Under-Approximation for Scalable Bug Detection

Azalea Raad

Imperial College London

Iris Workshop
23 May 2023

State of the Art: Correctness

* Lots of work on reasoning for proving correctness
- Prove the absence of bugs
- Over-approximate reasoning
- Compositionality
in code \Rightarrow reasoning about incomplete components
in resources accessed \Rightarrow spatial locality
= Scalability to large teams and codebases

Hoare Logic (HL)

Hoare triples $\quad\{p\} C\{q\} \quad$ iff $\quad \operatorname{post}(C) p \subseteq q$

For all states s in p
if running C on s terminates in s^{\prime}, then s ' is in q

Hoare Logic (HL)

Hoare triples $\quad\{p\} C \underset{q}{\{q\}} \quad$ iff $\quad \operatorname{post}(\mathrm{C}) \mathrm{p}$-approximates $\operatorname{post(C)p} \subseteq \mathrm{q}$

Hoare Logic (HL)

Hoare triples $\quad\{p\} C \underset{q}{\{q\}} \quad$ iff $\quad \operatorname{post}(\mathrm{C}) \mathrm{p}$ approximates $\operatorname{post(C)p} \subseteq q$

"Don't spam the developers!"

Incorrectness Logic:
 A Formal Foundation for
 Bug Catching

Part I.
 Incorrectness Logic (IL)
 \&
 Incorrectness Separation Logic (ISL)

Hoare triples $\quad\{p\} C\{q\} \quad$ iff \quad post $(C) p \subseteq q$

For all states s in p
if running C on s terminates in s^{\prime}, then s ' is in q

Incorrectness Logic (IL)

Hoare triples $\quad\{p\} C\{q\} \quad$ iff $\quad \operatorname{post}(C) p \subseteq q$

```
For all states s in p
    if running C on s terminates in s', then s' is in q
```

Incorrectness $\quad[\mathrm{p}] \mathrm{C}[\mathrm{q}]$ iff $\quad \operatorname{post}(\mathrm{C}) \mathrm{p} \supseteq \mathrm{q}$ triples

```
For all states s in q
    s can be reached by running C on some s' in p
```


Incorrectness triples	$[\mathrm{p}] \mathrm{C}[\mathrm{q}]$
q under-approximates $\operatorname{post(C)p}$	

Incorrectness Logic (IL)

Incorrectness $\quad[\mathrm{p}] \mathrm{C}[\mathrm{q}]$ iff $\quad \operatorname{post}(\mathrm{C}) \mathrm{p} \supseteq \mathrm{q}$ triples q under-approximates post(C)p

Incorrectness Logic (IL)

[p] C [ε : q]

ε : exit condition
ok: normal execution er : erroneous execution

$$
[y=v] x:=y[o k: x=y=v] \quad[p] \text { error }()[e r: p]
$$

Incorrectness Logic (IL)

[p] C [ε : q] iff $\quad \operatorname{post}(\mathrm{C}, \varepsilon) \mathrm{p} \supseteq \mathrm{q}$

Incorrectness Logic (IL)

$$
\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon ; \mathrm{q}] \quad \text { iff } \quad \operatorname{post}(\mathrm{C}, \varepsilon) \mathrm{p} \supseteq \mathrm{q}
$$

Equivalent Definition (reachability)

$$
\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
$$

IL Proof Rules and Principles (Sequencing)

$$
\frac{[\mathrm{p}] \mathrm{C}_{1}[\mathrm{er}: \mathrm{q}]}{[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\mathrm{er}: \mathrm{q}]}
$$

* Short-circuiting semantics for errors

IL Proof Rules and Principles (Sequencing)

$$
\frac{[\mathrm{p}] \mathrm{C}_{1}[\mathrm{er}: \mathrm{q}]}{[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\mathrm{er}: \mathrm{q}]} \quad \frac{[\mathrm{p}] \mathrm{C}_{1}[\mathrm{ok}: r][\mathrm{r}] \mathrm{C}_{2}[\varepsilon ; \mathrm{q}]}{[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\varepsilon ; \mathrm{q}]}
$$

* Short-circuiting semantics for errors

IL Proof Rules and Principles (Branches)

$$
\frac{[p] \mathrm{C}_{\mathrm{i}}[\varepsilon: q] \quad \text { some } i \in\{1,2\}}{[\mathrm{p}] \mathrm{C}_{1}+\mathrm{C}_{2}[\varepsilon: q]}
$$

* Drop paths/branches (this is a sound under-approximation)
* Scalable bug detection!

$$
[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
$$

IL Proof Rules and Principles (Loops)

(Unroll-Zero)
 $$
\text { [p] C }{ }^{\star} \text { [ok: p] }
$$

* Bounded unrolling of loops (this is a sound under-approximation)
* Scalable bug detection!

$$
[\mathrm{p}] \mathrm{C}[\varepsilon ; \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
$$

IL Proof Rules and Principles (Loops continued)

$$
\frac{\forall n \in \mathbb{N} \cdot[p(\mathrm{n})] \mathrm{C}[\mathrm{ok}: \mathrm{p}(\mathrm{n}+1)] \quad \mathrm{k} \in \mathbb{N}}{[\mathrm{p}(0)] \mathrm{C}^{*}[\mathrm{ok}: \mathrm{p}(\mathrm{k})]} \text { (Backwards-Variant) }
$$

* Loop invariants are inherently over-approximate
* Reason about loops under-approximately via sub-variants

$$
[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
$$

IL Proof Rules and Principles (Consequence)

$$
\frac{p^{\prime} \subseteq p\left[p^{\prime}\right] C\left[\varepsilon: q^{\prime}\right] q^{\prime} \supseteq q}{[p] C[\varepsilon: q]}(\text { Cons })
$$

* Shrink the post (e.g. drop disjuncts)
* Scalable bug detection!

$$
[\mathrm{p}] \mathrm{C}[\varepsilon ; \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
$$

IL Proof Rules and Principles (Consequence)

$$
\begin{aligned}
& \frac{\mathrm{p}^{\prime} \subseteq p\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right] \mathrm{q}^{\prime} \supseteq \mathrm{q}}{[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}](\text { Cons) }} \\
& \frac{[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]}{[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right]}
\end{aligned}
$$

* Shrink the post (e.g. drop disjuncts)
* Scalable bug detection!

$$
[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
$$

IL Proof Rules and Principles (Consequence)

$$
\frac{p^{\prime} \subseteq p\left[p^{\prime}\right] C\left[\varepsilon: q^{\prime}\right] \quad q^{\prime} \supseteq q}{[p] C[\varepsilon: q]}(C o n s) \quad \frac{p^{\prime} \supseteq p \quad\left\{p^{\prime}\right\} C\left\{q^{\prime}\right\} \quad q^{\prime} \subseteq q}{\{p\} C\{q\}}(H L-C o n s)
$$

$$
\frac{[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]}{[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right]}
$$

* Shrink the post (e.g. drop disjuncts)
* Scalable bug detection!

$$
[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
$$

Incorrectness Logic: Summary

+ Under-approximate analogue of Hoare Logic
+ Formal foundation for bug catching
- Global reasoning: non-compositional (as in original Hoare Logic)
- Cannot target memory safety bugs (e.g. use-after-free)

Incorrectness Logic: Summary

Solution
 Incorrectness Separation Logic

Incorrectness Separation Logic (ISL)

ISL: Local Axioms

ISL: Local Axioms

$$
\begin{aligned}
& \text { [} \mathrm{X} \mapsto \mathrm{v} \text {] free }(\mathrm{X}) \text { [ok: } \mathrm{X} \mapsto \text {] } \\
& \text { FREE } \\
& \underbrace{[x=n u l l] \text { free }(x)[\text { er: } x=\text { null }]}_{\text {double-free error }} \\
& {\left[\mathrm{X} \mapsto \mathrm{~V}^{\prime}\right][\mathrm{X}]:=\mathrm{V}[\mathrm{OK}: \mathrm{X} \mapsto \mathrm{~V}]} \\
& \text { WRITE } \\
& \text { [x=null] [x]:= v [er: } x=n u l l] \\
& {[\mathrm{X} \mapsto \mathrm{\mapsto}][\mathrm{x}]:=\mathrm{v}[\mathrm{er}: \mathrm{X} \mapsto \mathrm{~s}]}
\end{aligned}
$$

ISL: Local Axioms

$$
\begin{aligned}
& \text { null-pointer-dereference error } \\
& \text { double-free error } \\
& {\left[\mathrm{X} \mapsto \mathrm{~V}^{\prime}\right][\mathrm{x}]:=\mathrm{v}[\mathrm{ok}: \mathrm{x} \mapsto \mathrm{~V}] \quad[\mathrm{x}=\mathrm{null}][\mathrm{x}]:=\mathrm{v}[\mathrm{er}: \mathrm{x}=\mathrm{null}]} \\
& {[\mathrm{X} \mapsto \mathrm{\mapsto}][\mathrm{X}]:=\mathrm{v}[\mathrm{er}: \mathrm{X} \mapsto \mathrm{~s}]}
\end{aligned}
$$

$$
\begin{array}{lr}
{[\mathrm{x} \mapsto \mathrm{v}] \mathrm{y}:=[\mathrm{x}][\mathrm{ok}: \mathrm{x} \mapsto \mathrm{v} \wedge \mathrm{y}=\mathrm{v}]} & {[\mathrm{x}=\mathrm{null}] \mathrm{y}:=[\mathrm{x}][\mathrm{er}: \mathrm{x}=\mathrm{null}]} \\
\text { READ } & \\
& {[\mathrm{x} \mapsto \mathrm{y}:=[\mathrm{x}][\mathrm{er}: \mathrm{x} \leftrightarrow \mathrm{H}]}
\end{array}
$$

ISL: Local Axioms

$$
\begin{aligned}
& \begin{array}{l}
{[\mathrm{X} \mapsto \mathrm{~V}] \text { free }(\mathrm{X})[\mathrm{OK}: \mathrm{X} \mapsto \mathrm{\beta}]} \\
\text { FREE }
\end{array} \\
& \text { null-pointer-dereference error } \\
& {\left[\mathrm{X} \mapsto \mathrm{~V}^{\prime}\right][\mathrm{x}]:=\mathrm{v}[\mathrm{ok}: \mathrm{x} \mapsto \mathrm{~V}] \quad[\mathrm{X}=\mathrm{null}][\mathrm{x}]:=\mathrm{v}[\mathrm{er}: \mathrm{x}=\mathrm{null}]} \\
& {[\mathrm{X} \mapsto \mathrm{~s}][\mathrm{X}]:=\mathrm{V}[\mathrm{er}: \mathrm{X} \mapsto \mathrm{~s}]}
\end{aligned}
$$

$$
\left.\begin{array}{lrl}
{[\mathrm{x} \mapsto \mathrm{~V}] \mathrm{y}:=[\mathrm{x}][\mathrm{ok}: \mathrm{x} \mapsto \mathrm{v} \wedge \mathrm{y}=\mathrm{v}]} & {[\mathrm{x}=\mathrm{null}] \mathrm{y}:} & =[\mathrm{x}][\mathrm{er}: \mathrm{x}=\mathrm{null}] \\
\text { READ } & & {[\mathrm{x} \mapsto \mathrm{H}]:}
\end{array}=[\mathrm{x}][\mathrm{er}: \mathrm{x} \mapsto] \mathrm{s}\right] .
$$

$$
\text { [emp] x:= alloc() [ok: ヨl. | } \mapsto \vee \wedge x=1 \text {] }
$$

ISL Summary

* Incorrectness Separation Logic (ISL)
\Rightarrow IL + SL for compositional bug catching
- Under-approximate analogue of SL
\Rightarrow Targets memory safety bugs (e.g. use-after-free)
* Combining IL+SL: not straightforward
- invalid frame rule!
* Fix: a monotonic model for frame preservation
* Recovering the footprint property for completeness
* ISL-based analysis
\Rightarrow No-false-positives theorem:
All bugs found are true bugs

Part II.
 Pulse-X: ISL for Scalable Bug Detection

Pulse-X at a Glance

* Automated program analysis for memory safety errors (NPEs, UAFs) and leaks
* Underpinned by ISL (under-approximate) - no false positives*
* Inter-procedural and bi-abductive - under-approximate analogue of Infer
* Compositional (begin-anywhere analysis) - important for Cl
* Deployed at Meta
* Performance: comparable to Infer, though merely an academic tool!
* Fix rate: comparable or better than Infer!
* Three dimensional scalability
- code size (large codebases)
- people (large teams, CI)
- speed (high frequency of code changes)

Compositional, Begin-Anywhere Analysis

*Analysis result of a program = analysis results of its parts

> a method of combining them

Compositional, Begin-Anywhere Analysis

* Analysis result of a program = analysis results of its parts
a method of combining them
- Parts: Procedures

Compositional, Begin-Anywhere Analysis

* Analysis result of a program = analysis results of its parts
a method of combining them
- Parts: Procedures

- Method: under-approximate bi-abduction

Compositional, Begin-Anywhere Analysis

* Analysis result of a program = analysis results of its parts
a method of combining them
- Parts: Procedures

- Method: under-approximate bi-abduction
- Analysis result: incorrectness triples (under-approximate specs)

Pulse-X Algorithm: Proof Search in ISL

* Analyse each procedure f in isolation, find its summary (collection of ISL triples)
- A summary table T, initially populated only with local (pre-defined) axioms
- Use bi-abduction and T to find the summary of f
- Recursion: bounded unrolling
- Extend T with the summary of f
* Similar bi-abductive mechanism to Infer, but:
- Can soundly drop execution paths/branches
- Can soundly bound loop unrolling

Pulse-X: Null Pointer Dereference in OpenSSL

```
1.int ssl excert prepend(...){
2. SSL_EXCERT *exC= app_malloc(sizeof(*exc), "prepend cert");
3. memset(exc, 0, sizeof(*exc));
calls CRYPTO_malloc (a malloc wrapper)
```


Pulse-X: Null Pointer Dereference in OpenSSL

```
1.int ssl_excert_prepend(...){
2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert");
3. memset(exc, 0, sizeof(*exc));
}
```

 null pointer
 null pointer
 dereference
 dereference
 calls CRYPTO_malloc (a malloc wrapper)
 calls CRYPTO_malloc (a malloc wrapper)

Pulse-X: Null Pointer Dereference in OpenSSL

```
1.int ssl_excert_prepend(...) {
```

2. $S S L$ _EXCERT *exc= app_malloc (sizeof (*exc), "prepend cert");
3. memset (exc, 0, sizeof(*exc));
null pointer
dereference Calls CRYPTO_malloc (a malloc wrapper)
[emp] *exc= app_malloc (ss, ...) [ok: exc = null]
+
[exc = null] memset $($ exc,,--$)$ [er: exc = null]
品
[emp] ssl_excert_prepend (...) [er: exc = null]

Pulse-X: Null Pointer Dereference in OpenSSL

*. Hide resolved

```
apps/lib/s_cb.c Outdated
```

```
apps/lib/s_cb.c Outdated
```

```
0@ -956,6 +956,9 @@ static int ssl_excert_prepend(SSL_EXCERT **pexc)
```

0@ -956,6 +956,9 @@ static int ssl_excert_prepend(SSL_EXCERT **pexc)
{
{
{
{
957 SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
957 SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
958 958
958 958
950 + if (!exc) {

```
    950 + if (!exc) {
```

paulidale 13 days ago Contributor
-) $\cdot \cdot$
False positive, app_malloc() doesn't return if the allocation fails.
() ••

Our tool recognizes app_malloc() ir test/testutil/apps_mem.crather than the one ir apps/lib/apps.c. While the former doesn't return if the allocation fails, the latter does. How do we know which one is actually called?
paulidale 13 days ago Contributor

It would need to look at the link lines or build dependencies to figure out which sources were used.

We should fix the one in test/testutil/apps_mem.c

Pulse-X: Null Pointer Dereference in OpenSSL

```
apps/lib/s_cb.c Outdated
```


paulidale 13 days ago Contributor
-) \cdots
False positive, app_malloc() doesn't return if the allocation fails.
() \cdots

Our tool recognizes app_malloc() ir test/testutil/apps_mem.crather than the one ir apps/lib/apps.c. While the former doesn't return if the allocation fails, the latter does. How do we know which one is actually called?
paulidale 13 days ago Contributor

It would need to look at the link lines or build dependencies to figure out which sources were used.

```
We should fix the one in test/testutil/apps_mem.c
```

Created pull request \#15836 to commit the fix.

Pulse-X: Bug Reporting

No False Positives: Report All Bugs Found?

Not quite...

Pulse-X: Bug Reporting

```
1.void foo(int *x){
2. *}\mp@subsup{*}{X}{}=42
}
```

WRITE $\quad[x=\mathrm{null}]^{*} \mathrm{x}=\mathrm{V}[$ er: $\mathrm{x}=\mathrm{null}]$

Should we report this NPD?

Pulse-X: Bug Reporting

```
1.void foo(int *x) {
2. *}\mp@subsup{*}{x}{}=42
}
```

```
WRITE [x=null] *x=v [er: x=null]
```

[x=null] foo(x) [er: x=null]

Should we report this NPD?

"Which bugs shall I report then?"

Pulse-X: Bug Reporting

Problem

Must consider the whole program to decide whether to report

Solution
 Manifest Errors

Pulse-X: Manifest Errors

* Intuitively: the error occurs for all input states
* Formally: [p] C [er: q] is manifest iff:

$$
\forall s . \exists s^{\prime} .\left(s, s^{\prime}\right) \in[C]_{\mathrm{er}} \wedge s^{\prime} \in\left(q^{*} \text { true }\right)
$$

* Algorithmically: ...

Pulse-X: Null Pointer Dereference in OpenSSL

```
1.int ssl_excert_prepend(...) {
```

2. $S S L$ _EXCERT *exc= app_malloc (sizeof (*exc), "prepend cert");
3. memset (exc, 0, sizeof(*exc));
null pointer
dereference
calls CRYPTO_malloc (a malloc wrapper)
\}
null pointer dereference

CRYPTO_malloc may return null!
[emp] ssl_excert_prepend (...) [er: exc = null]

Pulse-X: Null Pointer Dereference in OpenSSL

1.int ssl_excert_prepend (...) \{
2. SSL_EXCERT *exc= app_malloc (sizeof(*exc), "prepend cert");
3. memset (exc, 0, sizeof(*exc));

calls CRYPTO_malloc (a malloc wrapper) dereference

CRYPTO_malloc may return null!

$$
\text { [emp] ssl_excert_prepend (...) }[\text { er: exc }=\text { null }]
$$

Manifest Error (all calls to ssl_excert_prepend can trigger the error)!

Pulse-X: Latent Errors

An error triple $[p]$ C [er: $q]$ is latent iff it is not manifest

Pulse-X: Latent Error

```
1.int chopup_args(ARGS *args,...) {
2. if (args->count == 0 ) {
3. args->count=20;
4. args->data= (char**)ssl_excert_prepend(...);
5. }
5. for (i=0; i<args->count; i++) {
6. args->data[i]=NULL;
    }
```


Pulse-X: Latent Error

Pulse-X: Latent Error

```
1.int chopup_args(ARGS *args,...) {
2. if (args->count == 0 ) {
3. args->count=20;
4. args->data= (char**)ssl_excert_prepend (...);
5. }
5. for (i=0; i<args->count; i++)
6. args->data[i]=NULL;
    } .. dereference
Latent Error:
only calls with args->count ==0 can trigger the error
```

```
static int www_body(...){
    io = BIO_new(BIO_f_buffer());
    ssl_bio BIO_new(BIO_f_ssl());
    BIO_push(io, ssl_bio);
    BIO free all(io);
    return ret;
}
```

```
static int www_body(...){
    io = BIO_new(BIO_f_buffer());
    ssl_bio BIO_new(BIO_f_ssl());
    BIO_push(io, ssl_bio);
    BIO free all(io);
    return ret;
        does nothing when io is null
```

```
static int www_body(...){
io = BIO_new(BIO_f_buffer());
ssl_bio BIO_new(BIO_f_ssl());
BIO_push(io, ssl_bio);
BIO_free_all(io);
return ret;
does nothing when io is null
    leaks ssl bio
```


Pulse-X: Memory Leak in OpenSSL

static int wWw_body(...) \{
io = BIO_new(BIO_f_buffer());
ssl_bio BIO_new(BIO_f_ssl());
BIO
push(io, ssl_bio);
BIO_free_all(io);
return ret;
does nothing when io is null
leaks ssl_bio

426 lines of complex code:
io manipulated by several procedures and multiple loops

Pulse-X performs under-approximation with bounded loop unrolling
does nothing when io is null

No-False Positives: Caveat

* Unknown procedures (e.g. where the code is unavailable) are treated as skip
* Incomplete arithmetic solver

Speed
 (fast but simplistic)

Precision

vs (slow but accurate)

> "Scientists seek perfection and are idealists. ... An engineer's task is to not be idealistic. You need to be realistic as you bave to compromise between conflicting interests."

Pulse-X Summary

\Rightarrow Automated program analysis for detecting memory safety errors and leaks

- Manifest errors (underpinned by ISL): no false positives*
- compositional, scalable, begin-anywhere

Part III.

ISL Extensions:

Concurrent Incorrectness Separation Logic (CISL) \&

Concurrent Adversarial Separation Logic (CASL)
\&
Incorrectness Non-Termination Logic (INTL)

Termination vs Non-Termination

* Showing termination is compatible with correctness frameworks:
- Every trace of a given program must terminate
- Inherently over-approximate

$$
\text { skip }+x:=1
$$

Termination vs Non-Termination

* Showing termination is compatible with correctness frameworks:
- Every trace of a given program must terminate
- Inherently over-approximate

$$
\text { skip }+x:=1
$$

* Showing non-termination compatible with incorrectness frameworks:
- Some trace of a given program must not-terminate
- Inherently under-approximate
skip + while(true)skip

Incorrectness Non-Termination Logic (INTL)

* A framework for detecting non-termination bugs
* Supports unstructured constructs (goto), as well exceptions and breaks
* Reasons for non-termination:
- Infinite loops
- Infinite recursion
- Cyclic goto soups

INTL Divergence Proof Rules

$$
[\mathrm{p}] \mathrm{C}[\infty]
$$

C has divergent traces starting from p

INTL Divergence Proof Rules

[p] C [∞]

C has divergent traces starting from p

INTL Divergence Proof Rules (Sequencing)

$$
\frac{[\mathrm{p}] \mathrm{C}_{1}[\infty]}{[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\infty]}
$$

INTL Proof Rules and Principles

INTL Proof Rules

(Under-Approximate) IL/ISL Proof Rules

$+$
Divergence (Non-Termination) Rules

INTL Divergence Proof Rules (Sequencing)

$$
\frac{[\mathrm{p}] \mathrm{C}_{1}[\infty]}{[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\infty]} \quad \frac{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}_{1}[\mathrm{ok}: \mathrm{q}][\mathrm{q}] \mathrm{C}_{2}[\infty]}{[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\infty]}
$$

INTL Divergence Proof Rules (Branches)

$$
\frac{[\mathrm{p}] \mathrm{C}_{\mathrm{i}}[\infty] \quad \text { some } \mathrm{i} \in\{1,2\}}{[\mathrm{p}] \mathrm{C}_{1}+\mathrm{C}_{2}[\infty]}
$$

* Drop paths/branches (this is a sound under-approximation)
* Scalable bug detection!

INTL Divergence Proof Rules (Loops - first attempt)

$$
\frac{[q] \mathrm{C} ; \mathrm{C}^{\star}[\infty]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]}
$$

INTL Divergence Proof Rules (Loops - first attempt)

$$
\frac{[q] C^{\prime} ; \mathrm{C}^{\star}[\infty]}{[p] \mathrm{C}^{\star}[\infty]}
$$

INTL Divergence Proof Rules (Loops - first attempt)

$$
\frac{[q] \mathrm{C} ; \mathrm{C}^{\star}[\infty]}{[p] \mathrm{C}^{\star}[\infty]}
$$

$$
\frac{[\mathrm{p}] \mathrm{C}[\infty]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]} \text { (derived) }
$$

INTL Divergence Proof Rules (Loops - first attempt)

$$
\begin{gathered}
\frac{[\mathrm{q}] \mathrm{C} ; \mathrm{C}^{\star}[\infty]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]} \\
\frac{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\mathrm{ok}: \mathrm{p}]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]} \text { (derived) } \\
\end{gathered}
$$

INTL Divergence Proof Rules (Loops - first attempt)

$$
\frac{[\mathrm{q}] \mathrm{C} ; \mathrm{C}^{\star}[\infty]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]} \quad \frac{[\mathrm{p}] \mathrm{C}[\infty]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]} \text { (derived) }
$$

INTL Divergence Proof Rules (While Loops - first attempt)

$$
\text { [p ^ b] while(b) C [} \infty \text {] }
$$

INTL Divergence Proof Rules (While Loops - first attempt)

[p $\wedge \mathrm{b}]$ (assume(b); C)*; assume(!b) [$\infty]$
[$p \wedge$ b] while(b) C [∞]
while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (While Loops - first attempt)
[p \wedge b] (assume(b); C)*; assume(!b) [$\infty]$

$$
\frac{[p] \mathrm{C}_{1}[\infty]}{[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\infty]}
$$

[$p \wedge$ b] while(b) C [∞]
while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (While Loops - first attempt)
[p ^ b] (assume(b); C)*;[$\left.{ }^{\star}\right]$
[p $\wedge \mathrm{b}]$ (assume(b); C)*; assume(!b) [$\infty]$
[$p \wedge$ b] while(b) C $[\infty]$
while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (While Loops - first attempt)
[p ^ b] (assume(b); C)*;[

$$
\frac{\digamma_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\mathrm{ok}: \mathrm{p}]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]}
$$

[p ^ b] (assume(b); C)*; assume(!b) [∞]
[$\mathrm{p} \wedge \mathrm{b}]$ while(b) $\mathrm{C}[\infty]$
while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (While Loops - first attempt)
$\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{b}]$ assume(b); C [ok: p $\left.\wedge \mathrm{b}\right]$

$$
\text { [p ^ b] (assume(b); C)*;[} \quad \text {] }
$$

$$
\frac{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\mathrm{ok}: \mathrm{p}]}{[\mathrm{p}] \mathrm{C}^{*}[\infty]}
$$

[p ^ b] (assume(b); C)*; assume(!b) [∞]
[$\mathrm{p} \wedge \mathrm{b}]$ while(b) $\mathrm{C}[\infty]$
while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (While Loops - first attempt)
$\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{b}]$ assume(b); C [ok: p $\wedge \mathrm{b}$]

$$
[\mathrm{p} \wedge \mathrm{~b}] \text { (assume(b); C)*;[}[\infty
$$

[p ^ b] (assume(b); C)*; assume(!b) [∞]
[$p \wedge$ b] while(b) C [∞]

$$
\begin{aligned}
& \vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{~b}] \\
& \text { assume }(\mathrm{b}) \\
& \text { [ok: } \mathrm{p} \wedge \mathrm{~b}]
\end{aligned}
$$

$$
\begin{aligned}
& \vdash \mathrm{B}[\mathrm{p}] \mathrm{C}_{1}[\mathrm{Kk}: \mathrm{r}] \\
& \vdash_{\mathrm{B}[\mathrm{r}] \mathrm{C}_{2}[\varepsilon: \mathrm{q}]}^{[\mathrm{p}] \mathrm{C}_{1} \mathrm{C}_{2}[\varepsilon: \mathrm{q}]}
\end{aligned}
$$

while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (While Loops - first attempt)
$\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{b}] \mathrm{C}[\mathrm{ok}: \mathrm{p} \wedge \mathrm{b}]$
$\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{b}]$ assume(b); C [ok: p $\left.\wedge \mathrm{b}\right]$
[p ^ b] (assume(b); C)*;[∞
[p ^ b] (assume(b); C)*; assume(!b) [∞]
[$\mathrm{p} \wedge \mathrm{b}]$ while(b) $\mathrm{C}[\infty]$

$$
\begin{aligned}
& \vdash_{\text {B }}[p \wedge b] \\
& \text { assume }(b) \\
& \text { [ok: } p \wedge b]
\end{aligned}
$$

$$
\begin{aligned}
& \vdash_{\mathrm{B}[\mathrm{p}] \mathrm{C}_{1}[\mathrm{ok}: \mathrm{r}]} \\
& \vdash_{\mathrm{B}}[\mathrm{r}] \mathrm{C}_{2}[\varepsilon: \mathrm{q}] \\
& {[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\varepsilon: \mathrm{q}]}
\end{aligned}
$$

while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (While Loops - first attempt)
$\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{b}] \mathrm{C}[\mathrm{ok}: \mathrm{p} \wedge \mathrm{b}]$
[$p \wedge$ b] while(b) C $[\infty]$
while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (While Loops - first attempt)

while (b) C \equiv (assume(b); C)*; assume(!b)

INTL Divergence Proof Rules (Loops - first attempt)
Program while $(x>0) x--\quad$ always terminates. But...

$$
\frac{\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{~b}] \mathrm{C}[\mathrm{ok}: \mathrm{p} \wedge \mathrm{~b}]}{[\mathrm{p}] \text { while(b) } \mathrm{C}[\infty]}
$$

INTL Divergence Proof Rules (Loops - first attempt)
Program while $(x>0) x$-- always terminates. But...

$$
[x>0] \text { while }(x>0) x--[\infty]
$$

$\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{b}] \mathrm{C}[\mathrm{ok}: \mathrm{p} \wedge \mathrm{b}]$

[p] while(b) C [∞]

INTL Divergence Proof Rules (Loops - first attempt)

Program while $(x>0) x$-- always terminates. But...

$$
\frac{\vdash_{\mathrm{B}}[\mathrm{x}>0] \mathrm{x}--[\text { ok: } x>0]}{[x>0] \text { while }(x>0) x--[\infty]}
$$

$\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{b}] \mathrm{C}[\mathrm{ok}: \mathrm{p} \wedge \mathrm{b}]$

[p] while(b) C [∞]

INTL Divergence Proof Rules (Loops - first attempt)

Program while $(x>0) x$-- always terminates. But...

$$
\frac{\vdash_{\mathrm{B}}[\mathrm{x}>0] \mathrm{x}--[\text { ok: } x>0]}{[x>0] \text { while }(x>0) x--[\infty]}
$$

$\vdash_{\mathrm{B}}[\mathrm{p} \wedge \mathrm{b}] \mathrm{C}[\mathrm{ok}: \mathrm{p} \wedge \mathrm{b}]$
[p] while(b) C [∞]

$$
\begin{aligned}
& \vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \\
& \quad \text { iff } \\
& \quad \forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
\end{aligned}
$$

* Premise: p reached by executing C on some p
*l.e. in the backward direction
* Can construct a backward infinite trace

$$
\frac{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\mathrm{ok}: \mathrm{p}]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]}
$$

* Premise: p reached by executing C on some p
* l.e. in the backward direction
* Can construct a backward infinite trace
* We need a forward infinite trace

$$
\frac{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\mathrm{ok}: \mathrm{p}]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]}
$$

Problem

Solution

Forward Under-Approximate Triples

Forward Under-Approximate (FUX) Triples

$$
\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} .\left(\mathrm{s}, \mathrm{~s}^{\prime}\right) \in[\mathrm{C}] \varepsilon
$$

Forward Under-Approximate (FUX) Triples

$$
\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: q] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} .\left(\mathrm{s}, \mathrm{~s}^{\prime}\right) \in[\mathrm{C}] \varepsilon
$$

$$
\frac{\vdash_{\mathrm{F}[\mathrm{p}]} \mathrm{C}[\mathrm{ok}: \mathrm{p}]}{[\mathrm{p}] \mathrm{C}^{\star}[\infty]}
$$

Forward Under-Approximate (FUX) Triples

$$
\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} .\left(\mathrm{s}, \mathrm{~s}^{\prime}\right) \in[\mathrm{C}] \varepsilon
$$

$$
\frac{\vdash_{\mathrm{F}[\mathrm{p}] \mathrm{C}[\mathrm{ok}: ~ p]}^{[\mathrm{p}] \mathrm{C}^{\star}[\infty]}}{\text { con }}
$$

FUX is Under-Approximate!

$$
\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} .\left(\mathrm{s}, \mathrm{~s}^{\prime}\right) \in[\mathrm{C}] \varepsilon
$$

FUX is Under-Approximate!

$$
\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} \cdot\left(\mathrm{~s}, \mathrm{~s}^{\prime}\right) \in[\mathrm{C}] \varepsilon
$$

$$
\frac{\vdash_{\mathrm{F}[\mathrm{p}] \mathrm{C}_{1}[\mathrm{er}: \mathrm{q}]}^{\vdash_{\mathrm{F}[\mathrm{p}]} \mathrm{C}_{1} ; \mathrm{C}_{2}[\mathrm{er}: \mathrm{q}]}}{\text { rem }}
$$

$$
\begin{aligned}
& \vdash_{\mathrm{F}[\mathrm{p}]} \mathrm{C}_{1}[\mathrm{ok}: r] \quad \vdash_{\mathrm{F}}[r] \mathrm{C}_{2}[\varepsilon: q] \\
& \vdash_{\mathrm{F}[\mathrm{p}]} \mathrm{C}_{1} ; \mathrm{C}_{2}[\varepsilon ; q]
\end{aligned}
$$

$$
\begin{aligned}
& \vdash_{\mathrm{F}}\left[\mathrm{p}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right] \quad \vdash_{\mathrm{F}}\left[\mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{2}\right] \quad \vdash_{\mathrm{F}[\mathrm{p}]} \mathrm{C}_{\mathrm{i}}[\varepsilon: \mathrm{q}] \quad \text { some } \mathrm{i} \in\{1,2\} \\
& \vdash_{\mathrm{F}}\left[\mathrm{p}_{1} \vee \mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right] \\
& \vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}_{1}+\mathrm{C}_{2}[\varepsilon: \mathrm{q}]
\end{aligned}
$$

$$
\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}^{*} \text { [ok: p] }
$$

$$
\frac{\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}^{*} ; \mathrm{C}[\varepsilon: \mathrm{q}]}{\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}^{\star}[\varepsilon: q]}
$$

FUX is Under-Approximate!

$$
\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \quad \forall \mathrm{s} \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} .\left(\mathrm{s}, \mathrm{~s}^{\prime}\right) \in[\mathrm{C}] \varepsilon
$$

$$
\frac{\vdash_{\mathrm{BF}}[\mathrm{p}] \mathrm{C}_{1}[\mathrm{er}: \mathrm{q}]}{\vdash_{\mathrm{BF}}[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\mathrm{er}: \mathrm{q}]}
$$

$$
\frac{\vdash_{\mathrm{BF}}[\mathrm{p}] \mathrm{C}_{1}[\mathrm{ok}: \mathrm{r}] \quad \vdash_{\mathrm{BF}}[\mathrm{r}] \mathrm{C}_{2}[\varepsilon ; \mathrm{q}]}{\vdash_{\mathrm{BF}}[\mathrm{p}] \mathrm{C}_{1} ; \mathrm{C}_{2}[\varepsilon ; \mathrm{q}]}
$$

$$
\begin{gathered}
\frac{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right] \vdash_{\mathrm{BF}}\left[\mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{2}\right]}{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1} \vee \mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]} \\
\frac{\vdash_{\mathrm{BF}}[\mathrm{p}] \mathrm{Ci}_{\mathrm{i}}[\varepsilon: \mathrm{q}] \quad \text { some } \mathrm{i} \in\{1,2\}}{\vdash_{\mathrm{BF}}[\mathrm{p}] \mathrm{C}_{1}+\mathrm{C}_{2}[\varepsilon ; \mathrm{q}]} \\
\\
\frac{\vdash_{\mathrm{BF}}[\mathrm{p}] \mathrm{C}^{\star}[\mathrm{Ck}: \mathrm{C}] ; \mathrm{C}[\varepsilon: \mathrm{q}]}{\vdash_{\mathrm{BF}}[\mathrm{p}] \mathrm{C}^{\star}[\varepsilon: \mathrm{q}]}
\end{gathered}
$$

FUX is Under-Approximate!

Q: What is the difference between FUX and BUX reasoning?

A: Rule of Consequence

BUX vs. FUX

(ConsB)

$$
\frac{\mathrm{p}^{\prime} \subseteq \mathrm{p}}{} \vdash_{\mathrm{B}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right]}^{\left.\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{q}\right]} \mathrm{C}[\varepsilon: \mathrm{q}](\mathrm{q})
$$

$\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: q] \quad$ iff
$\forall s \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon$

BUX vs. FUX

(ConsB)
 $\frac{\mathrm{p}^{\prime} \subseteq \mathrm{p} \quad \vdash_{\mathrm{B}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right] \mathrm{q}^{\prime} \supseteq \mathrm{q}}{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: q]}$

$\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: q] \quad$ iff
$\forall \mathrm{s} \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon$
(ConsF)

$$
\frac{\mathrm{p}^{\prime} \supseteq \mathrm{p} \quad \vdash_{\mathrm{F}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right]}{\left.\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{q}\right](\varepsilon: \mathrm{q}]}
$$

$\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: q] \quad$ iff
$\forall s \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} .\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in[\mathrm{C}] \varepsilon$

BUX vs. FUX

(ConsB)
$\frac{\mathrm{p}^{\prime} \subseteq \mathrm{p} \quad \vdash_{\mathrm{B}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right] \mathrm{q}^{\prime} \supseteq \mathrm{q}}{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: q]}$

$$
\begin{aligned}
& \vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \quad \text { iff } \\
& \quad \forall \mathrm{s} \in \mathrm{q} \cdot \exists \mathrm{~s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
\end{aligned}
$$

(ConsF)

$$
\frac{\mathrm{p}^{\prime} \supseteq \mathrm{p} \quad \vdash_{\mathrm{F}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right]}{\left.\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{q}\right](\varepsilon: \mathrm{q}]}
$$

$$
\begin{aligned}
& \vdash_{\mathrm{F}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \text { iff }} \quad \forall \mathrm{s} \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} .\left(\mathrm{s}, \mathrm{~s}^{\prime}\right) \in[\mathrm{C}] \varepsilon
\end{aligned}
$$

$$
\frac{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]}{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right]}
$$

Shrink the post
(ConsB)

$$
\frac{\mathrm{p}^{\prime} \subseteq \mathrm{p} \quad \vdash_{\mathrm{B}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right] \mathrm{q}^{\prime} \supseteq \mathrm{q}}{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}]}
$$

$\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: q]$ iff

$$
\forall s \in \mathrm{q} . \exists \mathrm{s}^{\prime} \in \mathrm{p} .\left(\mathrm{s}^{\prime}, \mathrm{s}\right) \in[\mathrm{C}] \varepsilon
$$

(ConsF)
$\frac{\mathrm{p}^{\prime} \supseteq \mathrm{p} \quad \vdash_{\mathrm{F}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right] \quad \mathrm{q}^{\prime} \subseteq \mathrm{q}}{\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: q]}$
$\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: q] \quad$ iff
$\forall s \in \mathrm{p} . \exists \mathrm{s}^{\prime} \in \mathrm{q} .\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in[\mathrm{C}] \varepsilon$
$\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}\left[\varepsilon ; \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]$
$\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right]$
Shrink the post

$$
\frac{\vdash_{F}\left[p_{1 v} p_{2}\right] C[\varepsilon: q]}{\vdash_{F}\left[p_{1}\right] C[\varepsilon: q]}
$$

Shrink the pre

BUX vs. FUX

Problem

Want to use existing UX tools (e.g. Pulse) based on BUX

How to practically reconcile BUX \& FUX?

When are Disj and ConsB used in BUX?

$$
\frac{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right] \vdash_{\mathrm{BF}}\left[\mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{2}\right]}{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1} \vee \mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]}
$$

* Disj on paper: to combine multiple triples
* ConsB on paper: to weaken pre or strengthen post

When are Disj and ConsB used in BUX?

$$
\frac{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right] \vdash_{\mathrm{BF}}\left[\mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{2}\right]}{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1} \vee \mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]}
$$

* Disj on paper: to combine multiple triples
* ConsB on paper: to weaken pre or strengthen post
* Disj in Pulse: rarely used; pre-post correspondence tracked (distinct summaries)

When are Disj and ConsB used in BUX?

$$
\frac{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right] \vdash_{\mathrm{BF}}\left[\mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{2}\right]}{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1} \vee \mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]} \quad \frac{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]}{\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right]}
$$

* Disj on paper: to combine multiple triples
* ConsB on paper: to weaken pre or strengthen post
* Disj in Pulse: rarely used; pre-post correspondence tracked (distinct summaries)
* ConsB in Pulse: mainly to drop disjuncts (i.e. forget summaries)

Indexed Disjuncts

$\mathrm{P}, \mathrm{Q} \in \mathbb{N} \rightarrow \mathscr{P}$ (States)

$$
Q \equiv \underset{i \in \operatorname{dom}(Q)}{V} q_{i}
$$

Indexed Disjuncts

$\mathrm{P}, \mathrm{Q} \in \mathbb{N} \rightarrow \mathscr{P}$ (States)
$Q \equiv \underset{i \in \operatorname{dom}(\mathrm{Q})}{\mathrm{V}} \mathrm{a}^{i}$
$\vdash_{+}[P] C[\varepsilon: Q] \quad$ iff $\quad \operatorname{dom}(P)=\operatorname{dom}(\mathrm{Q}) \wedge$
$\forall i \in \operatorname{dom}(P) . \vdash^{+}[P(i)] C[\varepsilon: Q(i)]$

Unified BUX/FUX Framework

$$
\frac{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right] \vdash_{\mathrm{BF}\left[\mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{2}\right]}^{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1} \vee \mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]}}{\text { a }}
$$

$$
\frac{\vdash_{\mathrm{BF}}\left[\mathrm{P}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{Q}_{1}\right] \vdash_{\mathrm{BF}}\left[\mathrm{P}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{Q}_{2}\right]}{\vdash_{\mathrm{BF}}\left[\mathrm{P}_{1} \uplus \mathrm{P}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{Q}_{1} \uplus \mathrm{Q}_{2}\right]}
$$

Unified BUX/FUX Framework

$$
\frac{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1}\right] \vdash_{\mathrm{BF}[}^{\left[\mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{2}\right]}}{\vdash_{\mathrm{BF}}\left[\mathrm{p}_{1} \vee \mathrm{p}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}_{1} \vee \mathrm{q}_{2}\right]}
$$

$$
\frac{\vdash_{\mathrm{BF}}\left[\mathrm{P}_{1}\right] \mathrm{C}\left[\varepsilon: \mathrm{Q}_{1}\right] \quad \vdash_{\mathrm{BF}}\left[P_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{Q}_{2}\right]}{\vdash_{\mathrm{BF}}\left[\mathrm{P}_{1} \uplus \mathrm{P}_{2}\right] \mathrm{C}\left[\varepsilon: \mathrm{Q}_{1} \uplus \mathrm{Q}_{2}\right]}
$$

(ConsB)

$$
\frac{\vdash_{\mathrm{BF}}[\mathrm{P}] \mathrm{C}[\varepsilon: \mathrm{Q}] \quad \mathrm{I} \subseteq \operatorname{dom}(\mathrm{P})}{\vdash_{\mathrm{BF}}[\mathrm{P} \downarrow \mid] \mathrm{C}[\varepsilon: \mathrm{Q} \downarrow \mid]}
$$

$$
\begin{aligned}
& \mathrm{p}^{\prime} \subseteq \mathrm{p} \quad \vdash_{\mathrm{B}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right] \quad \mathrm{q}^{\prime} \supseteq \mathrm{q} \\
& \vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon ; q] \\
& \text { (ConsF) } \\
& \frac{\mathrm{p}^{\prime} \supseteq \mathrm{p} \quad \vdash_{\mathrm{F}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right] \quad \mathrm{q}^{\prime} \subseteq \mathrm{q}}{\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon ; \mathrm{q}]}
\end{aligned}
$$

Unified BUX/FUX Framework

Can use Pulse as is!

Extend Pulse w. divergence rules

Relating BUX and FUX

Theorem 1.

$\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \wedge \operatorname{minpre}(\mathrm{p}, \mathrm{C}, \mathrm{q}) \Rightarrow \vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: q]$

Relating BUX and FUX

Theorem 1.

$\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon ; \mathrm{q}] \wedge \operatorname{minpre}(\mathrm{p}, \mathrm{C}, \mathrm{q}) \Rightarrow \vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon ; \mathrm{q}]$ where minpre($\mathrm{p}, \mathrm{C}, \mathrm{q}$) iff $\forall \mathrm{p}^{\prime} . \vdash_{\mathrm{B}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}[\varepsilon: q] \Rightarrow \mathrm{p}^{\prime} \not \subset \mathrm{p}$

Relating BUX and FUX

Theorem 1.

$\vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: q] \wedge$ minpre $(\mathrm{p}, \mathrm{C}, \mathrm{q}) \Rightarrow \vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: q]$ where minpre($\mathrm{p}, \mathrm{C}, \mathrm{q}$) iff $\forall \mathrm{p}^{\prime} . \vdash_{\mathrm{B}}\left[\mathrm{p}^{\prime}\right] \mathrm{C}[\varepsilon: q] \Rightarrow \mathrm{p}^{\prime} \not \subset \mathrm{p}$

Theorem 2.

$\vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}] \wedge \operatorname{minpost}(\mathrm{p}, \mathrm{C}, \mathrm{q}) \Rightarrow \vdash_{\mathrm{B}}[\mathrm{p}] \mathrm{C}[\varepsilon: \mathrm{q}]$ where minpost $(\mathrm{p}, \mathrm{C}, \mathrm{q})$ iff $\forall \mathrm{q}^{\prime} . \vdash_{\mathrm{F}}[\mathrm{p}] \mathrm{C}\left[\varepsilon: \mathrm{q}^{\prime}\right] \Rightarrow \mathrm{q}^{\prime} \not \subset \mathrm{q}$

The soundness of bugs is what matters!

The goal is to find bugs!
"Most program analysis \& verification research seems confused about the ultimate goal of software defect detection. The main practical usefulness of such techniques is the ability to find bugs, not to report that no bugs have been found."

$$
\text { Patrice Godefroid, } 2005
$$

The soundness of bugs is what matters!

The goal is to find bugs!
"Most program analysis \& verification research seems confused about the ultimate goal of software defect detection. The main practical usefulness of such techniques is the ability to find bugs, not to report that no bugs have been found."

Patrice Godefroid, 2005

Thank You for Listening!

