
Specifying and Verifying Persistent Libraries
Léo Stefanesco
MPI-SWS

Azalea Raad
Imperial College

Viktor Vafeiadis
MPI-SWS

Abstract
We present a general framework for specifying and verifying persistent libraries, that is, libraries of
data structures that provide some persistency guarantees upon a failure of the machine they are
executing on. Our framework enables modular reasoning about the correctness of individual libraries
(horizontal and vertical compositionality) and is general enough to encompass all existing persistent
library specifications ranging from hardware architectural specifications to correctness conditions
such as durable linearizability. As case studies, we specify the FliT and Mirror libraries, verify their
implementations over Px86, and use them to build higher-level durably linearizable libraries, all
within our framework. We also specify and verify a persistent transaction library that highlights
some of the technical challenges which are specific to persistent memory compared to weak memory
and how they are handled by our framework.

2012 ACM Subject Classification Theory of computation → Program specifications

Keywords and phrases persistent memory, concurrent libraries, persistent programming, specification,
verification, weak memory models

1 Introduction

Persistent memory (PM), also known as non-volatile memory (NVM), is a new kind of
memory, which can be used to extend the capacity of regular RAM, with the added benefit
that its contents are preserved after a crash (e.g. a power failure). Employing PM can boost
the performance of any program with access to data that needs to survive power failures, be
it a complex database or a plain text editor.

Nevertheless, doing so is far from trivial. Data stored in PM is mediated through the
processors’ caching hierarchy, which generally does not propagate all memory accesses to the
PM in the order issued by the processor, but rather performs these accesses on the cache and
only propagates them to the memory asynchronously when necessary (i.e. upon a cache miss
or when the cache has reached its capacity limit). Caches, moreover, do not preserve their
contents upon a power failure, which results in rather complex persistency models describing
when and how stores issued by a program are guaranteed to survive a power failure. To
ensure correctness of their implementations, programmers have to use low-level primitives,
such as flushes of individual cache lines, fences that enforce ordering of instructions, and
non-temporal stores that bypass the cache hierarchy.

These primitives are often used to implement higher-level abstractions, packaged into
persistent libraries, i.e. collections of data structures that must guarantee to preserve their
contents after a power failure. Persistent libraries can be thought of as the analogue of
concurrent libraries for persistency. And just as concurrent libraries require a specification,
so do persistent libraries.

The question naturally arises: what is the right specification for persistent libraries?
Prior work has suggested a number of candidate definitions, such as durable linearizability,
buffered durable linearizability [16], and strict linearizability [1], which are all extensions of

ar
X

iv
:2

30
6.

01
61

4v
1

 [
cs

.P
L

]
 2

 J
un

 2
02

3

2 Specifying and Verifying Persistent Libraries

the well-known correctness condition for concurrent data structures (i.e. linearizability [14]).
In general, these definitions stipulate the existence of a total order among all executed library
operations, a contiguous prefix of which is persisted upon a crash: the various definitions
differ in exactly what this prefix should be, e.g. whether it is further constrained to include
all fully executed operations.

Even though these specifications have a nice compositionality property, we argue that
none of them are the right specification pattern for every persistent concurrent library. While
for high-level persistent data structures, such as stacks and queues, a strong specification
such as durable or strict linearizability would be most appropriate, this is certainly not the
case for a collection of low-level primitives. Take, for instance, a library whose interface
simply exposes the exact primitives of the underlying platform: memory accesses, fences
and flushes. Their semantics, recently formalized in [28, 17, 26] in the case of the Intel-x86
architecture and in [29, 4] in the case of the ARMv8 architecture, quite clearly do not fit
into the framework of the durable linearizability definitions. More generally, there are useful
concurrent libraries (especially in the context of weak memory consistency) that are not
linearizable [24]; it is, therefore, conceivable that making those libraries persistent will require
weak specifications.

Another key problem with attempting to specify persistent libraries modularly is that
they often break the usual abstraction boundaries. Indeed, some models such as epoch
persistency [5, 22] provide a global persistency barrier that affects all memory locations, and
therefore all libraries using them. Such global operations also occur at higher abstraction
layers: persistent transactional libraries often require memory locations to be registered with
the library in order for them to be used inside transactions. As such, to ensure compatibility
with such transactional libraries, implementers of other libraries must register all locations
they use and ensure that any component libraries they use do the same.

In this paper, we introduce a general declarative framework that addresses both of these
challenges. Our framework provides a very flexible way of specifying persistent libraries,
allowing each library to have a very different specification—be it durable linearizability or
a more complex specification in the style of the hardware architecture persistency models.
Further, to handle libraries that have a global effect (such as persistent barriers above) or,
more generally, that make some assumptions about the internals of all other libraries, we
introduce a tag system, allowing us to describe these assumptions modularly.

Our framework supports both horizontal and vertical compositionality. That is, we
can verify an execution containing multiple libraries by verifying each library separately
(horizontal compositionality). Moreover, we can completely verify the implementation of a
library over a set of other libraries using the specifications of its constituent libraries without
referring to their implementations (vertical compositionality). To achieve the latter, we
define a semantic notion of substitution in terms of execution graphs, which replaces each
library node by a suitably constrained set of nodes (its implementation).

For simplicity, in §2, we develop a first version of our framework over the classical notion
of an execution history [14], which we extend with a notion of crashes. This basic version of
our framework includes full support for weak persistency models but assumes an interleaving
semantics of concurrency; i.e. sequential consistency (SC) [21].

Subsequently, in §3 we generalise and extend our framework to handle weak consistency
models such as x86-TSO [30] and RC11 [20], thereby allowing us to represent hardware
persistency models such as Px86 [28] and PARMv8 [29], in our framework. To do so, we rebase
our formal development over execution graphs using Yacovet [24] as a means of specifying
the consistency properties of concurrent libraries.

Stefanesco, Raad and Vafeiadis 3

We illustrate the utility of our framework by encoding in it a number of existing persistency
models, ranging from actual hardware models such as Px86 [28], to general-purpose correctness
conditions such as durable linearizability [16]. We further consider two case studies, chosen
to demonstrate the expressiveness of our framework beyond the kind of case studies that
have been worked out in the consistency setting.

First, in §4 we use our framework to develop the first formal specifications of the FliT
[31] and Mirror [9] libraries and establish the correctness of not only their implementations
against their respective specifications, but also their associated constructions for turning a
linearizable library into a durably linearizable one. This generic theorem is new compared to
the case studies in [24], and leverages our ‘semantic’ approach in §3. Moreover, our proofs of
these constructions are the first to establish this result in a weak consistency setting.

Second, in §5 we specify and prove an implementation of a persistent transactional
library Ltrans, which provides a high-level construction to persist a set of writes atomically.
The Ltrans library illustrates the need for a ‘well-formedness’ specification (in addition to its
consistency and persistency specifications) that requires clients of the Ltrans library to ensure
e.g. that Ltrans writes appear only inside transactions. Moreover, it demonstrates the use of
our tagging system to enable other libraries to interoperate with it.
Contributions and Outline. The remainder of this article is organised as follows.

§2 We present our general framework for specifying and verifying persistent libraries in the
strong sequential consistency setting.

§3 We further generalise our framework to account for weaker consistency models.
§4 We use our framework to develop the first formal specifications of the FliT and Mirror

libraries, verify their implementations against their specifications and prove their general
construction theorems for turning linearizable libraries to durably linearizable ones.

§5 We specify a persistent transactional library Ltrans, develop an implementation of Ltrans
(over the Intel-x86 architecture) and verify it against its specification. We then consider
two case studies of vertical and horizontal composition in our framework using Ltrans.

We conclude and discuss related and future work in §6. The full proofs of all theorems stated
in the paper are given in the technical appendix.

2 A General Framework for Persistency

We present our framework for specifying and verifying persistent libraries, which are collections
of methods that operate on durable data structures. Following Herlihy et al. [14], we will
represent program histories over a collection of libraries Λ as Λ-histories, i.e. as sequences of
calls to the methods of Λ, which we will then gradually enhance to model persistency semantics.
Throughout this section, we assume an underlying sequential consistency semantics; in §3 we
will generalize our framework to account for weaker consistency models.

In the following, we assume the following infinite domains: Meth of method names, Loc
of memory locations, Tid of thread identifiers, and Val ⊇ Loc ∪ Tid of values. We let m

range over method names, x over memory locations, t over thread identifiers, and v over
values. An optional value v⊥ ∈ Val⊥ is either a value v ∈ Val or ⊥ /∈ Val.

2.1 Library Interfaces
A library interface declares a set of method invocations of the form m(v⃗). Some methods are
are designated as constructors; a constructor returns a location pointing to the new library

4 Specifying and Verifying Persistent Libraries

instance (object), which is passed as an argument to other library methods. An interface
additionally contains a function, loc, which extracts these locations from the arguments and
return values of its method calls.

▶ Definition 2.1. A library interface L is a tuple ⟨M, Mc, loc⟩, where M ⊆ P (Meth × Val∗)
is the set of method invocations, Mc ⊆ M is the set of constructors, and loc : M × Val⊥ →
P (Loc) is the location function.

▶ Example 2.2 (Queue library interface). The queue library interface, LQueue, has three
methods: a constructor QueueNew(), which returns a new empty queue; QueueEnq(x, v) which
adds value v to the end of queue x; and QueueDeq(x) which removes the head entry in queue x.
We define loc(QueueNew(), x) = loc(QueueEnq(x, _), _) = loc(QueueDeq(x), _) = {x}.

A collection Λ is a set of library interfaces with disjoint method names. When Λ consists
of a single library interface L, we often write L instead of {L}.

2.2 Histories
Given a collection Λ, an event e ∈ Events(Λ) of Λ is either a method invocation m(v⃗)t with
m(v⃗) ∈

⋃
L∈Λ L.M and t ∈ Tid or method response (return) event ret(v)t.

A Λ-history is a sequence of events of Λ whose projection to each thread is an alternating
sequence of invocation and return events which starts with an invocation.

▶ Definition 2.3 (Sequential event sequences). A sequence of events e1 . . . en is sequential if
all its odd-numbered events e1, e3, . . . are invocation events and all its even-numbered events
e2, e4, . . . are return events.

▶ Definition 2.4 (Histories). A Λ-history is a finite sequence of events H ∈ Events(Λ)∗,
such that for every thread t, the sub-sequence H[t] comprising only of t events is sequential.
The set Hist(Λ) denotes the set of all Λ-histories.

When clear from the context, we refer to occurrences of events in a history by their corre-
sponding events. For example, if H = e1 . . . en and i < j, we say that ei precedes ej and
that ej succeeds ei. Given an invocation m(v⃗)t in H, its matching return (when it exists) is
the first event of the form ret(v)t that succeeds it (they share the same thread). A call is
a pair m(v⃗)t:v⊥ of an invocation and either its matching return v⊥ ∈ Val (complete call)
or v⊥ = ⊥ (incomplete call).

A library (specification) comprises an interface and a set of consistent histories. The
latter captures the allowed behaviors of the library, which is a guarantee made by the library
implementation.

▶ Definition 2.5. A library specification (or simply a library) L is a tuple ⟨L, Sc⟩, where L

is a library interface, and Sc ⊆ Hist(L) denotes its set of consistent histories.

2.3 Linearizability
Linearizability [14] is a standard way of specifying concurrent libraries that have a sequential
specification S, denoting a set of finite sequences of complete calls. Given a sequential
specification S, a concurrent library L is linearizable under S if each consistent history
of L can be linearized into a sequential one in S, while respecting the happens before order,
which captures causality between calls. It is sufficient to consider consistent executions
because inconsistent executions are, by definition, guaranteed by the library to never happen.
Happens-before is defined as follows.

Stefanesco, Raad and Vafeiadis 5

▶ Definition 2.6 (Happens-Before). A method call C1 happens before another method call
C2 in a history H, written C1 ≺H C2 if the response of C1 precedes the invocation of C2 in
H. When the choice of H is clear from the context, we drop the H subscript from ≺.

A history H is linearizable under a sequential specification S if there exists a linearization
(in the order-theoretic sense) of ≺H that belongs to S. The subtlety is the treatment of
incomplete calls, which may or may not have taken effect. We write compl(H) for the set of
histories obtained from a history H by appending zero or more matching return events. We
write trunc(H) for the history obtained from H by removing its incomplete calls. We can
then define linearizability as follows [13].

▶ Definition 2.7. A sequential history Hℓ is a sequentialization of a history H if there exists
H ′ ∈ trunc(compl(H)) such that Hℓ is a linearization of ≺H′ . A history H is linearizable
under S if there exists a sequentialization of H that belongs to S. A library L is linearizable
under S if all its consistent histories are linearizable under S.

For instance, we can specify the notion of linearizable queues as those that linearizable
under the following sequential queue specification, SQueue.

▶ Example 2.8 (Sequential queue specification). The behaviors of a sequential queue, SQueue,
is expressed as a set of sequential histories as follows. Given a history H of LQueue and a
location x ∈ Loc, let H[x] denote the sub-history containing calls c such that loc(c) = {x}.
We define SQueue as the set of all sequential histories H of LQueue such that for all x ∈ Loc,
H[x] is of the form QueueNew()t0 :x e1 · · · en, where each QueueDeq call in e1 · · · en returns
the value of the k-th QueueEnq call, if it exists and precedes the QueueDeq, where k is the
number of preceding QueueDeq calls returning non-null values; otherwise, it returns null.

2.4 Adding Failures
Our framework so far does not support reasoning about persistency as it lacks the ability to
describe the persistent state of a library after a failure. Our first extension is thus to extend
the set of events of a collection, Events(Λ), with another type of event, a crash event .

Crash events allow us to specify the durability guarantees of a library. For instance, a
library that does not persist any of its data may specify that a history with crash events is
consistent if all of its sub-histories between crashes are (independently) consistent. In other
words, in such a library, the method calls before a crash have no effect on the consistency
of the history after the crash. We modify the definition of happens-before accordingly by
treating it both as an invocation and a return event. We also assume that, after a crash,
the thread ids of the new threads are distinct from that of all the pre-crash threads. For
libraries that do persist their data, a useful generic specification is durable linearizability [16],
defined as follows.

▶ Definition 2.9. Given a history H, let ops(H) denote the sub-history obtained from H by
removing all its crash markers. A history H is durably linearizable under S if there exists a
sequentialization Hℓ of ops(H) such that Hℓ ∈ S.

Intuitively, this ensures that operations persist before they return, and they persist in the
same order as they take effect before a crash.

Although durable linearizability can specify a large range of persistent data-structures,
it can be too strong. For example, consider a (memory) register library Lwreg that only
guarantees that writes to the same location are persisted in the order they are observed

6 Specifying and Verifying Persistent Libraries

by concurrent reads. The Lwreg methods comprise RegNew() to allocate a new register,
RegWrite(x, v) to write v to register x, and RegRead(x) to read from register x. The sequential
specification Swreg is simple: once a register is allocated, a read R on x returns the latest
value written to x, or 0 if R happens before all writes. The associated durable linearizability
specification requires that writes be persisted in the linearization order; however, this is often
not the case on existing hardware, e.g. in Px86 (the Intel-x86 persistency model) [28].

A more relaxed and realistic specification would consider two linearizations of the events:
the standard volatile order lin and a persistent order nvo expressing the order in which events
are persisted. The next sections will handle this more refined model, this paragraph only
gives a quick tastes of the kind of models that are implemented by hardware. To capture the
same-location guarantees, we stipulate a per-location ordering on writes that is respected by
both linearizations. Specifically, we require an ordering mo of the write calls such that for all
locations x: 1) restricting mo to x, written mox, totally orders writes to x; and 2) mox ⊆ lin
and mox ⊆ nvo. Given a history H, we can then combine these two linearizations by using lin
after the last crash and nvo before.

Formally, a history H with n−1 crashes can be decomposed into n (crash-free) eras; i.e.
H = H1 · · · · · Hn where each Hi is crash-free. Let us write lini for lin ∩ (Hi × Hi) and so
forth. We then consider k-sequentializations of the form Hk

ℓ = H
(1)
ℓ · · · H

(k−1)
ℓ · H

(k)
ℓ , where

H
(k)
ℓ is a sequentialization of Ek w.r.t. link and H

(i)
ℓ is a sequentialization of Ei w.r.t. nvoi,

for i < k. We can now specify our weak register library as follows, where H comprises n eras:

H ∈ Lwreg.Sc ⇐⇒ ∀k ≤ n. ∃Hk
ℓ k-seq. of H. Hk

ℓ ∈ Swreg

▶ Example 2.10. The following history is valid according to this specification but not
according to the durably linearizable one:

Wt1 (x, 1) · Wt2 (y, 1) · Rt3 (y) · rett3 (1) · Rt3 (x) · rett3 (0) · · Rt4 (y) · rett4 (0) · Rt4 (x) · rett4 (1)

While the writes to x (Wt1(x, 1)) and y (Wt2(y, 1)) are executing, thread t3 observes the new
value (1) of y but the old value (0) of x; i.e. lin must order Wt2(y, 1) before Wt1(x, 1). By
contrast, after the crash the new value (1) of x but the old value of y (0) is visible; i.e. nvo
must order the two writes in the opposite order to lin (Wt1(x, 1) before Wt2(y, 1)).

Persist Instructions. The persistent registers described above are too weak to be
practical, as there is no way to control how writes to different locations are persisted. In
realistic hardware models such as Px86, this control is afforded to the programmer using
per-location persist instructions (e.g. CLFLUSH), ensuring that all writes on a location x persist
before a write-back on x. Here, we consider a coarser (stronger) variant, denoted by PFENCE,
that ensures that all writes (on all locations) that happen before a PFENCE are persisted.
Later in §3 we describe how to specify the behavior of per-location persist operations.

Formally, we specify PFENCE by extending the specification of Lwreg with as follows: given
history H, write call cw and PFENCE event cf , if cw ≺H cf , then (cw, cf) ∈ nvo.

▶ Example 2.11. Consider the history obtained from Example 2.10 by adding a PFENCE:

Wt1 (x, 1)·Wt2 (y, 1)·Rt3 (y)·rett3 (1)·Rt3 (x)·rett3 (0)·PFENCEt4 ()·rett4 ()· ·Rt4 (y)·rett4 (0)·Rt4 (x)·rett4 (1)

This history is no longer consistent according to the extended specification of Lwreg: as
PFENCE has completed (returned), all its ≺-previous writes must have persisted and thus
must be visible after the crash (which is not the case for Wt2(y, 1)).

Stefanesco, Raad and Vafeiadis 7

2.5 Adding Well-formedness Constraints
Our next extension is to allow library specifications to constrain the usage of the library
methods by the client of the library. For example, a library for a mutual exclusion lock may
require that the “release lock” method is only called by a thread that previously acquired the
lock and has not released it in between. Another example is a transactional library, which
may require that transactional read and write methods are only called within transactions,
i.e. between a “transaction-begin” and a “transaction-end” method call.

We call such constraints library well-formedness constraints, and extend the library
specifications with another component, Swf ⊆ Hist(L), which records the set of well-formed
histories of the library. Ensuring that a program produces only well-formed histories of a
certain library is an obligation of the clients of that library, so that the library implementation
can rely upon well-formedness being satisfied.

2.6 Tags and Global Specifications
The goal of our framework is not only to specify libraries in isolation, but also to express how
a library can enforce persistency guarantees across other libraries. For example, consider a
library Ltrans for persistent transactions, where all operations wrapped within a transaction
persist together atomically; i.e. either all or none of the operations in a transaction persist.

The Ltrans methods are: PTNewReg to allocate a register that can be accessed (read/written)
within a transaction; PTBegin and PTEnd to start and end a transaction, respectively; PTRead(x)
and PTWrite(x, v) to read from and write to Ltrans register x, respectively; and PTRecover to
restore the atomicity of transactions whose histories were interrupted by a crash.

Consider the snippet below, where the PEnq(q, 33) (enqueuing 33 into persistent queue q)
and PSetAdd(s, 77) (adding 77 to persistent set s) are wrapped within an Ltrans transaction
and thus should take effect atomically and at the latest after the end of the call to PTEnd.

PTBegin();
PEnq(q, 33);
PSetAdd(s, 77);

PTEnd();

Such guarantees are not offered by existing hardware primitives e.g. on Intel-x86 or ARMv8
[28, 29] architectures. As such, to ensure atomicity, the persistent queue and set implementa-
tions cannot directly use hardware reads/writes; rather, they must use those provided by the
transactional library whose implementation could use e.g. an undo-log to provide atomicity.

Our framework as described so far cannot express such cross-library persistency guaran-
tees. The difficulty is that the transactional library relies on other libraries using certain
primitives. This, however, is against the spirit of compositional specification, which precludes
the transactional library from referring to other libraries (e.g. the queue or set libraries).
Specifically, there are two challenges. First, both well-formedness requirements and consis-
tency guarantees of Ltrans must apply to any method call that is designed to use (transitively)
the primitives of Ltrans. Second, we must formally express atomicity (“all operations persist
atomically”), without Ltrans knowing what it means for a method of an arbitrary library to
persist. In other words, Ltrans needs to introduce an abstract notion of ‘having persisted’ for
an operation, and guarantee that all methods in a transaction ‘persist’ atomically.

To remedy this, we introduce the notion of tags. Specifically, to address the first challenge,
the transactional library provides the tag t to designate those operations that are ‘transaction-
aware’ and as such must be used inside a transaction. To address the second challenge,
the transaction library provides the tag ptr, denoting an operation that has abstractly

8 Specifying and Verifying Persistent Libraries

persisted. The specification of Ltrans then guarantees that all operations tagged with t inside
a transaction persist atomically, in that either they are all tagged with ptr of none of them
are. Dually, using the well-formedness condition, Ltrans requires that all operations tagged
with t appear inside a transaction. Note that as the persistent queue and set libraries tag
their operations with t, verifying their implementations incurs related proof obligations; we
will revisit this later when we formalize the notion of library implementations.
▶ Remark 2.12 (Why bespoke persistency?). The reader may question why ‘having persisted’ is
not a primitive notion in our framework, as in an existing model of Px86 [17] where histories
track the set P of persisted events. This is because associating a Boolean (‘having persisted’)
flag with an operation may not be sufficient to describe whether it has persisted. To see
this, consider a library Lpair with operations Write(x, l, r) (writing (l, r) to pair x), Readl(x)
and Readr(x) (reading the left and right components of x, respectively). Suppose Lpair is
implemented by storing the left component in an Ltrans register and the right component
in a Lwreg register. The specification of Lpair would need to track the persistence of each
component separately, and hence a single set P of persisted events would not suffice.

Let us see how libraries can use these tags in global well-formedness and consistency
specifications. The dilemma is, on the one hand, the specification of Ltrans needs to refer to
events from other libraries, but on the other hand, it should not depend on other libraries to
preserve encapsulation. Our idea is to anonymize these external events such that the global
specification depends only on their relevant tags. A library should only rely on the tags it
introduces itself, as well as the tags of the libraries it uses.

We now revisit several of our definitions to account for tags and global specifications. A
library interface now additionally holds the tags it introduces as well as those it uses. For
instance, the Ltrans library described above depends on no tag and introduces tags t and ptr.

▶ Definition 2.13 (Interfaces). An interface is a tuple L = ⟨M, Mc, loc, Tagsnew, Tagsdep⟩,
where M, Mc, and loc are as in Def. 2.1, Tagsnew is the set of tags L introduces, and
Tagsdep is the set of tags L uses. The set of tags usable by L is Tags(L) ≜ L.Tagsnew ∪
L.Tagsdep.

We next define the notion of tagged method invocations (where a method invocation is
associated with a set of tags). Hereafter, our notions of events, history (and so forth) use
tagged method invocations (rather than methods invocations).

▶ Definition 2.14. Given a library interface L, a tagged method invocation is of the form
m(v⃗)T

t : v⊥, where the new component is a set of tags T ⊆ Tags(L).

A global specification of a library interface L is a set of histories with some “anonymized”
events. These are formalized using a designated library interface, ⋆L (with a single method
⋆), which can be tagged with any tag from Tags(L).

▶ Definition 2.15. Given an interface L, the interface ⋆L is ⟨{⋆}, ∅, ∅, ∅, Tags(L)⟩.

Now, given any history H ∈ Hist({L}∪Λ), let πL(H) ∈ Hist({L, ⋆L}) denote the anonymiza-
tion of H such that each non-L event e in H labelled with a method m(v⃗)T

t : v⊥ of L′ ∈ Λ
is replaced with ⋆T

t of ⋆L if T ̸= ∅ and is discarded otherwise. It is then straightforward to
extend the notion of libraries with global specifications as follows.

▶ Definition 2.16. A library specification L is a tuple ⟨L, Λtags, Sc, Swf, Tc, Twf⟩, where L,
Sc and Swf are as in Def. 2.5; Tc and Twf ⊆ Hist({L, ⋆L}) are the globally consistent and
globally well-formed histories, respectively; and Λtags denotes the tag-dependencies, i.e. a

Stefanesco, Raad and Vafeiadis 9

collection of libraries that provide all tags that L uses: L.Tagsdep ⊆
⋃

L′∈Λtags
L′.Tagsnew.

Both Twf and Tc contain the empty history.

In the context of a history, we write ⌊t⌋ for the set of events or calls tagged with the
tag t (we consider a return event tagged the same way as its unique matching invocation).

For the Ltrans library, the globally well-formed set Ltrans.Twf comprises histories H such that
for each thread t, E[t] restricted to PTBegin, PTEnd and events of the form t-tagged events
is of the form described by the regular expression (PTBegin.⌊t⌋∗.PTEnd)∗. In particular,
transaction nesting is disallowed in our simple Ltrans library.

To define global consistency, we need to know when two operations are part of the same
transaction. Given a history H, we define the same-transaction relation, strans, relating
pairs of e, e′ ∈ ⌊t⌋ ∪ PTEnd ∪ PTBegin executed by the same thread t such that there is
no PTBegin or PTEnd executed by t between them. The set Ltrans.Tc of globally consistent
histories contains histories H such that ∀(e, e′) ∈ strans, e ∈ ⌊ptr⌋ ⇔ e′ ∈ ⌊ptr⌋, and all
completed PTEnd calls are in ⌊ptr⌋. Since the PTEnd call is related to all events inside its
transaction, this specification does express that (1) a transaction persist by the time the call
to PTEnd finishes and (2) all events persist atomically.

Finally, we need to define the local consistency predicate Ltrans.Sc describing the behavior
of the registers provided by Ltrans. This is where the we define the concrete meaning of
‘having persisted’ for these registers. Let S be the sequential specification of a register.
Let H ∈ Hist(Ltrans) be a history decomposed into k eras as H1 · · H2 · · · · · · Hk.
Then H ∈ Ltrans.Sc iff all events are tagged with t, and there exists a ≺-linearization Hℓ

of
(

(H1 · · H2 · · · · · · Hk−1) ∩ ⌊ptr⌋
)

· Hk such that Hℓ ∈ S, where ⌊ptr⌋ is the set of
events of H tagged with ptr. In other words, a write operation is seen after a crash iff it
has persisted. The requirement that such operations must appear within transactions and
the guarantee that they persist at the same time in a transaction are covered by the global
specifications.

2.7 Library Implementations
We have described how to specify persistent libraries in our framework, and next describe how
to implement persistent libraries. This is formalized by the judgment Λ ⊢ I : L, stating that
I is a correct implementation of library L and only uses calls in the collection of libraries Λ.
As usual in such ‘layered’ frameworks [12, 24], the base layer, which represents the primitives
of the hardware, is specified as a library, keeping the framework uniform. This judgement
can be composed vertically as follows, where I[IL] denotes replacing the calls to library L in
I with their implementations given by IL (which in turn calls libraries Λ′):

Λ, L ⊢ I : L′ Λ′ ⊢ IL : L
Λ, Λ′ ⊢ I[IL] : L′

As we describe later, this judgment denotes contextual refinement and is impractical to prove
directly. We define a stronger notion that is compositional and more practical to use.

▶ Definition 2.17 (Implementation). Given a collection Λ of libraries and a library L, an
implementation I of L over Λ is a map, I : L.M × Val⊥ −→ P(Hist(Λ)), such that it
is downward-closed: 1) if H ∈ I(m(v⃗)t, v⊥) and H ′ is a prefix of H, then H ′ ∈ I(m(v⃗), ⊥);
and 2) each I(m(v⃗)t:v⊥) history only contain events by thread t.

Intuitively, I(m(v⃗), v⊥) contains the histories corresponding to a call m(v⃗) with outcome v⊥,
where v⊥ = ⊥ denotes that the call has not terminated yet and v⊥ = v ∈ Val denotes the

10 Specifying and Verifying Persistent Libraries

globals log := Q.new()
method PTNewReg() := alloc(1)
method PTRead(l) := read(l)
method PTWrite(l, v) :=

Q.append(log, (l , v)) ;
write (l , v)

method PTBegin() := FENCE();
method PTEnd() :=

Append(log, COMMITTED);
FENCE()

method PTRecover() :=
let w = Q.new() in
while (x := Q.pop(log))

if (x = COMMITTED)
w = Q.new();

else
Q.append(w, x);

while ((l , v) = Q.pop(log)) {
write (l , v) ; }

Figure 1 Implementation of Ltrans

return value. Downward-closure means that an implementation contains all partial histories.
We use a concrete programming language to write these implementations; its syntax and
semantics are standard and given in the technical appendix.

For example, the implementation of Ltrans over Lwreg and LQueue is given in Fig. 1. The
idea is to keep an undo-log as a persistent queue that tracks the values of the variables before
the transaction begins. At the end of a transaction, and after all its writes have persisted, we
write the sentinel value COMMITTED to the log to indicate that the transaction was completed
successfully. After a crash, the recovery routine PTRecover returns the undo-log and undoes
the operations of incomplete transactions by writing their previous values.

Histories and Implementations. An implementation I of L over Λ is correct if for all
histories H ∈ Hist({L} ∪ Λ′) that use library L as well as those in Λ′, and all histories H ′

obtained by replacing calls to L methods with their implementation in I, if H ′ is consistent,
then so is H (it satisfies the L specification).

We define the action H ·I of an implementation I on an abstract history H in a ‘relational’
way: H ′ ∈ H ·I when we can match each operation m′(v⃗) in H ′ with some operation f(m′(v⃗))
in H in such a way that the collection f−1(m(v⃗)t:v⊥) of operations corresponding to some
call m(v⃗)t:v⊥ in H agrees with I(m(v⃗)t:v⊥).

▶ Definition 2.18. Let I be an implementation of L over Λ; let H ∈ Hist({L} ∪ Λ′)
and H ′ ∈ Hist(Λ ∪ Λ′) be two histories. Given a map f : {1, . . . , |H ′|} → {1, . . . , |H|}, H ′

(I, f)-matches H if the following hold:

1. f is surjective;
2. for all invocations of H, if m(v⃗)t /∈ L.M, then f(m(v⃗)t) = m(v⃗)t;
3. for all threads t, if e1 precedes e2 in H ′[t], then f(e1) precedes f(e2) in H[t];
4. for all calls m(v⃗)t:v⊥ of H, the set f−1(m(v⃗)t) corresponds to a substring H ′

m of H ′[t]
and H ′

m ∈ I(m(v⃗)t:v⊥), where v⊥ is the (optional) return value of m(v⃗)t in H.

The action of I on a history H is defined as H · I := {H ′ | ∃f. H ′ (I, f)-matches H}.

Condition 1 ensures that all events of the abstract history are matched with an implementation
event; condition 2 ensures that the events that do not belong to the library being implemented
(L) are left untouched, and condition 3 ensures that the thread-local order of events in the
implementation agrees with the one in the specification. The last condition (4) states that
the events corresponding to the implementation of a call m(v⃗) are consecutive in the history
of the executing thread t, and correspond to the implementation I.

Well-formedness and Consistency. Recall that libraries specify both how they should
be used (well-formedness), and what they guarantee if used correctly (consistency). Using

Stefanesco, Raad and Vafeiadis 11

these specifications (expressed as sets of histories) to define implementation correctness is
more subtle than one might expect. Specifically, if we view a program using a library L as
a downward-closed set of histories in Hist(L), we cannot assume all its histories are in the
set L.Swf of well-formed histories, as the semantics of the program will contain unreachable
traces (see [24]). To formalize reachability at a semantic level, we define hereditary consistency,
stating that each step in the history was consistent, and thus the current ‘state’ is reachable.

▶ Definition 2.19 (Consistency). History H ∈Hist(Λ) is consistent if for all L∈Λ, H[L]∈L.Sc
and πL(H)∈L.Tc. It is hereditarily consistent if all H[1..k] are consistent, for k ≤ |H|.

This definition uses the ‘anonymization’ operator πL defined in §2.6 to test that the history H

follows the global consistency predicates of every L ∈ Λ.
We further require that programs using libraries respect encapsulation, defined below,

stating that locations obtained from a library constructor are only used by that library
instance. Specifically, the first condition ensures that distinct constructor calls return distinct
locations. The second condition ensures that a non-constructor call e of L uses locations that
have been allocated by an earlier call c (c ≺ e) to an L constructor.

▶ Definition 2.20 (Encapsulation). A history H ∈ Hist(Λ) is encapsulated if the following
hold, where C denotes the set of calls to constructors in H:

1. for all c, c′ ∈ C, if c ̸= c′, then loc(c) ∩ loc(c′) = ∅;
2. for all e ∈ H \ C, if loc(e) ̸= ∅, then there exist c ∈ C, L ∈ Λ such that e, c ∈ L.M, c ≺ e

and loc(e) ⊆ loc(c).

We can now define when a history of Λ is immediately well-formed: it must be encapsulated
and be well-formed according to each library in Λ and all the tags it uses.

▶ Definition 2.21. History H ∈ Hist(Λ) is immediately well-formed if the following hold:

1. H is encapsulated;
2. H[L] ∈ L.Swf, for all L ∈ Λ; and
3. πL(H) ∈ L.Twf for all L ∈ TagDep(Λ), where the immediate dependencies TagDep(Λ) is

defined as
⋃

L∈Λ{L} ∪ Λtags(L).

We finally have the notions required to define a correct implementation.
Implementation Correctness. As usual, an implementation is correct if all behaviors

of the implementation are allowed by the specification. In our setting, this means that
if a concrete history is hereditarily consistent, so should the abstract history. Moreover,
assuming the abstract history is well-formed, all corresponding concrete histories should also
be well-formed; this corresponds to the requirement that the library implementation uses
its dependencies correctly, under the assumption that the program itself uses its libraries
correctly.

▶ Definition 2.22 (Correct implementation). An implementation I of L over Λ is correct,
written Λ ⊢ I : L, if for all collections Λ′, all ‘abstract’ histories H ∈ Hist({L} ∪ Λ′) and all
‘concrete’ histories H ′ ∈ H · I ⊆ Hist(Λ ∪ Λ′), the following hold:

1. if H is immediately well-formed, then H ′ is also immediately well-formed; and
2. if H ′ is immediately well-formed and hereditarily consistent, then H is consistent.

This definition is similar to contextual refinement in that it quantifies over all contexts: it
considers histories that use arbitrary libraries as well as those that concern I directly. We
now present a more convenient, compositional method for proving an implementation correct,
which allows one to only consider libraries and tags that are used by the implemented library.

12 Specifying and Verifying Persistent Libraries

2.8 Compositionally Proving Implementation Correctness
Recall that in this section we present our framework in a simplified sequentially consistent
setting; later in §3 we generalize our framework to the weak memory setting. We introduce
the notion of compositional correctness, simplifying the global correctness conditions in
Def. 2.22. Specifically, while Def. 2.22 considers histories with arbitrary libraries that may
use tags introduced by L, our compositional condition requires one to prove that only those
L methods that are L-tagged satisfy L.Tc.

▶ Definition 2.23 (Compositional correctness). An implementation I of L over Λ is composi-
tionally correct if the following hold:

1. For all Λ′, H ∈ Hist({L} ∪ Λ) and H ′ ∈ H · I ⊆ Hist(Λ ∪ Λ′), if H ′ is well-formed, then
H is well-formed;

2. For all H ∈ Hist(L) and H ′ ∈ H · I ⊆ Hist(Λ), if H ′ is well-formed and hereditarily
consistent, then H ∈ L.Sc ∩ L.Tc; and

3. For all L′ ∈ Λ, H ∈ Hist({L, L′, ⋆L′}) and H ′ ∈ H · I, if πL′(H ′) ∈ L′.Twf ∩ L′.Tc, then
πL′(H) ∈ L′.Tc.

The preservation of well-formedness (condition 1) does not change compared to its counterpart
in Def. 2.22, as in practice this condition is easy to prove directly. Condition 2 requires one
to prove that the implementation is correct in isolation (without Λ′). Condition 3 requires
one to prove that global consistency requirements are maintained for all dependencies of the
implementation. In practice, this corresponds to proving that those L operations tagged with
existing tags in Λ obey the global specifications associated with these tags. Intuitively, the
onus is on the library that uses a tag for its methods to prove the associated global consistency
predicate: we need not consider unknown methods tagged with tags in L.Tagsnew.

Finally, we show that it is sufficient to show an implementation I is compositionally
correct as it implies that I is correct.

▶ Theorem 2.24 (Correctness). If an implementation I of L over Λ is compositionally correct
(Def. 2.23), then it is also correct (Def. 2.22).

▶ Example 2.25 (Transactional Library Ltrans). Consider the implementation Itrans of Ltrans
over Λ = {Lwreg, LQueue} given in Fig. 1, and let us assume we were to show that Itrans is
compositionally correct. Our aim here is only to outline the proof obligations that must be
discharged; later in §5 we give a full proof in the more general weak memory setting.

1. For the first condition of compositional correctness, we must show Itrans preserves well-
formedness: if the abstract history H is well-formed, then so is any corresponding concrete
history H ′ ∈ H · Itrans. This is straightforward as the well-formedness conditions of Lwreg
and LQueue are trivial, and Ltrans does not use any existing tag.

2. For the second condition of compositional correctness, we must show that Itrans preserves
consistency in the other direction: keeping the notations as above, assuming H ′ is
consistent for Λ, then H is consistent as specified by Ltrans. There are two parts to this
obligation, as we also have to show that the Ltrans’s operations tagged with t satisfy the
global consistency predicate of the library.

3. The last condition holds vacuously as Ltrans does not use any existing tags.

▶ Example 2.26 (A Client of Ltrans). To see how the global consistency specifications work,
consider a simple min-max counter library, Lmmcnt, tracking the maximal and minimal integer
it has been given. The Lmmcnt is to be used within Ltrans transactions, and provides four

Stefanesco, Raad and Vafeiadis 13

method mmNew() :=
(PTNewReg(), PTNewReg())

method mmAdd(x, n) :=
PTWrite(min(n, PTRead(x.1)))
PTWrite(max(n, PTRead(x.2)))

method mmMin(x) :=
PTRead(x.1)

method mmMax(x) :=
PTRead(x.2)

Figure 2 Implementation Immcnt of Lmmcnt

methods: mmNew() to construct a min-max counter, mmAdd(x, n), to add integer n to the
min-max counter, and mmMin(x) and mmMax(x) to read the respective values.

We present the Immcnt implementation over Ltrans in Fig. 2. The idea is simply to track
two integers denoting the minimal and maximal values of the numbers that have been added.
Interestingly, even though they are stored in Ltrans registers, the implementation does not begin
or end transactions: this is the responsibility of the client to avoid nesting transactions. This
is enforced by Lmmcnt using a global well-formedness predicate. Moreover, the mmAdd operation
is tagged with t from the Ltrans library, ensuring that it behaves well w.r.t. transactions. A
non-example is a version of Immcnt where the minimum is in a Ltrans register, but the max is
in a “normal” Lwreg register. This breaks the atomicity guarantee of transactions.

Formally, the interface Lmmcnt has four methods as above, where mmNew is the only
constructor. The set of used tags is Tagsdep = {t, ptr}, and all Lmmcnt methods are tagged
with t as they all use primitives from Ltrans. The consistency predicate is defined using
the obvious sequential specification Smmcnt, which states that calls to mmMin return the
minimum of all integers previously given to mmAdd in the sequential history. We lift this
to (concurrent) histories as follows. A history H ∈ Hist(Lmmcnt) is in Lmmcnt.Sc if there
exists Eℓ ∈ Smmcnt that is a ≺-linearization of E1[ptr] · E2[ptr] · · · En−1 · En[ptr], where H

constructs n eras decomposed as H = E1 · · · · · En (recall that E[ptr] denotes the sub-
history with events tagged with ptr, that is, persisted events.). The global specification
and well-formedness conditions of Lmmcnt are trivial. Because Lmmcnt uses tag t of Ltrans,
a well-formed history of Lmmcnt must satisfy Ltrans.Twf, which requires that all operations
tagged with t be inside transactions, and Ltrans.Tc guarantees that Lmmcnt operations persist
atomically in a transaction.

When proving that the implementation in Fig. 2 satisfies Lmmcnt using compositional cor-
rectness, one proof obligation is to show that, given histories H ∈ Hist({Ltrans, Lmmcnt, ⋆Ltrans})
and H ′ ∈ H · Immcnt ⊆ Hist({Ltrans, ⋆Ltrans}), if πLtrans(H ′) ∈ Ltrans.Tc, then πLtrans(H) ∈ Ltrans.Tc.
This corresponds precisely to the fact that min-max counter operations persist atomically in
a transaction, assuming the primitives it uses do as well.

2.9 Generic Durable Persistency Theorems

We consider another family of libraries with persistent reads/writes guaranteeing the following:
if one replaces regular (volatile) reads/writes in a linearizable implementation with
persistent ones, then the implementation obtained is durably linearizable.

We consider two such such libraries: FliT [31] and Mirror [9]. Thanks to our framework, we
formalise the statement above for the first time and prove it for both Flit and Mirror against
a realistic consistency (concurrency) model (see §4).

14 Specifying and Verifying Persistent Libraries

3 A General Framework for Persistency and Consistency

We generalise our persistency specification framework from §2 to account for an arbitrary
(potentially weak) memory consistency (concurrency) model (rather than sequential consis-
tency (SC) which was hard-coded into our formalism in §2). As such, we need to revisit and
generalise several of our definitions.

3.1 Plain Executions and Executions

Plain Executions. Unlike in the SC setting of §2 where we represented an execution as a
totally-ordered history (sequence) of events, in the general weak consistency setting, such a
total execution order does not exist in general. As such, we model an execution as a pomset
(partially ordered multiset) of events.

▶ Definition 3.1. A pomset over the set X is a tuple ((E, ≤), λ) consisting of an ordered set E

and a map λ : E → X. We write O(X) for the set of non-empty pomsets over X. Two pomsets
((E, ≤), λ) and ((F, ≤), µ) over X are identified if there exists an order-isomorphism f : E →
F such that µ ◦ f = λ. The underlying set E of a pomset P = ((E, ≤), λ) is denoted by |P |.

Following the literature on weak consistency models where the execution of each instruction
is modelled by a single event, we handle method calls differently from §2: rather than having
two distinct events for each method invocation and return, we model each method call as a
single event m(v⃗):v⊥, which is incomplete if v⊥ = ⊥ and complete otherwise. As such, an
event is either such a method call, or it is a crash event. Given a library interface L (as given
in Def. 2.13), we can then model a plain execution of L as a pomset ((E, po), lab), where
E is a set of L events, po is the program order, and lab is the label function, associating
each event with its label of the form m(v⃗)T : v⊥ or . Moreover, incomplete method calls are
maximal events in po unless their immediate successor is a crash event.

▶ Definition 3.2 (Plain executions). A plain execution G of an interface L is a pomset
((E, po), λ), where E is a set of events, po is the program order and λ : E → L.M ∪ { },
such that the po-immediate successor of an incomplete method call m(v⃗):⊥ is a crash event.

Given two plain executions, G1 = ((E1, po1), λ1) and G2 = ((E2, po2), λ2), their sequen-
tial composition is G1; G2 ≜ ((Ẽ, p̃o), λ̃), where Ẽ ≜ E1 ⨿ E2 is the disjoint sum1of events,
λ̃ is the induced labelling, and p̃o is the transitive closure of the following relation:

po1 ∪ po2 ∪
{

(e1, e2) ∈ E1 × E2 e1 is labeled by a complete operation or e2 =
}

The set of plain executions is PExec(L); for brevity, ((E, po), lab) is often written as ⟨E, po⟩.

Note that the sequential composition of two plain executions preserves the invariant that the
only possible immediate po-successors of an incomplete method call is a crash event.

Executions. Recall from §2 that a method call C1 happens before another C2 in a history
H (C1 ≺H C2) if the response of e1 precedes the invocation of C2 in the totally-ordered
history H. This captures the real-time ordering present under the strong SC model. However,
under weaker consistency models (e.g. in modern multi-core processors) this notion of
real-time ordering is not realistic. Indeed, the happens-before notion varies from one weak

1 For example, define X ⨿ Y := {0} × X ∪ {1} × Y .

Stefanesco, Raad and Vafeiadis 15

model to another, and is typically defined in terms of a synchronizes-with relation, which
itself is also model-dependent. As such, we record the happens-before and synchronizes-with
relations as primitive notions within the definition of a library execution.

Note that executions additionally track the tags associated with method calls: events are
labelled with tagged method calls m(v⃗)T : v⊥ as well as crash events. Indeed, in general the
tags are not observable by programs and belong to executions: e.g. the tag pPx86 (denoting
that a write has persisted) pertains to phenomena that are external to the program.

▶ Definition 3.3 (Library executions). Given a library interface L, a library L execution is a
tuple G = ⟨E, po, sw, hb⟩ such that:

⟨E, po⟩ is a pomset labeled with tagged events of L;
sw ⊆ E × E is the synchronizes-with relation;
hb is the happens-before relation, which is a strict order with po ∪ sw ⊆ hb.

The set of library L executions is denoted Exec(L). Given a library execution G =
⟨E, po, sw, hb⟩, its underlying plain execution ⟨E, po⟩ is denoted by |G|. An execution G
refines a plain execution G, written G ⊏ G, when |G| = G. This definition is lifted to a
collections Λ of libraries by allowing events to be labelled with any library in Λ.

We often use the ‘G.’ prefix to project the components of G, e.g. G.sw.

3.2 Library Specifications
Most of our definitions pertaining library specifications remain unchanged from §2, and the
only definition we need to adapt is the anonymization operation πL : Exec({L} ∪ Λ) →
Exec({L} ∪ ⋆L) which now operates on decorated pomsets. To do this, we first change the
execution labelling: G̃ is the same as G, except that the labelling map, lab, of the underlying
plain execution is replaced with f ◦ lab, where the map f over events is defined as:

f(ℓ) =
{

⋆T if ℓ = m(v⃗)T : v⊥ /∈ L.M
ℓ if ℓ ∈ L.M or ℓ =

We then define πL(G) as the restriction of G̃ to events which are not tagged with ∅.
As in Def. 2.16, a library specification is a tuple ⟨L, Λtags, Sc, Swf, Tc, Twf⟩, where L and

Λtags, are as before, and Sc, Swf, Tc and Twf are sets of executions (not histories) as in Def. 3.3.

▶ Example 3.4 (Px86). Our main example of a library with weak consistency and persistency
is Px86 (the Intel-x86 consistency and persistency model [28]). Our specification below is a
simple adaptation of [28]. Let us begin with the library interface LPx86, introducing two new
tags: d, denoting events that are durable in that they can persist; and pPx86, denoting events
that did persist. The Px86 interface is ⟨M, Mc, loc, {d, pPx86}, ∅⟩, where:

Mc ≜ {alloc()};
Md ≜ Mc ∪

⋃
x∈Loc Mx

d, where Mx
d ≜ Wx ∪ Ux ∪ FLx ∪ FOx; and:

Wx ≜
{

write(x, v) v ∈Val
}

is the set of write events on location x;
Ux ≜

{
Upd(x, v, v′) v, v′∈Val

}
is the set of read-modify-write operations on location x;

FLx ≜ {flush(x)} is the set of synchronous flush events on location x; and
FOx ≜ {flushopt(x)} is the set of delayed flush (flush-opt) events on location x.
M ≜ Mc ∪ Md ∪ MF ∪ SF ∪

⋃
x∈Loc Rx, where MF≜{mfence} is a memory fence

invocation, SF≜{sfence} is a store fence, and Rx≜{read(x)} is a read from location x.

16 Specifying and Verifying Persistent Libraries

∀x ∈ Loc. ∀i ∈ Mx
d ∪ Rx. loc(i, v⊥) ≜ {x}, ∀x. loc(alloc(), x) ≜ {x} and otherwise

loc(l, v⊥) ≜ ∅.

Given an execution G ∈ Exec(LPx86) with G = ⟨E, po, sw, hb⟩, let R ≜
⋃

x∈Loc Rx with
Rx ≜

{
e ∈ E lab(e) ∈ Rx

}
, and let W x, W , U x, U , FLx, FL, FOx, FO, MF and SF be

defined analogously. Let us also define the following sets:

D ≜
{

e∈E lab(e) ∈ Md
}

durable events
Dx =

{
e∈D loc(e)={x}

}
durable events on location x

hbe = hb ∩
{

(a, b) (a, b) /∈ po ∪ po−1}
hb between different threads

eb = po; ; po the ‘era-before’ relation
se = {(e, e′) | (e, e′) /∈ eb ∪ eb−1} the ‘same-era’ relation

Given a relation r on E, let rse ≜ r ∩ se Execution G is Px86-consistent if there exists a
reads-from relation rf ⊆ W × R such that rf−1 is total and functional (i.e. every read is
related to exactly one write), a strict order tso that is total on W ∪ U and a strict order nvo
on D such that rf, tso, nvo ⊆ eb ∪ se and:

hb ∪ tso is acyclic and rf ⊆ tsose ∪ po (A1)
∀x∈Loc. ∀(w, r)∈rfx. ∀w′∈W x∪U x. (w′, r)∈tsose ∪ po ⇒ (w, w′) ̸∈tsose (A2)
([E]; pose; [MF ∪ U]) ∪ ([MF ∪ U ∪ R]; pose; [E]) ⊆ tsose (A3)
([E]; pose; [SF]) ∪ ([SF]; pose; [E \ R]) ⊆ tsose (A4)
[W ∪ FL]; pose; [W ∪ FL] ⊆ tsose (A5)
∀x ∈ Loc. ([FLx]; pose; [FOx]) ∪ ([FOx]; pose; [FLx]) ∪ ([W x]; pose; [FOx]) ⊆ tsose (A6)
∀x ∈ Loc. tsose⇃Dx ⊆ nvose (A7)
∀x ∈ Loc. [Dx]; (tso ∪ hbe)se; [FOx ∪ FLx] ⊆ nvo (A8)
([FL]; tsose; [D]) ∪ ([FO]; pose; [MF ∪ SF ∪ U]; tsose; [D]) ⊆ nvose (A9)
∀(w, r) ∈ rf ∩ eb. w ∈ ⌊pPx86⌋ ∧ ([{w}]; nvo; [⌊pPx86⌋ ∩ W loc(w)]; eb; [{r}]) = ∅ (New)

The specification of Px86 above is adapted from [28, Def. 4]. Specifically, axioms (A1)–
(A9) are directly imported from [28]. The main difference is that instead of considering
execution chains, which are sequences of executions, we use our more general approach of a
single execution with crash events. This generality is required for general data structures
such as queues, as the pre-crash events cannot be summarized by a set of initial events,
unlike in Px86 where the ‘maximal’ write to each location captures the behavior of that
location after a crash. This is reflected in (New), stating that a read r that reads from a
write w in an earlier era, must do so from the maximal persisted such write on the same
location, i.e. there should be no intervening persisted writes on the same location between w

and r. Moreover, rf, tso, nvo ⊆ eb ∪ se ensures that events in later eras are not rf-, tso- or
nvo-related to those in earlier eras.

3.3 Library Implementations
We next describe how our general framework can be used to verify library implementations.

3.3.1 Semantic implementations
Analogously to §2, a semantic implementation in this general setting is a downward-closed
map from method calls to sets of plain executions. This time, we define downward-closure
with respect to the prefix order over plain executions.

Stefanesco, Raad and Vafeiadis 17

Basic domains
a ∈ Reg Registers
v ∈ Val Values
t ∈ Tid Thread IDs
m ∈ Meth Method names

Expressions, sequential commands and programs
Exp ∋ e ::= v | a | e + e | · · ·

Com ∋ C ::= skip | a:= e | a:= m(b1 · · · bn) | continue
| C; C | if (e) then C else C | while (e) do C
return e

P ∈ Prog ≜ Tid fin→ Com

Figure 3 A simple concurrent programming language

▶ Definition 3.5. Given a collection Λ and plain executions G, G′ ∈ PExec(Λ), the plain
execution G is an immediate prefix of G′ ∈ PExec(Λ), written G ↪−→im G′, if there exists a
po-maximal event e ∈ G′.E such that G′ \ {e} = G. The prefix order, ↪−→, is the transitive
closure of ↪−→im. Both definitions are lifted naturally to library executions: G ↪−→im G′ iff
|G| ↪−→im |G′|, and ↪−→ on library executions is the transitive closure of ↪−→im on library
executions. Both prefix relations are defined on executions by considering hb-maximal events.

Intuitively, G ↪−→im G′ holds when G′ can be obtained by adding a new event e to G,
corresponding to a single step of program execution by one thread. When interpreting
programs, we consider all their partial executions, and as such, any immediate prefix of an
execution of a program will also be in its semantics. We can now define library implementations
as indexed sets of executions that satisfy this downward-closure property.

▶ Definition 3.6. An implementation I of library L over collection Λ is a map, I : L.M ×
Val⊥ −→ PExec(Λ) that is downward-closed: for all non-empty executions G and G′, if
G ↪−→ G′ and G′ ∈ I(m(v⃗):v⊥), then G ∈ I(m(v⃗):⊥), where we identify a method call with
the pair of the invocation and the return value.

3.3.2 A simple Concurrent Programming Language
In Fig. 3 we define a simple concurrent language for library implementations in our case
studies (§5, §4). The semantics of a program P, written JPK, is defined as a set of plain
executions and is standard (see [24]). We write JPKv for the set of plain executions where P
returns value v, and write JPK⊥ for the set of plain executions where P has not yet returned.

There are two contexts in which the programming language is used: to define library
implementations and to define a top-level program. A syntactic library implementation I
of L over Λ is a program I(m(x⃗)) with variables x⃗ for each method m of L. This defines
a semantic implementation JIK with JIK(m(v⃗):v⊥) ≜ JI(m(x⃗))[x⃗ := v⃗]Kv⊥ , where[x⃗ := v⃗]
denotes the point-wise substitution of x⃗ with v⃗.

The semantics JPKprog of a top-level program is different as we must account for crashes.
This is done by restarting the program from scratch after each crash:

JPKv⊥
prog =

{
G1 · · · · · Gn ∀i < n. Gi ∈ JPK⊥ and Gn ∈ JPKv⊥

}
Formally, an execution of P is any number of partial executions interrupted by a crash,
followed by a possibly complete execution.

3.3.3 Semantic Substitutions
We define the action of an implementation I of a library L over Λ on a plain execution G ∈
PExec(L), which captures what happens when a program that calls L is ‘linked’ with the L
implementation I. This operation, defined at the level of pomsets, is crucial to define what
it means for the implementation to be correct.

18 Specifying and Verifying Persistent Libraries

1 2 3

◦ Picture 1 shows a 3-element pomset P=((E, ≤), λ).
◦ In picture 2 , each node e ∈ E is now labelled with

a pomset in the set g(λ(e)).
◦ Picture 3 shows the final result, where the ‘inner’

pomsets have been inlined in P .

Figure 4 Substitution of labelled pomset P with g

As discussed in Def. 3.2, a plain execution is simply a pomset (Def. 3.1) labelled with
method calls and crashes. Pomsets are endowed with a natural substitution operation2.
Consider a pomset P = ((E, ≤), λ) over a set X and a map g : X → O(Y) associating labels
in X with pomsets labelled over a set Y . Their substitution P · g ∈ O(Y), depicted in
Fig. 4, is obtained by replacing each event e in P with the pomset g(λ(e)). Formally, the
carrier set of the pomset P · g is the disjoint union F ≜

∐
e∈E |g(λ(e))|: each node e of P is

replaced by the set of nodes of the pomset g(λ(e)). Elements of this set are of the form (e, f)
with f ∈ |g(λ(e))|, and are ordered lexicographically as follows:

(e1, f1) ≤P ·g (e2, f2) ⇐⇒ (e1 ≤P e2) ∨ (e1 = e2 ∧ f1 ≤g(λ(e1)) f2)

Finally, the label of an element (e, f) is µλ(e)(f) ∈ Y , where we write µx : |g(x)| → Y for
the labeling map of the pomset g(x).

Because a program is interpreted using a set of such pomsets, we also use the powerset P
which maps a set X to the set {A | A ⊆ X} of its subsets: JeKv⊥ ∈ PO(calls(L)),
where calls(L) is the set of method calls (of the form m(v⃗):v⊥) of library L. We extend
the substitution operation to sets of pomsets: given a set P ∈ PO(X) of pomsets, and a
map g : X → PO(Y), their substitution is as follows, where the substitution operation used
on the right-hand side is the previous one, operating on pomsets, IdS : S → S is the identity
map on the set S, and the map λ′ has type E → O(Y).

P · g :=
⋃

((E,≤),λ)∈P
{

((E, ≤), λ′) · IdO(Y) | ∀e ∈ E, λ′(e) ∈ g(λ(e))
}

Informally, a pomset P belongs to P·g iff it can be obtained from a pomset Q = ((E, ≤), λ) ∈ P
by replacing each event in Q by some pomset in g(λ(e)) ∈ PO(Y) – see Fig. 4.

Applying this general operation to plain executions and (semantic) implementations
yields the desired operation because it preserves maximality of incomplete operations.

▶ Proposition 3.7. The operation above lifts to an operation on plain executions:

− · I : PExec(L) −→ P(PExec(Λ))

Another way to formalize how to link an implementation with a program is syntactically:
given a program P and a syntactic implementation I, we can define P · I as the program
where all calls to L methods are replaced with their source code given by I. As expected, the
two ways of linking with an implementation are compatible, in the following sense.

▶ Proposition 3.8. Given a program P that uses L and a syntactic implementation I of L:

JPKprog · JIK = JP · IKprog

2 This is indeed the ‘bind’ operation of a monad structure on O.

Stefanesco, Raad and Vafeiadis 19

3.3.4 Implementation Correctness

We now have the notions required to lift the correctness of an implementation to the general
weak memory setting. The main difference with §2 is that we must consider the two levels of
plain executions, which contain the events encountered by the program, and executions, which
contain additional information that determine whether the execution is possible (consistent).

As an execution may contain calls from several libraries, given G ∈ Exec(Λ), L ∈ Λ and
a relation r on G.E, we write G.EL for the G.E events labelled with L method calls, and we
write rL for r ∩ (G.EL × G.EL). Similarly, we write G ⇃ L for (G.EL, G.poL, G.swL, G.hbL).

▶ Definition 3.9. An execution G ∈ Exec(Λ) is consistent if:

1. G.sw =
⋃

L∈Λ G.swL;
2. for all L ∈ Λ, G ⇃ L ∈ L.Sc; and
3. for all L ∈ Λ, πL(G) ∈ L.Tc.

Execution G is hereditarily consistent if either G is empty, or G is consistent and there
exists G′ ↪−→im G such that G′ is hereditarily consistent.

In other words, an execution G is hereditarily consistent if there exists a sequence of consistent
executions from the empty execution to G, where each step corresponds to adding one event.

Encapsulation is defined as in Def. 2.20, where the derived happens-before order ≺ is
replaced with the primitive hb component of the execution.

▶ Definition 3.10. An execution G ∈ Exec(Λ) is immediately well-formed if:

1. G is encapsulated;
2. G ⇃ L ∈ L.Swf for all L ∈ Λ;
3. πL(G) ∈ L.Twf for all L ∈ Λ ∪ L.Λtags.

An execution G is well-formed if, for all G′′ ↪−→im G′ ↪−→ G, if G′′ is consistent then G′ is
immediately well-formed.

Intuitively, an implementation I of L over Λ is correct if 1) it transports well-formedness
from the high-level execution to the low-level one as we expect library L to be used correctly;
and 2) it transports consistency from the low-level execution to the high-level one, as we
assume the underlying Λ libraries are correctly implemented.

▶ Definition 3.11 (Correct implementation). An implementation I of Lover Λ is correct,
written Λ ⊢ I : L if, for all collections Λ′ of libraries, all ‘abstract’ plain executions G ∈
PExec({L} ∪ Λ′) and all ‘concrete’ plain executions G′ ∈ G · I ⊆ PExec(Λ ∪ Λ′):

1. for all well-formed G, if G ⊏ G, then there exists a well-formed G′ such that G′ ⊏ G′;
2. for all well-formed and hereditarily consistent G′, if G′ ⊏ G′, then there exists a hereditarily

consistent G such that G ⊏ G.

It may not be obvious that the above definition is the right one. In §3.3.5 below we define the
observable semantics of a closed program and prove that this definition is indeed adequate
to show that an implementation is correct.

20 Specifying and Verifying Persistent Libraries

3.3.5 Semantics of Programs
A program is well-formed if all its plain executions can be justified by well-formed executions:

∀v⊥ ∈ Val⊥. ∀G ∈ JPKv⊥
prog. ∃G ⊏ G. G is well-formed

A program that is not well-formed is considered not to have a well-defined behavior, and thus
we only consider the semantics of well-formed programs. Given a well-formed program P
that uses libraries Λ, its behavior is defined as the values justified by a consistent execution:

behaviors(P) ≜ {v | ∃G ∈ JPKv
prog. ∃G ⊏ G. G is hereditarily consistent}

One justification for the definition of correctness for a semantic implementation is that it
recovers the usual definition of correctness of a syntactic implementation [24].

▶ Theorem 3.12. Let P be a well-formed program that uses Λ, and let I be a syntactic
implementation of L ∈ Λ over Λ′ such that JIK is correct. Then the program P·I is well-formed
and behaviors(P · I) ⊆ behaviors(P).

Proof. We first prove P · I is well-formed. Let G′ ∈ JP · IKprog. According to Proposition 3.8
there exists G ∈ JPKprog such that G′ ∈ G · JIK. Because P is well-formed, there exists a
well-formed G such that G ⊏ G, and thus we can directly conclude from Def. 3.11.

Take an arbitrary v such that there is a hereditarily consistent G′ and G′ ⊏ G′ ∈ JP ·IKprog.
As above, we can obtain G such that G′ ∈ G · JIK, and conclude with the second implication
of Def. 3.11. ◀

3.4 Compositionally Proving Implementation Correctness
As in §2.8, we introduce compositional correctness, simplifying the global correctness condition
in Def. 3.11. This allows us to prove an implementation correct without reasoning about
an arbitrary collection Λ′ of other libraries. Our compositional correctness condition in this
general weak memory (consistency) setting is inspired by the local soundness condition in
[24].

3.4.1 Preliminaries
We begin with a few definitions that allow us to express how a low-level execution relates to
a high-level one by matching a high-level method call with all low-level events that constitute
its implementation. First, we define an operation to transport relations along maps.

▶ Definition 3.13. Given two sets X and Y , an irreflexive relation r ⊆ X × X and a
map f : X → Y , the irreflexive relation f∗(r) on Y is defined as follows:

(y1, y2) ∈ f∗(r) ⇐⇒ y1 ̸= y2 ∧ ∃x1 ∈ f−1(y1). ∃x2 ∈ f−1(y2). (x1, x2) ∈ r

Using this operation, we can define intentionally when a low-level plain execution corresponds
to ‘linking’ a high-level plain execution with an implementation as follows.

▶ Definition 3.14. Given plain executions G ∈ PExec(L) and G′ ∈ PExec(Λ) and an
implementation I of L over Λ, a map f : G′.E → G.E is a plain matching if:

1. f is surjective;
2. G.po = f∗(G′.po); and
3. ∀e ∈ G.E. G′⇃f−1(e) ∈ I(lab(e′))

Stefanesco, Raad and Vafeiadis 21

where G⇃X , with X ⊆ G.E denotes the restriction of G to the set X of events.

Intuitively, f denotes that the high-level method call e in G is implemented using the set of
events f−1(e), and that the high-level program order is determined by that of the low-level
execution. As captured by following proposition, such a plain matching witnesses the fact
that a plain execution results from ‘applying’ an implementation to a high-level execution.

▶ Proposition 3.15. Given an implementation I of L over Λ and plain executions G ∈
PExec(L) and G′ ∈ PExec(Λ), if G′ ∈ G · I, then there exists a matching f : G′ ↠ G.

3.4.2 A compositional criterion
We state our compositional correctness criterion as a lifting problem as follows. Given a
plain matching f : |G′| ↠ G, is it possible to find an execution G that refines G (G ⊏ G)
such that f : G′ ↠ G is a matching at the level of executions, in the following sense?

▶ Definition 3.16. Given executions G and G′ and a map f such that f : |G′| ↠ |G|, f is a
refined matching, written f : G′ ↠ G, if the following hold:

1. G and G′ are consistent;
2. G.sw+ ⊆ f∗(G′.hb); and
3. G.hb = (f∗(G′.hb \ (G′.sw ∪ G′.po)+) ∪ G.po ∪ G.sw)+

Condition 1 captures the intuition that this refined notion of matching lives in an idealized
world, where all executions have good properties. Condition 2 states that two high-level events
synchronize when there exist two low-level events in their respective implementations that
are related by happens-before. That is, G.sw edges cannot appear out of thin air and must
be justified by the implementation. Condition 3 states that the high-level happens-before
order is determined by its own po and sw orders as well as the external happens-before order.
The external order is computed by removing the G′.po and G′.sw contributions from G′.hb
and mapping the remaining G′.hb to G using f∗. Intuitively, this ‘external’ happens-before is
a remnant of other libraries that are ignored by focussing on library L, and being compatible
with it allows consistency not to depend on these other libraries.

We consider implementations that are locally well-formed in that they preserve well-
formedness of ‘local’ executions, i.e. executions that only contain events from either L for
high-level executions or Λ for low-level ones.

▶ Definition 3.17. An implementation I of L over Λ is locally well-formed if, for all plain
executions G ∈ PExec(L), all G′ ∈ G · I ⊆ PExec(Λ) and all G, if G ⊏ G and G is
well-formed, then there exists G′ such that G′ ⊏ G′ and G′ is well-formed.

We now state the compositional correctness criterion which comprises two parts: a local
and a global condition. The local condition states that the lifting problem mentioned above
always has a solution G such that G corresponds to an immediate prefix G̃′ of the low-level
execution G′. This captures an induction on the property that we assume all low-level
executions are hereditarily consistent. As empty executions are consistent, the base case
holds, which means that we obtain a sequence of refined matchings, and in particular a
witness that the high-level execution is locally consistent.

The global condition then ensures that global consistency predicates of the dependencies
also hold. Consider a dependency L′ ∈ Λ and executions G′ ∈ Exec(Λ ∪ {⋆L′}) and G ∈
Exec({L, L′, ⋆L′}) with a plain matching between them. Restricting G to its L events induces
a plain matching, which can be lifted to a refined matching because of the local condition.

22 Specifying and Verifying Persistent Libraries

As such, the global condition stipulates that the implementation preserve the global well-
formedness and global consistency of G and G′.

▶ Definition 3.18 (Compositional correctness). A well-formed implementation I of L over Λ
is compositionally correct if the following two conditions hold.

1. Given executions G̃′, G′ ∈Exec(Λ) and G̃ ∈Exec(L) and a plain execution G ∈ PExec(L),
if G is consistent and the following holds3 (i.e. if f is a plain matching between |G′|
and G, G̃′ is an immediate prefix of G′ and f̃ is obtained by restricting the domain of f

to G̃.E)
|G̃′| |G′|

|G̃| G

f̃

im

f

im
=

G̃′ G′

G̃

f̃

im

then there exists an execution G such that G ⊏ G and the following holds4:

G̃′ G′

G̃ G

f̃

im
f

im
=

2. For all L′ ∈ Λ, given executions G′ ∈Exec(Λ ∪ {⋆L′}) and G ∈Exec({L, L′, ⋆L′}), consider
f : |G′| ↠ |G| such that for any event e not from L, f−1(e) is a singleton. Let G′

L′ ≜
f−1(G ⇃ L′) and assume f restricts to fL′ : G′

L′ ↠ G ⇃ L′. Then the following must hold:
if πL′(G) ∈ L′.Twf, then πL′(G′) ∈ L′.Twf; and
if πL′(G′) ∈ L′.Tc, then πL′(G) ∈ L′.Tc.

▶ Theorem 3.19. Compositional correctness implies correctness.

4 Case Study: Durable Linearizability with FliT and Mirror

We consider a family of libraries that provide a simple interface with persistent memory
accesses (reads and writes), allowing one to convert any linearisable implementation to a
durably linearisable one by replacing regular (volatile) accesses with persistent ones supplied
by the library. Specifically, we consider two such libraries FliT [31] and Mirror [9]; we specify
them both in our framework, prove their implementations sound against their respective
specifications, and further prove their general result for converting data structures.

4.1 The FliT Library
FliT [31] is a persistent library that provides a simple interface very close to Px86, but with
stronger persistency guarantees, which make it easier to implement durable data structures.
Specifically, a FliT object ℓ can be accessed via write and read methods, wrπ(ℓ, v) and rdπ(ℓ),
as well as standard read-modify-write methods. Each write (resp. read) operation has
two variants, denoted by the type π ∈ {p, v}. This type specifies if the write (resp. read)
is persistent (π = p) in that its effects must be persisted, or volatile (π = v) in that its

3 The right diagram should be seen as sitting above the left one, where G being above G means that G ⊏ G.
4 This amounts to completing the diagram sitting on top to obtain a cube.

Stefanesco, Raad and Vafeiadis 23

method wrπ(ℓ, v) :
if π = p then

fetch-and-add(flit-counter(ℓ), 1);
write(ℓ, v);
flushopt(ℓ);
fetch-and-add(flit-counter(ℓ), −1);

else
sfence;
write(ℓ, v);

method rdπ(ℓ) :
local v = read(ℓ);
if π = p ∧ flit-counter(ℓ) > 0 then

flushopt(ℓ);
return v;

method finishOp :
sfence;

Figure 5 FliT library implementation in Px86

persistency has been optimised and offers weaker guarantees. The default access type is
persistent (p), and the volatile accesses may be used as optimizations when weaker guarantees
suffice. Wei et al. [31] introduce a notion of dependency between different operations as
follows. If a (persistent or volatile) write w depends on a persistent write w′, then w′ persists
before w. If a persistent read r reads from a persistent write w, then r depends on w and thus
w must be persisted upon reading if it has not already persisted. Though simple, FliT provides
a strong guarantee as captured by a general result for correctly converting volatile data
structures to persistent ones: if one replaces every memory access in the implementation of a
linearizable data-structure with the corresponding persistent FliT access, then the resulting
data structure is durably linearizable.

Compared to the original FliT development, our soundness proof is more formal and
detailed: it is established against a formal specification (rather than an English description)
and with respect to the formal Px86 model.

FliT Interface. The FliT interface uses the pPx86 from Px86 and contains a single
constructor, new, allocating a new FliT location, as well as three other methods below, the
last two of which are durable:

rdπ(ℓ) with π ∈{p, v}, for a π-read from ℓ;
wrπ(ℓ, v) with π ∈{p, v}, denoting a π-write of value v ∈ Val to ℓ; and
finishOp, which waits for previously executed operations to persist.

We write R and W respectively for the read and write events, and add the superscript π

(e.g. Rp) to denote such events with the given persistency mode.
FliT Specification. We develop a formal specification of FliT in our framework, based

on its original informal description. The correctness of FliT executions is described via a
dependency relation that contains the program order and the total execution (linearization)
order restricted to persistent write-read operations on the same location. Note that this
dependency notion is stronger than the customary definitions that use a rf relation (as in
the Px86 specification) instead of lin, because a persistent read may not read directly from a
persistent write w, but rather from another later (lin-after w) write.

▶ Definition 4.1 (FliT execution Correctness). A FliT execution G is correct if there exists a
‘reads-from’ relation rf and a total order lin ⊇ G.hb on G.E and an order nvo such that:

1. Each read event reads from the most recent previous write to the same location:
rf =

⋃
ℓ∈Loc([Wℓ]; lin; [Rℓ]) \ (lin; [Wℓ]; lin)

2. Reads return the value written by the write they read from:
(w, r) ∈ rf ⇒ ∃ℓ, π, π′, v. lab(r) = rdπ′(ℓ) : v ∧ lab(w) = wrπ(ℓ, v) : −

3. Persistent writes persist before every other later dependent write:
[W p]; (po ∪

⋃
ℓ∈Loc[W p

ℓ]; lin; [Rp
ℓ])+; [W] ⊆ nvo

24 Specifying and Verifying Persistent Libraries

4. Persistent writes before a finishOp persist:
dom([W p]; (po ∪

⋃
ℓ∈Loc[W p

ℓ]; lin; [Rp
ℓ])+; [finishOp]) ⊆ ⌊pPx86⌋

5. And nvo is a persist order: dom(nvo; ⌊Ptag⌋) ⊆ ⌊Ptag⌋.

Px86 implementation of FliT. The implementation of FliT methods is given in Fig. 5.
Whereas a naive implementation of this interface would have to issue a flush instruction both
after persistent writes and in persistent reads, the implementation shown associates each
location with a counter to avoid performing superfluous flushes when reading from a location
whose value has already persisted. Specifically, a persistent write on ℓ increments its counter
before writing to and flushing it, and decrements the counter afterwards. As such, persistent
reads only need to issue a flush if the counter is positive (i.e. if there is a concurrent write
that has not executed its flush yet).

▶ Theorem 4.2. The implementation of FliT in Fig. 5 is correct.

FliT and Durable Linearizability. Given a data structure implementation I, let p(I)
denote the implementation obtained from I by 1) replacing reads/writes in the implementation
with their corresponding persistent FliT instructions, and 2) adding a call to finishOp right
before the end of each method. We then show that given an implementation I, if I is
linearizable, then p(I) is durably linearizable5. We assume that all method implementations
are single-threaded, i.e. all plain executions I(m(v⃗)) are totally ordered.

▶ Theorem 4.3. If Px86 ⊨ I : Lin(S), then FliT ⊨ p(I) : DurLin(S).

4.2 The Mirror Library
The Mirror [9] persistent library has similar goals to FliT. The main difference between the
two is that Mirror operations do not offer two variants, and their operations are implemented
differently from those of FliT. Specifically, in Mirror each location has two copies: one in
persistent memory to ensure durability, and one in volatile memory for fast access. As such,
read operations are implemented as simple loads from volatile memory, while writes have a
more involved implementation than those of FliT.

We present the Mirror specification and implementation in the technical appendix where
we also prove that its implementation is correct against its specification. As with FliT, we
further prove that Mirror can be used to convert linearizable data structures to durably
linearizable ones, as described above.

5 Case Study: Persistent Transactional Library

We revisit the Ltrans transactional library, develop its formal specification and verify its
implementation (Fig. 1) against it. Recall the simple Ltrans implementation in Fig. 1 and that
we do not allow for nested transactions. The implementation uses an undo-log which records
the former values of persistent registers (locations) modified in a transaction. If, after a crash,
the recovery mechanism detects a partially persisted transaction (i.e. the last entry in the
undo log is not COMMITTED), then it can use the undo-log to restore registers to their former
values. The implementation uses a durably linearizable queue library6 Q, and assumes that

5 The definition here is the same as in §2, as hb-linearizations of the execution still yield sequential
executions.

6 For example, take any linearizable queue implementation and use the FliT library as described in §4.

Stefanesco, Raad and Vafeiadis 25

it is externally synchronized: the user is responsible for ensuring no two transactions are
executed in parallel. We formalize this using a global well-formedness condition.

Later in §5.2 we develop a wrapper library LStrans for Ltrans that additionally provides
synchronization using locks and prove that our implementation of this library is correct.
To do this, we need to make small modifications to the structure of the specification: the
specification in §2 requires that any ‘transaction-aware operation’ (i.e. those tagged with t)
be enclosed in calls to PTBegin and PTEnd. Since LStrans wraps the calls to PTBegin and PTEnd,
the well-formedness condition needs to be generalized to allow operations tagged with t to
appear between calls to operations that behave like PTBegin and PTEnd. To that end, we add
two new tags b and e to denote such operations, respectively.

5.1 Specification
The Ltrans library provides four tags: 1) t for transaction-aware ‘client’ operations; 2) ptr for
operations that have persisted using transactions; and 3) b, e for operations that begin and
end transactions, respectively. We write R, W, B, E , RC respectively for the sets of events
labeled with read, write, begin, end and recovery methods. As before, we write e.g. ⌊t⌋ for
the set of events tagged with t. Note that while B denotes the set of the begin events in
library Ltrans, the ⌊b⌋ denotes the set of all events that are tagged with b, which includes B
(of library Ltrans) as well as events of other (non-Ltrans) libraries that may be tagged with b;
similarly for E and ⌊e⌋. As such, our local specifications below (i.e. local well-formedness and
consistency) are defined in terms of B and E , whereas our global specifications are defined in
terms of ⌊b⌋ and ⌊e⌋. As before, for brevity we write e.g. [t] as a shorthand for the relation
[⌊t⌋]. We next define the ‘same-transaction’ relation strans:

strans ≜ [⌊b⌋ ∪ ⌊e⌋ ∪ ⌊t⌋]; (po ∪ po−1); [⌊b⌋ ∪ ⌊e⌋ ∪ ⌊t⌋] \ ((po; [e]; po) ∪ (po; [b]; po))

An execution is locally well-formed iff the following hold:

1. A transaction must be opened before it is closed: E ⊆ rng([B]; po)
2. Transactions are not nested and are matching: [E]; po; [E] ⊆ [E]; po; [B]; po; [E] and

[B]; po; [B] ⊆ [B]; po; [E]; po; [B]
3. Transactions must be externally synchronized: E × B ⊆ hb ∪ hb−1

4. The recovery routine must be called after a crash: ; hb; ⌊b⌋ ⊆ ; hb; [RC]; hb; ⌊b⌋
5. Events are correctly tagged: W ∪ R ⊆ ⌊t⌋

An execution is globally well-formed if client operations (t-tagged) are inside transactions:

6. ⌊t⌋ ⊆ rng([b]; po)
7. [e]; po; [t] ⊆ [e]; po; [b]; po; [t]

An execution is locally-consistent if there exists a ‘reads-from’ relation rf such that:

8. rf relates writes to reads, rf ⊆ W × R, such that each read is related to exactly one write
(i.e. rf−1 is total and functional).

9. Reads access the most recent write: rf−1; hb ⊆ hb
10. External reads (reading from a different transaction) read from persisted writes: dom(rf \

strans) ⊆ ⌊ptr⌋

An execution is globally-consistent if there exists an order nvo over ⌊t⌋ such that:

11. Transactions are nvo-ordered: [e]; hb; [b] ⊆ nvo

26 Specifying and Verifying Persistent Libraries

12. nvo is the persistance order: dom(nvo; [ptr]) ⊆ ⌊ptr⌋;
13. Either all or none of the events in a transaction persist (atomicity): [ptr]; strans; [t] ⊆ [ptr]
14. All events of a completed transaction (ones with an associated end event) persist: ⌊e⌋c ⊆

⌊ptr⌋, where ⌊e⌋c denotes the set of method calls tagged with e which have completed.

▶ Theorem 5.1. The Ltrans implementation in Fig. 1 over Px86 is correct.

5.2 Vertical Library Composition: Adding Internal Synchronization

We next demonstrate how our framework can be used for vertical library composition, where
an implementation of one library comprises calls to other libraries with non-trivial global
specifications. To this end, we develop LStrans, a wrapper library around Ltrans that is meant
to be simpler to use by providing synchronization internally: rather than the user ensuring
synchronization for Ltrans, one can use LStrans to prevent two transactions from executing in
parallel. More formally, the well-formedness condition (3) of Ltrans becomes a correctness
guarantee of LStrans. We consider a simple implementation of LStrans that uses a global lock
acquired at the beginning of each transaction and released at the end as shown below.

globals lock := L.new() method LPTBegin() := L.acq(lock);PTBegin()
method LPTEnd() := PTEnd();L.rel(lock)

▶ Theorem 5.2. The implementation of LStrans above is correct.

Using compositional correctness, the main proof obligation is condition 2 of Def. 3.18
stipulating that the implementation be well-formed, ensuring that Ltrans is used correctly by
the LStrans implementation. This is straightforward as we can assume there exists an immediate
prefix that is consistent (Def. 3.10). The existence of the hb-ordering of calls to PTBegin and
PTEnd follows from the consistency of the global lock used by the implementation.

5.3 Horizontal Library Composition

We next demonstrate how our framework can be used for horizontal library composition,
where a client program comprises calls to multiple libraries. To this end, we develop a simple
library, Lcntr, providing a persistent counter to be used in sequential (single-threaded) settings.
As such, if a client intends to use Lcntr in concurrent settings, they must call its methods only
within critical sections. The Lcntr provides three operations to create (NewCounter), increment
(CounterInc) and read a counter (CounterRead). The specification and implementation of Lcntr
are given in the technical appendix.

As Lcntr uses the tags of Ltrans, we define Lcntr.Λtags ≜ {Ltrans}. The all the operations
are tagged with t. As such, Lcntr inherits the global well-formedness condition of Ltrans,
meaning that Lcntr operations must be used within transactions (i.e. hb-between operations
respectively tagged with b and e). Putting it all together, the following client code snippet
uses Lcntr in a correct way, even though Lcntr has no knowledge of the existence of LStrans.

c = NewCounter(); LPTBegin(); CounterInc(c) ; CounterInc(c) ; LPTEnd();

Specifically, the above is an instance of horizontal library composition (as the client comprises
calls to both LStrans and Lcntr), facilitated in our framework through global specifications.

REFERENCES 27

6 Conclusions, Related and Future Work

We presented a framework for specifying and verifying persistent libraries, and demonstrated
its utility and generality by encoding existing correctness notions within it and proving the
correctness of the FliT and Mirror libraries, as well as a persistent transactional library.

Related Work. The most closely related body of work to ours is [24]. However, while
their framework can be used for specifying only the consistency guarantees of a library, ours can
be used to specify both consistency and persistency guarantees. Existing literature includes
several works on formal persistency models, both for hardware [23, 28, 29, 4, 5, 17, 27, 26] and
software [3, 19, 10], as well as correctness conditions for persistent libraries such as durable
linearizability [16]. As we showed in §3, such models can be specified in our framework.

Additionally, there are several works on implementing and verifying algorithms that
operate on NVM. [8] and [32] respectively developed persistent queue and set implementations
in Px86. [7] provided a formal correctness proof of the implementation in [32]. All three
of [7, 32, 8] assume that the underlying concurrency model is SC [21], rather than that
of Px86 (namely TSO). As we demonstrated in §4–§5 we can use our framework to verify
persistent implementations modularly while remaining faithful to the underlying concurrency
model. [25, 2] have developed persistent program logics for verifying programs under Px86.
[18] recently formalized the consistency and persistency semantics of the Linux ext4 file
system, and developed a model-checking algorithm and tool for verifying the consistency and
persistency behaviors of ext4 applications such as text editors.

Future Work. We believe our framework will pave the way for further work on verifying
persistent libraries, whether manually (as done here), possibly with the assistance of an
interactive theorem prover and/or program logics such as those of [6, 25, 2], or automatically
via model checking. The work of [6] uses the framework of [24] to specify data structures
in a program logic, and it would be natural to extend it to our framework for persistency.
Existing work in the latter research direction, e.g. [11, 18], has so far only considered low-
level properties, such as the absence of races or the preservation of user-supplied invariants.
It has not yet considered higher-level functional correctness properties, such as durable
linearizability and its variants. We believe our framework will be helpful in that regard. In
a more theoretical direction, it would be interesting to understand how our compositional
correctness theorem fits in general settings for abstract logical relations such as [15].

References

1 Aguilera, M.K., Frolund, S.: Strict linearizability and the power of aborting. Tech. Rep.
HPL-2003-241 (2013)

2 Bila, E.V., Dongol, B., Lahav, O., Raad, A., Wickerson, J.: View-based owicki–gries
reasoning for persistent x86-tso. In: Sergey, I. (ed.) Programming Languages and Systems.
pp. 234–261. Springer International Publishing, Cham (2022)

3 Chakrabarti, D.R., Boehm, H.J., Bhandari, K.: Atlas: Leveraging locks
for non-volatile memory consistency. SIGPLAN Not. 49(10), 433–452 (Oct
2014). https://doi.org/10.1145/2714064.2660224, http://doi.acm.org/10.1145/2714064.
2660224

4 Cho, K., Lee, S.H., Raad, A., Kang, J.: Revamping hardware persistency models: View-
based and axiomatic persistency models for Intel-X86 and Armv8. p. 16–31. PLDI 2021,
Association for Computing Machinery, New York, NY, USA (2021)

http://doi.acm.org/10.1145/2714064.2660224
http://doi.acm.org/10.1145/2714064.2660224

28 REFERENCES

5 Condit, J., Nightingale, E.B., Frost, C., Ipek, E., Lee, B., Burger, D., Coetzee, D.:
Better I/O through byte-addressable, persistent memory. In: Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles. pp. 133–146. SOSP ’09,
ACM, New York, NY, USA (2009). https://doi.org/10.1145/1629575.1629589, http:
//doi.acm.org/10.1145/1629575.1629589

6 Dang, H.H., Jung, J., Choi, J., Nguyen, D.T., Mansky, W., Kang, J., Dreyer, D.: Compass:
Strong and compositional library specifications in relaxed memory separation logic. In:
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. PLDI 2022 (2022)

7 Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.: Verifying correctness of
persistent concurrent data structures. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.)
Formal Methods – The Next 30 Years. pp. 179–195. Springer International Publishing,
Cham (2019)

8 Friedman, M., Herlihy, M., Marathe, V., Petrank, E.: A persistent lock-free queue for non-
volatile memory. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. p. 28–40. PPoPP ’18, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3178487.3178490, https:
//doi.org/10.1145/3178487.3178490

9 Friedman, M., Petrank, E., Ramalhete, P.: Mirror: making lock-free data structures
persistent. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21. pp. 1218–1232 (2021)

10 Gogte, V., Diestelhorst, S., Wang, W., Narayanasamy, S., Chen, P.M., Wenisch, T.F.:
Persistency for synchronization-free regions. In: Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 46–61. PLDI
2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3192366.3192367,
http://doi.acm.org/10.1145/3192366.3192367

11 Gorjiara, H., Xu, G.H., Demsky, B.: Yashme: Detecting persistency races. In: Proceedings
of the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. p. 830–845. ASPLOS 2022, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3503222.3507766, https:
//doi.org/10.1145/3503222.3507766

12 Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X.N., Weng, S., Zhang, H., Guo,
Y.: Deep specifications and certified abstraction layers. In: POPL (2015)

13 Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann
(2008)

14 Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990).
https://doi.org/10.1145/78969.78972

15 Hermida, C., Reddy, U.S., Robinson, E.P.: Logical relations and parametricity – a
reynolds programme for category theory and programming languages. Electronic Notes
in Theoretical Computer Science 303, 149–180 (2014), proceedings of the Workshop on
Algebra, Coalgebra and Topology (WACT 2013)

16 Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory objects
under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.) DISC. Lecture
Notes in Computer Science, vol. 9888, pp. 313–327 (2016)

17 Khyzha, A., Lahav, O.: Taming x86-tso persistency. Proc. ACM Program. Lang. 5(POPL),
1–29 (2021)

http://doi.acm.org/10.1145/1629575.1629589
http://doi.acm.org/10.1145/1629575.1629589
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
http://doi.acm.org/10.1145/3192366.3192367
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3503222.3507766

REFERENCES 29

18 Kokologiannakis, M., Kaysin, I., Raad, A., Vafeiadis, V.: Persevere: Persistency se-
mantics for verification under ext4. Proc. ACM Program. Lang. 5(POPL) (jan 2021).
https://doi.org/10.1145/3434324, https://doi.org/10.1145/3434324

19 Kolli, A., Gogte, V., Saidi, A., Diestelhorst, S., Chen, P.M., Narayanasamy, S., Wenisch,
T.F.: Language-level persistency. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. pp. 481–493. ISCA ’17, ACM, New York, NY,
USA (2017). https://doi.org/10.1145/3079856.3080229, http://doi.acm.org/10.1145/
3079856.3080229

20 Lahav, O., Vafeiadis, V., Kang, J., Hur, C.K., Dreyer, D.: Repairing se-
quential consistency in c/c++11. SIGPLAN Not. 52(6), 618–632 (jun 2017).
https://doi.org/10.1145/3140587.3062352, https://doi.org/10.1145/3140587.3062352

21 Lamport, L.: How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (Sep 1979).
https://doi.org/10.1109/TC.1979.1675439, http://dx.doi.org/10.1109/TC.1979.1675439

22 Pelley, S., Chen, P.M., Wenisch, T.F.: Memory persistency. In: Proceeding of the 41st
Annual International Symposium on Computer Architecuture. pp. 265–276. ISCA ’14,
IEEE Press, Piscataway, NJ, USA (2014), http://dl.acm.org/citation.cfm?id=2665671.
2665712

23 Pelley, S., Chen, P.M., Wenisch, T.F.: Memory persistency. In: Proceeding of the 41st
Annual International Symposium on Computer Architecuture. p. 265–276. ISCA ’14,
IEEE Press (2014)

24 Raad, A., Doko, M., Rožić, L., Lahav, O., Vafeiadis, V.: On library correctness under
weak memory consistency: Specifying and verifying concurrent libraries under declarative
consistency models. POPL (2019)

25 Raad, A., Lahav, O., Vafeiadis, V.: Persistent owicki-gries reasoning: A program logic for
reasoning about persistent programs on intel-x86. Proc. ACM Program. Lang. 4(OOPSLA)
(nov 2020). https://doi.org/10.1145/3428219, https://doi.org/10.1145/3428219

26 Raad, A., Maranget, L., Vafeiadis, V.: Extending intel-x86 consistency and persistency:
formalising the semantics of intel-x86 memory types and non-temporal stores. Proc. ACM
Program. Lang. 6(POPL), 1–31 (2022)

27 Raad, A., Vafeiadis, V.: Persistence semantics for weak memory: Integrating epoch
persistency with the tso memory model. Proc. ACM Program. Lang. 2(OOPSLA),
137:1–137:27 (Oct 2018). https://doi.org/10.1145/3276507, http://doi.acm.org/10.1145/
3276507

28 Raad, A., Wickerson, J., Neiger, G., Vafeiadis, V.: Persistency semantics of the intel-x86
architecture. Proc. ACM Program. Lang. 4(POPL), 11:1–11:31 (2020)

29 Raad, A., Wickerson, J., Vafeiadis, V.: Weak persistency semantics from the ground up:
Formalising the persistency semantics of ARMv8 and transactional models. Proc. ACM
Program. Lang. 3(OOPSLA), 135:1–135:27 (Oct 2019)

30 Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: A rigorous and
usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97 (Jul
2010). https://doi.org/10.1145/1785414.1785443, http://doi.acm.org/10.1145/1785414.
1785443

31 Wei, Y., Ben-David, N., Friedman, M., Blelloch, G.E., Petrank, E.: Flit: a library for
simple and efficient persistent algorithms. In: Lee, J., Agrawal, K., Spear, M.F. (eds.)
PPoPP ’22. pp. 309–321 (2022)

32 Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free durable sets.

https://doi.org/10.1145/3434324
http://doi.acm.org/10.1145/3079856.3080229
http://doi.acm.org/10.1145/3079856.3080229
https://doi.org/10.1145/3140587.3062352
http://dx.doi.org/10.1109/TC.1979.1675439
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://doi.org/10.1145/3428219
http://doi.acm.org/10.1145/3276507
http://doi.acm.org/10.1145/3276507
http://doi.acm.org/10.1145/1785414.1785443
http://doi.acm.org/10.1145/1785414.1785443

30 REFERENCES

Proc. ACM Program. Lang. 3(OOPSLA) (Oct 2019). https://doi.org/10.1145/3360554,
https://doi.org/10.1145/3360554

https://doi.org/10.1145/3360554

REFERENCES 31

A Compositional soundness

We prove Theorem 3.12, the adequacy of the compositional correctness criterion. We first
prove the following lemma:

▶ Lemma A.1. Consider an implementation I of L on top of Λ and let G′ be a consistent
and closed execution of Λ′, Λ. and G′ be a plain execution of Λ′, L, such that |G′| ∈ G · I. Let
f : |G′| → G be the map given by Prop 3.15. Let GL be the restriction of G to events in L
and G′

L := G′⇃f−1(GL.E) be the corresponding restriction of G′. Let fL : |G′
L| ↠ GL be the

corresponding restriction of f .
If there exists a lifting fL : G′

L ↠ GL with GL ⊏ GL, then the plain execution G′ can be
lifted to a closed and locally consistent execution G′ ⊏ G′ such that G′.hb ⊆ f∗(G.hb). In
particular, (po′ ∪ sw′)+ is acyclic.

Proof. First, let us define an execution G refining G using G′
L, and G. Let sw be (f∗(G′.sw)′

Λ)∪
GL.sw (we use implicitly the inclusion GL → G). Define

G := ⟨G, sw, (po ∪ sw)+⟩

To prove that G′
L is well-formed according to the specification of the library L′, it suffices

to prove that G′.hb ⇃ L′ is acyclic for L′ ∈ Λ′ ∪ {L}. As we assume that G′ is consistent, it
suffices to prove that G′.hb = (po′ ∪ sw′)+ is acyclic. We assume by contradiction that there
exists a cycle x1, . . . , xn = x1 in this relation; the contradition will be the existence of a cycle
in GL.hb.

Because f is surjective, for all i, there are three possible cases (in this proof, primed
relations are components of G′ and unprimed are components of G):

1. xi
po−→ xi+1, and then there exist y′

i and yi+1 in G′ such that y′
i

po′

−−→ yi+1 and f(y′
i) ̸=

f(yi+1);
2. xi

f∗(sw′)∩Lc

−−−−−−−→ xi+1, then xi, xi+1 /∈ L, and there exist y′
i and yi+1 in G′ such that

y′
i

sw′

−−→ yi+1;
3. xi

swL−−→ xi+1, then xi, xi+1 ∈ L, and there exist y′
i and yi+1 in G′

L such that f(y′
i)

swL−−→
f(yi+1).

Moreover, the y’s can be chosen such that f(y′
i) = f(yi) = xi. If none of the xi are in L, it is

easy to construct a cycle in G, and so we can assume without loss of generality that x1 ∈ L.
Consider now the subsequence xσ(j) of the elements of (xi) which are in L. Then the

zj := yσ(j) and the zj := y′
σ(j) are in GL, and, for each j, there are three cases:

1. z′
j

po′

−−→ zj+1,

2. z′
j

f−1(swL)−−−−−−→ zj+1,

3. z′
j

hb′\(sw′∪po′)−−−−−−−−−→ zj+1

Thus, the sequence f(zj) is a cycle in G′
L for the relation f∗(G′.hb \ (sw′ ∪ po′)) ∪ po ∪ sw,

which contradicts the fact that GL is well-formed. ◀

We can now prove Theorem 3.12:

Proof. We consider a well-formed implementation I of L on top of Λ, as well as a collection Λ′

of libraries and plain executions G ∈ PExec({L} ∪ Λ) and G′ ∈ G · I ⊆ PExec(Λ ∪ Λ′). The

32 REFERENCES

first part of Def. 3.11 follows immediately from the fact that I is well-formed. Let us then
prove the second part, and consider G′ ⊏ G′ well-formed, consistent and closed. We need to
find G ⊏ G which is consistent and closed. Since G′ is hereditarily consistent, there exists a
sequence

∅ = G′
0 ↪−→im G′

1 ↪−→im · · · ↪−→im G′
n = G′

of consistent closed executions of Λ ∪ Λ′. As above, by considering the images of these
subexecutions under f , we obtain

∅ = G0 ↪−→=
im G1 ↪−→=

im · · · ↪−→=
im Gn = G

with fi : |Gi| ↠ Gi. Further, by taking the restrictions of Gi to the library G, we obtain a
sequence of fL

i : |G′L
i | ↠ GL

i . The first plain matching fL
0 lifts trivially to a refined matching,

and applying the assumption that I is sound n times, we lift all the fL
i to refined mathchings,

and we get a sequence of consistent executions:

∅ = GL
0 ↪−→=

im GL
1 ↪−→=

im · · · ↪−→=
im GL

n = GL

Applying the lemma above, we get a sequence of consistent and closed executions Gi ⊏ Gi,
which are related by ↪−→=

im because of the restriction to sw in the definition of refined matching
and the restriction on po in the definition of plain matching. This concludes the proof. ◀

B Correctness of the FliT Implementation

▶ Theorem 4.2. The implementation of FliT in Fig. 5 is correct.

Proof. We use our modularity theorem. Let G′ = ⟨E′, po′, sw′, hb′⟩ be a consistent Px86
execution, and let rf ′ and tso be witnesses. G = ⟨E, po⟩ be a plain FliT execution and let
f : |G′| ↠ G be a plain matching. We then define lin ≜ f∗(tso′

M), where tsoM denotes the
restriction of tso to events on location ℓ. The order lin is total, because a read po-after a
write to the same location is also ordered by tso thanks to the fetch-and-add operation after
the write. We now prove that the relation lin satisfies the four properties in the specification
of FliT.

Proof of (1) and (2). The lin-maximal write to the location is the tso′ maximal write to
that location before a crash, or the nvo′-maximal such write before a crash.

Proof of (3). First, notice that po ⊆ nvo, because of the flush and the barrier. Moreover,
[W p

ℓ]; f∗(tso′
M); [Rp

ℓ]; po′; [W] ⊆ nvo: write w, r, w′ for the two writes and the read which are
mentioned in this expression. There are several cases. First, notice that if the two writes
are executed on on the same thread, then this follows from the first point. There are now
two cases remaining, depending on whether the read operation goes though its fast path, or
whether it executes the optimized flush.

1. Fast path. If the read operation reads 0 in the flit-counter, then the write it read must
have been mo′-after or equal to the decreasing FAA operation executed by the write
operation which was read. In particular, this means that any write which is po′-after
that read is tso′-after, and therefore nvo′-after, the decreasing FAA, which is nvo′-after
the first write.

2. Slow path. Any write which is tso′-after the read operation is nvo-after its optimized
flush, which is tso′-after the write operation.

REFERENCES 33

Then, the final write executes either a fence or an RMW before its linearization point, so
that (r, w′) ∈ nvo.

Proof of (4). Follows from the properties of flushes in Px86. ◀

In this proof, it is useful to change the causal structures of executions to make incomplete
events maximal in order to create a crashless execution from a chain. Given a plain execution
⟨E, po⟩ and a set of events E′ ⊆ E, we define detached(E′, ⟨E, po⟩) ≜ ⟨E, po\(E′ ×(E \E′))⟩,
i.e. E′ are made po-maximal in detached(E′, ⟨E, po⟩).

▶ Theorem 4.3. If Px86 ⊨ I : Lin(S), then FliT ⊨ p(I) : DurLin(S).

Proof. Consider a plain execution G of DurLin(S), and a corresponding consistent program
execution G′ such that |G′| ∈ G · p(I). Let rf ′ be a witness that G′ is a consistent Px86
execution. There exists a plain matching f : |G′| ↠ G̃.

To use the fact that I implements Lin(S), we construct an execution (without crashes)
of I and a corresponding plain execution of Lin(S). Consider Ḡ′ defined as follows.

1. First, detach all the f−1(m(v⃗, ⊥)) in G′, giving the plain execution G′d;
2. Second, define G′p ≜ G′d∩ ↓po ⌊pPx86⌋, where ↓po ⌊pPx86⌋ is the set of events of G′d which

are po-before a persisted Px86 event;
3. Remove all finishOp events, and relabel all p-writes and p-reads with the corresponding

Px86 labels;
4. Finally, we get Ḡ′ by removing all crash events.

Similarly, we define Ḡ by removing all crash events and all events e of labeled with m(v⃗, ⊥)
such that f−1(v) ∩ ⌊pPx86⌋ = ∅ from G′.

▷ Claim B.1. Ḡ is a plain execution of Lin(S), Ḡ′ is an execution of Px86 and |Ḡ| ∈ Ḡ · I,
with f̄ := f ∩ Ē : |Ḡ′| ↠ Ḡ.

Proof of claim. The first two parts are obvious. The last part follows from the fact that, by
construction, all f̄−1(m(v⃗, ⊥)) are po-prefixes of the f−1(m(v⃗, ⊥)), and that I is prefix-closed.
For f−1(m(v⃗, v)) it follows from the fact that, if finishOp has finished executing, then all
writes of the method have persisted. ◀

Write rf ′ the restriction of rf ′ to Ḡ′.

▷ Claim B.2. The relation rf defined above is surjective on reads, and Ḡ′ is consistent.

Proof of claim. If a read event e is in Ḡ′, then in G′:

e′ : wrp(x, v) rf−−→ e : rdp(x, v) po−−→ e′′

, with e′′ ∈ ⌊pPx86⌋, and because of the specification of FliT e′ is a write which is lin-before
the read e, therefore e depends on e′′ by transitivity and e′ ∈ ⌊pPx86⌋, and thus e′ ∈ Ḡ′.

Because FliT defines SC executions, Ḡ′ is also consistent for Px86-consistency (namely
TSO). ◀

We can use the fact that I is assumed to implement the library Lin(S) to obtain a correct
execution Ḡ ⊏ Ḡ. That is, there is a total order lin which extends Ḡ′.hb and induces a
sequence r ∈ S. Define e ∈ G ⇐⇒ e ∈ r; and otherwise use the same rf, sw and so forth
from Ḡ. ◀

34 REFERENCES

1 method CAS(v_addr, expected, newval) {
2 p_addr = COMPUTE_P_ADDR(

v_addr);
3 while (true) {
4 p_seq = p_addr−>seq;
5 p_val = p_addr−>val;
6 p_seq_again = p_addr−>seq;
7
8 v_seq = v_addr−>seq;
9 v_val = v_addr−>val;

10 v_seq_again = v_addr−>seq;
11
12 if (p_seq != p_seq_again ||
13 v_seq != v_seq_again)
14 continue ;
15 if (p_seq == v_seq + 1) {
16 FLUSH(p_addr); FENCE();
17 DWCAS(v_addr, {v_val, v_seq},
18 {p_val, p_seq});
19 continue ;
20 }
21 if (p_seq != v_seq) continue;
22
23 if (p_val != expected) {
24 expected = p_val; return false ;

25 }
26 before = {p_val, p_seq};
27 after = {vewval, p_seq+1};
28 res = DWCAS(p_addr, before, after);

29 FLUSH(p_addr); FENCE();
30 if (res) {
31 DWCAS(v_addr, before, after);
32 } else {
33 if (before . val == expected)

continue;
34 DWCAS(v_addr, {v_val, v_seq},

before);
35 }
36 return res ;
37 }
38 }
39
40 method wr(v_addr, val) {
41 p_addr = COMPUTE_P_ADDR(

v_addr);
42 while (!CAS(v_addr, ∗p_addr, val)) {}
43 }
44
45 method rd(v_addr) { return ∗v_addr; }

Figure 6 The Mirror implementation in Px86

C Correctness of Mirror

We consider the Mirror library [9], whose interface is that of persistent registers. Besides the
constructor, new(), which allocates a new register, it provides two kinds of durable invocations:
wr(ℓ, v), which writes the value v at location ℓ, and cas(ℓ, v1, v2), which atomically replaces
the value at location ℓ by v2 if it is equal to v1 and does nothing otherwise; and one other
non-durable invocation: rd(ℓ), which returns the value of the register at location ℓ.

As with FliT, the Mirror implementation avoids issuing a flush on reads, albeit using a
different approach: it keeps two copies of the register contents: one in NVM and one in
volatile memory. Reads access only the volatile copy, whereas writes and CASes first write
the value to NVM, flush it, and then also write it to the volatile copy. To ensure lock-freedom,
the implementation uses sequence numbers and a double-word (128 bits) compare-and-swap
(DWCAS) to atomically update a pair of a value and sequence number (see Fig. 6), which is
available on Intel-x86.

C.1 Specification of the library
Mirror provides sequentially consistent registers with the guarantee that completed writes
persist, and that the persistence order agrees with the sequential order of the operations.

▶ Definition C.1. An execution G of the library Mirror is correct if there exists an order nvo
and a total order lin on G.E agreeing with G.po and G.hb (G.po ∪ G.hb ⊆ lin) such that:

1. sw =
⋃

ℓ∈Loc([Wℓ]; lin; [Rℓ]) \ (lin; [Wℓ]; lin), where Wℓ is the set of all writes and CASes
at location ℓ, and Rℓ is the set of all reads and CASes at location ℓ;

2. if (w, r) ∈ sw, then loc(w) = loc(r) and the value read by r is the value written by w;
3. [W]; (po ∪ sw)+; [W] ⊆ nvo, where W is the set of all writes in G;

REFERENCES 35

4. dom(nvo; [pPx86]) ⊆ ⌊pPx86⌋; and
5. ⌊pPx86⌋ = {w ∈ W | w is a complete operation }.
▶ Theorem C.2. The implementation in Fig. 6 is a correct implementation of the Mirror
library.
Proof. Suppose given a Px86 execution G and a plain execution G′ of Mirror such that |G| ↠
G′ and such that G is consistent.

Operations are persisted. Define the pPx86-tagged events to be the events e in G′

labeled with a cas operation such that, in f−1(e), the DWCAS at line 28 has succeeded
and persisted. Clearly, because of the flush and the fence at line 29, all operations of the
form cas(ℓ, v1, v2, true) are tagged with pPx86.

Defining the sw relation. Given an event e labeled with an operation rd(ℓ, v) in G′,
we define the originating write of e, u(e) ∈ G′, as follows: consider r, the corresponding
read in G, and w the unique event such that (w, r) ∈ G.rf. If w corresponds to the CAS
operations of line 31, then define u(e) ≜ f(w). Otherwise, let r′ be the read of p_addr which
precedes it (either line 5 or line 28 when the CAS is unsuccessful) and let w′ be the write
such that (w′, r′) ∈ G.rf and define u(e) ≜ f(w′).

Now, consider a CAS event e ∈ G′. If it returns false, define u(e) ≜ f(rf−1(r)), where
r is the read of p_addr−>val in line 5. Otherwise, the DWCAS of line 28 succeeds, and we
define u(e) ≜ f(rf−1(u)), where u is the event corresponding to that DWCAS.

Finally, we define sw′ ≜ u−1, which is, by construction, the inverse of a function and is
surjective on reads and CASes. Because the value written in v_addr−>val is the same as the
value read from the source of the rf edge, the value which is read matches the one which is
written.

Defining the lin order.
We define lin by projecting along f a linearization of tso of the linearization points of

the operation implementations: for cas, it is the DWCAS of lines 28 if control-flow reaches
them, and otherwise the read of p_addr−>val in line 5. Clearly it agrees with po′.

It remains to prove that the relation sw′ defined above reads the most recent write, and
that it agrees with the nvo′ = f∀

∗ (nvo) order, where f∀
∗ (()r) = {(x, y) | ∀u ∈ f−1(x), ∀v ∈

f−1(y), (u, v) ∈ r}. The first conjunct follows from the fact that all values are written
using a Px86 DWCAS, and that all writes that are in Pi have their corresponding writes
to p_addr persisted. The second conjunct follows from the fact that the linearization points
of all persistent operations are writes to the same location, and thus their tso order agrees
with nvo.

The relation [W]; (po′ ∪ sw′)+; [W] is included in nvo′.
We first note that given (r, w) ∈ po′ ∩ (R × W), the reads in f−1(r) are tso-before the

writes in f−1(w). Also, given (w, r) ∈ sw′ \ po, the read r′ of v_addr in f−1(r) is tso-before
rf−1(r′) since they belong to different threads. In all paths, r is po-after a flush and a fence
which is tso-after the write to p_addr.

Now, let (w, w′) ∈ [W]; (po′ ∪ sw′)∗; [W], there exists a sequence of events which are
related by the two relations we just discussed. Therefore the write to p_addr in f−1(w′) is
tso-after a fence, which is tso-after a flush of p_addr which is tso-after the persistent write
in f−1(w). As such, (w, w′) ∈ nvo′ = f∀

∗ (nvo). ◀

C.2 Using Mirror to Enforce Durable Linearizability
As with FliT, Mirror can be used to transform a linearizable data-structure into a durably
linearizable one. Given an implementation I over Px86 using reads, writes and CASes, let

36 REFERENCES

m(I) be the implementation over Mirror which replaces the Px86 calls with their corresponding
Mirror calls.

▶ Theorem C.3. If Px86 ⊢ I : Lin(S), then Mirror ⊢ m(I) : DurLin(S).

The proof is similar to the corresponding theorem of FliT, noting that Mirror provides a
stronger specification than FliT.

D Proof of Transaction library

D.1 Proof of Ltrans

We use a module Q which provides a durably linearizable queue. One simple solution to
implement this module is to take any linearizable queue (e.g. the one proved in [24]) and use
the results of §4 to obtain a durably linearizable queue. We prove the implementation Itrans,
presented in Figure 1 of the transaction library.

▶ Theorem D.1. Itrans implements the library specification Ltrans. Formally, LPx86, LQueue ⊢
Itrans : Ltrans.

Proof sketch. The idea is to define nvo on the events of Ltrans to be hb induced by the
implementation-level execution graph. By well-formedness, we know all events are in a
critical section, and we declare that an event has tag ptr if the corresponding appending of
COMMITTED has persisted.

In the absence of a crash, condition (7) follows from the fact that, since beginnings and
ends of critical sections are externally synchronized, all reads and writes of PT registers are
related by hb. In case of a crash, if a read r reads from a write w with a crash in-between,
we know by definition that w ∈ ⌊ptr⌋, and, according the well-formedness condition of Ltrans,
that a call to recovery is hb-between the crash and r. Since w ∈ ⌊ptr⌋, the COMMITTED
message has been written to the log and thus the write has not been undone by the recovery.
Symmetrically, we also know that all later writes to the register have not been persisted, and
thus the recovery procedures has undone these writes.

Condition (8) holds for a similar reason: a read from another section is hb-after the end
of the section that wrote into the register. Conditions (11) and (10) which are treated later
imply that the write has persisted.

Global correctness. Since this library introduces it own tags, we can assume that the
operations tagged with its own tags are its own operations.

Condition (10) by definition of nvo above.
Condition (11): a write is persisted if the COMMITTED message of the corresponding

critical section has been persisted. Therefore either all writes or none of the writes of a
section persist.

Condition (12): If PTEnd has finished, the sfence instruction has finished and the COM-
MITTED message has persisted. ◀

D.2 Proof of LStrans

We consider a (volatile) lock library with the following specification: An execution G is
correct if the events are totally ordered by hb in such a way that the induced word is of the
form (lock · unlock)∗ · lock?.

▶ Theorem D.2. The implementation ILPT of LStrans is correct: LLock, Ltrans ⊢ ILPT : LStrans.

REFERENCES 37

Proof sketch. The salient part of the proof is establishing that the library TC is used
according to its well-formedness specification. According to Definition 3.10, we consider an
implementation execution G which has an immediate prefix Ḡ ↪−→im G which is correct. The
important case is when the event added in G compared to Ḡ is a call to PTBegin or PTEnd
which is part of the implementation of a call to LPTBegin or LPTEnd respectively. In that case,
the correctness of Ḡ restricted to the Lock library implies that two LPT critical sections are
related by hb. Therefore, the calls to the PT library are externally synchronized.

The rest of the proof consists in using unchanged the corresponding properties of the PT
library: We consider a correct execution G ∈ Exec(LLock, Ltrans, ⋆Ltrans) and a corresponding
locally correct execution G ∈ Exec(LStrans, Ltrans, ⋆Ltrans) and we need to prove that G is correct
with respect to the global specification of Ltrans. This is easy to see that this follows from the
correctness of G with respect to the same global specification. ◀

D.3 Counter

method NewCounter() = PTAlloc()

method CounterInc(c) = let v = Read(c) in PTWrite(v+1)

method CounterRead(c) = PTRead(c)

An execution is Lcntr-correct if each call to CounterRead(c) returns the number of CounterInc(c)
which are hb-before it. The proof of correctness is simple, for example by using condition (7)
of the specification of Ltrans.

Note that in the proof, the implementation graph G we consider is not well-formed,
since there are no begin/end calls! However, we know that for any well-formed context in
which Lcntr is used, the library Ltrans will also be used according to well-formedness, and as
such we can use the fact that G is correct.

	1 Introduction
	2 A General Framework for Persistency
	2.1 Library Interfaces
	2.2 Histories
	2.3 Linearizability
	2.4 Adding Failures
	2.5 Adding Well-formedness Constraints
	2.6 Tags and Global Specifications
	2.7 Library Implementations
	2.8 Compositionally Proving Implementation Correctness
	2.9 Generic Durable Persistency Theorems

	3 A General Framework for Persistency and Consistency
	3.1 Plain Executions and Executions
	3.2 Library Specifications
	3.3 Library Implementations
	3.3.1 Semantic implementations
	3.3.2 A simple Concurrent Programming Language
	3.3.3 Semantic Substitutions
	3.3.4 Implementation Correctness
	3.3.5 Semantics of Programs

	3.4 Compositionally Proving Implementation Correctness
	3.4.1 Preliminaries
	3.4.2 A compositional criterion

	4 Case Study: Durable Linearizability with FliT and Mirror
	4.1 The FliT Library
	4.2 The Mirror Library

	5 Case Study: Persistent Transactional Library
	5.1 Specification
	5.2 Vertical Library Composition: Adding Internal Synchronization
	5.3 Horizontal Library Composition

	6 Conclusions, Related and Future Work
	A Compositional soundness
	B Correctness of the FliT Implementation
	C Correctness of Mirror
	C.1 Specification of the library
	C.2 Using Mirror to Enforce Durable Linearizability

	D Proof of Transaction library
	D.1 Proof of
	D.2 Proof of
	D.3 Counter

