑣𝑥 , we also have s ∈ 𝑝 [𝑣𝑥/𝑥]. Thus, as s′ = s[𝑥 ↦→ 𝑣𝑒 ] and s ∈ 𝑝 [𝑣𝑥/𝑥], we
also have s′ ∈ 𝑝 [𝑣𝑥/𝑥]. Similarly, as s′(𝑒 [𝑣𝑥/𝑥]) = 𝑣𝑒 and s′ = s[𝑥 ↦→ 𝑣𝑒 ] (i.e. s′(𝑥) = 𝑣𝑒 ), we
have s′ ∈ 𝑥 = 𝑒 [𝑣𝑥/𝑥]. That is, we have s′ ∈ 𝑝 [𝑣𝑥/𝑥] ∧ 𝑥 = 𝑒 [𝑣𝑥/𝑥]. Let s′′ = s′[𝑦 ↦→ 𝑣𝑥 ]. Conse-
quently, as s′ ∈ 𝑝 [𝑣𝑥/𝑥] ∧ 𝑥 = 𝑒 [𝑣𝑥/𝑥], we also have s′′ ∈ 𝑝 [𝑦/𝑥] ∧ 𝑥 = 𝑒 [𝑦/𝑥]. As such, since
s′′ ∈ 𝑝 [𝑦/𝑥] ∧𝑥 = 𝑒 [𝑦/𝑥] and s′′ = s′[𝑦 ↦→ 𝑣𝑥 ], by definition we have s′ ∈ ∃𝑦. 𝑝 [𝑦/𝑥] ∧𝑥 = 𝑒 [𝑦/𝑥].
Therefore, we have 𝑥 := 𝑒, s

1−→ skip, s′, ok and s′ ∈ ∃𝑦. 𝑝 [𝑦/𝑥] ∧ 𝑥 = 𝑒 [𝑦/𝑥], as required.

Case Assume
Pick arbitrary 𝑝, 𝐵 such that ⊢B

[
𝑝 ∧ 𝐵

]
assume(𝐵)

[
ok : 𝑝 ∧ 𝐵

]
. Pick an arbitrary s ∈ 𝑝 ∧ 𝐵. By

definition we then know s(𝐵) = true. From S-Assume we then have assume(𝐵), s −→ skip, s, ok.
As such, since we also have skip, s

0−→ skip, s, ok, by definition we have assume(𝐵), s 1−→ skip, s, ok.
Consequently, we have s ∈ 𝑝 ∧ 𝐵 and assume(𝐵), s 1−→ skip, s, ok, as required.

Case Error
Pick arbitrary 𝑝 such that ⊢B [𝑝] error [er : 𝑝]. Pick an arbitrary s ∈ 𝑝 . From S-Error we then have
error, s −→ skip, s, er . As such, by definition we have error, s

1−→ skip, s, er . Consequently, we have
s ∈ 𝑝 and error, s

1−→ skip, s, er , as required.

Case Seq
Pick arbitrary 𝑝, 𝑞, 𝑟,C1,C2, 𝜖 such that ⊢B

[
𝑝
]
C1

[
ok : 𝑟

]
and ⊢B [𝑟 ] C2 [𝜖 :𝑞]. Pick an arbitrary

s ∈ 𝑝 . From ⊢B
[
𝑝
]
C1

[
ok : 𝑟

]
and the inductive hypothesis we then know there exists s′′ ∈ 𝑟, 𝑖 such

that C1, s
𝑖−→ −, s′′, ok. Moreover, as s′′ ∈ 𝑟, 𝑖 , from ⊢B [𝑟 ] C2 [𝜖 :𝑞] and the inductive hypothesis
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we know there exists s′ ∈ 𝑞, 𝑗 such that C2, s′′
𝑗
−→ −, s′, 𝜖 . As C1, s

𝑖−→ −, s′′, ok and C2, s′′
𝑗
−→ −, s′, 𝜖 ,

from Lemma 2 we know there exists 𝑛 such that C1;C2, s
𝑛−→ −, s′, 𝜖 . That is, there exists s′ ∈ 𝑞, 𝑛

such that C1;C2, s
𝑛−→ −, s′, 𝜖 , as required.

Case SeqEr
Pick arbitrary 𝑝, 𝑞,C1,C2 such that ⊢B [𝑝] C1;C2 [er : 𝑞]. Pick an arbitrary s ∈ 𝑝 . From the ⊢B [𝑝]
C1 [er : 𝑞] premise and the inductive hypothesis we then know there exists s′ ∈ 𝑞, 𝑖 such that
C1, s

𝑖−→ −, s′, er . As such, from Lemma 3 we know C1;C2, s
𝑖−→ −, s′, er . That is, there exists s′ ∈ 𝑞

such that C1;C2, s
𝑖−→ −, s′, er , as required.

Case Choice
Pick arbitrary 𝑝, 𝑞,C1,C2, 𝜖 and 𝑖 ∈ {1, 2} such that ⊢B [𝑝] C1 + C2 [𝜖 :𝑞]. Pick an arbitrary
s ∈ 𝑝 . From the ⊢B [𝑝] C𝑖 [𝜖 :𝑞] premise and the inductive hypothesis we then know there exists
s′ ∈ 𝑞, 𝑗 such that C𝑖 , s

𝑗
−→ −, s′, 𝜖 . Moreover, from S-Choice we have C1 + C2, s −→ C𝑖 , s, ok. As such,

from the definition of
𝑗+1
−−→ we have C1 + C2, s

𝑗+1
−−→ −, s′, 𝜖 . That is, there exists s′ ∈ 𝑞 such that

C1 + C2, s
𝑗+1
−−→ −, s′, 𝜖 , as required.

Case Loop0
Pick arbitrary 𝑝,C such that ⊢B

[
𝑝
]
C
★
[
ok : 𝑝

]
. Pick an arbitrary s ∈ 𝑝 . From S-Loop0 we have

C
★, s −→ skip, s, ok. As such, as we have skip, s

0−→ skip, s, ok (from the definition of
0−→), by definition

we have C★, s
1−→ skip, s, ok. Consequently, we have s ∈ 𝑝 and C

★, s
1−→ skip, s, ok, as required.

Case Loop
Pick arbitrary 𝑝,C, 𝑞 such that ⊢B [𝑝] C★ [𝜖 :𝑞]. Pick an arbitrary s ∈ 𝑝 . From the ⊢B [𝑝] C★;C [𝜖 :𝑞]
premise and the inductive hypothesis we know there exists s′ ∈ 𝑞, 𝑗 such that C★;C, s

𝑗
−→ −, s′, 𝜖 .

From Lemma 5 we then know there exists 𝑖 such that C;C★, s
𝑖−→ −, s′, 𝜖 . From S-Loop we have

C
★, s −→ C;C★, s, ok. As such, from the definition of

𝑖+1−−→ we have C★, s
𝑖+1−−→ −, s′, 𝜖 . Consequently, we

have s ∈ 𝑝 and C
★, s

𝑖+1−−→ −, s′, 𝜖 , as required.

Case Loop-Subvariant
Pick arbitrary 𝑝,C, 𝑘 such that ⊢B

[
𝑝 (0)

]
C
★
[
ok : 𝑝 (𝑘)

]
. From the∀𝑛 ∈ N. ⊢B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
premise and the inductive hypothesis we have ∀𝑛 ∈ N. |=B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
. Consequently,

from Lemma 6 we have |=B

[
𝑝 (0)

]
C
★
[
ok : 𝑝 (𝑘)

]
, as required.

Case Local
Pick arbitrary 𝑝 , C, 𝑞, 𝜖 such that ⊢B [∃𝑥 . 𝑝] local 𝑥 in C [𝜖 :∃𝑥 . 𝑞]. Pick an arbitrary s ∈ ∃𝑥 . 𝑝 ; i.e.
there exists 𝑣, s𝑝 such that s𝑝 = s[𝑥 ↦→ 𝑣] and s𝑝 ∈ 𝑝 . From the ⊢B [𝑝] C [𝜖 :𝑞] premise and the
inductive hypothesis we know there exists s𝑞 ∈ 𝑞 and 𝑛 such that C, s𝑝

𝑛−→ −, s𝑞, 𝜖 . From S-Local we
have local 𝑥 in C, s −→ C; end(𝑥, s(𝑥)), s𝑝 . There are now two cases to consider: 1) 𝜖=ok; or 2) 𝜖=er .
In case (1), let s′′ = s𝑞 [𝑥 ↦→ s(𝑥)]. From S-LocalEnd we then have end(𝑥, s(𝑥)), s𝑞 −→ skip, s′′.

From the definition of
0−→ we have skip, s′′

0−→ skip, s′′, ok, and thus since we have end(𝑥, s(𝑥)), s𝑞 −→
skip, s′′, from the definition of

1−→ we have end(𝑥, s(𝑥)), s𝑞
1−→ skip, s′′. Consequently, since we
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also have C, s𝑝
𝑛−→ −, s𝑞, 𝜖 , from Lemma 2 we know there exists𝑚 such that C; end(𝑥, s(𝑥)), s𝑝

𝑚−→
skip, s′′, ok. On the other hand, since we have local 𝑥 in C, s −→ C; end(𝑥, s(𝑥)), s𝑝 , by definition
of

𝑚+1−−→ we also have local 𝑥 in C, s
𝑚+1−−→ skip, s′′, ok. Finally, as s𝑞 ∈ 𝑞 and s′′ = s𝑞 [𝑥 ↦→ s(𝑥)], by

definition we also have s′′ ∈ ∃𝑥 . 𝑞, as required.
In case (2), from C, s𝑝

𝑛−→ −, s𝑞, 𝜖 and Lemma 3 we have C; end(𝑥, s(𝑥)), s𝑝
𝑛−→ −, s𝑞, 𝜖 . On the

other hand, since we have local 𝑥 in C, s −→ C; end(𝑥, s(𝑥)), s𝑝 , by definition of
𝑛+1−−→ we also have

local 𝑥 in C, s
𝑛+1−−→ −, s𝑞, 𝜖 . Finally, as s𝑞 ∈ 𝑞, by definition we also have s𝑞 ∈ ∃𝑥 . 𝑞, as required.

Case Subst
Pick arbitrary 𝑝,C, 𝑞,𝑦 such that𝑦 ∉ fv(𝑝,C, 𝑞) and (⊢B [𝑝] C [𝜖 :𝑞]) [𝑦/𝑥], i.e. ⊢B [𝑝 [𝑦/𝑥]] C[𝑦/𝑥]
[𝜖 :𝑞 [𝑦/𝑥]]. Pick an arbitrary s ∈ 𝑝 [𝑦/𝑥] and let s𝑝 = s[𝑥 ↦→ s(𝑦)]. We then have s𝑝 ∈ 𝑝 and thus
from the ⊢B [𝑝] C [𝜖 :𝑞] premise and the inductive hypothesis we know there exists s𝑞 ∈ 𝑞, 𝑛 such
that C, s𝑝

𝑛−→ −, s𝑞𝜖 . Let s′ = s𝑞 [𝑦 ↦→ 𝑥]; as s𝑞 ∈ 𝑞, we then have s′ ∈ 𝑞 [𝑦/𝑥]. As such, from the
semantics we also have C[𝑦/𝑥], s 𝑛−→ −, s′, 𝜖 , as required.

Case Disj
Pick arbitrary 𝑝1, 𝑝2, 𝑞1, 𝑞2,C such that ⊢B [𝑝1 ∨ 𝑝2] C [𝜖 :𝑞1 ∨ 𝑞2]. Pick an arbitrary s ∈ 𝑝1 ∨ 𝑝2.
There are then two cases to consider: 1) s ∈ 𝑝1; or 2) s ∈ 𝑝2.

In case (1), from the ⊢B [𝑝1] C [𝜖 :𝑞1] premise and the inductive hypothesis we know there exists
s′ ∈ 𝑞1, 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 . That is, there exists s′ ∈ 𝑞1 ∨ 𝑞2 and 𝑛 such that C, s
𝑛−→ −, s′, 𝜖 , as

required. The proof of case (2) is analogous and omitted.

Case Constancy
Pick arbitrary 𝑝, 𝑞, 𝑟,C such that ⊢B [𝑝 ∧ 𝑟 ] C [𝜖 :𝑞 ∧ 𝑟 ]. Pick an arbitrary s ∈ 𝑝 ∧ 𝑟 . That is, s ∈ 𝑝

and s ∈ 𝑟 . From the ⊢B [𝑝] C [𝜖 :𝑞] premise and the inductive hypothesis we know there exists
s′ ∈ 𝑞, 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 . As such, from the fv(𝑟 ) ∩mod(C) = ∅ premise, Prop. 12 and since
s ∈ 𝑟 , we know s′ ∈ 𝑟 . Therefore, we have s′ ∈ 𝑞 and s′ ∈ 𝑟 and thus s′ ∈ 𝑞 ∧ 𝑟 . That is, there exists
s′ ∈ 𝑞 ∧ 𝑟 and 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 , as required.

Case ConsF
Pick arbitrary 𝑝, 𝑞,C such that ⊢B [𝑝] C [𝜖 :𝑞]. Pick an arbitrary s ∈ 𝑝 . From the 𝑝 ⊆ 𝑝 ′ premise
we then have s ∈ 𝑝 ′. Moreover, from the ⊢B [𝑝 ′] C [𝜖 :𝑞′] and the inductive hypothesis we know
there exists s′ ∈ 𝑞′ and 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 . As 𝑞′ ⊆ 𝑞 and s′ ∈ 𝑞′, we also have s′ ∈ 𝑞. That
is, there exists s′ ∈ 𝑞 and 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 , as required.

Case DisjTrack
Pick arbitrary 𝑃1, 𝑃2, 𝑄1, 𝑄2,C such that ⊢B [𝑃1 ⊎ 𝑃2] C [𝜖 :𝑄1 ⊎𝑄2]. Pick an arbitrary 𝑖 ∈ dom(𝑃1⊎
𝑃2) and s ∈ (𝑃1 ⊎ 𝑃2) (𝑖). We then know that either 𝑖 ∈ dom(𝑃1) or 𝑖 ∈ dom(𝑃2). Without loss of
generality, let us assume 𝑖 ∈ dom(𝑃1).
As s ∈ (𝑃1 ⊎ 𝑃2) (𝑖) and 𝑖 ∈ dom(𝑃1), we then have s ∈ 𝑃1 (𝑖). From the ⊢B [𝑃1] C [𝜖 :𝑄1]

premise, the definition of merged triples premise and the inductive hypothesis we know there
exists s′ ∈ 𝑄1 (𝑖), 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 . That is, there exists s′ ∈ (𝑄1 ⊎𝑄2) (𝑖) and 𝑛 such that
C, s

𝑛−→ −, s′, 𝜖 , as required.
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Case Cons
Pick arbitrary 𝑃,𝑄,C, 𝐼 such that ⊢B [𝑃 ↓ 𝐼 ] C [𝜖 :𝑄 ↓ 𝐼 ]. Pick an arbitrary 𝑖 ∈ dom(𝑃 ↓ 𝐼 ); that is,
from the 𝐼 ⊆ dom(𝑃) we know 𝑖 ∈ dom(𝑃) ∩ 𝐼 , i.e. 𝑖 ∈ dom(𝑃) and 𝑖 ∈ 𝐼 . Pick an arbitrary s ∈ 𝑃 (𝑖).
From the ⊢B [𝑃] C [𝜖 :𝑄] premise the definition of merged triples and the inductive hypothesis
we know there exists s′ ∈ 𝑄 (𝑖) and 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 . As 𝑖 ∈ 𝐼 and 𝑖 ∈ dom(𝑄), we know
𝑖 ∈ dom(𝑄 ↓ 𝐼 ). That is, there exists 𝑖 ∈ dom(𝑄 ↓ 𝐼 ), s′ ∈ (𝑄 ↓ 𝐼 ) (𝑖) and 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 ,
as required. □

Lemma 8 (FUA soundness). For all 𝑝 , C, 𝑞, 𝜖 , if ⊢F [𝑝] C [𝜖 :𝑞] can be proven using the proof rules
in Fig. 2, then |=F [𝑝] C [𝜖 :𝑞] holds.

Proof. By induction on the structure of rules in Fig. 2.

Cases Skip, Assign, Error, Seq, SeqEr, Choice, Loop0, Loop, Loop-Subvariant, Disj, Constancy,
ConsB, Subst
The proof of these cases is as given by O’Hearn [23].

Case Local
Pick arbitrary 𝑝 , C, 𝑞, 𝜖 such that ⊢F [∃𝑥 . 𝑝] local 𝑥 in C [𝜖 :∃𝑥 . 𝑞]. Pick an arbitrary s′ ∈ ∃𝑥 . 𝑞;
i.e. there exists 𝑣, s𝑞 such that s𝑞 = s′[𝑥 ↦→ 𝑣] and s𝑞 ∈ 𝑞. From the ⊢F [𝑝] C [𝜖 :𝑞] premise and the
inductive hypothesis we know there exists s𝑝 ∈ 𝑝 and 𝑛 such that C, s𝑝

𝑛−→ −, s𝑞, 𝜖 . From S-Local we
have local 𝑥 in C, s𝑝 −→ C; end(𝑥, s𝑝 (𝑥)), s𝑝 . There are two cases to consider: 1) 𝜖=ok; or 2) 𝜖=er .
In case (1), let s′′ = s𝑞 [𝑥 ↦→ s𝑝 (𝑥)]. From S-LocalEnd we then have end(𝑥, s𝑝 (𝑥)), s𝑞 −→ skip, s′′.

From the definition of
0−→we have skip, s′′

0−→ skip, s′′, ok, and thus since we have end(𝑥, s𝑝 (𝑥)), s𝑞 −→
skip, s′′, from the definition of

1−→ we have end(𝑥, s𝑝 (𝑥)), s𝑞
1−→ skip, s′′. Consequently, since we

also have C, s𝑝
𝑛−→ −, s𝑞, 𝜖 , from Lemma 2 we know there exists𝑚 such that C; end(𝑥, s𝑝 (𝑥)), s𝑝

𝑚−→
skip, s′′, ok. On the other hand, since we have local 𝑥 in C, s𝑝 −→ C; end(𝑥, s𝑝 (𝑥)), s𝑝 , by definition
of

𝑚+1−−→ we also have local 𝑥 in C, s𝑝
𝑚+1−−→ skip, s′′, ok. Finally, as s𝑝 ∈ 𝑝 , by definition we also have

s𝑝 ∈ ∃𝑥 . 𝑝 , as required.
In case (2), from C, s𝑝

𝑛−→ −, s𝑞, 𝜖 and Lemma 3 we have C; end(𝑥, s𝑝 (𝑥)), s𝑝
𝑛−→ −, s𝑞, 𝜖 . On the

other hand, since we have local 𝑥 in C, s𝑝 −→ C; end(𝑥, s𝑝 (𝑥)), s𝑝 , by definition of
𝑛+1−−→ we also have

local 𝑥 in C, s𝑝
𝑛+1−−→ −, s𝑞, 𝜖 . Finally, as s𝑝 ∈ 𝑝 , by definition we also have s𝑝 ∈ ∃𝑥 . 𝑝 , as required.

Case Assume
Pick arbitrary 𝑝, 𝐵 such that ⊢F

[
𝑝 ∧ 𝐵

]
assume(𝐵)

[
ok : 𝑝 ∧ 𝐵

]
. Pick an arbitrary s ∈ 𝑝 ∧ 𝐵. By

definition we then know s(𝐵) = true. From S-Assume we then have assume(𝐵), s −→ skip, s, ok.
As such, since we also have skip, s

0−→ skip, s, ok, by definition we have assume(𝐵), s 1−→ skip, s, ok.
Consequently, we have s ∈ 𝑝 ∧ 𝐵 and assume(𝐵), s 1−→ skip, s, ok, as required.

Case DisjTrack
Pick arbitrary 𝑃1, 𝑃2, 𝑄1, 𝑄2,C such that ⊢F [𝑃1 ⊎ 𝑃2] C [𝜖 :𝑄1 ⊎𝑄2]. Pick an arbitrary 𝑖 ∈ dom(𝑄1⊎
𝑄2) and s′ ∈ (𝑄1 ⊎𝑄2) (𝑖). We then know that either 𝑖 ∈ dom(𝑄1) or 𝑖 ∈ dom(𝑄2). Without loss of
generality, let us assume 𝑖 ∈ dom(𝑄1).
As s′ ∈ (𝑄1 ⊎ 𝑄2) (𝑖) and 𝑖 ∈ dom(𝑄1), we then have s′ ∈ 𝑄1 (𝑖). From the ⊢F [𝑃1] C [𝜖 :𝑄1]

premise, the definition of merged triples and the inductive hypothesis we know there exists
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s ∈ 𝑃1 (𝑖), 𝑛 such thatC, s
𝑛−→ −, s′, 𝜖 . That is, there exists s ∈ (𝑃1⊎𝑃2) (𝑖) and𝑛 such thatC, s

𝑛−→ −, s′, 𝜖 ,
as required.

Case Cons
Pick arbitrary 𝑃,𝑄,C, 𝐼 such that ⊢B [𝑃 ↓ 𝐼 ] C [𝜖 :𝑄 ↓ 𝐼 ]. Pick an arbitrary 𝑖 ∈ dom(𝑄 ↓ 𝐼 ); that is,
from the 𝐼 ⊆ dom(𝑃) we know 𝑖 ∈ dom(𝑄) ∩ 𝐼 , i.e. 𝑖 ∈ dom(𝑄) and 𝑖 ∈ 𝐼 . Pick an arbitrary s′ ∈ 𝑄 (𝑖).
From the ⊢F [𝑃] C [𝜖 :𝑄] premise the definition of merged triples and the inductive hypothesis
we know there exists s ∈ 𝑃 (𝑖) and 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 . As 𝑖 ∈ 𝐼 and 𝑖 ∈ dom(𝑃), we know
𝑖 ∈ dom(𝑃 ↓ 𝐼 ). That is, there exists 𝑖 ∈ dom(𝑃 ↓ 𝐼 ), s ∈ (𝑃 ↓ 𝐼 ) (𝑖) and 𝑛 such that C, s

𝑛−→ −, s′, 𝜖 , as
required. □

Theorem 13 (Soundness). For all 𝑝 , C, 𝑞, 𝜖 , if ⊢†[𝑝] C [𝜖 :𝑞] can be proven using the proof rules in
Fig. 2, then |=† [𝑝] C [𝜖 :𝑞] holds.

Proof. Follows immediately from Lemma 7 and Lemma 8. □

B.3 Soundness of Divergence Rules

In what follows, we write C, s {+
C
′, s′, 𝜖 for ∃𝑛. C, s {𝑛

C
′, s′, 𝜖 .

Lemma 9. For all C, s,C′, s′, 𝜖, 𝑛, if 𝑛 > 0 and C, s
𝑛−→ C

′, s′, 𝜖 , then C, s {𝑛
C
′, s′, 𝜖 .

Proof. By induction on 𝑛.

Base case 𝑛 = 1
Pick arbitrary C,C′, s,C′, s′, 𝜖 such that C, s

1−→ C
′, s′, 𝜖 . From the definition of

1−→ there are then two
cases to consider: 1) 𝜖=er and C, s −→ C

′, s′, er ; or 2) 𝜖=ok, C′ = skip and C, s −→ C
′, s′, ok.

In case (1), from the definition of{1 we also have C, s {1
C
′, s′, er , as required. In case (2), from

the definition of{1 we also have C, s {1
C
′, s′, ok, as required.

Inductive case 𝑛 = 𝑘+1 with 𝑘 > 0
Pick arbitrary C,C′, s,C′, s′, 𝜖 such that C, s

𝑛−→ C
′, s′, 𝜖 . From the definition of

𝑛−→, we know there
exists C′′, s′′ such that C, s −→ C

′′, s′′, ok and C
′′, s′′

𝑘−→ C
′, s′, 𝜖 . From C

′′, s′′
𝑘−→ C

′, s′, 𝜖 and the
inductive hypothesis we have C′′, s′′ {𝑘

C
′, s′, 𝜖 . As such, from C, s −→ C

′′, s′′, ok and the definition
of{𝑛 we have C, s {𝑛

C
′, s′, 𝜖 , as required. □

Lemma 10. For all 𝑛,C1,C2,C
′
1, s,C

′, s′, 𝜖 , if C1, s {𝑛
C
′
1, s

′, 𝜖 , then C1;C2, s {𝑛
C
′
1;C2, s′, 𝜖 .

Proof. By induction on 𝑛.

Base case 𝑛 = 1
Pick arbitrary C1,C2,C

′
1, s,C

′, s′, 𝜖 such that C1, s {1
C
′
1, s

′, 𝜖 . From the definition of{1 we then
know C1, s −→ C

′
1, s

′, 𝜖 . As such, from S-Seq1 we have C1;C2, s −→ C
′
1;C2, s′, 𝜖 , and thus by definition

of{1 we have C1;C2, s {1
C
′
1;C2, s′, 𝜖 , as required.

Inductive case 𝑛 = 𝑘+1
Pick arbitrary C1,C2,C

′
1, s,C

′, s′, 𝜖 such that C1, s {𝑛
C
′
1, s

′, 𝜖 . From the definition of {𝑛 we
then know there exists C′′, s′′ such that C1, s −→ C

′′, s′′, ok and C
′′, s′′ {𝑘

C
′
1, s

′, 𝜖 . From C1, s −→
C
′′, s′′, ok and S-Seq1 we have C1;C2, s −→ C

′′;C2, s′′, ok. From C
′′, s′′ {𝑘

C
′
1, s

′, 𝜖 and the inductive
hypothesis we have C′′;C2, s′′ {𝑘

C
′
1;C2, s′, 𝜖 . As such, since we have C1;C2, s −→ C

′′;C2, s′′, ok



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Compositional Non-Termination Proving 35

and C
′′;C2, s′′ {𝑘

C
′
1;C2, s′, 𝜖 , from the definition of {𝑛 we have C1;C2, s {𝑛

C
′
1;C2, s′, 𝜖 , as

required. □

Lemma 11. For all s, s′, s′′, C1, C2, C′, 𝑖 , 𝑗 , 𝜖 , if C1, s
𝑖−→ −, s′′, ok and C2, s′′ { 𝑗

C
′, s′, 𝜖 , then there

exists 𝑛 such that C1;C2, s {𝑛
C
′, s′, 𝜖 .

Proof. Pick arbitrary s, s′, s′′, C1, C2, C′, C′′, 𝑖 , 𝑗 , 𝜖 , such that C1, s
𝑖−→ C

′′, s′′, ok and C2, s′′ { 𝑗

C
′, s′, 𝜖 . We proceed by induction on 𝑖 .

Case 𝑖 = 0
From C1, s

0−→ C
′′, s′′, ok we know C1 = C

′′ = skip and s = s′′. As such, since C1 = skip and
s = s′′, from S-SeqSkip we have C1;C2, s −→ C2, s′′, ok. Consequently, from C2, s′′ { 𝑗

C
′, s′, 𝜖 and

the definition of{ 𝑗+1 we have C1;C2, s { 𝑗+1
C
′, s′, 𝜖 , as required.

Case 𝑖 = 𝑘+1
From the definition ofC1, s

𝑖−→ C
′′, s′′, ok we then know there existsC3, s3 such thatC1, s −→ C3, s3, ok

and C3, s3
𝑘−→ C

′′, s′′, ok. As such, from the inductive hypothesis, C3, s3
𝑘−→ C

′′, s′′, ok and C2, s′′ { 𝑗

C
′, s′, 𝜖 we know there exists 𝑛 such that C3;C2, s3 {𝑛

C
′, s′, 𝜖 . Moreover, as C1, s −→ C3, s3, ok,

from S-Seq1 we have C1;C2, s −→ C3;C2, s3, ok. Consequently, as C1;C2, s −→ C3;C2, s3, ok and
C3;C2, s3 {𝑛

C
′, s′, 𝜖 , from the definition of{𝑛+1 we have C1;C2, s {𝑛+1

C
′, s′, 𝜖 , as required. □

Lemma 12. For all 𝑖, 𝑗,C,C′,C′′, s, s′, s′′, 𝜖 , if C, s {𝑖
C
′′, s′′, ok and C

′′, s′′ { 𝑗
C
′, s′, 𝜖 , then

C, s {𝑖+𝑗
C
′, s′, 𝜖 .

Proof. By induction on 𝑖 .

Base case 𝑖=1
Pick arbitrary 𝑗,C,C′,C′′, s, s′, s′′, 𝜖 such that C, s {1

C
′′, s′′, ok and C

′′, s′′ { 𝑗
C
′, s′, 𝜖 . From

C, s {1
C
′′, s′′, ok we then know C, s −→ C

′′, s′′, ok, and thus from C
′′, s′′ { 𝑗

C
′, s′, 𝜖 and the

definition of{ 𝑗+1 we have C, s { 𝑗+1
C
′, s′, 𝜖 , as required.

Inductive case 𝑖=𝑘+1 and 𝑘 > 0
Pick arbitrary 𝑗,C,C′,C′′, s, s′, s′′, 𝜖 such that C, s {𝑖

C
′′, s′′, ok and C

′′, s′′ { 𝑗
C
′, s′, 𝜖 . From

C, s {𝑖
C
′′, s′′, ok and the definition of {𝑖 we know there exists C

′′′, s′′′ such that C, s −→
C
′′′, s′′′, ok, and C

′′′, s′′′ {𝑘
C
′′, s′′, ok. Consequently, from C

′′′, s′′′ {𝑘
C
′′, s′′, ok, C′′, s′′ { 𝑗

C
′, s′, 𝜖 and the inductive hypothesis we have C

′′′, s′′′ {𝑘+𝑗
C
′, s′, 𝜖 . As such, from C, s −→

C
′′′, s′′′, ok and the definition of{𝑘+𝑗+1 we have C, s {𝑘+𝑗+1

C
′, s′, 𝜖 . That is, C, s {𝑖+𝑗

C
′, s′, 𝜖 , as

required. □

Theorem 14 (Divergence soundness). For all 𝑝 , C, if ⊢
[
𝑝
]
C [∞] can be proven using the proof

rules in Fig. 3, then |=
[
𝑝
]
C [∞] holds.

Proof. By induction on the structure of rules in Fig. 3.

Case Div-Local
Pick arbitrary 𝑝 , C such that ⊢

[
∃𝑥 . 𝑝

]
local 𝑥 in C [∞]. Pick an arbitrary s ∈ ∃𝑥 . 𝑝; i.e. there

exists 𝑣, s𝑝 such that s𝑝 = s[𝑥 ↦→ 𝑣] and s𝑝 ∈ 𝑝 . From the
[
𝑝
]
C [∞] premise and the in-

ductive hypothesis we know there exists an infinite series C1,C2, · · · and s1, s2, · · · such that
C, s𝑝 {+

C1, s1, ok {+
C2, s2, ok {+ · · · . As such, from the definition of{+ and Lemma 10 we

haveC; end(𝑥, s(𝑥)), s𝑝 {+
C1; end(𝑥, s(𝑥)), s1, ok {+

C2; end(𝑥, s(𝑥)), s2, ok {+ · · · On the other
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hand, from S-Local we then have local 𝑥 in C, s −→ C; end(𝑥, s(𝑥)), s𝑝 . Therefore, since we also have
C; end(𝑥, s(𝑥)), s𝑝 {+

C1; end(𝑥, s(𝑥)), s1, ok {+
C2; end(𝑥, s(𝑥)), s2, ok {+ · · · , from the defini-

tion of{+ we have local 𝑥 in C, s {+
C1; end(𝑥, s(𝑥)), s1, ok {+

C2; end(𝑥, s(𝑥)), s2, ok {+ · · · ,
as required.

Case Div-Seq1
Pick arbitrary 𝑝 , C1, C2 such that

[
𝑝
]
C1;C2 [∞]. Pick an arbitrary s ∈ 𝑝 . From the

[
𝑝
]
C1 [∞]

premise and the inductive hypothesis we know there exists an infinite series C′
2,C

′
3, · · · , and

s2, s3, · · · , such that C1, s {+
C
′
2, s2, ok {

+
C
′
3, s3, ok {

+ · · · . As such, from the definition of{+

and Lemma 10 we have C1;C2, s {+
C
′
2;C2, s2, ok {+

C
′
3;C2, s3, ok {+ · · · , as required.

Case Div-Seq2
Pick arbitrary 𝑝, 𝑞, C1, C2 such that

[
𝑝
]
C1;C2 [∞]. Pick an arbitrary s ∈ 𝑝 . From the ⊢B

[
𝑝
]
C1[

ok : 𝑞
]
premise and Theorem 13 we know there exists s𝑞 ∈ 𝑞 and 𝑛 such that C1, s

𝑛−→ −, s𝑞, ok.
Moreover, from the

[
𝑞
]
C2 [∞] premise and the inductive hypothesis we know there exists an

infinite series C
′
3,C

′
4, · · · and s3, s4, · · · , such that C2, s𝑞 {+

C
′
3, s3, ok {

+
C
′
4, s4, ok {

+ · · · .
As C1, s

𝑛−→ −, s𝑞, ok and C2, s𝑞 {+
C
′
3, s3, ok, from the definition of {+ and Lemma 11 we

have C1;C2, s {+
C
′
3, s3, ok. Moreover, as C′

3, s3 {
+
C
′
4, s4, ok {

+ · · · , we have C1;C2, s {+

C
′
3, s3, ok {

+
C
′
4, s4, ok {

+ · · · , as required.

Case Div-Choice
Pick arbitrary 𝑝 , C1, C2 such that

[
𝑝
]
C1 + C2 [∞]. Pick an arbitrary s ∈ 𝑝 and 𝑖 ∈ {1, 2}. From the[

𝑝
]
C𝑖 [∞] premise and the inductive hypothesis we know there exists an infinite series C3,C4, · · ·

and s3, s4, · · · , such that C𝑖 , s {+
C3, s3, ok {+

C4, s4, ok {+ · · · . Moreover, from S-Choice we have
C1 + C2, s −→ C𝑖 , s, ok. And thus we have C1 + C2, s −→ C𝑖 , s, ok {+

C3, s3, ok {+
C4, s4, ok {+ · · · ,

as required.

Case Div-LoopUnfold
Pick arbitrary 𝑝 , C such that

[
𝑝
]
C
★ [∞]. Pick an arbitrary s ∈ 𝑝 . From the

[
𝑝
]
C;C★ [∞] premise

and the inductive hypothesis we know there exists an infinite series C1,C2, · · · and s1, s2, · · · ,
such that C;C★, s {+

C1, s1, ok {+
C2, s2, ok {+ · · · . Moreover, from S-Loop we have C★, s −→

C;C★, s, ok. And thus we have C★, s −→ C;C★, s, ok {+
C1, s1, ok {+

C2, s2, ok {+ · · · , as required.

Case Div-LoopNest
This rule can be derived as follows:[

𝑝
]
C [∞][

𝑝
]
C;C★ [∞]

Div-Seq1[
𝑝
]
C
★ [∞]

Div-LoopUnfold

and thus this rule is sound as we established the soundness of Div-Seq1 and Div-LoopUnfold above.

Case Div-Loop
Pick arbitrary 𝑝 , C, 𝑞 such that ⊢

[
𝑝
]
C
★ [∞]. From S-Loop we then have:

∀s ∈ 𝑝. C★, s −→ C;C★, s, ok (1)
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From the ⊢B
[
𝑝
]
C

[
ok : 𝑞

]
premise, Theorem 13, and the 𝑞 ⊆ 𝑝 premise we know ∀s ∈ 𝑝. ∃s′ ∈

𝑝, 𝑛. C, s
𝑛−→ −, s′, ok and thus from Lemma 1 C, s

𝑛−→ skip, s′, ok. That is, from the axiom of choice
we know there exist 𝑓 : 𝑝 → 𝑝 and 𝑔 : 𝑝 → N such that:

∀s ∈ 𝑝. C, s
𝑔 (s)
−−→ skip, 𝑓 (s), ok ∧ 𝑓 (s) ∈ 𝑝 (2)

In what follows, we show that ∀s ∈ 𝑝. C★, s {+
C
★, 𝑓 (s), ok.

Pick an arbitrary s ∈ 𝑝 . From (2) we have C, s
𝑔 (s)
−−→ skip, 𝑓 (s), ok. There are now two cases

to consider: i) 𝑔(s) = 0; or ii) 𝑔(s) > 0. In case (i), we then have C = skip and s=𝑓 (s). As
such, from S-SeqSkip we have C;C★, s −→ C

★, 𝑓 (s), ok, and thus by definition of {1 we have
C;C★, s {1

C
★, 𝑓 (s), ok

In case (ii), from C, s
𝑔 (s)
−−→ skip, 𝑓 (s), ok and Lemma 9 we have C, s {𝑔 (s)

skip, 𝑓 (s), ok. Conse-
quently, from Lemma 10we haveC;C★, s {𝑔 (s)

skip;C★, 𝑓 (s), ok. On the other hand, from S-SeqSkip
we have skip;C★, 𝑓 (s) −→ C

★, 𝑓 (s), ok and thus by definition of {1 we have skip;C★, 𝑓 (s) {1

C
★, 𝑓 (s), ok. From Lemma 12, C;C★, s {𝑔 (s)

skip;C★, 𝑓 (s), ok and skip;C★, 𝑓 (s) {1
C
★, 𝑓 (s), ok

we know there exists 𝑖 such that C;C★, s {𝑖
C
★, 𝑓 (s), ok.

That is, in both cases we know there exists 𝑖 such that C;C★, s {𝑖
C
★, 𝑓 (s), ok. As such, from (1)

and the definition of{𝑖+1 we have C★, s {𝑖+1
C
★, 𝑓 (s), ok, i.e. C★, s {+

C
★, 𝑓 (s), ok. That is, from

(2) we have:

∀s ∈ 𝑝. C★, s {+
C
★, 𝑓 (s), ok ∧ 𝑓 (s) ∈ 𝑝 (3)

Pick an arbitrary s ∈ 𝑝 . From (3) we then know C
★, s {+

C
★, 𝑓 (s), ok {+

C
★, 𝑓 2 (s), ok {+ · · · , as

required.

Case Div-Subvariant
Pick arbitrary 𝑝 , C, 𝑞 such that ⊢

[
𝑝 (0)

]
C
★ [∞]. From S-Loop we then have:

∀s ∈ 𝑝. C★, s −→ C;C★, s, ok (4)

From the ∀𝑛 ∈ N. ⊢B
[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
premise and Theorem 13 we know ∀𝑛 ∈ N. ∀s ∈

𝑝 (𝑛). ∃s′ ∈ 𝑝 (𝑛+1), 𝑘 . C, s 𝑘−→ −, s′, ok and thus from Lemma 1 C, s
𝑘−→ skip, s′, ok. That is, from the

axiom of choice we know there exists a series of functions, 𝑓1, 𝑔1, 𝑓2, 𝑔2 · · · such that for each 𝑖 ∈ N,
we have 𝑓𝑖 : 𝑝 (𝑖−1) → 𝑝 (𝑖) and 𝑔𝑖 : 𝑝 (𝑖−1) → N such that:

∀𝑖 ∈ N+ . ∀s ∈ 𝑝 (𝑖 − 1). C, s
𝑔𝑖 (s)−−−→ skip, 𝑓𝑖 (s), ok ∧ 𝑓𝑖 (s) ∈ 𝑝 (𝑖) (5)

In what follows, we show that ∀𝑖 ∈ N+ . ∀s ∈ 𝑝 (𝑖−1). C★, s {+
C
★, 𝑓𝑖 (s), ok.

Pick an arbitrary 𝑖 ∈ N+ and s ∈ 𝑝 (𝑖−1). From (5) we have C, s
𝑔𝑖 (s)−−−→ skip, 𝑓𝑖 (s), ok. There are now

two cases to consider: a) 𝑔𝑖 (s) = 0; or b) 𝑔𝑖 (s) > 0. In case (a), we then have C = skip and s=𝑓𝑖 (s).
As such, from S-SeqSkip we have C;C★, s −→ C

★, 𝑓𝑖 (s), ok, and thus by definition of {1 we have
C;C★, s {1

C
★, 𝑓𝑖 (s), ok

In case (b), from C, s
𝑔𝑖 (s)−−−→ skip, 𝑓𝑖 (s), ok and Lemma 9 we have C, s {𝑔𝑖 (s)

skip, 𝑓𝑖 (s), ok.
Consequently, from Lemma 10 we have C;C★, s {𝑔𝑖 (s)

skip;C★, 𝑓𝑖 (s), ok. On the other hand,
from S-SeqSkip we have skip;C★, 𝑓𝑖 (s) −→ C

★, 𝑓𝑖 (s), ok and thus by definition of {1 we have
skip;C★, 𝑓𝑖 (s) {1

C
★, 𝑓𝑖 (s), ok. From Lemma 12,C;C★, s {𝑔𝑖 (s)

skip;C★, 𝑓𝑖 (s), ok and skip;C★, 𝑓𝑖 (s)
{1

C
★, 𝑓𝑖 (s), ok we know there exists 𝑗 such that C;C★, s { 𝑗

C
★, 𝑓𝑖 (s), ok.

That is, in both cases we know there exists 𝑗 such that C;C★, s { 𝑗
C
★, 𝑓𝑖 (s), ok. As such, from

(4) and the definition of{ 𝑗+1 we have C★, s { 𝑗+1
C
★, 𝑓𝑖 (s), ok, i.e. C★, s {+

C
★, 𝑓𝑖 (s), ok. That is,
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from (5) we have:
∀𝑖 ∈ N+ . ∀s ∈ 𝑝 (𝑖−1). C★, s {+

C
★, 𝑓𝑖 (s), ok ∧ 𝑓𝑖 (s) ∈ 𝑝 (𝑖) (6)

Pick an arbitrary s ∈ 𝑝 (0). From (6) we then know C
★, s {+

C
★, 𝑓1 (s), ok {+

C
★, 𝑓2 (s), ok {+ · · · ,

as required.

Case Div-Cons
Pick arbitrary 𝑝,C such that ⊢

[
𝑝
]
C [∞]. Pick an arbitrary s ∈ 𝑝 . From the 𝑝 ⊆ 𝑝 ′ premise we know

s ∈ 𝑝 ′. As such, from the
[
𝑝 ′]

C [∞] premise we know there exists an infinite series C1,C2, · · · and
s1, s2, · · · , such that C, s {+

C1, s1, ok {+
C2, s2, ok {+ · · · , as required.

Case Div-Subst
Pick arbitrary 𝑝,C, 𝑞,𝑦 such that 𝑦 ∉ fv(𝑝,C) and (⊢

[
𝑝
]
C [∞]) [𝑦/𝑥], i.e. ⊢

[
𝑝 [𝑦/𝑥]

]
C[𝑦/𝑥] [∞].

Pick an arbitrary s ∈ 𝑝 [𝑦/𝑥] and let s𝑝 = s[𝑥 ↦→ s(𝑦)]. We then have s𝑝 ∈ 𝑝 and thus from the
⊢B [𝑝] C [𝜖 :𝑞] premise and the inductive hypothesis we then know there exists an infinite series
C1,C2, · · · and s1, s2, · · · such that C, s𝑝 {+

C1, s1, ok {+
C2, s2, ok {+ · · · . Let C′

𝑖 = C𝑖 [𝑦/𝑥] and
s′𝑖 = s𝑖 [𝑦 ↦→ s′𝑖 (𝑦)] for all 𝑖 As such, from the semantics we also have C[𝑦/𝑥], s {+

C
′
1, s

′
1, ok {

+

C
′
2, s

′
2, ok {

+ · · · , as required. □
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C UNTer COMPLETENESS

C.1 Completeness of BUA and FUA Rules

Lemma 13 (BUA completeness). For all 𝑝 , C, 𝑞, 𝜖 , if |=B [𝑝] C [𝜖 :𝑞] holds, then ⊢B [𝑝] C [𝜖 :𝑞]
can be proven using the proof rules in Fig. 2.

Proof. We proceed by induction of the structure of C.

Case C = skip

Pick arbitrary 𝑝, 𝑞 such that |=B [𝑝] skip [𝜖 :𝑞] holds. Given the semantics of skip, we then know
𝑝 ⊆ 𝑞. As such, we can derive ⊢B [𝑝] C [𝜖 :𝑞] using Skip and ConsF.

Cases C = assume(𝐵) and C = error

The proofs of these cases are analogous to the C = skip case and omitted.

Case C = 𝑥 := 𝑒

Pick arbitrary 𝑝 such that |=B

[
𝑝
]
𝑥 := 𝑒

[
ok : 𝑞

]
holds. As ∃𝑦. 𝑝 [𝑦/𝑥] ∧ 𝑥 = 𝑒 [𝑦/𝑥] is the strongest

post of 𝑥 := 𝑒 from 𝑝 (see [23]), we then know ∃𝑦. 𝑝 [𝑦/𝑥] ∧ 𝑥 = 𝑒 [𝑦/𝑥] ⊆ 𝑞. Moreover, from Assign
we have ⊢B

[
𝑝
]
𝑥 := 𝑒

[
ok : ∃𝑦. 𝑝 [𝑦/𝑥] ∧ 𝑥 = 𝑒 [𝑦/𝑥]

]
. Consequently, as ∃𝑦. 𝑝 [𝑦/𝑥] ∧ 𝑥 = 𝑒 [𝑦/𝑥] ⊆

𝑞, from ConsF we have ⊢B
[
𝑝
]
𝑥 := 𝑒

[
ok : 𝑞

]
, as required.

Case C = local 𝑥 in C

Pick arbitrary 𝑝, 𝑞 such that |=B [𝑝] local 𝑥 in C [𝜖 :𝑞] holds. Pick an arbitrary 𝑦 such that 𝑦 ∉ fv(C),
𝑦 ∉ fv(𝑝) and 𝑦 ∉ fv(𝑞). Then we know that local 𝑦 in C is semantically equivalent to local 𝑥 in C

and thus |=B [𝑝] local 𝑦 in C [𝜖 :𝑞] holds. From the semantics of local 𝑦 in C we know there exist
𝑣1, 𝑣2 such that |=B [𝑝 ∧ 𝑦 = 𝑣1] C [𝜖 :𝑞 ∧ 𝑦 = 𝑣2] holds. From the inductive hypothesis we then
have⊢B [𝑝 ∧ 𝑦 = 𝑣1] C [𝜖 :𝑞 ∧ 𝑦 = 𝑣2], and thus from Localwe have ⊢B [∃𝑦. 𝑝 ∧ 𝑦 = 𝑣1] local𝑦 in C
[𝜖 :∃𝑦. 𝑞 ∧ 𝑦 = 𝑣2]. As 𝑦 ∉ fv(𝑝) and 𝑦 ∉ fv(𝑞), using ConsEq we have ⊢B [𝑝 ∧ ∃𝑦. 𝑦 = 𝑣1]
local𝑦 in C [𝜖 :𝑞 ∧ ∃𝑦. 𝑦 = 𝑣2]. Once again, using ConsEqwe have ⊢B [𝑝] local𝑦 in C [𝜖 :𝑞]. Finally,
using Subst and since 𝑦 ∉ fv(C), 𝑦 ∉ fv(𝑝) and 𝑦 ∉ fv(𝑞), we have ⊢B [𝑝] local 𝑥 in C [𝜖 :𝑞], as
required.

Case C = C1;C2
Pick arbitrary 𝑝, 𝑞 such that |=B [𝑝] C1;C2 [𝜖 :𝑞] holds. From the semantics of C1;C2 we then know
either 1) 𝜖 = er and |=B [𝑝] C1 [er : 𝑞]; or 2) 𝜖 = ok and there exists 𝑟 such that |=B

[
𝑝
]
C1

[
ok : 𝑟

]
and |=B [𝑟 ] C2 [𝜖 :𝑞]. In case (1) from |=B [𝑝] C1 [er : 𝑞] and the inductive hypothesis we know we
can prove ⊢B [𝑝] C1 [er : 𝑞], and thus using SeqEr we can prove ⊢B [𝑝] C1;C2 [𝜖 :𝑞], as required.
In case (2) from |=B

[
𝑝
]
C1

[
ok : 𝑟

]
and |=B [𝑟 ] C2 [𝜖 :𝑞] and the inductive hypotheses we know we

can prove ⊢B
[
𝑝
]
C1

[
ok : 𝑟

]
and ⊢B [𝑟 ] C2 [𝜖 :𝑞]. Consequently, using Seq we can prove ⊢B [𝑝]

C1;C2 [𝜖 :𝑞], as required.

Case C = C1 + C2
Pick arbitrary 𝑝, 𝑞 such that |=B [𝑝] C1 + C2 [𝜖 :𝑞] holds. From the semantics of C1 + C2 we know
there exists 𝑖 ∈ {1, 2} such that |=B [𝑝] C𝑖 [𝜖 :𝑞]. From |=B [𝑝] C𝑖 [𝜖 :𝑞] and the inductive hypoth-
esis we know we can prove ⊢B [𝑝] C𝑖 [𝜖 :𝑞], and thus using Choice we can prove ⊢B [𝑝] C1 + C2
[𝜖 :𝑞], as required.

Case C = C
★

Pick arbitrary 𝑝, 𝑞 such that |=B [𝑝] C★ [𝜖 :𝑞] holds. There are two cases to consider: 1) 𝜖 = ok; or
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𝜖 = er . In case (1), let 𝑝 (0) = 𝑝 and 𝑝 (𝑛) be the state reachable after executing 𝐶 𝑛 times starting
from 𝑝 (0) for 𝑛 > 0. By definition we then know there exists 𝑘 ≥ 0 such that 𝑞 = 𝑝 (𝑘). Moreover,
by definition we then have |=B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
for all 0 ≤ 𝑛𝑘 . As such, by the inductive

hypothesis we have ⊢B
[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
for all 𝑛 < 𝑘 . Using Loop-Subvariant we then have

⊢B
[
𝑝 (0)

]
C

[
ok : 𝑝 (𝑘)

]
, i.e. ⊢B

[
𝑝
]
C

[
ok : 𝑞

]
, as required.

In case (2), from the semantics of loops we know that C executed normally for a number of
(possibly zero) iterations, and in the subsequent iteration the loop encountered an error. That is,
there exist 𝑟 such that |=B

[
𝑝
]
C
★
[
ok : 𝑟

]
and |=B [𝑟 ] C [er : 𝑞]. From the proof of case (1) we then

have ⊢B
[
𝑝
]
C
★
[
ok : 𝑟

]
. From |=B [𝑟 ] C [er : 𝑞] and the inductive hypothesis we have ⊢B [𝑟 ] C

[er : 𝑞]. Consequently, from ⊢B
[
𝑝
]
C
★
[
ok : 𝑟

]
, ⊢B [𝑟 ] C [er : 𝑞] and Seq we have ⊢B [𝑝] C★;C

[er : 𝑞], i.e. ⊢B [𝑝] C★;C [𝜖 :𝑞]. As such, from Loop we have ⊢B [𝑝] C★ [er : 𝑞], as required. □

Lemma 14 (FUA completeness). For all 𝑝 , C, 𝑞, 𝜖 , if |=F [𝑝] C [𝜖 :𝑞] holds, then ⊢F [𝑝] C [𝜖 :𝑞] can
be proven using the proof rules in Fig. 2.

Proof. The proof of this lemma is as given by O’Hearn [23]. □

Theorem 15 (Completeness). For all 𝑝 , C, 𝑞, 𝜖 , if |=† [𝑝] C [𝜖 :𝑞] holds, then ⊢†[𝑝] C [𝜖 :𝑞] can be
proven using the proof rules in Fig. 2.

Proof. Follows immediately from Lemma 13 and Lemma 14. □

C.2 Completeness of Divergence Rules

In what follows, we write C, s {+
C
′, s′, 𝜖 for ∃𝑛. C, s {𝑛

C
′, s′, 𝜖 .

Div-Subst
⊢
[
𝑝
]
C [∞] 𝑦 ∉ fv(𝑝,C)

⊢ (
[
𝑝
]
C [∞]) [𝑦/𝑥]

Theorem 16 (Divergence completeness). For all 𝑝 , C, if |=
[
𝑝
]
C [∞] holds, then ⊢

[
𝑝
]
C [∞] can

be proven using the proof rules in Fig. 3,.

Proof. We proceed by induction of the structure of C.

Cases C = skip, C = 𝑥 := 𝑒, C = error, C = assume(𝐵)
These cases do not arise as they have no divergent steps and reduce to skip in either 0 or 1 steps.

Case C = local 𝑥 in C

Pick arbitrary 𝑝 such that |=
[
𝑝
]
local 𝑥 in C [∞] holds. Pick an arbitrary 𝑦 such that 𝑦 ∉ fv(C)

and 𝑦 ∉ fv(𝑝). Then we know that local 𝑦 in C is semantically equivalent to local 𝑥 in C and thus
|=

[
𝑝
]
local 𝑦 in C [∞] holds. From the semantics of local 𝑦 in C we know there exist 𝑣1 such that

|=
[
𝑝 ∧ 𝑦 = 𝑣1

]
C [∞] holds. From the inductive hypothesis we then have⊢

[
𝑝 ∧ 𝑦 = 𝑣1

]
C [∞], and

thus from Div-Local we have ⊢
[
∃𝑦. 𝑝 ∧ 𝑦 = 𝑣1

]
local 𝑦 in C [∞]. As 𝑦 ∉ fv(𝑝), using Div-Cons we

have ⊢
[
𝑝 ∧ ∃𝑦. 𝑦 = 𝑣1

]
local 𝑦 in C [∞]. Once again, using Div-Cons we have ⊢

[
𝑝
]
local 𝑦 in C

[∞]. Finally, using Div-Subst and since 𝑦 ∉ fv(C) and 𝑦 ∉ fv(𝑝), we have ⊢
[
𝑝
]
local 𝑥 in C [∞], as

required.

Case C = C1;C2
Pick arbitrary 𝑝 such that |=

[
𝑝
]
C1;C2 [∞] holds. From the semantics of C1;C2 we then know

either 1) |=
[
𝑝
]
C1 [∞]; or 2) there exists 𝑞 such that |=B

[
𝑝
]
C1

[
ok : 𝑞

]
and |=

[
𝑞
]
C2 [∞]. In case

(1) from |=
[
𝑝
]
C1 [∞] and the inductive hypothesis we know we can prove ⊢

[
𝑝
]
C1 [∞], and thus
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using Div-Seq1 we can prove ⊢
[
𝑝
]
C1;C2 [∞], as required. In case (2) from |=B

[
𝑝
]
C1

[
ok : 𝑞

]
and

Theorem 15 we have ⊢B
[
𝑝
]
C1

[
ok : 𝑞

]
. Moreover, from |=

[
𝑞
]
C2 [∞] and the inductive hypothe-

ses we can prove ⊢
[
𝑞
]
C2 [∞]. Consequently, using Div-Seq2 we can prove ⊢

[
𝑝
]
C1;C2 [∞], as

required.

Case C = C1 + C2
Pick arbitrary 𝑝 such that |=

[
𝑝
]
C1 + C2 [∞] holds. From the semantics of C1 + C2 we know there

exists 𝑖 ∈ {1, 2} such that |=
[
𝑝
]
C𝑖 [∞] holds. From |=

[
𝑝
]
C𝑖 [∞] and the inductive hypothesis we

know we can prove ⊢
[
𝑝
]
C𝑖 [∞], and thus using Div-Choice we can prove |=

[
𝑝
]
C1 + C2 [∞], as

required.

Case C = C
★

Pick arbitrary 𝑝 such that |=
[
𝑝
]
C
★ [∞] holds. Let 𝑝 (0) = 𝑝 and 𝑝 (𝑛) be the state reachable after

executing 𝐶 for 𝑛 times starting from 𝑝 (0) for 𝑛 > 0. Let C0 = skip and let C𝑛 denote iterating C
for 𝑛 times, for all 𝑛 > 0. Given the semantics of loops, there are two cases to consider: There are
two cases to consider:
1) |=B

[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
for all 𝑛 ∈ N; or

2) there exists 𝑛 and 𝑞 such that |=B

[
𝑝
]
C
𝑛
[
ok : 𝑞

]
and |=

[
𝑞
]
C [∞].

In case (1), from Theorem 15 we have ⊢B
[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
for all 𝑛 ∈ N. As such, using

Div-Subvariant we have ⊢
[
𝑝 (0)

]
C [∞], i.e. ⊢

[
𝑝
]
C [∞], as required.

In case (2), we proceed by induction on 𝑛.

Subcase 𝑛 = 0
As we have |=B [𝑝] C𝑛 [𝜖 :𝑞], |=

[
𝑞
]
C [∞] and C

0 = skip, we know 𝑝 ⊆ 𝑞. Moreover, from |=
[
𝑞
]

C [∞] and the inductive hypothesis we have ⊢
[
𝑞
]
C [∞], and as such from Div-LoopNest we have

⊢
[
𝑞
]
C
★ [∞]. Consequently, as 𝑝 ⊆ 𝑞, from Div-Cons we have ⊢

[
𝑝
]
C
★ [∞], as required.

Subcase 𝑛 = 𝑘+1
From |=B

[
𝑝
]
C
𝑛
[
ok : 𝑞

]
and Theorem 15 we have

⊢B
[
𝑝
]
C
𝑛
[
ok : 𝑞

]
(7)

Moreover, from |=
[
𝑞
]
C [∞] and the inductive hypothesis we have

⊢
[
𝑞
]
C [∞] (8)

As C𝑛 = C; · · · ;C︸    ︷︷    ︸
𝑛 times

, we can then prove ⊢
[
𝑝
]
C
★ [∞] as follows:

(7)
⊢B

[
𝑝
]
C
𝑛
[
ok : 𝑞

]
(8)

⊢
[
𝑞
]
C [∞]

Div-LoopNest

⊢
[
𝑞
]
C
★ [∞]

⊢
[
𝑝
]
C
𝑛 ;C★ [∞]

Div-Seq2

⊢
[
𝑝
]
C
★ [∞]

Div-LoopUnfold × 𝑛

□
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D THE RELATION BETWEEN FUA AND BUA TRIPLES

Theorem 17. For all 𝑝 , C, 𝑞, 𝜖 , if |=F [𝑝] C [𝜖 :𝑞] holds and minpre (𝑝,C, 𝑞), then |=B [𝑝] C [𝜖 :𝑞]
also holds, where

minpre (𝑝,C, 𝑞)
def

⇐⇒ ∀𝑝 ′. 𝑝 ′ ⊂ 𝑝 ⇏|=F [𝑝 ′] C [𝜖 :𝑞]

Proof. Pick arbitrary 𝑝 , C, 𝑞, 𝜖 such that |=F [𝑝] C [𝜖 :𝑞] holds and minpre (𝑝,C, 𝑞). Let us
proceed by contradiction and assume that |=B [𝑝] C [𝜖 :𝑞] does not hold. That is, there exists s𝑝 ∈ 𝑝

such that:
¬∃s𝑞 ∈ 𝑞, 𝑛. C, s𝑝

𝑛−→ −, s𝑞, 𝜖 (9)

Let 𝑝 ′ ≜ 𝑝 \ {s𝑝 }. We next show that |=F [𝑝 ′] C [𝜖 :𝑞] holds.
Pick an arbitrary s2 ∈ 𝑞. Since |=F [𝑝] C [𝜖 :𝑞] holds, from its definition we know there exists s1 ∈ 𝑝 ,
𝑘 such that C, s1

𝑘−→ −, s2, 𝜖 . However, from (??) we know s1 ≠ s𝑝 . Consequently, since 𝑝 ′ ≜ 𝑝 \ {s𝑝 }
and s1 ∈ 𝑝 , we know s1 ∈ 𝑝 ′. That is, there exists s1 ∈ 𝑝 ′, 𝑘 such that C, s1

𝑘−→ −, s2, 𝜖 , and thus by
definition we have:

|=F [𝑝 ′] C [𝜖 :𝑞] (10)

Finally, from minpre (𝑝,C, 𝑞), (10) and the definition of minpre we have 𝑝 ′ ⊄ 𝑝 . This, however,
leads to a contradiction as 𝑝 ′ ≜ 𝑝 \ {s𝑝 } and thus 𝑝 ′ ⊂ 𝑝 . □

Theorem 18. For all 𝑝 , C, 𝑞, 𝜖 , if |=B [𝑝] C [𝜖 :𝑞] holds and minpost (𝑝,C, 𝑞), then |=F [𝑝] C [𝜖 :𝑞]
also holds, where

minpost (𝑝,C, 𝑞)
def

⇐⇒ ∀𝑞′. 𝑞′ ⊂ 𝑞 ⇏|=B [𝑝] C [𝜖 :𝑞′]

Proof. Pick arbitrary 𝑝 , C, 𝑞, 𝜖 such that |=B [𝑝] C [𝜖 :𝑞] holds and minpost (𝑝,C, 𝑞). Let us
proceed by contradiction and assume that |=F [𝑝] C [𝜖 :𝑞] does not hold. That is, there exists s𝑞 ∈ 𝑞

such that:
¬∃s𝑝 ∈ 𝑝, 𝑛. C, s𝑝

𝑛−→ −, s𝑞, 𝜖 (11)

Let 𝑞′ ≜ 𝑞 \ {s𝑞}. We next show that |=B [𝑝] C [𝜖 :𝑞′] holds.
Pick an arbitrary s1 ∈ 𝑝 . Since |=B [𝑝] C [𝜖 :𝑞] holds, from its definition we know there exists s2 ∈ 𝑞,
𝑘 such that C, s1

𝑘−→ −, s2, 𝜖 . However, from (11) we know s2 ≠ s𝑞 . Consequently, since 𝑞′ ≜ 𝑞 \ {s𝑞}
and s2 ∈ 𝑞, we know s𝑞 ∈ 𝑞′. That is, there exists s2 ∈ 𝑞′, 𝑘 such that C, s1

𝑘−→ −, s2, 𝜖 , and thus by
definition we have:

|=B [𝑝] C [𝜖 :𝑞′] (12)

Finally, from minpost (𝑝,C, 𝑞), (12) and the definition of minpost we have 𝑞′ ⊄ 𝑞. This, however,
leads to a contradiction as 𝑞′ ≜ 𝑞 \ {s𝑞} and thus 𝑞′ ⊂ 𝑞. □
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E UNTer
sl
MODEL AND SEMANTICS

Separation Logic at a Glance. The essence of SL and its compositional reasoning power is
embodied in its frame rule, adapted to our notation below (left), which enables one to extend the
underlying heap (memory) arbitrarily with additional resources (described by 𝑟 ), allowing the same
specification (triple) to be reused in different contexts with different heaps. Intuitively, the heaps
described by the frame 𝑟 lie outside the footprint of C (parts of the heap accessed and modified by
C), as stipulated by mod(C) ∩ fv(𝑟 )=∅, and thus this frame remains unchanged when executing
C. The ∗ connective denotes the separating conjunction (read as ‘and separately’), and is used to
combine the underlying heaps (by taking their union provided that they contain distinct locations).

SL-Frame
⊢†[𝑝]C [𝜖 :𝑞] mod(C) ∩ fv(𝑟 )=∅

⊢†[𝑝 ∗ 𝑟 ] C [𝜖 :𝑞 ∗ 𝑟 ]

SL-Free
⊢F

[
𝑥 ↦→𝑣

]
free(𝑥)

[
ok :emp

] ISL-Free
⊢F

[
𝑥 ↦→𝑣

]
free(𝑥)

[
ok : 𝑥 ̸↦→

]
The compositionality afforded by SL-Frame allows us to devise local axioms describing the behaviour
of heap-manipulating operations, in that we can only mention those parts of the heap manipulated
by the operation and later extend this behaviour to larger (global) settings by using SL-Frame. For
instance, we can describe the behaviour of freeing memory as in the SL-Free axiom above (middle),
adapted from the corresponding SL axiom. Specifically, the 𝑥 ↦→ 𝑣 assertion describes a state in
which the heap comprises a single location at 𝑥 holding value 𝑣 . Moreover, 𝑥 ↦→𝑣 describes a (linear)
resource that grants exclusive permission to access location 𝑥 and thus cannot be duplicated; i.e. for
all 𝑥 , 𝑣 and 𝑣 ′: 𝑥 ↦→𝑣 ∗𝑥 ↦→𝑣 ′ ⇔ false. On the other hand, the emp assertion describes states in which
the heap is empty, and thus represents the identity of ∗-composition; i.e. for all 𝑝: 𝑝 ∗ emp ⇔ 𝑝 .

FUA Triples and Separation Logic. To achieve compositional reasoning, an SL extension of
a FUA reasoning system must preserve the soundness of SL-Frame. However, as Raad et al. [24]
show, the original model of SL is unsound for FUA reasoning. in Particular, we can apply SL-Frame
with 𝑟 ≜ 𝑥 ↦→𝑣 as shown below, resulting in an invalid FUA triple:

⊢F
[
𝑥 ↦→𝑣

]
free(𝑥)

[
ok : emp

] SL-Free

̸⊢F
[
𝑥 ↦→𝑣 ∗ 𝑥 ↦→𝑣

]
free(𝑥)

[
ok : emp ∗ 𝑥 ↦→𝑣

] SL-Frame

̸⊢F
[
false

]
free(𝑥)

[
ok : 𝑥 ↦→𝑣

] (semantics of ∗)

Note that
[
false

]
free(𝑥)

[
ok : 𝑥 ↦→𝑣

]
in the conclusion is unsound: it states that every state in 𝑥 ↦→𝑣

can be reached from some state in false, while false denotes an empty set of states.
To remedy this, Raad et al. [24] propose an adapted model in which they track the knowledge

that a location was previously freed via negative heap assertions. Specifically, a negative heap
assertion, 𝑥 ̸↦→ , conveys: 1) the knowledge that 𝑥 is an addressable location; 2) the knowledge that
𝑥 is not allocated; and 3) the ownership of location 𝑥 . That is, 𝑥 ̸↦→ is analogous to the points-to
assertion 𝑥 ↦→ − and is thus manipulated similarly using ∗-conjunction. More concretely, one
cannot consistently ∗-conjoin 𝑥 ̸↦→ either with 𝑥 ↦→− or with itself: 𝑥 ↦→− ∗ 𝑥 ̸↦→ ⇔ false and
𝑥 ̸↦→ ∗ 𝑥 ̸↦→ ⇔ false. Using negative assertions, one can specify the free(𝑥) axiom as in ISL-Free
above (right), recovering the frame rule: this time, when we frame 𝑥 ↦→𝑣 on both sides, we obtain
the inconsistent assertion 𝑥 ↦→− ∗ 𝑥 ̸↦→ on the right-hand side (i.e. we have false as both pre- and
post-states), which always renders a FUA triple vacuously valid.

Assertion Semantics. We present the semantics of UNTersl assertions at the top of Fig. 10,
where an assertion is interpreted as a set of UNTersl states. The semantics of classical assertions
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SkipSL
⊢†
[
emp

]
skip

[
ok : emp

] AssumeSL
⊢†
[
𝐵
]
assume(𝐵)

[
ok : 𝐵

] AssignSL
⊢†
[
𝑥=𝑥 ′] 𝑥 :=𝑒 [ok :𝑥=𝑒 [𝑥 ′/𝑥]

]
Alloc
⊢†
[
emp

]
𝑥 := alloc()

[
ok : ∃𝑙 . 𝑙 ↦→𝑣 ∗ 𝑥 =𝑙

] AllocFree
⊢†
[
𝑦 ̸↦→

]
𝑥 := alloc()

[
ok :𝑦 ↦→𝑣∗𝑥 =𝑦

]
Free
⊢†
[
𝑥 ↦→𝑒

]
free(𝑥)

[
ok : 𝑥 ̸↦→

] FreeEr
⊢†[𝑥 ̸↦→] free(𝑥) [er :𝑥 ̸↦→]

FreeNull
⊢†[𝑥=null] free(𝑥) [er : 𝑥=null]

Store
⊢†
[
𝑥 ↦→𝑒

]
[𝑥] := 𝑦

[
ok :𝑥 ↦→𝑦

] StoreEr
⊢†[𝑥 ̸↦→] [𝑥] := 𝑦 [er : 𝑥 ̸↦→]

StoreNull
⊢†[𝑥=null] [𝑥] := 𝑦 [er : 𝑥=null]

Load
⊢†
[
𝑥=𝑥 ′∗ 𝑦 ↦→𝑒

]
𝑥 := [𝑦]

[
ok :𝑥=𝑒 [𝑥 ′/𝑥] ∗ 𝑦 ↦→𝑒 [𝑥 ′/𝑥]

] LoadEr
⊢†[𝑦 ̸↦→ ] 𝑥 := [𝑦] [er : 𝑦 ̸↦→ ]

LoadNull
⊢†[𝑦=null] 𝑥 := [𝑦] [er : 𝑦=null]

Frame
⊢†[𝑝]C [𝜖 :𝑞] mod(C) ∩ fv(𝑟 )=∅

⊢†[𝑝 ∗ 𝑟 ] C [𝜖 :𝑞 ∗ 𝑟 ]

Div-Frame
⊢
[
𝑝
]
C [∞]

⊢
[
𝑝 ∗ 𝑟

]
C [∞]

Fig. 9. UNTer
sl
proof rules where 𝑥 and 𝑥 ′ are distinct variables and † in each rule can be instantiated as F or

B; all UNTer rules in Fig. 2 (except Assign, Constancy) and Fig. 3 are also valid in UNTer
sl

and are omitted.

(imported from UNTer) are standard and omitted; e.g. the semantics of 𝑒 ⊕ 𝑒 ′ is given as the set of
pairs of the form (s, ∅) such that s(𝑒) ⊕ s(𝑒 ′) holds, where ∅ is the empty heap (with empty domain).

Small-Step Operational Semantics. We present the UNTersl operational semantic in Fig. 8
(below). As seen in SL-Local–SL-Loop, the UNTersl semantics of constructs imported from UNTer
are analogous to their UNTer counterparts and are simply lifted to operate on UNTersl states.
The remaining transitions pertain to heap-manipulating operations. Specifically, SL-Alloc de-

scribes executing 𝑥 := alloc(), where a previously unallocated location 𝑙 is picked, the underlying
heap is extended with 𝑙 , and 𝑥 is updated in the store to record 𝑙 . Similarly, SL-AllocFree describes
re-allocating a location 𝑙 that was previously deallocated (i.e. h(𝑙) = ⊥). The SL-Free transition
describes successfully deallocating the memory at 𝑥 : when 𝑥 holds location 𝑙 (s(𝑥) = 𝑙) and 𝑙 is
allocated in the memory (h(𝑙) ∈ Val), then 𝑙 is deallocated by updating its value to ⊥ in the heap.
Conversely, SL-Free describes when deallocating the memory at 𝑥 fails, namely when either 𝑥 holds
null or 𝑥 holds a location that has already been deallocated, in which case the underlying state is
unchanged. Analogously, SL-Load and SL-LoadEr respectively describe reading from memory via
𝑥 := [𝑦] successfully (when 𝑦 holds an allocated location) and erroneously (when 𝑦 holds either
null or a deallocated location). Finally, SL-Store and SL-StoreEr respectively describe writing to
memory successfully and erroneously.
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L.M : Ast → P(Statesl)
LempM≜

{
(s, h) dom(h)=∅

}
L𝑒 ↦→𝑒 ′M≜

{
(s, h) dom(h)={s(𝑒)} ∧ h(s(𝑒))=s(𝑒 ′)≠⊥

}
L𝑒 ̸↦→ M≜

{
(s, h) dom(h)={s(𝑒)} ∧ h(s(𝑒))=⊥

}
L𝑝 ∗ 𝑞M≜

{
𝜎𝑝 ◦ 𝜎𝑞 𝜎𝑝 ∈ L𝑝M ∧ 𝜎𝑞 ∈ L𝑞M

}
where (s, h) ◦ (s′, h′) ≜

{
(s, h ⊎ h′) if s= s′ ∧ dom(h1) ∩ dom(h2)=∅ ∧ wf (h ⊎ h′)
undefined otherwise

SL-Local
s′ = s[𝑥 ↦→ 𝑣] 𝑣 ∈ Val

local 𝑥 in C, (s, h) −→ C; end(𝑥, s(𝑥)), (s′, h)

SL-LocalEnd
s′ = s[𝑥 ↦→ 𝑣]

end(𝑥, 𝑣), (s, h) −→ skip, (s′, h)

SL-Assign
s′ = s[𝑥 ↦→ s(𝑒)]

𝑥 := 𝑒, (s, h) −→ skip, (s′, h), ok

SL-Assume
𝜎 = (s,−) s(𝐵) = true

assume(𝐵), 𝜎 −→ skip, 𝜎, ok

SL-Error
error, 𝜎 −→ skip, 𝜎, er

SL-Choice
𝑖 ∈ {1, 2}

C1+C2, 𝜎 −→ C𝑖 , 𝜎, ok

SL-Seq1
C1, 𝜎 −→ C′1, 𝜎

′, 𝜖

C1;C2, 𝜎 −→ C′1;C2, 𝜎
′, 𝜖

SL-SeqSkip
skip;C, 𝜎 −→ C, 𝜎, ok

SL-Loop0
C
★, 𝜎 −→ skip, 𝜎, ok

SL-Loop
C
★, 𝜎 −→ C;C★, 𝜎, ok

SL-Alloc
𝑙 ∉ dom(h) h′= h ⊎ [𝑙 ↦→ 𝑣] s′= s[𝑥 ↦→ 𝑙]

𝑥 := alloc(), (s, h) −→ skip, (s′, h′), ok

SL-AllocFree
h(𝑙) = ⊥ h′= h[𝑙 ↦→ 𝑣] s′= s[𝑥 ↦→ 𝑙]
𝑥 := alloc(), (s, h) −→ skip, (s′, h′), ok

SL-Free
s(𝑥)=𝑙 h(𝑙) ∈ Val h′=h[𝑙 ↦→ ⊥]
free(𝑥), (s, h) −→ skip, (s, h′), ok

SL-FreeEr
s(𝑥) = null ∨ h(s(𝑥)) = ⊥

free(𝑥), (s, h) −→ skip, (s, h), er

SL-Load
h(s(𝑦)) = 𝑣 ∈ Val s′= s[𝑥 ↦→ 𝑣]
𝑥 := [𝑦], (s, h) −→ skip, (s′, h), ok

SL-LoadEr
s(𝑦) = null ∨ h(s(𝑦)) = ⊥

𝑥 := [𝑦], (s, h) −→ skip, (s, h), er

SL-Store
s(𝑦)=𝑙 h(𝑙) ∈ Val h′=h[𝑙 ↦→ s(𝑦)]

[𝑥] := 𝑦, (s, h) −→ skip, (s, h′), ok

SL-StoreEr
s(𝑥) = null ∨ h(s(𝑥)) = ⊥

[𝑥] := 𝑦, (s, h) −→ skip, (s, h), er

Fig. 10. The semantics of UNTer
sl

assertions (above); the UNTer
sl

small-step operational semantics (below)
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F UNTer
sl
SOUNDNESS

Definition 3.
s1 ∼𝐴 s2

def⇐⇒ ∀𝑥 ∈ 𝐴. s1 (𝑥)=s2 (𝑥)

Definition 4.
h𝑝 # h

def⇐⇒ dom(h𝑝 ) ∩ dom(h)=∅
𝜎𝑝 # 𝜎

def⇐⇒ ∃𝜎 ′. 𝜎𝑝 ◦ 𝜎 = 𝜎 ′

Intuitively, h𝑝 # h (resp. 𝜎𝑝 # 𝜎) denotes that h𝑝 and h (resp. 𝜎𝑝 and 𝜎) are compatible in that
their composition is defined.

Proposition 19. For all assertions 𝑝 and all s, s′, h, if (s, h) ∈ 𝑝 and s ∼fv(𝑝) s′, then (s′, h) ∈ 𝑝 .

For all 𝜖 , C, 𝑥 , 𝑣 , 𝑛, (s1, h1) and (s2, h2), if C, (s1, h1)
𝑛−→ −, (s2, h2), 𝜖 and 𝑥 ∉ fv(C), then C, ((s1 [𝑥 ↦→

𝑣], h1)
𝑛−→ −, (s2 [𝑥 ↦→ 𝑣], h2)), 𝜖 .

F.1 BUA Soundness in UNTer
sl

Lemma 15. For all 𝑛, 𝜎 , 𝜎 ′, C, C′, if C, 𝜎
𝑛−→ C

′, 𝜎 ′, ok, then C
′ = skip.

Proof. The proof of this lemma is analogous to that of Lemma 1 and is omitted here. □

Lemma 16. For all 𝑝,C:

if ∀𝑛 ∈ N, (s, h𝑝 ) ∈ 𝑝 (𝑛), h. h𝑝 # h ⇒ ∃(s′, h𝑞) ∈ 𝑝 (𝑛+1), 𝑗 . s ∼
mod(C) s′ ∧ C, (s, h𝑝 ⊎ h)

𝑗
−→

−, (s′, h𝑞 ⊎ h), ok,
then ∀𝑘, 𝑖 ∈ N, (s, h𝑝 ) ∈ 𝑝 (𝑖), h. h𝑝 # h ⇒ ∃(s′, h𝑞) ∈ 𝑝 (𝑖+𝑘), 𝑗 . s ∼

mod(C★) s
′ ∧ C

★, (s, h𝑝 ⊎ h)
𝑗
−→

−, (s′, h𝑞 ⊎ h), ok.

Proof. Pick arbitrary 𝑝,C such that:

∀𝑛 ∈N, (s, h𝑝 ) ∈𝑝 (𝑛), h. h𝑝 # h ⇒ ∃(s′, h𝑞) ∈𝑝 (𝑛+1), 𝑗 . s ∼
mod(C) s

′∧C, (s, h𝑝⊎h)
𝑗
−→ −, (s′, h𝑞⊎h), ok (13)

We proceed by induction on 𝑘 .

Base case 𝑘=0
Pick an arbitrary 𝑖 ∈ N, (s, h𝑝 ) ∈ 𝑝 (𝑖) and h such that h𝑝 # h. We then simply have s ∼

mod(C★) s.

From S-Loop0 we have C★, (s, h𝑝 ⊎ h) −→ skip, (s, h𝑝 ⊎ h), ok. As such, as we have skip, (s, h𝑝 ⊎ h) 0−→
skip, (s, h𝑝 ⊎ h), ok (from the definition of

0−→), by definition we have C★, (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑝 ⊎
h), ok. Consequently, we have (s, h𝑝 ) ∈ 𝑝 (𝑖) and C

★, (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑝 ⊎ h), ok, as required.

Inductive case 𝑘= 𝑗+1

∀𝑖 ∈N, (s, h𝑝 ) ∈𝑝 (𝑖), h. h𝑝 # h ⇒ ∃(s′, h𝑞) ∈𝑝 (𝑖+ 𝑗),𝑚. s ∼
mod(C★) s

′∧ C
★, (s, h𝑝 ⊎ h) 𝑚−→ −, (s′, h𝑞 ⊎ h), ok

(I.H)
Pick an arbitrary 𝑖 ∈ N, (s, h𝑝 ) ∈ 𝑝 (𝑖) and h such that h𝑝 # h. From (13) and since (s, h𝑝 ) ∈ 𝑝 (𝑖) we

know there exists (s𝑖 , h𝑖 ) ∈ 𝑝 (𝑖+1) and𝑚 such that s ∼
mod(C) s𝑖 andC, (s, h𝑝⊎h)

𝑚−→ −, (s𝑖 , h𝑖⊎h), ok.
That is, h𝑖 # h. As s ∼

mod(C) s𝑖 and mod(C) = mod(C★), we also have s ∼
mod(C★) s𝑖 .

On the other hand, since (s𝑖 , h𝑖 ) ∈ 𝑝 (𝑖+1) and h𝑖 # h, from (I.H) we know there exists (s′, h𝑞) ∈
𝑝 (𝑖+1+ 𝑗) and𝑏 such that s𝑖 ∼

mod(C★) s
′∧C★, (s𝑖 , h𝑖⊎h)

𝑏−→ −, (s′, h𝑞⊎h), ok. That is, (s′, h𝑞) ∈ 𝑝 (𝑖+𝑘).
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Therefore, from Lemma 2, C, (s, h𝑝 ⊎ h) 𝑚−→ −, (s𝑖 , h𝑖 ⊎ h), ok and C★, (s𝑖 , h𝑖 ⊎ h), 𝑏−→ −, (s′, h𝑞 ⊎ h), ok
we know there exists 𝑐 such that C;C★, (s, h𝑝 ⊎ h), 𝑐−→ −, (s′, h𝑞 ⊎ h), ok.

Furthermore, from S-Loopwe simply haveC★, (s, h𝑝⊎h),−→ C;C★, (s, h𝑝⊎h), ok. As such, since we
also haveC;C★, (s, h𝑝⊎h),

𝑐−→ −, (s′, h𝑞⊎h), ok, from the definition of
𝑐+1−−→we haveC★, (s, h𝑝⊎h),

𝑐+1−−→
−, (s′, h𝑞 ⊎ h), ok. Finally, since s ∼

mod(C★) s𝑖 and s𝑖 ∼
mod(C★) s

′, we also have s ∼
mod(C★) s

′. That is,

we have (s′, h𝑞) ∈ 𝑝 (𝑖+𝑘), s ∼
mod(C★) s

′ and C
★, (s, h𝑝 ⊎ h), 𝑐+1−−→ −, (s′, h𝑞 ⊎ h), ok, as required. □

Lemma 17. For all 𝑝,C, 𝑞, 𝜖 , if ⊢B [𝑝] C [𝜖 :𝑞] can be derived using the proof rules in Fig. 9, then:

∀(s𝑝 , h𝑝 ) ∈ 𝑝. ∀h. h𝑝 # h =⇒
∃(s𝑞, h𝑞) ∈ 𝑞, 𝑛. s𝑝 ∼

mod(C) s𝑞 ∧ C, (s𝑝 , h𝑝 ⊎ h) 𝑛−→ −, (s𝑞, h𝑞 ⊎ h), 𝜖

Proof. By induction on the structure of rules in Fig. 9.

Case Skip
Pick an arbitrary 𝜎𝑝=(s, h𝑝 ) ∈ 𝑝 and an arbitrary h such that h𝑝 # h. It then suffices to show that
skip, (s, h𝑝 ⊎ h) 0−→ skip, (s, h𝑝 ⊎ h), ok, which follows from the definition of

0−→ immediately.

Case AssignSL
Pick an arbitrary 𝜎𝑝 ∈ 𝑥 = 𝑥 ′ and an arbitrary h such that h𝑝 # h. That is, there exists s such that
𝜎𝑝 = (s, ∅). Let s(𝑥) = 𝑣𝑥 , s(𝑒) = 𝑣𝑒 and s′ = s[𝑥 ↦→ 𝑣𝑒 ]. As 𝜎𝑝 = (s, ∅) ∈ 𝑥 = 𝑥 ′ we also have
s(𝑥 ′) = 𝑣𝑥 . As mod(𝑥 := 𝑒) = {𝑥}, by definition of s′ we have s ∼

mod(𝑥 := 𝑒) s
′. From SL-Assign we

then have 𝑥 := 𝑒, (s, h) −→ skip, (s′, h), ok. As such, since we also have skip, (s′, h) 0−→ skip, (s′, h), ok,
by definition we have 𝑥 := 𝑒, (s, h) 1−→ skip, (s′, h), ok, i.e. 𝑥 := 𝑒, (s, ∅ ⊎ h) 1−→ skip, (s′, ∅ ⊎ h), ok
As s(𝑥) = s(𝑥 ′) = 𝑣𝑥 and s(𝑒) = 𝑣𝑒 , by definition we have s(𝑒 [𝑥 ′/𝑥]) = 𝑣𝑒 and s′(𝑒 [𝑥 ′/𝑥]) = 𝑣𝑒 .

As s′(𝑒 [𝑥 ′/𝑥]) = 𝑣𝑒 and s′ = s[𝑥 ↦→ 𝑣𝑒 ] (i.e. s′(𝑥) = 𝑣𝑒 ), we have (s′, ∅) ∈ 𝑥 = 𝑒 [𝑥 ′/𝑥]. Therefore,
we have (s′, ∅) ∈ 𝑥 = 𝑒 [𝑥 ′/𝑥], s ∼

mod(𝑥 := 𝑒) s
′ and 𝑥 := 𝑒, (s, ∅⊎h) 1−→ skip, (s′, ∅⊎h), ok, as required.

Case Assume
Pick arbitrary 𝑝, 𝐵 such that ⊢B

[
𝑝 ∧ 𝐵

]
assume(𝐵)

[
ok : 𝑝 ∧ 𝐵

]
. Pick an arbitrary (s, h𝑝 ) ∈ 𝑝∧𝐵 and

an arbitrary h such that h𝑝 # h. By definition we then know s(𝐵) = true. As mod(assume(𝐵)) = ∅,
by definition we have s ∼

mod(assume(𝐵)) s. From S-Assume we then have assume(𝐵), (s, h𝑝 ⊎ h) −→

skip, (s, h𝑝 ⊎ h), ok. As such, since we also have skip, (s, h𝑝 ⊎ h) 0−→ skip, (s, h𝑝 ⊎ h), ok, by definition
we have assume(𝐵), (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑝 ⊎ h), ok. Consequently, we have (s, h𝑝 ) ∈ 𝑝 ∧ 𝐵,
s ∼

mod(assume(𝐵)) s and assume(𝐵), (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑝 ⊎ h), ok, as required.

Case AssumeSL
This rule can be immediately derived from Assume (proved above) by picking 𝑝 ≜ true.

Case Error
Pick arbitrary 𝑝 such that ⊢B [𝑝] error [er : 𝑝]. Pick an arbitrary (s, h𝑝 ) ∈ 𝑝 and an arbitrary h such
that h𝑝 # h. Let 𝜎 = (s, h𝑝 ⊎ h). From S-Error we then have error, 𝜎 −→ skip, 𝜎, er . As such, since
(s, h𝑝 ) ∈ 𝑝 , by definition we have error, 𝜎

1−→ skip, 𝜎, er , as required. Moreover, as mod(error) = ∅
we also have s ∼

mod(error) s, as required.
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Case Seq
Pick arbitrary 𝑝, 𝑞, 𝑟,C1,C2, 𝜖 such that ⊢B

[
𝑝
]
C1

[
ok : 𝑟

]
and ⊢B [𝑟 ] C2 [𝜖 :𝑞]. Pick an arbitrary

(s, h𝑝 ) ∈ 𝑝 and an arbitrary h such that h𝑝 # h. From ⊢B
[
𝑝
]
C1

[
ok : 𝑟

]
and the inductive hypothesis

we then know there exists (s𝑟 , h𝑟 ) ∈ 𝑟, 𝑖 such that s ∼
mod(C1) s𝑟 andC1, (s, h𝑝⊎h)

𝑖−→ −, (s𝑟 , h𝑟⊎h), ok.
Moreover, as (s𝑟 , h𝑟 ) ∈ 𝑟, 𝑖 , from ⊢B [𝑟 ] C2 [𝜖 :𝑞] and the inductive hypothesis we know there exists
(s′, h𝑞) ∈ 𝑞, 𝑗 such that s𝑟 ∼

mod(C2) s
′ and C2, (s𝑟 , h𝑟 ⊎ h)

𝑗
−→ −, (s′, h𝑞 ⊎ h), 𝜖 . As s ∼

mod(C1) s𝑟 and
s𝑟 ∼

mod(C2) s
′, by definition we also have s ∼

mod(C1;C2) s𝑟 and s𝑟 ∼
mod(C1;C2) s

′, and thus we also

have s ∼
mod(C1;C2) s

′. On the other hand, as C1, (s, h𝑝 ⊎h) 𝑖−→ −, (s𝑟 , h𝑟 ⊎h), ok and C2, (s𝑟 , h𝑟 ⊎h)
𝑗
−→

−, (s′, h𝑞⊎h), 𝜖 , from Lemma 2 we know there exists𝑛 such thatC1;C2, (s, h𝑝⊎h)
𝑛−→ −, (s′, h𝑞⊎h), 𝜖 .

That is, there exists (s′, h𝑞) ∈ 𝑞, 𝑛 such that s ∼
mod(C1;C2) s

′, C1;C2, (s, h𝑝 ⊎ h) 𝑛−→ −, (s′, h𝑞 ⊎ h), 𝜖 ,
as required.

Case SeqEr
Pick arbitrary 𝑝, 𝑞,C1,C2 such that ⊢B [𝑝] C1;C2 [er : 𝑞]. Pick an arbitrary (s, h𝑝 ) ∈ 𝑝 and an
arbitrary h such that h𝑝 # h. From the ⊢B [𝑝] C1 [er : 𝑞] premise and the inductive hypothesis we
then know there exists (s′, h𝑞) ∈ 𝑞, 𝑖 such that s ∼

mod(C1) s
′ and C1, (s, h𝑝 ⊎ h) 𝑖−→ −, (s′, h𝑞 ⊎ h), er .

As such, from Lemma 3 we know C1;C2, (s, h𝑝 ⊎ h) 𝑖−→ −, (s′, h𝑞 ⊎ h), er , as required.

Case Choice
Pick arbitrary 𝑝, 𝑞,C1,C2, 𝜖 and 𝑖 ∈ {1, 2} such that ⊢B [𝑝] C1 + C2 [𝜖 :𝑞]. Pick an arbitrary
(s, h𝑝 ) ∈ 𝑝 and an arbitrary h such that h𝑝 # h. From the ⊢B [𝑝] C𝑖 [𝜖 :𝑞] premise and the inductive
hypothesis we then know there exists (s′, h𝑞) ∈ 𝑞, 𝑖 such that s ∼

mod(C𝑖 ) s
′ and C𝑖 , (s, h𝑝 ⊎ h) 𝑖−→

−, (s′, h𝑞 ⊎ h), 𝜖 . As s ∼
mod(C𝑖 ) s′, by definition we also have s ∼

mod(C1+C2) s′ Moreover, from

S-Choice we have C1 + C2, (s, h𝑝 ⊎ h) −→ C𝑖 , (s, h𝑝 ⊎ h), ok. As such, from the definition of
𝑖+1−−→ we

have C1 + C2, (s, h𝑝 ⊎ h) 𝑖+1−−→ −, (s′, h𝑞 ⊎ h) ′, 𝜖 , as required.

Case Loop0
Pick arbitrary 𝑝,C such that ⊢B

[
𝑝
]
C
★
[
ok : 𝑝

]
. Pick an arbitrary (s, h𝑝 ) ∈ 𝑝 and an arbitrary h

such that h𝑝 # h. From S-Loop0 we have C
★, (s, h𝑝 ⊎ h) −→ skip, (s, h𝑝 ⊎ h), ok. As such, as we

have skip, (s, h𝑝 ⊎ h) 0−→ skip, (s, h𝑝 ⊎ h), ok (from the definition of
0−→), by definition we have

C
★, (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑝 ⊎ h), ok. Moreover, by definition we have s ∼

mod(C★) s, as required.

Case Loop
Pick arbitrary 𝑝,C, 𝑞 such that ⊢B [𝑝] C★ [𝜖 :𝑞]. Pick an arbitrary (s, h𝑝 ) ∈ 𝑝 and an arbitrary h such
that h𝑝 # h. From the ⊢B [𝑝] C★;C [𝜖 :𝑞] premise and the inductive hypothesis we know there exists

(s′, h𝑞) ∈ 𝑞, 𝑗 such that s ∼
mod(C★;C) s

′ and C
★;C, (s, h𝑝 ⊎ h)

𝑗
−→ −, (s′, h𝑞 ⊎ h), 𝜖 . As s ∼

mod(C★;C) s
′,

by definition we also have s ∼
mod(C★) s

′. On the other hand, from Lemma 5 we then know there

exists 𝑖 such that C;C★, (s, h𝑝 ⊎ h) 𝑖−→ −, (s′, h𝑞 ⊎ h), 𝜖 . From S-Loop we have C
★, (s, h𝑝 ⊎ h) −→

C;C★, (s′, h𝑞 ⊎h), ok. As such, from the definition of
𝑖+1−−→we have C★, (s, h𝑝 ⊎h) 𝑖+1−−→ −, (s′, h𝑞 ⊎h), 𝜖 ,

as required.
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Case Loop-Subvariant
Pick 𝑝,C, 𝑘 such that ⊢B

[
𝑝 (0)

]
C
★
[
ok : 𝑝 (𝑘)

]
. Pick arbitrary (s, h𝑝 ) ∈ 𝑝 (0) and h such that h𝑝 # h.

From the ∀𝑛 ∈ N. ⊢B
[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
premise and the inductive hypothesis we know:

∀𝑛 ∈N, (s, h𝑝 ) ∈𝑝 (𝑛), h. h𝑝 # h ⇒ ∃(s′, h𝑞) ∈𝑝 (𝑛+1), 𝑗 . s ∼
mod(C) s

′ ∧ C, (s, h𝑝 ⊎ h)
𝑗
−→ −, (s′, h𝑞 ⊎ h), ok

Consequently, from Lemma 16 we know there exists (s′, h𝑞) ∈ 𝑝 (𝑘) and 𝑗 such that s ∼
mod(C★) s

′

and C
★, (s, h𝑝 ⊎ h)

𝑗
−→ −, (s′, h𝑞 ⊎ h), ok, as required.

Case Local
Pick arbitrary 𝑝 , C, 𝑞, 𝜖 such that ⊢B [∃𝑥 . 𝑝] local 𝑥 in C [𝜖 :∃𝑥 . 𝑞]. Pick an arbitrary (s, h𝑝 ) ∈ ∃𝑥 . 𝑝
and an arbitrary h such that h𝑝 # h; i.e. there exists 𝑣, s𝑝 such that s𝑝 = s[𝑥 ↦→ 𝑣] and (s𝑝 , h𝑝 ) ∈ 𝑝 .
From the ⊢B [𝑝] C [𝜖 :𝑞] premise and the inductive hypothesis we know there exists (s𝑞, h𝑞) ∈ 𝑞

and 𝑛 such that s𝑝 ∼
mod(C) s𝑞 and C, (s𝑝 , h𝑝 ⊎ h) 𝑛−→ −, (s𝑞, h𝑞 ⊎ h), 𝜖 . From S-Local we have

local 𝑥 in C, (s, h𝑝 ⊎h) −→ C; end(𝑥, s(𝑥)), (s𝑝 , h𝑝 ⊎h). There are now two cases to consider: 1) 𝜖=ok;
or 2) 𝜖=er .
In case (1), let s′′ = s𝑞 [𝑥 ↦→ s(𝑥)]. Consequently, as s𝑝 ∼

mod(C) s𝑞 and s′′(𝑥) = s(𝑥), from
the definitions of s𝑝 and s′′ we also have s ∼

mod(local 𝑥 in C) s′′. From S-LocalEnd we then have

end(𝑥, s(𝑥)), (s𝑞, h𝑞 ⊎ h) −→ skip, (s′′, h𝑞 ⊎ h). From the definition of
0−→ we have skip, (s′′, h𝑞 ⊎

h) 0−→ skip, (s′′, h𝑞 ⊎ h), ok, and thus since we have end(𝑥, s(𝑥)), (s𝑞, h𝑞 ⊎ h) −→ skip, (s′′, h𝑞 ⊎ h),
from the definition of

1−→ we have end(𝑥, s(𝑥)), (s𝑞, h𝑞 ⊎ h) 1−→ skip, (s′′, h𝑞 ⊎ h). Consequently,
since we also have C, (s𝑝 , h𝑝 ⊎ h) 𝑛−→ −, (s𝑞, h𝑞 ⊎ h), 𝜖 , from Lemma 2 we know there exists
𝑚 such that C; end(𝑥, s(𝑥)), (s𝑝 , h𝑝 ⊎ h) 𝑚−→ skip, (s′′, h𝑞 ⊎ h), ok. On the other hand, since we
have local 𝑥 in C, (s, h𝑝 ⊎ h) −→ C; end(𝑥, s(𝑥)), (s𝑝 , h𝑝 ⊎ h), by definition of

𝑚+1−−→ we also have
local 𝑥 in C, (s, h𝑝 ⊎ h) 𝑚+1−−→ skip, (s′′, h𝑞 ⊎ h), ok. Finally, as (s𝑞, h𝑞) ∈ 𝑞 and s′′ = s𝑞 [𝑥 ↦→ s(𝑥)], by
definition we also have (s′′, h𝑞) ∈ ∃𝑥 . 𝑞, as required.

In case (2), from C, (s𝑝 , h𝑝 ⊎h) 𝑛−→ −, (s𝑞, h𝑞 ⊎h), 𝜖 and Lemma 3 we have C; end(𝑥, s(𝑥)), (s𝑝 , h𝑝 ⊎
h) 𝑛−→ −, (s𝑞, h𝑞⊎h), 𝜖 . On the other hand, sincewe have local𝑥 in C, (s, h𝑝⊎h) −→ C; end(𝑥, s(𝑥)), (s𝑝 , h𝑝⊎
h), by definition of

𝑛+1−−→ we also have local 𝑥 in C, (s, h𝑝 ⊎ h) 𝑛+1−−→ −, (s𝑞, h𝑞 ⊎ h), 𝜖 . Moreover, as
s𝑝 = s[𝑥 ↦→ 𝑣], mod(local 𝑥 in C) = mod(C) ∪ {𝑥} and s𝑝 ∼

mod(C) s𝑞 , by definition we also have
s ∼

mod(local 𝑥 in C) s𝑞 . Finally, as (s𝑞, h𝑞) ∈ 𝑞, by definition we also have (s𝑞, h𝑞) ∈ ∃𝑥 . 𝑞, as required.

Case Disj
Pick arbitrary 𝑝1, 𝑝2, 𝑞1, 𝑞2,C such that ⊢B [𝑝1 ∨ 𝑝2] C [𝜖 :𝑞1 ∨ 𝑞2]. Pick an arbitrary (s, h𝑝 ) ∈ 𝑝1∨𝑝2
and an arbitrary h such that h𝑝 # h. There are then two cases to consider: 1) (s, h𝑝 ) ∈ 𝑝1; or 2)
(s, h𝑝 ) ∈ 𝑝2.
In case (1), from the ⊢B [𝑝1] C [𝜖 :𝑞1] premise and the inductive hypothesis we know there

exists (s′, h𝑞) ∈ 𝑞1, 𝑛 such that s ∼
mod(C) s

′, C, (s, h𝑝 ⊎ h) 𝑛−→ −, (s′, h𝑞 ⊎ h), 𝜖 . That is, there exists
(s′, h𝑞) ∈ 𝑞1 ∨ 𝑞2 and 𝑛 such that s ∼

mod(C) s
′, C, (s, h𝑝 ⊎ h) 𝑛−→ −, (s′, h𝑞 ⊎ h), 𝜖 , as required. The

proof of case (2) is analogous and omitted.

Case DisjTrack
Pick arbitrary 𝑃1, 𝑃2, 𝑄1, 𝑄2,C such that ⊢B [𝑃1 ⊎ 𝑃2] C [𝜖 :𝑄1 ⊎𝑄2]. Pick an arbitrary 𝑖 ∈ dom(𝑃1⊎
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𝑃2), (s, h𝑝 ) ∈ (𝑃1⊎𝑃2) (𝑖) and an arbitrary h such that h𝑝 # h. We then know that either 𝑖 ∈ dom(𝑃1)
or 𝑖 ∈ dom(𝑃2). Without loss of generality, let us assume 𝑖 ∈ dom(𝑃1).
As (s, h𝑝 ) ∈ (𝑃1 ⊎ 𝑃2) (𝑖) and 𝑖 ∈ dom(𝑃1), we then have (s, h𝑝 ) ∈ 𝑃1 (𝑖). From the ⊢B [𝑃1] C

[𝜖 :𝑄1] premise, the definition of merged triples premise and the inductive hypothesis we know
there exists (s′, h𝑞) ∈ 𝑄1 (𝑖), 𝑛 such that s ∼

mod(C) s
′ and C, (s, h𝑝 ⊎ h) 𝑛−→ −, (s′, h𝑞 ⊎ h), 𝜖 . That is,

there exists (s′, h𝑞) ∈ (𝑄1⊎𝑄2) (𝑖) and 𝑛 such that s ∼
mod(C) s

′ and C, (s, h𝑝 ⊎h) 𝑛−→ −, (s′, h𝑞 ⊎h), 𝜖 ,
as required.

Case Cons
Pick arbitrary 𝑃,𝑄,C, 𝐼 such that ⊢B [𝑃 ↓ 𝐼 ] C [𝜖 :𝑄 ↓ 𝐼 ]. Pick an arbitrary 𝑖 ∈ dom(𝑃 ↓ 𝐼 ); that
is, from the 𝐼 ⊆ dom(𝑃) we know 𝑖 ∈ dom(𝑃) ∩ 𝐼 , i.e. 𝑖 ∈ dom(𝑃) and 𝑖 ∈ 𝐼 . Pick an arbitrary
(s, h𝑝 ) ∈ 𝑃 (𝑖) and an arbitrary h such that h𝑝 # h. From the ⊢B [𝑃] C [𝜖 :𝑄] premise, the definition
of merged triples and the inductive hypothesis we know there exists (s′, h𝑞) ∈ 𝑄 (𝑖) and 𝑛 such that
s ∼

mod(C) s
′ and C, (s, h𝑝 ⊎h) 𝑛−→ −, (s′, h𝑞 ⊎h), 𝜖 . As 𝑖 ∈ 𝐼 and 𝑖 ∈ dom(𝑄), we know 𝑖 ∈ dom(𝑄 ↓ 𝐼 ).

That is, there exists 𝑖 ∈ dom(𝑄 ↓ 𝐼 ), (s′, h𝑞) ∈ (𝑄 ↓ 𝐼 ) (𝑖) and 𝑛 such that s ∼
mod(C) s′ and

C, (s, h𝑝 ⊎ h) 𝑛−→ −, (s′, h𝑞 ⊎ h), 𝜖 , as required.

Case Alloc
Pick arbitrary 𝑥, 𝑣 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know h𝑝 ≜ ∅. Pick 𝑙 such that
𝑙 ∉ dom(h) and let h𝑞=[𝑙 ↦→ 𝑣] and s′ = s[𝑥 ↦→ 𝑙]; as such, we also have (s′, h𝑞) ∈ 𝑙 ↦→ 𝑣 ∗ 𝑥 = 𝑙

and s ∼
mod(𝑥 := alloc()) s

′. Since 𝑙 ∉ dom(h) and h𝑞=[𝑙 ↦→ 𝑣], by definition of # we also know h𝑞 # h.
From SL-Alloc we then have 𝑥 := alloc(), (s, h𝑝 ⊎ h) −→ skip, (s′, h𝑞 ⊎ h), ok, and since we also
have skip, (s′, h𝑞 ⊎ h) 0−→ skip, (s′, h𝑞 ⊎ h), ok, by definition of

1−→ we have 𝑥 := alloc(), (s, h𝑝 ⊎ h) 1−→
skip, (s′, h𝑞 ⊎ h), ok, as required.

Case AllocFree
Pick arbitrary 𝑥,𝑦 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know there exists 𝑙 such
that s(𝑦)=𝑙 and h𝑝 ≜ [𝑙 ↦→ ⊥]. Let h𝑞=[𝑙 ↦→ 𝑣] and s′ = s[𝑥 ↦→ 𝑙]; as such, we also have
(s′, h𝑞) ∈ 𝑦 ↦→𝑣 ∗𝑥 = 𝑦 and s ∼

mod(𝑥 := alloc()) s
′. Since h𝑝 # h and dom(h𝑝 )=dom(h𝑞), by definition of

# we also know h𝑞 # h. From SL-AllocFreewe then have𝑥 := alloc(), (s, h𝑝⊎h) −→ skip, (s′, h𝑞⊎h), ok,
and since we also have skip, (s′, h𝑞 ⊎ h) 0−→ skip, (s′, h𝑞 ⊎ h), ok, by definition of

1−→ we have
𝑥 := alloc(), (s, h𝑝 ⊎ h) 1−→ skip, (s′, h𝑞 ⊎ h), ok, as required.

Case Free
Pick an arbitrary 𝑥 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know there exists 𝑙, 𝑣 such
that s(𝑥)=𝑙 , s(𝑒) = 𝑣 and h𝑝 ≜ [𝑙 ↦→ 𝑣]. Let h𝑞=[𝑙 ↦→ ⊥]; we then have (s, h𝑞) ∈ 𝑥 ̸↦→ and
s ∼

mod(free(𝑥)) s. Since h𝑝 # h and dom(h𝑝 )=dom(h𝑞), from the definition of ⊎ we also know that
h𝑞 # h. From SL-Free we then have free(𝑥), (s, h𝑝 ⊎ h) −→ skip, (s, h𝑞 ⊎ h), ok, and since we also
have skip, (s, h𝑞 ⊎ h) 0−→ skip, (s, h𝑞 ⊎ h), ok, by definition of

1−→ we have free(𝑥), (s, h𝑝 ⊎ h) 1−→
skip, (s, h𝑞 ⊎ h), ok, as required.

Case FreeEr
Pick an arbitrary 𝑥 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know there exists 𝑙 such that
s(𝑥)=𝑙 and h𝑝 ≜ [𝑙 ↦→ ⊥]. Let h𝑞=h𝑝 ; we then have (s, h𝑞) ∈ 𝑥 ̸↦→ and s ∼

mod(free(𝑥)) s. From
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SL-FreeEr we then have free(𝑥), (s, h𝑝 ⊎ h) −→ skip, (s, h𝑞 ⊎ h), er , and thus by definition of
1−→ we

have free(𝑥), (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑞 ⊎ h), er , as required.

Case FreeNull
Pick an arbitrary 𝑥 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know s(𝑥)=null and
h𝑝 ≜ ∅. Let h𝑞=h𝑝 ; we then have (s, h𝑞) ∈ 𝑥 = null and s ∼

mod(free(𝑥)) s. From SL-FreeEr

we then have free(𝑥), (s, h𝑝 ⊎ h) −→ skip, (s, h𝑞 ⊎ h), er , and thus by definition of
1−→ we have

free(𝑥), (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑞 ⊎ h), er , as required

Case Store
Pick an arbitrary 𝑥 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know there exists 𝑙, 𝑣, 𝑣𝑦
such that s(𝑥)=𝑙 , s(𝑦) = 𝑣𝑦 , s(𝑒) = 𝑣 and h𝑝 ≜ [𝑙 ↦→ 𝑣]. Let h𝑞=[𝑙 ↦→ 𝑣𝑦]; we then have
(s, h𝑞) ∈ 𝑥 ↦→𝑦 and s ∼

mod( [𝑥 ] := 𝑦) s. Since h𝑝 # h and dom(h𝑝 )=dom(h𝑞), from the definition of ⊎
we also know that h𝑞 # h. From SL-Store we then have [𝑥] := 𝑦, (s, h𝑝 ⊎ h) −→ skip, (s, h𝑞 ⊎ h), ok,
and since we also have skip, (s, h𝑞 ⊎ h) 0−→ skip, (s, h𝑞 ⊎ h), ok, by definition of

1−→ we have
[𝑥] := 𝑦, (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑞 ⊎ h), ok, as required.

Case StoreEr
Pick an arbitrary 𝑥 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know there exists 𝑙 such that
s(𝑥)=𝑙 and h𝑝 ≜ [𝑙 ↦→ ⊥]. Let h𝑞=h𝑝 ; we then have (s, h𝑞) ∈ 𝑥 ̸↦→ and s ∼

mod( [𝑥 ] := 𝑦) s. From

SL-StoreEr we then have [𝑥] := 𝑦, (s, h𝑝 ⊎ h) −→ skip, (s, h𝑞 ⊎ h), er and thus by definition of
1−→ we

have [𝑥] := 𝑦, (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑞 ⊎ h), er , as required.

Case StoreNull
Pick an arbitrary 𝑥 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know s(𝑥)=null and
h𝑝 ≜ ∅. Let h𝑞=h𝑝 ; we then have (s, h𝑞) ∈ 𝑥 = null and s ∼

mod( [𝑥 ] := 𝑦) s. From SL-StoreEr

we then have [𝑥] := 𝑦, (s, h𝑝 ⊎ h) −→ skip, (s, h𝑞 ⊎ h), er , and thus by definition of
1−→ we have

[𝑥] := 𝑦, (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑞 ⊎ h), er , as required.

Case Load
Pick arbitrary 𝑥 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know there exists 𝑙, 𝑣, 𝑣𝑥 such
that s(𝑥) = s(𝑥 ′) = 𝑣𝑥 , s(𝑦)=𝑙 , s(𝑒) = 𝑣 and h𝑝 ≜ [𝑙 ↦→ 𝑣]. Let h𝑞=h𝑝 and s′ = s[𝑥 ↦→ 𝑣]; as
such, we also have (s′, h𝑞) ∈ 𝑥 = 𝑒 [𝑥 ′/𝑥] ∗ 𝑦 ↦→ 𝑒 [𝑥 ′/𝑥] and s ∼

mod(𝑥 := [𝑦 ]) s
′. Since h𝑝 # h and

h𝑝=h𝑞 , we also know h𝑞 # h. From SL-Load we then have 𝑥 := [𝑦], (s, h𝑝 ⊎ h) −→ skip, (s′, h𝑞 ⊎ h), ok,
and since we also have skip, (s′, h𝑞 ⊎ h) 0−→ skip, (s′, h𝑞 ⊎ h), ok, by definition of

1−→ we have
𝑥 := [𝑦], (s, h𝑝 ⊎ h) 1−→ skip, (s′, h𝑞 ⊎ h), ok, as required.

Case LoadEr
Pick an arbitrary 𝑦 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know there exists 𝑙 such that
s(𝑦)=𝑙 and h𝑝 ≜ [𝑙 ↦→ ⊥]. Let h𝑞=h𝑝 ; we then have (s, h𝑞) ∈ 𝑦 ̸↦→ and s ∼

mod(𝑥 := [𝑦 ]) s. From

SL-LoadEr we then have 𝑥 := [𝑦], (s, h𝑝 ⊎ h) −→ skip, (s, h𝑞 ⊎ h), er and thus by definition of
1−→ we
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have 𝑥 := [𝑦], (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑞 ⊎ h), er , as required.

Case LoadNull
Pick an arbitrary 𝑦 and (s, h𝑝 ) ∈ 𝑝 and h such that h𝑝 # h. We then know s(𝑦)=null and
h𝑝 ≜ ∅. Let h𝑞=h𝑝 ; we then have (s, h𝑞) ∈ 𝑦 = null and s ∼

mod(𝑥 := [𝑦 ]) s. From SL-LoadEr

we then have 𝑥 := [𝑦], (s, h𝑝 ⊎ h) −→ skip, (s, h𝑞 ⊎ h), er , and thus by definition of
1−→ we have

𝑥 := [𝑦], (s, h𝑝 ⊎ h) 1−→ skip, (s, h𝑞 ⊎ h), er , as required.

Case Frame
Pick arbitrary (s1, h1) ∈ 𝑝 ∗ 𝑟 and h such that h1 # h. From the definition of ∗ we then know there
exists h𝑝 , h𝑟 such that (s1, h𝑝 ) ∈ 𝑝 , (s1, h𝑟 ) ∈ 𝑟 and h1 ≜ h𝑝 ⊎ h𝑟 . From the definition of # and ⊎
we then also have h𝑝 # h𝑟 ⊎ h. On the other hand, from the premise of Frame we have ⊢B [𝑝] C
[𝜖 :𝑞] and thus from the inductive hypothesis we know there exists s2, h𝑞, 𝑛 such that s1 ∼

mod(C) s2,

(s2, h𝑞) ∈ 𝑞 and C, (s1, h𝑝 ⊎ h𝑟 ⊎ h) 𝑛−→ −, (s2, h𝑞 ⊎ h𝑟 ⊎ h), 𝜖 . Moreover, since s1 ∼
mod(C) s2 and as

from the premise of Frame we have mod(C) ∩ fv(𝑟 )=∅, we also have s1 ∼fv(𝑟 ) s2. Consequently,
since (s1, h𝑟 ) ∈ 𝑟 , from Prop. 19 we have (s2, h𝑟 ) ∈ 𝑟 . As such from the definition of ∗ we have
(s2, h𝑞 ⊎ h𝑟 ) ∈ 𝑞 ∗ 𝑟 . That is, we know there exists s2 and h2=h𝑞 ⊎ h𝑟 such that s1 ∼

mod(C) s2,

(s2, h2) ∈ 𝑞 ∗ 𝑟 and C, (s1, h1 ⊎ h) 𝑛−→ −, (s2, h2 ⊎ h), 𝜖 , as required. □

Lemma 18 (BUA soundness in UNTersl). For all 𝑝,C, 𝑞, 𝜖 , if ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the
rules in Fig. 9, then |=B [𝑝] C [𝜖 :𝑞] holds.

Proof. Pick arbitrary 𝑝,C, 𝑞, 𝜖 such that ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 9.
Pick an arbitrary (s𝑝 , h𝑝 ) ∈ 𝑝 . It then suffices to show there exists (s𝑞, h𝑞) ∈ 𝑞 and 𝑛 such that
C, (s𝑝 , h𝑝 )

𝑛−→ −, (s𝑞, h𝑞), 𝜖 .
Let h0 = ∅ denote the empty heap (with an empty domain). From the definition of ⊎ and #

we then know that h𝑝 # h0. As such, from Lemma 17 we know there exists (s𝑞, h𝑞) ∈ 𝑞 and 𝑛

such that C, (s𝑝 , h𝑝 ⊎ h0)
𝑛−→ −, (s𝑞, h𝑞 ⊎ h0), 𝜖 . That is, there exists (s𝑞, h𝑞) ∈ 𝑞 and 𝑛 such that

C, (s𝑝 , h𝑝 )
𝑛−→ −, (s𝑞, h𝑞), 𝜖 , as required. □

F.2 FUA Soundness in UNTer
sl

Lemma 19. For all 𝑝,C, 𝑞, 𝜖 , if ⊢B [𝑝] C [𝜖 :𝑞] can be derived using the proof rules in Fig. 9, then:

∀(s𝑞, h𝑞) ∈ 𝑞. ∀h. h𝑞 # h =⇒
∃(s𝑝 , h𝑝 ) ∈ 𝑝, 𝑛. s𝑝 ∼

mod(C) s𝑞 ∧ C, (s𝑝 , h𝑝 ⊎ h) 𝑛−→ −, (s𝑞, h𝑞 ⊎ h), 𝜖
Proof. The proof of this lemma is analogous to that of Lemma 17 and is omitted. □

Lemma 20 (FUA soundness in UNTersl). For all 𝑝,C, 𝑞, 𝜖 , if ⊢F [𝑝] C [𝜖 :𝑞] is derivable using the
rules in Fig. 9, then |=F [𝑝] C [𝜖 :𝑞] holds.

Proof. Pick arbitrary 𝑝,C, 𝑞, 𝜖 such that ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 9.
Pick an arbitrary (s𝑞, h𝑞) ∈ 𝑞. It then suffices to show there exists (s𝑝 , h𝑝 ) ∈ 𝑝 and 𝑛 such that
C, (s𝑝 , h𝑝 )

𝑛−→ −, (s𝑞, h𝑞), 𝜖 .
Let h0 = ∅ denote the empty heap (with an empty domain). From the definition of ⊎ and #

we then know that h𝑞 # h0. As such, from Lemma 19 we know there exists (s𝑝 , h𝑝 ) ∈ 𝑝 and 𝑛

such that C, (s𝑝 , h𝑝 ⊎ h0)
𝑛−→ −, (s𝑞, h𝑞 ⊎ h0), 𝜖 . That is, there exists (s𝑝 , h𝑝 ) ∈ 𝑝 and 𝑛 such that

C, (s𝑝 , h𝑝 )
𝑛−→ −, (s𝑞, h𝑞), 𝜖 , as required. □
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F.3 Divergent Soundness in UNTer
sl

Lemma 21. For all C, 𝜎,C′, 𝜎 ′, 𝜖, 𝑛, if 𝑛 > 0 and C, 𝜎
𝑛−→ C

′, 𝜎 ′, 𝜖 , then C, 𝜎 {𝑛
C
′, 𝜎 ′, 𝜖 .

Proof. The proof of this lemma is analogous to that of Lemma 9 and is omitted. □

Lemma 22. For all 𝑛,C1,C2,C
′
1, 𝜎,C

′, 𝜎 ′, 𝜖 , if C1, 𝜎 {
𝑛
C
′
1, 𝜎

′, 𝜖 , then C1;C2, 𝜎 {
𝑛
C
′
1;C2, 𝜎

′, 𝜖 .

Proof. The proof of this lemma is analogous to that of Lemma 10 and is omitted. □

Lemma 23. For all 𝜎 , 𝜎 ′, 𝜎 ′′, C1, C2, C′, 𝑖 , 𝑗 , 𝜖 , if C1, 𝜎
𝑖−→ −, 𝜎 ′′, ok and C2, 𝜎

′′ { 𝑗
C
′, 𝜎 ′, 𝜖 , then

there exists 𝑛 such that C1;C2, 𝜎 {
𝑛
C
′, 𝜎 ′, 𝜖 .

Proof. The proof of this lemma is analogous to that of Lemma 11 and is omitted. □

Lemma 24. For all 𝑖, 𝑗,C,C′,C′′, s, s′, s′′, 𝜖 , if C, s {𝑖
C
′′, s′′, ok and C

′′, s′′ { 𝑗
C
′, s′, 𝜖 , then

C, s {𝑖+𝑗
C
′, s′, 𝜖 .

Proof. The proof of this lemma is analogous to that of Lemma 12 and is omitted. □

Lemma 25. For all 𝑝,C, if ⊢
[
𝑝
]
C [∞] can be derived using the proof rules in Fig. 9, then:

∀𝜎𝑝 ∈ 𝑝. ∀𝜎. 𝜎𝑝 # 𝜎 =⇒
∃C1, 𝜎1,C2, 𝜎2, · · · . C, 𝜎𝑝 ◦ 𝜎 {+

C1, 𝜎1, ok {+
C2, 𝜎2, ok {+ · · ·

Proof. By induction on the structure of the divergence rules in Fig. 3 and Fig. 9.

Case Div-Seq1
Pick arbitrary 𝑝 , C1, C2 such that

[
𝑝
]
C1;C2 [∞]. Pick an arbitrary 𝜎𝑝 ∈ 𝑝 and 𝜎 such that 𝜎𝑝 # 𝜎 .

From the
[
𝑝
]
C1 [∞] premise and the inductive hypothesis we know there exists an infinite series

C
′
2,C

′
3, · · · , and 𝜎2, 𝜎3, · · · , such that C1, 𝜎𝑝 ◦ 𝜎 {+

C
′
2, 𝜎2, ok {

+
C
′
3, 𝜎3, ok {

+ · · · . As such, from
the definition of{+ and Lemma 22 we have C1;C2, 𝜎𝑝 ◦ 𝜎 {+

C
′
2;C2, 𝜎2, ok {+

C
′
3;C2, 𝜎3, ok {+

· · · , as required.

Case Div-Seq2
Pick arbitrary 𝑝, 𝑞, C1, C2 such that

[
𝑝
]
C1;C2 [∞]. Pick an arbitrary 𝜎𝑝 ∈ 𝑝 and 𝜎 such that

𝜎𝑝 # 𝜎 . From the ⊢B
[
𝑝
]
C1

[
ok : 𝑞

]
premise and Lemma 17 we know there exists 𝜎𝑞 ∈ 𝑞 and 𝑛

such that C1, 𝜎𝑝 ◦ 𝜎
𝑛−→ −, 𝜎𝑞 ◦ 𝜎, ok. Moreover, since 𝜎𝑞 ∈ 𝑞, from the

[
𝑞
]
C2 [∞] premise and the

inductive hypothesis we know there exists an infinite series C′
3,C

′
4, · · · and 𝜎3, 𝜎4, · · · , such that

C2, 𝜎𝑞 ◦ 𝜎 {+
C
′
3, 𝜎3, ok {

+
C
′
4, 𝜎4, ok {

+ · · · . As C1, 𝜎𝑝 ◦ 𝜎 𝑛−→ −, 𝜎𝑞 ◦ 𝜎, ok and C2, 𝜎𝑞 ◦ 𝜎 {+

C
′
3, 𝜎3, ok, from the definition of{+ and Lemma 11 we have C1;C2, 𝜎𝑝 ◦𝜎 {+

C
′
3, 𝜎3, ok. Moreover,

as C′
3, 𝜎3 {

+
C
′
4, s4, ok {

+ · · · , we have C1;C2, 𝜎𝑝 ◦ 𝜎 {+
C
′
3, 𝜎3, ok {

+
C
′
4, 𝜎4, ok {

+ · · · , as
required.

Case Div-Choice
Pick arbitrary 𝑝 , C1, C2 such that

[
𝑝
]
C1 + C2 [∞]. Pick an arbitrary 𝑖 ∈ {1, 2}, 𝜎𝑝 ∈ 𝑝 and 𝜎 such

that 𝜎𝑝 # 𝜎 . From the
[
𝑝
]
C𝑖 [∞] premise and the inductive hypothesis we know there exists

an infinite series C3,C4, · · · and 𝜎3, 𝜎4, · · · , such that C𝑖 , 𝜎𝑝 ◦ 𝜎 {+
C3, 𝜎3, ok {+

C4, 𝜎4, ok {+

· · · . Moreover, from SL-Choice we have C1 + C2, 𝜎𝑝 ◦ 𝜎 −→ C𝑖 , 𝜎𝑝 ◦ 𝜎, ok. And thus we have
C1 + C2, 𝜎𝑝 ◦ 𝜎 −→ C𝑖 , 𝜎𝑝 ◦ 𝜎, ok {+

C3, 𝜎3, ok {+
C4, 𝜎4, ok {+ · · · . That is, by definition of{+

we have C1 + C2, 𝜎𝑝 ◦ 𝜎 {+
C3, 𝜎3, ok {+

C4, 𝜎4, ok {+ · · · , as required.
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Case Div-LoopUnfold
Pick arbitrary 𝑝 , C such that

[
𝑝
]
C
★ [∞]. Pick an arbitrary 𝜎𝑝 ∈ 𝑝 and 𝜎 such that 𝜎𝑝 # 𝜎 . From

the
[
𝑝
]
C;C★ [∞] premise and the inductive hypothesis we know there exists an infinite series

C1,C2, · · · and 𝜎1, 𝜎2, · · · , such that C;C★, 𝜎𝑝 ◦ 𝜎 {+
C1, 𝜎1, ok {+

C2, 𝜎2, ok {+ · · · . More-
over, from SL-Loop we have C

★, 𝜎𝑝 ◦ 𝜎 −→ C;C★, 𝜎𝑝 ◦ 𝜎, ok. And thus we have C
★, 𝜎𝑝 ◦ 𝜎 −→

C;C★, 𝜎𝑝 ◦ 𝜎, ok {+
C1, 𝜎1, ok {+

C2, 𝜎2, ok {+ · · · . That is, by definition of {+ we have
C
★, 𝜎𝑝 ◦ 𝜎 {+

C1, 𝜎1, ok {+
C2, 𝜎2, ok {+ · · · , as required.

Case Div-LoopNest
This rule can be derived as follows:[

𝑝
]
C [∞][

𝑝
]
C;C★ [∞]

Div-Seq1[
𝑝
]
C
★ [∞]

Div-LoopUnfold

and thus this rule is sound as we established the soundness of Div-Seq1 and Div-LoopUnfold above.

Case Div-Loop
Pick arbitrary 𝑝 , C, 𝑞 such that ⊢

[
𝑝
]
C
★ [∞]. From SL-Loop we then have:

∀𝜎𝑝 ∈ 𝑝, 𝜎. 𝜎𝑝 # 𝜎 ⇒ C
★, 𝜎𝑝 ◦ 𝜎 −→ C;C★, 𝜎𝑝 ◦ 𝜎, ok (14)

From the ⊢B
[
𝑝
]
C

[
ok : 𝑞

]
premise, Lemma 17, and the 𝑞 ⊆ 𝑝 premise we know ∀𝜎𝑝 ∈ 𝑝, 𝜎. 𝜎𝑝 #

𝜎 ⇒ ∃𝜎 ′
𝑝 ∈ 𝑝, 𝑛. C, 𝜎𝑝 ◦ 𝜎 𝑛−→ −, 𝜎 ′

𝑝 ◦ 𝜎, ok and thus from Lemma 15 C, 𝜎𝑝 ◦ 𝜎 𝑛−→ skip, 𝜎 ′
𝑝 ◦ 𝜎, ok.

That is, from the axiom of choice we know there exist 𝑓 : 𝑝 → 𝑝 and 𝑔 : 𝑝 → N such that:

∀𝜎𝑝 ∈ 𝑝, 𝜎. 𝜎𝑝 # 𝜎 ⇒ C, 𝜎𝑝 ◦ 𝜎
𝑔 (𝜎𝑝 )−−−−→ skip, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok ∧ 𝑓 (𝜎𝑝 ) ∈ 𝑝 (15)

In what follows, we show that ∀𝜎𝑝 ∈ 𝑝, 𝜎. 𝜎𝑝 # 𝜎 ⇒ C
★, 𝜎𝑝 ◦ 𝜎 {+

C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok.

Pick an arbitrary𝜎𝑝 ∈ 𝑝 and𝜎 such that𝜎𝑝 # 𝜎 . From (2) we haveC, 𝜎𝑝◦𝜎
𝑔 (𝜎𝑝 )−−−−→ skip, 𝑓 (𝜎𝑝 )◦𝜎, ok.

There are now two cases to consider: i) 𝑔(𝜎𝑝 ) = 0; or ii) 𝑔(𝜎𝑝 ) > 0. In case (i), we then have C = skip

and 𝜎𝑝=𝑓 (𝜎𝑝 ). As such, from SL-SeqSkip we have C;C★, 𝜎𝑝 ◦ 𝜎 −→ C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok, and thus by

definition of{1 we have C;C★, 𝜎𝑝 ◦ 𝜎 {1
C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok

In case (ii), from C, 𝜎𝑝 ◦ 𝜎
𝑔 (𝜎𝑝 )−−−−→ skip, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok and Lemma 21 we have C, 𝜎𝑝 ◦ 𝜎 {𝑔 (𝜎𝑝 )

skip, 𝑓 (𝜎𝑝 ) ◦𝜎, ok. Consequently, from Lemma 22 we haveC;C★, 𝜎𝑝 ◦𝜎 {𝑔 (s)
skip;C★, 𝑓 (𝜎𝑝 ) ◦𝜎, ok.

On the other hand, from SL-SeqSkip we have skip;C★, 𝑓 (𝜎𝑝 ) ◦ 𝜎 −→ C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok and thus by

definition of {1 we have skip;C★, 𝑓 (𝜎𝑝 ) ◦ 𝜎 {1
C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok. From Lemma 24, C;C★, 𝜎𝑝 ◦

𝜎 {𝑔 (s)
skip;C★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok and skip;C★, 𝑓 (𝜎𝑝 ) ◦ 𝜎 {1

C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok we know there exists

𝑖 such that C;C★, 𝜎𝑝 ◦ 𝜎 {𝑖
C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok.

That is, in both cases we know there exists 𝑖 such that C;C★, 𝜎𝑝 ◦ 𝜎 {𝑖
C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok.

As such, from (14) and the definition of {𝑖+1 we have C
★, 𝜎𝑝 ◦ 𝜎 {𝑖+1

C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok, i.e.

C
★, 𝜎𝑝 ◦ 𝜎 {+

C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok. That is, from (15) we have:

∀𝜎𝑝 ∈ 𝑝, 𝜎. 𝜎𝑝 # 𝜎 ⇒ C
★, 𝜎𝑝 ◦ 𝜎 {+

C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok ∧ 𝑓 (𝜎𝑝 ) ∈ 𝑝 (16)

Pick an arbitrary 𝜎𝑝 ∈ 𝑝 and 𝜎 such that 𝜎𝑝 # 𝜎 . From (16) we then know C
★, 𝜎𝑝 ◦ 𝜎 {+

C
★, 𝑓 (𝜎𝑝 ) ◦ 𝜎, ok {+

C
★, 𝑓 2 (𝜎𝑝 ) ◦ 𝜎, ok {+ · · · , as required.
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Case Div-Subvariant
Pick arbitrary 𝑝 , C, 𝑞 such that ⊢

[
𝑝 (0)

]
C
★ [∞]. From SL-Loop we then have:

∀𝜎𝑝 ∈ 𝑝, 𝜎. 𝜎𝑝 # 𝜎 ⇒ C
★, 𝜎𝑝 ◦ 𝜎 −→ C;C★, 𝜎𝑝 ◦ 𝜎, ok (17)

From the ∀𝑛 ∈ N. ⊢B
[
𝑝 (𝑛)

]
C

[
ok : 𝑝 (𝑛+1)

]
premise, Lemma 17, and the 𝑞 ⊆ 𝑝 premise we know

∀𝑛 ∈ N, 𝜎𝑝 ∈ 𝑝 (𝑛), 𝜎 . 𝜎𝑝 # 𝜎 ⇒ ∃𝜎 ′
𝑝 ∈ 𝑝 (𝑛+1), 𝑘 . C, 𝜎𝑝 ◦ 𝜎

𝑘−→ −, 𝜎 ′
𝑝 ◦ 𝜎, ok. That is, from the axiom

of choice we know there exists a series of functions, 𝑓1, 𝑔1, 𝑓2, 𝑔2 · · · such that for each 𝑖 ∈ N, we
have 𝑓𝑖 : 𝑝 (𝑖−1) → 𝑝 (𝑖) and 𝑔𝑖 : 𝑝 (𝑖−1) → N such that:

∀𝑖 ∈ N+ . ∀𝜎𝑝 ∈ 𝑝 (𝑖 − 1), 𝜎 . 𝜎𝑝 # 𝜎 ⇒ C, 𝜎𝑝 ◦ 𝜎
𝑔𝑖 (𝜎𝑝 )−−−−→ skip, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok ∧ 𝑓𝑖 (𝜎𝑝 ) ∈ 𝑝 (𝑖) (18)

In what follows, we show that ∀𝑖 ∈ N+. ∀𝜎𝑝 ∈ 𝑝 (𝑖−1), 𝜎 . 𝜎𝑝 # 𝜎 ⇒ C
★, 𝜎𝑝 ◦𝜎 {+

C
★, 𝑓𝑖 (𝜎𝑝 ) ◦𝜎, ok.

Pick an arbitrary 𝑖 ∈ N+, 𝜎𝑝 ∈ 𝑝 (𝑖−1) and 𝜎 such that 𝜎𝑝 # 𝜎 . From (18) we have C, 𝜎𝑝 ◦ 𝜎
𝑔𝑖 (𝜎𝑝 )−−−−→

skip, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok. There are now two cases to consider: a) 𝑔𝑖 (𝜎𝑝 ) = 0; or b) 𝑔𝑖 (𝜎𝑝 ) > 0. In case
(a), we then have C = skip and 𝜎𝑝=𝑓𝑖 (𝜎𝑝 ). As such, from SL-SeqSkip we have C;C★, 𝜎𝑝 ◦ 𝜎 −→
C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok, and thus by definition of{1 we have C;C★, 𝜎𝑝 ◦ 𝜎 {1

C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok.

In case (b), from C, 𝜎𝑝 ◦ 𝜎
𝑔𝑖 (𝜎𝑝 )−−−−→ skip, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok and Lemma 21 we have C, 𝜎𝑝 ◦ 𝜎 {𝑔𝑖 (𝜎𝑝 )

skip, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok. Consequently, from Lemma 22 we have C;C★, 𝜎𝑝 ◦ 𝜎 {𝑔𝑖 (𝜎𝑝 )
skip;C★, 𝑓𝑖 (𝜎𝑝 ) ◦

𝜎, ok. On the other hand, from SL-SeqSkip we have skip;C★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎 −→ C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok and

thus by definition of {1 we have skip;C★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎 {1
C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok. From Lemma 24,

C;C★, 𝜎𝑝 ◦𝜎 {𝑔𝑖 (𝜎𝑝 )
skip;C★, 𝑓𝑖 (𝜎𝑝 ) ◦𝜎, ok and skip;C★, 𝑓𝑖 (𝜎𝑝 ) ◦𝜎 {1

C
★, 𝑓𝑖 (𝜎𝑝 ) ◦𝜎, ok we know

there exists 𝑗 such that C;C★, 𝜎𝑝 ◦ 𝜎 { 𝑗
C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok.

That is, in both cases we know there exists 𝑗 such that C;C★, 𝜎𝑝 ◦ 𝜎 { 𝑗
C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok.

As such, from (17) and the definition of { 𝑗+1 we have C
★, 𝜎𝑝 ◦ 𝜎 { 𝑗+1

C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok, i.e.

C
★, 𝜎𝑝 ◦ 𝜎 {+

C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok. That is, from (18) we have:

∀𝑖 ∈ N+. ∀𝜎𝑝 ∈ 𝑝 (𝑖−1), 𝜎 . 𝜎𝑝 # 𝜎 ⇒ C
★, 𝜎𝑝 ◦ 𝜎 {+

C
★, 𝑓𝑖 (𝜎𝑝 ) ◦ 𝜎, ok ∧ 𝑓𝑖 (𝜎𝑝 ) ∈ 𝑝 (𝑖) (19)

Pick an arbitrary 𝜎𝑝 ∈ 𝑝 (0) and 𝜎 such that 𝜎𝑝 # 𝜎 . From (19) we then know C
★, 𝜎𝑝 ◦ 𝜎 {+

C
★, 𝑓1 (𝜎𝑝 ) ◦ 𝜎, ok {+

C
★, 𝑓2 (𝜎𝑝 ) ◦ 𝜎, ok {+ · · · , as required.

Case Div-Cons
Pick arbitrary 𝑝,C such that

[
𝑝
]
C [∞]. Pick an arbitrary 𝜎𝑝 ∈ 𝑝 and 𝜎 such that 𝜎𝑝 # 𝜎 . From the

𝑝 ⊆ 𝑝 ′ premise we know 𝜎𝑝 ∈ 𝑝 ′. As such, from the
[
𝑝 ′]

C [∞] premise we know there exists an
infinite series C1,C2, · · · and 𝜎1, 𝜎2, · · · , such that C, 𝜎𝑝 ◦ 𝜎 {+

C1, 𝜎1, ok {+
C2, 𝜎2, ok {+ · · · , as

required.

Case Div-Frame
Pick arbitrary 𝑝, 𝑟,C such that

[
𝑝 ∗ 𝑟

]
C [∞]. Pick an arbitrary 𝜎𝑝𝑟 ∈ 𝑝 ∗ 𝑟 and 𝜎 such that 𝜎𝑝𝑟 # 𝜎 .

As 𝜎𝑝𝑟 ∈ 𝑝 ∗ 𝑟 , we know there exist 𝜎𝑝 ∈ 𝑝 and 𝜎𝑟 ∈ 𝑟 such that 𝜎𝑝𝑟 = 𝜎𝑝 ◦ 𝜎𝑟 . From the definitions
of ◦ and 𝜎𝑝𝑟 and since 𝜎𝑝𝑟 # 𝜎 we know 𝜎𝑟 # 𝜎 and 𝜎𝑝 # 𝜎𝑟 ◦ 𝜎 .

On the other hand, from the premise of Div-Framewe have
[
𝑝
]
C [∞] and thus from the inductive

hypothesis we know there exists an infinite series C1,C2, · · · and 𝜎1, 𝜎2, · · · , such that C, 𝜎𝑝 ◦ (𝜎𝑟 ◦
𝜎) {+

C1, 𝜎1, ok {+
C2, 𝜎2, ok {+ · · · . That is, by associativity of ◦ we have C, (𝜎𝑝 ◦ 𝜎𝑟 ) ◦ 𝜎 {+

C1, 𝜎1, ok {+
C2, 𝜎2, ok {+ · · · , i.e.C, 𝜎𝑝𝑟 ◦𝜎 {+

C1, 𝜎1, ok {+
C2, 𝜎2, ok {+ · · · , as required. □

Lemma 26. For all 𝑝,C, if ⊢
[
𝑝
]
C [∞] is derivable using the rules in Fig. 3 and Fig. 9, then |=

[
𝑝
]
C

[∞] holds.
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Proof. Pick arbitrary 𝑝,C such that
[
𝑝
]
C [∞] is derivable using the rules in Fig. 3 and Fig. 9.

Pick an arbitrary 𝜎𝑝 = (s𝑝 , h𝑝 ) ∈ 𝑝 . It then suffices to show there exists an infinite series C1,C2, · · ·
and 𝜎1, 𝜎2, · · · , such that C, 𝜎𝑝 {+

C1, 𝜎1, ok {+
C2, 𝜎2, ok {+ · · · .

Let 𝜎0 = (s𝑝 , h0), where h0 denotes the empty heap (with an empty domain). From the definition
of ◦ and # we then know that 𝜎𝑝 # 𝜎0. As such, from Lemma 25 we know there exists an infinite
series C1,C2, · · · and 𝜎1, 𝜎2, · · · , such that C, 𝜎𝑝 ◦ 𝜎0 {+

C1, 𝜎1, ok {+
C2, 𝜎2, ok {+ · · · . That

is, as 𝜎𝑝 ◦ 𝜎0 = 𝜎𝑝 , we know there exists an infinite series C1,C2, · · · and 𝜎1, 𝜎2, · · · , such that
C, 𝜎𝑝 {

+
C1, 𝜎1, ok {+

C2, 𝜎2, ok {+ · · · , as required. □

Theorem 20 (UNTersl soundness). For all 𝑝 , 𝑞, C and 𝜖 :
1) if ⊢B [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 9, then |=B [𝑝] C [𝜖 :𝑞] holds;
2) if ⊢F [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 9, then |=F [𝑝] C [𝜖 :𝑞] holds; and
3) if ⊢

[
𝑝
]
C [∞] is derivable using the rules in Fig. 9, then |=

[
𝑝
]
C [∞] holds.

Proof. The proof of part (1) follows immediately from Lemma 18. The proof of part (2) follows
immediately from Lemma 20. The proof of part (3) follows immediately from Lemma 26. □
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G NON-TERMINATION CVES

G.1 Network software: Wireshark (C, CVE-2022-3190)

Table 1. Wireshark F5 Ethernet trailer vulnerability (CVE-2022-3190, August 2022). Fix available at https:
//gitlab.com/wireshark/wireshark/-/merge_requests/7981/diffs. Failure to show parsing progress leads to

parsing loop stuck reading the same broken trailer over and over.

static gint

dissect_old_trailer(tvbuff_t *tvb, packet_info *pinfo,

proto_tree *tree, void *data)

{

proto_tree *ttree = NULL;

proto_item *ti = NULL;

guint off = 0;

guint read = 0;

f5eth_tap_data_t *tdata = (f5eth_tap_data_t *)data;

guint8 type, len, ver;

while (tvb_reported_length_remaining(tvb, off)) {

type = tvb_get_guint8(tvb, offset);

len = tvb_get_guint8(tvb, off + F5_OFF_LENGTH) + F5_OFF_VERSION;

ver = tvb_get_guint8(tvb, off + F5_OFF_VERSION);

if (len <= tvb_reported_length_remaining(tvb, offset)

&& type >= F5TYPE_LOW && type <= F5TYPE_HIGH

&& len >= F5_MIN_SANE && len <= F5_MAX_SANE

&& ver <= F5TRAILER_VER_MAX) {

/* Parse out the specified trailer. */

switch (type) {

case F5TYPE_LOW:

ti = proto_tree_add_item(tree, hf_low_id, tvb,

off, len, ENC_NA);

ttree = proto_item_add_subtree(ti);

read = dissect_low(tvb, pinfo, ttree,

off, len, ver, tdata);

tdata->trailer_len += read ;

// Bug: next 3 lines should execute after switch

if (read == 0) {

proto_item_set_len(ti, 1);

return off;

}

break;

case F5TYPE_MED:

ti = proto_tree_add_item(tree, hf_med_id, tvb,

off, len, ENC_NA);

ttree = proto_item_add_subtree(ti);

read = dissect_med(tvb, pinfo, ttree,

off, len, ver, tdata);

tdata->trailer_len += read;

break;

}

}

}

https://gitlab.com/wireshark/wireshark/-/merge_requests/7981/diffs
https://gitlab.com/wireshark/wireshark/-/merge_requests/7981/diffs
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G.2 Web software: log4j (Java, CVE 2021-45105)

Table 2. A String substitution function is called recursively with a string reference pointing to the string

being replaced, leading to an infinite loop. (Java code, CVE 2021-45105). Root cause analysis available

at https://www.zerodayinitiative.com/blog/2021/12/17/cve-2021-45105-denial-of-service-via-uncontrolled-
recursion-in-log4j-strsubstitutor

// Recursive function that may not terminate

private int substitute(final LogEvent event,

final StringBuilder buf,

final int offset, final

int length,

List<String> priorVariables) {

if (priorVariables == null) {

priorVariables = new ArrayList<>();

priorVariables.add(new String(chars, offset, length + lengthChange));

}

// Handle cyclic substitution

if (!priorVariables.contains(varName)) {

return;

}

priorVariables.add(varName);

String varValue = resolveVariable(event, varName, buf, startPos, endPos);

// Recursive replace

final int varLen = varValue.length();

buf.replace(startPos, endPos, varValue);

int change = substitute(event, buf, startPos, varLen, priorVariables);

change = change + (varLen - (endPos - startPos));

pos += change;

bufEnd += change;

lengthChange += change;

chars = getChars(buf); // in case buffer was altered

String varNameExpr = new String(chars, startPos + startMatchLen,

pos - startPos - startMatchLen);

// Substitute in variable

final StringBuilder bufName = new StringBuilder(varNameExpr);

// Bug: Missing priorVariables param leads to infinite execution

substitute(event, bufName, 0, bufName.length());

(...)

}

https://www.zerodayinitiative.com/blog/2021/12/17/cve-2021-45105-denial-of-service-via-uncontrolled-recursion-in-log4j-strsubstitutor
https://www.zerodayinitiative.com/blog/2021/12/17/cve-2021-45105-denial-of-service-via-uncontrolled-recursion-in-log4j-strsubstitutor
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G.3 Data mining Software: GraphQL (Golang, Sept 2022)

Table 3. Infinite recursion bug in DataQuery Language interpreter GraphQL. A parsing lookup table con-

taining function pointers is populated with handlers that can be called recursively while parsing the graph

data structure. Bug was fixed in September 2022 to avoid node type confusion when node value string

representation is equal to a node type string representation (e.g. String String = "String"). Fix available at

https://github.com/solidwall/graphql-go/blob/master/language/parser/parser.go#L843)

func init() {

tokenDefinitionFn = make(map[string]parseDefinitionFn)

{

// FIXME: comment below 4 lines

tokenDefinitionFn[lexer.BRACE_L.String()] = parseOperationDef

tokenDefinitionFn[lexer.STRING.String()] = parseTypeSystemDef

tokenDefinitionFn[lexer.BLOCK_STRING.String()] = parseTypeSystemDef

tokenDefinitionFn[lexer.NAME.String()] = parseTypeSystemDef

switch kind := parser.Token.Kind; kind {

case lexer.BRACE_L, lexer.NAME, lexer.STRING, lexer.BLOCK_STRING:

item = tokenDefinitionFn[kind.String()]

// FIX: replace above 2 lines with:

//case lexer.BRACE_L:

// item = parseOperationDefinition

//case lexer.NAME, lexer.STRING, lexer.BLOCK_STRING:

// item = parseTypeSystemDefinition

default:

return nil, unexpected(parser, lexer.Token{})

}

if node, err = item(parser); err != nil {

return nil, err

}

}

func parseTypeSystemDef(parser *Parser) (ast.Node, error) {

keywordToken := parser.Token

var ok bool

if item, ok = tokenDefinitionFn[keywordToken.Value]; !ok {

return nil, unexpected(parser, keywordToken)

}

// Bug: infinite recursion on parseTypeSystemDef

return item(parser)

}

https://github.com/solidwall/graphql-go/blob/master/language/parser/parser.go#L843
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G.4 System Software: Linux Kernel (C, CVE-2020-25641)

Table 4. Termination bug in the Linux kernel (August 2020). Macro for_each_bvec contains an infinite loop due

to zero sized bvec which fails to increment the loop index. Bug discussed at https://www.mail-archive.com/
linux-kernel@vger.kernel.org/msg2262077.html. Details available at https://nvd.nist.gov/vuln/detail/CVE-
2020-25641. Table shows minimized vulnerable code.

+static inline void bvec_iter_skip_zero_bvec(struct bvec_iter *iter)

+{

+ iter->bi_bvec_done = 0;

+ iter->bi_idx++;

+}

+

#define for_each_bvec(bvl, bio_vec, iter, start)

for (iter = (start); (iter).bi_size &&

((bvl = bvec_iter_bvec((bio_vec), (iter))), 1);

- bvec_iter_advance((bio_vec), &(iter), (bvl).bv_len))

+ (bvl).bv_len ? bvec_iter_advance((bio_vec), &(iter),

+ (bvl).bv_len) : bvec_iter_skip_zero_bvec(&(iter)))

https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg2262077.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg2262077.html
https://nvd.nist.gov/vuln/detail/CVE-2020-25641
https://nvd.nist.gov/vuln/detail/CVE-2020-25641
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G.5 Graphical Software : Blender (C language)

Table 5. Termination bug in graphical software (Blender v3.2). Function blendthumb_extract_from_file_impl

contains an infinite loop due to a user-supplied negative stream offset. Fix available at https://developer.
blender.org/rB24a2b5cb1292f769dd86e314471443976d5e9512. Table shows minimized vulnerable code.

eThumbStatus blendthumb_extract_from_file_impl(FileReader *file,

Thumbnail *thumb,

const size_t bhead_size,

const bool endian)

{

uint8_t *bhead_data = BLI_array_alloca(bhead_data, bhead_size);

while (file_read(file, bhead_data, bhead_size)) {

int32_t block_size = bytes_to_native_i32(&bhead_data[4], endian);

switch (*bhead_data) {

case V: {

if (!file_seek(file, block_size))

return BT_INVALID_THUMB;

}

}

}

https://developer.blender.org/rB24a2b5cb1292f769dd86e314471443976d5e9512
https://developer.blender.org/rB24a2b5cb1292f769dd86e314471443976d5e9512
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G.6 Machine Learning Software : Sklearn (Python)

Table 6. Termination bug in Machine Learning software (python sklearn version of November 2021). A

failing try block prevents the induction variable from being incremented properly. Break in catch block

only breaks the inner loop and not the outter one. Fix available at https://github.com/scikit-learn/scikit-
learn/pull/21271/commits/325d32fedb48b42faa32b0873a9eeee9ff35a125. Table shows minimized vulnerable

code.

def discretize(vectors, max_svd_restarts=30, n_iter_max=20):

svd_restarts = 0

has_converged = False

n_samples, n_components = vectors.shape

while (svd_restarts < max_svd_restarts) and not has_converged:

n_iter = 0

while not has_converged:

n_iter += 1

vectors_discrete = csc_matrix(np.arange(0, n_samples))

t_svd = vectors_discrete.T * vectors

try:

U, S, Vh = np.linalg.svd(t_svd)

svd_restarts += 1

except LinAlgError:

print("SVD did not converge, try again.")

break

if (n_iter > n_iter_max):

has_converged = True

https://github.com/scikit-learn/scikit-learn/pull/21271/commits/325d32fedb48b42faa32b0873a9eeee9ff35a125
https://github.com/scikit-learn/scikit-learn/pull/21271/commits/325d32fedb48b42faa32b0873a9eeee9ff35a125
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G.7 Cryptographic Software: OpenSSL (C lang, CVE-2022-0778)

Table 7. Fix for termination bug in OpenSSL. Function BN_mod_sqrt has a non termination condition when

computing modular square root arithmetic on a non-prime moduli with invalid curve parameters. Advisory

available at https://www.openssl.org/news/secadv/20220315.txt (March 2022).

- /* find smallest i such that b^(2^i) = 1 */

- i = 1;

- if (!BN_mod_sqr(t, b, p, ctx))

- goto end;

- while (!BN_is_one(t)) {

- i++;

- if (i == e) {

- BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);

- goto end;

+ /* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */

+ for (i = 1; i < e; i++) {

+ if (i == 1) {

+ if (!BN_mod_sqr(t, b, p, ctx))

+ goto end;

+

+ } else {

+ if (!BN_mod_mul(t, t, t, p, ctx))

+ goto end;

}

- if (!BN_mod_mul(t, t, t, p, ctx))

- goto end;

+ if (BN_is_one(t))

+ break;

+ }

+ /* If not found, a is not a square or p is not prime. */

+ if (i >= e) {

+ BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);

+ goto end;

}

https://www.openssl.org/news/secadv/20220315.txt
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