
Under-Approximation for Scalable Bug Detection

Azalea Raad

azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

Imperial College London

Iris Workshop
23 May 2023

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

❖ Lots of work on reasoning for proving correctness

State of the Art: Correctness

➡ Compositionality

in resources accessed ⇒ spatial locality
in code ⇒ reasoning about incomplete components

➡ Scalability to large teams and codebases

➡ Prove the absence of bugs
➡ Over-approximate reasoning

2

{p} C {q} iff

For all states s in p
 if running C on s terminates in s’, then s’ is in q

post(C)p ⊆ qHoare triples

Hoare Logic (HL)

3

{p} C {q} iff post(C)p ⊆ qHoare triples

Hoare Logic (HL)

q over-approximates post(C)p

3

{p} C {q} iff post(C)p ⊆ qHoare triples

Hoare Logic (HL)

q over-approximates post(C)p

post(C)p

q
false positive

true positive

3

“Don’t spam the developers!”

4

“Don’t spam the developers!”

4

Incorrectness Logic:
A Formal Foundation

for
Bug Catching

Part I.
Incorrectness Logic (IL)

&
Incorrectness Separation Logic (ISL)

{p} C {q} iff

For all states s in p
 if running C on s terminates in s’, then s’ is in q

post(C)p ⊆ qHoare triples

Incorrectness Logic (IL)

6

{p} C {q} iff

For all states s in p
 if running C on s terminates in s’, then s’ is in q

post(C)p ⊆ qHoare triples

[p] C [q] iffIncorrectness
triples

For all states s in q
 s can be reached by running C on some s’ in p

post(C)p q⊇

Incorrectness Logic (IL)

6

{p} C {q} iff post(C)p ⊆ qHoare triples
q over-approximates post(C)p

post(C)p

q
false positive

true positive

⊇[p] C [q] iffIncorrectness
triples

post(C)p q
q under-approximates post(C)p

Incorrectness Logic (IL)

7

{p} C {q} iff post(C)p ⊆ qHoare triples
q over-approximates post(C)p

post(C)p

q
false positive

true positive

⊇[p] C [q] iffIncorrectness
triples

post(C)p q
q under-approximates post(C)p

q

post(C)p

false negative
true positive

Incorrectness Logic (IL)

7

[p] C [!: q]
!: exit condition
 ok: normal execution
 er : erroneous execution

[y=v] x:=y [ok: x=y=v] [p] error() [er: p]

Incorrectness Logic (IL)

8

[p] C [!: q] iff post(C, !)p ⊇ q

Incorrectness Logic (IL)

9

[p] C [!: q] iff post(C, !)p ⊇ q

Incorrectness Logic (IL)

9

Equivalent Definition (reachability)

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]! B

B

IL Proof Rules and Principles (Sequencing)

[p] C1; C2 [er: q]
[p] C1 [er: q]

❖ Short-circuiting semantics for errors

10

IL Proof Rules and Principles (Sequencing)

[p] C1; C2 [er: q]
[p] C1 [er: q]

❖ Short-circuiting semantics for errors

[p] C1; C2 [!: q]
[p] C1 [ok: r] [r] C2 [!: q]

10

IL Proof Rules and Principles (Branches)

[p] C1 + C2 [!: q]
[p] Ci [!: q] some i ∊{1, 2}

❖ Drop paths/branches (this is a sound under-approximation)
❖ Scalable bug detection!

11

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

IL Proof Rules and Principles (Loops)

❖ Bounded unrolling of loops (this is a sound under-approximation)
❖ Scalable bug detection!

[p] C* [ok: p]
(Unroll-Zero)

[p] C* [!: q]
[p] C*; C [!: q]

(Unroll-Many)

12

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

IL Proof Rules and Principles (Loops continued)

❖ Loop invariants are inherently over-approximate
❖ Reason about loops under-approximately via sub-variants

[p(0)] C* [ok: p(k)]
∀n∊ℕ. [p(n)] C [ok: p(n+1)] k∊ℕ

(Backwards-Variant)

13

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

❖ Shrink the post (e.g. drop disjuncts)
❖ Scalable bug detection!

(Cons)[p] C [!: q]
[p’] C [!: q’]p’⊆p q’⊇q

14

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

IL Proof Rules and Principles (Consequence)

❖ Shrink the post (e.g. drop disjuncts)
❖ Scalable bug detection!

(Cons)[p] C [!: q]
[p’] C [!: q’]p’⊆p q’⊇q

14

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[p] C [!: q1]
[p] C [!: q1 ∨ q2]

IL Proof Rules and Principles (Consequence)

❖ Shrink the post (e.g. drop disjuncts)
❖ Scalable bug detection!

(Cons)[p] C [!: q]
[p’] C [!: q’]p’⊆p q’⊇q

(HL-Cons)
{p} C {q}
{p’} C {q’}p’⊇p q’⊆q

14

[p] C [!: q] iff ∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

[p] C [!: q1]
[p] C [!: q1 ∨ q2]

IL Proof Rules and Principles (Consequence)

+ Under-approximate analogue of Hoare Logic

Incorrectness Logic: Summary

+ Formal foundation for bug catching

— Global reasoning: non-compositional (as in original Hoare Logic)

— Cannot target memory safety bugs (e.g. use-after-free)

15

+ Under-approximate analogue of Hoare Logic

Incorrectness Logic: Summary

+ Formal foundation for bug catching

— Global reasoning: non-compositional (as in original Hoare Logic)

— Cannot target memory safety bugs (e.g. use-after-free)Solution

Incorrectness Separation Logic

15

Incorrectness Separation Logic (ISL)

[p] C [!: q]

IL

{p牎r} C {q牎r}
{p} C {q}

x ↦ - 牎�x ↦ - ⇔ false
x ↦ v 牎�HPS�⇔ x ↦ v

SL

[p牎r] C [!: q牎r]
[p] C [!: q] x ↦ v 牎�x ↦ v’ ⇔ false

x ↦ v 牎�HPS�⇔ x ↦ v

ISL

16

ISL: Local Axioms
[x ↦ v] free(x) [ok: x] [x=null] free(x) [er: x=null]↦
FREE

double-free error

[x] free(x) [er: x]↦ ↦

17

null-pointer-dereference error

ISL: Local Axioms
[x ↦ v] free(x) [ok: x] [x=null] free(x) [er: x=null]↦
FREE

double-free error

[x] free(x) [er: x]↦ ↦

[x ↦ v’] [x]:= v [ok: x ↦ v] [x=null] [x]:= v [er: x=null]
[x] [x]:= v [er: x]↦ ↦WRITE

17

null-pointer-dereference error

ISL: Local Axioms
[x ↦ v] free(x) [ok: x] [x=null] free(x) [er: x=null]↦
FREE

double-free error

[x] free(x) [er: x]↦ ↦

[x ↦ v’] [x]:= v [ok: x ↦ v] [x=null] [x]:= v [er: x=null]
[x] [x]:= v [er: x]↦ ↦WRITE

[x ↦ v] y:= [x] [ok: x ↦ v∧y=v] [x=null] y:= [x] [er: x=null]
[x] y:= [x] [er: x]↦ ↦READ

17

null-pointer-dereference error

ISL: Local Axioms
[x ↦ v] free(x) [ok: x] [x=null] free(x) [er: x=null]↦
FREE

double-free error

[x] free(x) [er: x]↦ ↦

[x ↦ v’] [x]:= v [ok: x ↦ v] [x=null] [x]:= v [er: x=null]
[x] [x]:= v [er: x]↦ ↦WRITE

[x ↦ v] y:= [x] [ok: x ↦ v∧y=v] [x=null] y:= [x] [er: x=null]
[x] y:= [x] [er: x]↦ ↦READ

[emp] x:= alloc() [ok:∃l. l ↦ v ∧ x=l]
ALLOC

17

null-pointer-dereference error

ISL Summary
❖ Incorrectness Separation Logic (ISL)
➡ IL + SL for compositional bug catching
➡ Under-approximate analogue of SL
➡ Targets memory safety bugs (e.g. use-after-free)

❖ Combining IL+SL: not straightforward
➡ invalid frame rule!

❖ Fix: a monotonic model for frame preservation
❖ Recovering the footprint property for completeness
❖ ISL-based analysis
➡ No-false-positives theorem:

 All bugs found are true bugs

18

Part II.
Pulse-X: ISL for Scalable Bug Detection

Pulse-X at a Glance
❖ Automated program analysis for memory safety errors (NPEs, UAFs) and leaks
❖ Underpinned by ISL (under-approximate) — no false positives*
❖ Inter-procedural and bi-abductive — under-approximate analogue of Infer
❖ Compositional (begin-anywhere analysis) — important for CI
❖ Deployed at Meta
❖ Performance: comparable to Infer, though merely an academic tool!
❖ Fix rate: comparable or better than Infer!
❖ Three dimensional scalability

20

➡ code size (large codebases)
➡ people (large teams, CI)
➡ speed (high frequency of code changes)

Compositional, Begin-Anywhere Analysis

21

❖Analysis result of a program = analysis results of its parts
+

a method of combining them

Compositional, Begin-Anywhere Analysis

21

❖Analysis result of a program = analysis results of its parts
+

a method of combining them

➡ Parts: Procedures

Compositional, Begin-Anywhere Analysis

21

❖Analysis result of a program = analysis results of its parts
+

a method of combining them

➡ Parts: Procedures

➡ Method: under-approximate bi-abduction

Compositional, Begin-Anywhere Analysis

21

❖Analysis result of a program = analysis results of its parts
+

a method of combining them

➡ Parts: Procedures

➡ Method: under-approximate bi-abduction

➡ Analysis result: incorrectness triples (under-approximate specs)

Pulse-X Algorithm: Proof Search in ISL
❖ Analyse each procedure f in isolation, find its summary (collection of ISL triples)

➡ A summary table T, initially populated only with local (pre-defined) axioms
➡ Use bi-abduction and T to find the summary of f
➡ Recursion: bounded unrolling
➡ Extend T with the summary of f

❖ Similar bi-abductive mechanism to Infer, but:
➡ Can soundly drop execution paths/branches
➡ Can soundly bound loop unrolling

22

Pulse-X: Null Pointer Dereference in OpenSSL

23

calls CRYPTO_malloc (a malloc wrapper)

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

23

calls CRYPTO_malloc (a malloc wrapper)
null pointer

dereference CRYPTO_malloc may return null!

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

23

calls CRYPTO_malloc (a malloc wrapper)
null pointer

dereference CRYPTO_malloc may return null!

[emp] *exc= app_malloc(sz, …) [ok: exc = null]

[exc = null] memset(exc,-,-) [er: exc = null]
+☞

[emp] ssl_excert_prepend(…) [er: exc = null]

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

24

Pulse-X: Null Pointer Dereference in OpenSSL

24

Created pull request #15836 to commit the fix.

Pulse-X: Bug Reporting

No False Positives: Report All Bugs Found?

Not quite…

25

Pulse-X: Bug Reporting

1.void foo(int *x){
2. *x = 42;
}

[x=null] *x = v [er: x=null]WRITE

[x=null] foo(x) [er: x=null]

☞
Should we report this NPD?

26

Pulse-X: Bug Reporting

1.void foo(int *x){
2. *x = 42;
}

[x=null] *x = v [er: x=null]WRITE

[x=null] foo(x) [er: x=null]

☞
Should we report this NPD?

yes no

Developer Pulse-X

“But I never call foo with null!” “Which bugs shall I report then?”
26

Pulse-X: Bug Reporting

1.void foo(int *x){
2. *x = 42;
}

[x=null] *x = v [er: x=null]WRITE

[x=null] foo(x) [er: x=null]

☞
Should we report this NPD?

yes no

Developer Pulse-X

“But I never call foo with null!” “Which bugs shall I report then?”
26

Problem
Must consider the whole program

to decide whether to report

Solution
Manifest Errors

Pulse-X: Manifest Errors

27

∀ s. ∃ s’. (s,s’) ∈ [C]er ∧ s’ ∈ (q * true)

❖ Intuitively: the error occurs for all input states
❖ Formally: [p] C [er: q] is manifest iff:

❖ Algorithmically: …

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

28

calls CRYPTO_malloc (a malloc wrapper)
null pointer

dereference CRYPTO_malloc may return null!

[emp] ssl_excert_prepend(…) [er: exc = null]

1.int ssl_excert_prepend(...){

2. SSL_EXCERT *exc= app_malloc(sizeof(*exc), "prepend cert”);

3. memset(exc, 0, sizeof(*exc));

 …
}

Pulse-X: Null Pointer Dereference in OpenSSL

28

calls CRYPTO_malloc (a malloc wrapper)
null pointer

dereference CRYPTO_malloc may return null!

[emp] ssl_excert_prepend(…) [er: exc = null]

Manifest Error (all calls to ssl_excert_prepend can trigger the error)!

Pulse-X: Latent Errors

29

An error triple [p] C [er: q] is latent iff it is not manifest

1.int chopup_args(ARGS *args,…){
 …
2. if (args->count == 0) {
3. args->count=20;
4. args->data= (char**)ssl_excert_prepend(…);
5. }
5. for (i=0; i<args->count; i++) {
6. args->data[i]=NULL;
 …
 }

Pulse-X: Latent Error

30

1.int chopup_args(ARGS *args,…){
 …
2. if (args->count == 0) {
3. args->count=20;
4. args->data= (char**)ssl_excert_prepend(…);
5. }
5. for (i=0; i<args->count; i++) {
6. args->data[i]=NULL;
 …
 }

Pulse-X: Latent Error

30

null pointer

dereference

1.int chopup_args(ARGS *args,…){
 …
2. if (args->count == 0) {
3. args->count=20;
4. args->data= (char**)ssl_excert_prepend(…);
5. }
5. for (i=0; i<args->count; i++) {
6. args->data[i]=NULL;
 …
 }

Pulse-X: Latent Error

30

Latent Error:

only calls with args->count == 0 can trigger the error

null pointer

dereference

Pulse-X: Memory Leak in OpenSSL

31

static int www_body(…){
 ...
 io = BIO_new(BIO_f_buffer());
 ssl_bio BIO_new(BIO_f_ssl());
 ...
 BIO_push(io, ssl_bio);
 ...
 BIO_free_all(io);
 ...
 return ret;
}

Pulse-X: Memory Leak in OpenSSL

31

static int www_body(…){
 ...
 io = BIO_new(BIO_f_buffer());
 ssl_bio BIO_new(BIO_f_ssl());
 ...
 BIO_push(io, ssl_bio);
 ...
 BIO_free_all(io);
 ...
 return ret;
}

does nothing when io is null

Pulse-X: Memory Leak in OpenSSL

31

static int www_body(…){
 ...
 io = BIO_new(BIO_f_buffer());
 ssl_bio BIO_new(BIO_f_ssl());
 ...
 BIO_push(io, ssl_bio);
 ...
 BIO_free_all(io);
 ...
 return ret;
}

does nothing when io is null

leaks ssl_bio

Pulse-X: Memory Leak in OpenSSL

31

static int www_body(…){
 ...
 io = BIO_new(BIO_f_buffer());
 ssl_bio BIO_new(BIO_f_ssl());
 ...
 BIO_push(io, ssl_bio);
 ...
 BIO_free_all(io);
 ...
 return ret;
}

426 lines of complex code:
io manipulated by several procedures

and multiple loops

Pulse-X performs under-approximation
with bounded loop unrolling

does nothing when io is null

leaks ssl_bio

No-False Positives: Caveat

32

❖ Unknown procedures (e.g. where the code is unavailable) are treated as skip
❖ Incomplete arithmetic solver

Speed

(fast but simplistic)

Precision

(slow but accurate)vs

“Scientists seek perfection and are
idealists. ... An engineer’s task is to not be
idealistic. You need to be realistic as you have
to compromise between conflicting interests.”

Pulse-X Summary

➡ Automated program analysis for detecting memory safety errors and leaks
➡ Manifest errors (underpinned by ISL): no false positives*
➡ compositional, scalable, begin-anywhere

Part III.

ISL Extensions:
Concurrent Incorrectness Separation Logic (CISL)

&
Concurrent Adversarial Separation Logic (CASL)

&
Incorrectness Non-Termination Logic (INTL)

Termination vs Non-Termination

❖ Showing termination is compatible with correctness frameworks:

➡ Every trace of a given program must terminate
➡ Inherently over-approximate

skip + x:=1

35

Termination vs Non-Termination

❖ Showing termination is compatible with correctness frameworks:

➡ Every trace of a given program must terminate
➡ Inherently over-approximate

skip + x:=1

❖ Showing non-termination compatible with incorrectness frameworks:

➡ Some trace of a given program must not-terminate
➡ Inherently under-approximate

35

skip + while(true) skip

Incorrectness Non-Termination Logic (INTL)

❖ A framework for detecting non-termination bugs
❖ Supports unstructured constructs (goto), as well exceptions and breaks
❖ Reasons for non-termination:

➡ Infinite loops
➡ Infinite recursion
➡ Cyclic goto soups

36

INTL Divergence Proof Rules

37

[p] C [∞]

C has divergent traces starting from p

INTL Divergence Proof Rules

37

[p] C [∞]

C has divergent traces starting from p

p s s1 s2
…

INTL Divergence Proof Rules (Sequencing)

[p] C1; C2 [∞]
[p] C1 [∞]

38

INTL Proof Rules and Principles

39

INTL Proof Rules
=

(Under-Approximate) IL/ISL Proof Rules
+

Divergence (Non-Termination) Rules

INTL Divergence Proof Rules (Sequencing)

[p] C1; C2 [∞]
[p] C1 [∞]

[p] C1; C2 [∞]
B [p] C1 [ok: q] [q] C2 [∞]

40

INTL Divergence Proof Rules (Branches)

[p] C1 + C2 [∞]
[p] Ci [∞] some i ∊{1, 2}

❖ Drop paths/branches (this is a sound under-approximation)
❖ Scalable bug detection!

41

INTL Divergence Proof Rules (Loops — first attempt)

42

[p] C* [∞]
[q] C; C* [∞]

INTL Divergence Proof Rules (Loops — first attempt)

42

[p] C* [∞]
[q] C; C* [∞]

[p] C1; C2 [∞]
[p] C1 [∞]

INTL Divergence Proof Rules (Loops — first attempt)

42

[p] C* [∞]
[q] C; C* [∞]

[p] C* [∞]
[p] C [∞]

(derived)

[p] C1; C2 [∞]
[p] C1 [∞]

INTL Divergence Proof Rules (Loops — first attempt)

42

[p] C* [∞]
[q] C; C* [∞]

[p] C* [∞]
[p] C [∞]

(derived)

[p] C* [∞]
B [p] C [ok: p]

INTL Divergence Proof Rules (Loops — first attempt)

42

[p] C* [∞]
[q] C; C* [∞]

[p] C* [∞]
[p] C [∞]

(derived)

[p] C* [∞]
B [p] C [ok: p]

INTL Divergence Proof Rules (While Loops — first attempt)

43while (b) C � (assume(b); C)*; assume(!b)

[p ∧ b] while(b) C [∞]

INTL Divergence Proof Rules (While Loops — first attempt)

43while (b) C � (assume(b); C)*; assume(!b)

[p ∧ b] while(b) C [∞]
[p ∧ b] (assume(b); C)*; assume(!b) [∞]

INTL Divergence Proof Rules (While Loops — first attempt)

43while (b) C � (assume(b); C)*; assume(!b)

[p] C1; C2 [∞]
[p] C1 [∞]

[p ∧ b] while(b) C [∞]
[p ∧ b] (assume(b); C)*; assume(!b) [∞]

INTL Divergence Proof Rules (While Loops — first attempt)

43while (b) C � (assume(b); C)*; assume(!b)

[p ∧ b] (assume(b); C)*;[∞]
[p] C1; C2 [∞]

[p] C1 [∞]

[p ∧ b] while(b) C [∞]
[p ∧ b] (assume(b); C)*; assume(!b) [∞]

INTL Divergence Proof Rules (While Loops — first attempt)

43

[p] C* [∞]
B [p] C [ok: p]

while (b) C � (assume(b); C)*; assume(!b)

[p ∧ b] (assume(b); C)*;[∞]

[p ∧ b] while(b) C [∞]
[p ∧ b] (assume(b); C)*; assume(!b) [∞]

INTL Divergence Proof Rules (While Loops — first attempt)

43

[p] C* [∞]
B [p] C [ok: p]

while (b) C � (assume(b); C)*; assume(!b)

[p ∧ b] (assume(b); C)*;[∞]
B [p ∧ b] assume(b); C [ok: p ∧ b]

[p ∧ b] while(b) C [∞]
[p ∧ b] (assume(b); C)*; assume(!b) [∞]

INTL Divergence Proof Rules (While Loops — first attempt)

43while (b) C � (assume(b); C)*; assume(!b)

B [p ∧ b]
assume(b)
[ok: p ∧ b]

[p ∧ b] (assume(b); C)*;[∞]

[p] C1; C2 [!: q]

B [p] C1 [ok: r]
B [r] C2 [!: q]

B [p ∧ b] assume(b); C [ok: p ∧ b]

[p ∧ b] while(b) C [∞]
[p ∧ b] (assume(b); C)*; assume(!b) [∞]

INTL Divergence Proof Rules (While Loops — first attempt)

43while (b) C � (assume(b); C)*; assume(!b)

B [p ∧ b]
assume(b)
[ok: p ∧ b]

[p ∧ b] (assume(b); C)*;[∞]

[p] C1; C2 [!: q]

B [p] C1 [ok: r]
B [r] C2 [!: q]

B [p ∧ b] assume(b); C [ok: p ∧ b]

[p ∧ b] while(b) C [∞]

B [p ∧ b] C [ok: p ∧ b]

[p ∧ b] (assume(b); C)*; assume(!b) [∞]

INTL Divergence Proof Rules (While Loops — first attempt)

43while (b) C � (assume(b); C)*; assume(!b)

[p ∧ b] while(b) C [∞]
B [p ∧ b] C [ok: p ∧ b]

INTL Divergence Proof Rules (While Loops — first attempt)

43while (b) C � (assume(b); C)*; assume(!b)

[p ∧ b] while(b) C [∞]
B [p ∧ b] C [ok: p ∧ b]

[p] while(b) C [∞]
B [p ∧ b] C [ok: p ∧ b]

44

INTL Divergence Proof Rules (Loops — first attempt)

while(x > 0) x--Program always terminates. But…

[p] while(b) C [∞]
B [p ∧ b] C [ok: p ∧ b]

44

INTL Divergence Proof Rules (Loops — first attempt)

[x > 0] while(x > 0) x-- [∞]

while(x > 0) x--Program always terminates. But…

[p] while(b) C [∞]
B [p ∧ b] C [ok: p ∧ b]

44

INTL Divergence Proof Rules (Loops — first attempt)

[x > 0] while(x > 0) x-- [∞]
B [x > 0] x-- [ok: x > 0]

while(x > 0) x--Program always terminates. But…

[p] while(b) C [∞]
B [p ∧ b] C [ok: p ∧ b]

44

INTL Divergence Proof Rules (Loops — first attempt)

[x > 0] while(x > 0) x-- [∞]

[p] C [!: q]
iff

∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

B

B [x > 0] x-- [ok: x > 0]

while(x > 0) x--Program always terminates. But…

45

Problem

❖ Premise: p reached by executing C on some p
❖ I.e. in the backward direction
❖ Can construct a backward infinite trace

[p] C* [∞]
B [p] C [ok: p]

45

Problem

❖ Premise: p reached by executing C on some p
❖ I.e. in the backward direction
❖ Can construct a backward infinite trace
❖ We need a forward infinite trace [p] C* [∞]

B [p] C [ok: p]

p s s1 s2
…

45

Problem

❖ Premise: p reached by executing C on some p
❖ I.e. in the backward direction
❖ Can construct a backward infinite trace
❖ We need a forward infinite trace [p] C* [∞]

B [p] C [ok: p]

p s s1 s2
…

Solution

Forward Under-Approximate Triples

46

Forward Under-Approximate (FUX) Triples

[p] C [!: q] iff ∀ s ∈ p. ∃ s’ ∈ q. (s,s’) ∈ [C]! F

46

Forward Under-Approximate (FUX) Triples

[p] C [!: q] iff ∀ s ∈ p. ∃ s’ ∈ q. (s,s’) ∈ [C]! F

[p] C* [∞]
F [p] C [ok: p]

46

Forward Under-Approximate (FUX) Triples

p s s1 s2
…

[p] C [!: q] iff ∀ s ∈ p. ∃ s’ ∈ q. (s,s’) ∈ [C]! F

[p] C* [∞]
F [p] C [ok: p]

47

FUX is Under-Approximate!

[p] C [!: q] iff ∀ s ∈ p. ∃ s’ ∈ q. (s,s’) ∈ [C]! F

47

FUX is Under-Approximate!

[p] C [!: q] iff ∀ s ∈ p. ∃ s’ ∈ q. (s,s’) ∈ [C]! F

F [p] C1; C2 [er: q]
F [p] C1 [er: q]

F [p] C1; C2 [!: q]
F [p] C1 [ok: r] F [r] C2 [!: q]

F [p] C1 + C2 [!: q]
F [p] Ci [!: q] some i ∊{1, 2}

F [p] C* [ok: p] F [p] C* [!: q]
F [p] C*; C [!: q]

F [p1 ∨ p2] C [!: q1 ∨ q2]
F [p1] C [!: q1] F [p2] C [!: q2]

47

FUX is Under-Approximate!

[p] C [!: q] iff ∀ s ∈ p. ∃ s’ ∈ q. (s,s’) ∈ [C]! F

BF [p] C1; C2 [er: q]
BF [p] C1 [er: q]

BF [p] C1; C2 [!: q]
BF [p] C1 [ok: r] BF [r] C2 [!: q]

BF [p1 ∨ p2] C [!: q1 ∨ q2]
BF [p1] C [!: q1] BF [p2] C [!: q2]

BF [p] C1 + C2 [!: q]
BF [p] Ci [!: q] some i ∊{1, 2}

BF [p] C* [ok: p] BF [p] C* [!: q]
BF [p] C*; C [!: q]

47

FUX is Under-Approximate!

[p] C [!: q] iff ∀ s ∈ p. ∃ s’ ∈ q. (s,s’) ∈ [C]! F

BF [p] C1; C2 [er: q]
BF [p] C1 [er: q]

BF [p] C1; C2 [!: q]
BF [p] C1 [ok: r] BF [r] C2 [!: q]

BF [p1 ∨ p2] C [!: q1 ∨ q2]
BF [p1] C [!: q1] BF [p2] C [!: q2]

BF [p] C1 + C2 [!: q]
BF [p] Ci [!: q] some i ∊{1, 2}

BF [p] C* [ok: p] BF [p] C* [!: q]
BF [p] C*; C [!: q]

Q: What is the difference between

FUX and BUX reasoning?

A: Rule of Consequence

(ConsB)

B [p] C [!: q]
B [p’] C [!: q’]p’⊆p q’⊇q

48

B [p] C [!: q] iff

∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

BUX vs. FUX

(ConsB)

B [p] C [!: q]
B [p’] C [!: q’]p’⊆p q’⊇q

48

B [p] C [!: q] iff

∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

BUX vs. FUX
(ConsF)

F [p] C [!: q]
F [p’] C [!: q’]p’⊇p q’⊆q

F [p] C [!: q] iff

∀ s ∈ p. ∃ s’ ∈ q. (s,s') ∈ [C]!

(ConsB)

B [p] C [!: q]
B [p’] C [!: q’]p’⊆p q’⊇q

48

B [p] C [!: q] iff

∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

BUX vs. FUX
(ConsF)

F [p] C [!: q]
F [p’] C [!: q’]p’⊇p q’⊆q

F [p] C [!: q] iff

∀ s ∈ p. ∃ s’ ∈ q. (s,s') ∈ [C]!

B [p] C [!: q1]
B [p] C [!: q1 ∨ q2]

Shrink the post

(ConsB)

B [p] C [!: q]
B [p’] C [!: q’]p’⊆p q’⊇q

48

B [p] C [!: q] iff

∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

BUX vs. FUX
(ConsF)

F [p] C [!: q]
F [p’] C [!: q’]p’⊇p q’⊆q

F [p] C [!: q] iff

∀ s ∈ p. ∃ s’ ∈ q. (s,s') ∈ [C]!

B [p] C [!: q1]
B [p] C [!: q1 ∨ q2]

Shrink the post

F [p1] C [!: q]
F [p1∨ p2] C [!: q]

Shrink the pre

(ConsB)

B [p] C [!: q]
B [p’] C [!: q’]p’⊆p q’⊇q

48

B [p] C [!: q] iff

∀ s ∈ q. ∃ s’ ∈ p. (s’,s) ∈ [C]!

BUX vs. FUX
(ConsF)

F [p] C [!: q]
F [p’] C [!: q’]p’⊇p q’⊆q

F [p] C [!: q] iff

∀ s ∈ p. ∃ s’ ∈ q. (s,s') ∈ [C]!

B [p] C [!: q1]
B [p] C [!: q1 ∨ q2]

Shrink the post

F [p1] C [!: q]
F [p1∨ p2] C [!: q]

Shrink the pre

Problem

Want to use existing UX tools (e.g. Pulse)
based on BUX

How to practically reconcile BUX & FUX?

49

When are Disj and ConsB used in BUX?

BF [p1 ∨ p2] C [!: q1 ∨ q2]
BF [p1] C [!: q1] BF [p2] C [!: q2]

❖ Disj on paper: to combine multiple triples
❖ ConsB on paper: to weaken pre or strengthen post

49

When are Disj and ConsB used in BUX?

BF [p1 ∨ p2] C [!: q1 ∨ q2]
BF [p1] C [!: q1] BF [p2] C [!: q2]

❖ Disj on paper: to combine multiple triples
❖ ConsB on paper: to weaken pre or strengthen post
❖ Disj in Pulse: rarely used; pre-post correspondence tracked (distinct summaries)

49

When are Disj and ConsB used in BUX?

BF [p1 ∨ p2] C [!: q1 ∨ q2]
BF [p1] C [!: q1] BF [p2] C [!: q2]

❖ Disj on paper: to combine multiple triples
❖ ConsB on paper: to weaken pre or strengthen post
❖ Disj in Pulse: rarely used; pre-post correspondence tracked (distinct summaries)
❖ ConsB in Pulse: mainly to drop disjuncts (i.e. forget summaries)

B [p] C [!: q1]
B [p] C [!: q1 ∨ q2]

50

Indexed Disjuncts

P, Q ∈ ℕ → P (States) Q � ∨
i ∈ dom(Q)

qi

50

Indexed Disjuncts

P, Q ∈ ℕ → P (States) Q � ∨
i ∈ dom(Q)

qi

† [P] C [!: Q] iff���dom(P) = dom(Q) ∧
 ∀ i ∈ dom(P). † [P(i)] C [!: Q(i)]

51

Unified BUX/FUX Framework

BF [p1 ∨ p2] C [!: q1 ∨ q2]
BF [p1] C [!: q1] BF [p2] C [!: q2]

BF [P1 ⨄ P2] C [!: Q1 ⨄ Q2]
BF [P1] C [!: Q1] BF [P2] C [!: Q2]⟿

51

Unified BUX/FUX Framework

BF [p1 ∨ p2] C [!: q1 ∨ q2]
BF [p1] C [!: q1] BF [p2] C [!: q2]

(ConsB)

B [p] C [!: q]
B [p’] C [!: q’]p’⊆p q’⊇q

(ConsF)

F [p] C [!: q]
F [p’] C [!: q’]p’⊇p q’⊆q

BF [P1 ⨄ P2] C [!: Q1 ⨄ Q2]
BF [P1] C [!: Q1] BF [P2] C [!: Q2]⟿

⟿
BF [P ↓ I] C [!: Q ↓ I]

BF [P] C [!: Q] I ⊆ dom(P)

51

Unified BUX/FUX Framework

BF [p1 ∨ p2] C [!: q1 ∨ q2]
BF [p1] C [!: q1] BF [p2] C [!: q2]

(ConsB)

B [p] C [!: q]
B [p’] C [!: q’]p’⊆p q’⊇q

(ConsF)

F [p] C [!: q]
F [p’] C [!: q’]p’⊇p q’⊆q

BF [P1 ⨄ P2] C [!: Q1 ⨄ Q2]
BF [P1] C [!: Q1] BF [P2] C [!: Q2]⟿

⟿
BF [P ↓ I] C [!: Q ↓ I]

BF [P] C [!: Q] I ⊆ dom(P)

Can use Pulse as is!
☞ Extend Pulse w. divergence rules

52

Relating BUX and FUX

B [p] C [!: q] ∧ minpre(p, C, q) ⇒ F [p] C [!: q]

Theorem 1.

52

Relating BUX and FUX

B [p] C [!: q] ∧ minpre(p, C, q) ⇒ F [p] C [!: q]

where minpre(p, C, q) iff �∀p’. B [p’] C [!: q] ⇒ p’ ⊄ p

Theorem 1.

52

Relating BUX and FUX

B [p] C [!: q] ∧ minpre(p, C, q) ⇒ F [p] C [!: q]

where minpre(p, C, q) iff �∀p’. B [p’] C [!: q] ⇒ p’ ⊄ p

Theorem 1.

F [p] C [!: q] ∧ minpost(p, C, q) ⇒ B [p] C [!: q]

where minpost(p, C, q) iff �∀q’. F [p] C [!: q’] ⇒ q’ ⊄ q

Theorem 2.

The goal is to find bugs!
“Most program analysis & verification
research seems confused about the ultimate
goal of software defect detection. The main
practical usefulness of such techniques is the
ability to find bugs, not to report that no
bugs have been found.”

Patrice Godefroid, 2005

The soundness of bugs is what matters!

53

The goal is to find bugs!
“Most program analysis & verification
research seems confused about the ultimate
goal of software defect detection. The main
practical usefulness of such techniques is the
ability to find bugs, not to report that no
bugs have been found.”

Patrice Godefroid, 2005

The soundness of bugs is what matters!

53

Thank You for Listening!
azalea@imperial.ac.uk @azalearaadSoundAndComplete.org

http://www.SoundAndComplete.org
http://www.SoundAndComplete.org

