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Abstract. Non-interference ensures no unauthorized data leaks during
system execution. Verifying security policies is complex, requiring analy-
sis of multiple execution paths. Hyperproperties provide a framework to
describe security policies like non-interference. However, existing meth-
ods like HyperLTL are limited to finite-state models. This paper intro-
duces a case study illustrating the use of HyperFOLTL, designed for
infinite-state systems, and presents a formal approach to verify security
policies in such systems.
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1 Introduction

Distributed systems are crucial in modern computing, where security is vital for
data integrity and privacy. Mechanisms such as non-interference and confidential-
ity policies are key defenses against potential threats. To ensure system correct-
ness and security, formal methods are often used. While safety and liveness can
be expressed using temporal logics like LTL [25], security policies require compar-
ing multiple executions, leading to the introduction of HyperLTL for specifying
hyperproperties. However, the complexity of distributed systems, with their dy-
namic interactions, necessitates more expressive logics. HyperFOLTL extends
HyperLTL [6] with First-Order (FO) quantifiers, enabling the specification of
hyperproperties in infinite-state systems.

In this paper, we propose to use HyperFOLTL logic as a potential solution for
expressing security policies and a formal definition of security policy satisfiability
problem, defined in terms of HyperFOLTL formulas. The paper is organized as
follows. Section II introduces a case stydy, the leader election protocol. Section
III outlines temporal logics for expressing hyperproperties. Section IV details our
approach. We will study the formal proof of security property’s satisfiability (i.e.,
non-interference). The proof is conducted on the case study. Section V formally
defines the concept of a linking invariant, used to reason about multiple system
traces. Section VI describes related works and finally we will conclude and give
future works.
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2 Problem statement

Non-interference, first introduced by Goguen and Meseguer [17], is a key secu-
rity property in distributed systems, ensuring data integrity and confidentiality
across different security domains. It prevents sensitive information from leaking
to unauthorized users or processes.

Leader election protocol Let’s explore a motivating example that demon-
strates a non-interference security property in the context of a distributed sys-
tem: the leader election protocol [4]. This will showcase our approach and high-
light the challenges of verifying security policies.

The leader election protocol operates in a unidirectional ring network, where
each node communicates with its neighbor in one direction. The goal is to elect
the node with the largest identifier as the leader. Each node maintains a list of
identifiers (represented by msgs), initially containing only its own, and asyn-
chronously sends its identifier to its successor, adding any larger identifiers to
the list. A node becomes the leader if it receives its own identifier back.
Key assumptions include asynchronous message transmission, a reliable network
with no data loss, and the tolerance of transmission delays. Node identifiers are
integers, allowing for total ordering, simplifying comparisons during the election
process. It is important to note that the example being analyzed is modeled as
an infinite-state system solely based on the number of nodes it comprises.
A key security concern arises from the assumption that an attacker can observe
message sequences without accessing their content. This raises the question of
whether the attacker can deduce the leader’s identity through message patterns
alone. Given the leader’s pivotal role in decision-making and resource control,
such disclosure could have serious consequences in distributed systems like dis-
tributed databases and file systems, or cloud services.

3 Formalizing Hyperproperties

In this section, we present the formalism of hyperproperties.

3.1 For finite-state systems

In this part, we consider the formalism of labeled transition systems, a stan-
dard method for modeling distributed systems [2, 16, 17, 27]. Labeled transition
systems allows the specification of safety and liveness properties using temporal
logics such as Linear Temporal Logic (LTL). However, when it comes to reason-
ing about security policies, a more sophisticated class of properties, known as
hyperproperties, is necessary. Unlike trace properties, expressible in LTL, and
branching properties, expressible in CTL, hyperproperties requires the compar-
ison and linkage of multiple distinct traces. The primary logic used to specify
hyperproperties is HyperLTL [5,6], achieved by extending LTL with path quanti-
fiers that bind each atomic proposition (the set of atomic propositions is denoted
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as AP) to a specific trace. This extension allows for the comparison of traces by
connecting atomic propositions across different paths using LTL operators.

The general HyperLTL satisfiability problem is undecidable. Nevertheless,
it is possible to define a specific fragment of HyperLTL, called HyperLTL2 ,
that is both decidable and capable of expressing all the relevant security policies
as discussed in [5].

3.2 Generalization to infinite-state systems

When specifying concurrent and infinite-state systems, our emphasis lies in defin-
ing initial states and transitions using first-order logic. This approach, which is
standard for specifying and verifying such systems [7,18–20,23,24], necessitates
augmenting first-order logic with a unique prime operator. This operator enables
referencing the values of relations after a transition has been executed.

Definition 1 (Prime operator). If r is a relation symbol, r′ represents the
value of r at the subsequent time instant (using LTL notation, r′(x) ≡ X(r(x))).
For a signature Σ, the signature of the primed relations and functions derived
from this Σ is denoted as Σ′.

Furthermore, a primed first-order (FO) formula on Σ refers to an FO formula
on the signature Σ ∪ Σ′. Such a formula is interpreted using a pair (m,m′) of
FO structures over Σ : one interprets the non-primed symbols, and the other
interprets the primed symbols, thus defining the temporal evolution of the system
between two successive states. If this interpretation satisfies the formula ϕ, we
denote it as m,m′ ⊨ ϕ.

Then, systems can be specified using FO formulas [22].

Definition 2 (FO transition systems). A FO transition system is a tuple
Spec = (Σ, ι, τ) where: Σ is an FO signature; ι is an FO formula defining
initials states; τ is a primed FO formula defining possible transitions. Let t be a
sequence of FO structures sharing the same domain D, we say that t is a trace
of Spec if t0 ⊨ ι and ∀i ∈ N we have ti, ti+1 ⊨ τ .

Now that systems can be specified, a logic for reasoning about them is required.
However, HyperLTL only supports finite-state systems. To handle infinite-state
systems, one solution is to extend HyperLTL with FO quantifiers [13] [10] [12],
leading to HyperFOLTL.

Definition 3 (HyperFOLTL). HyperFOLTL syntax is given by adding FO
quantifiers to the syntax of HyperLTL, the syntax of a HyperFOLTL formula
ψ follows the grammar:

– ψ ::= ϕ | ∃π · ψ | ∀π · ψ;
– ϕ ::= rπ(x)

4 (r ∈ Σ) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ | ∀x · ϕ.
4 rπ denotes the relation r interpreted within the trace π. In order to simplify Hyper-

FOLTL formulas, we sometimes write ri to denotes rπi .
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Let T be a set of traces sharing the same domain D, Π a set of trace variables,
CΠ : Π ⇀ T a partial assignment of those variables to FO traces, V a set of
variables and C an assignment of those variables. The semantics of ψ over T is
defined as follows:

– D,T, CΠ , C, n ⊨ ∀π · ψ iff for all t′ ∈ T we have D,T, CΠ [π 7→ t′], C, n ⊨ ψ;
– D,T, CΠ , C, n ⊨ rπ(x) iff CΠ(π) satisfies r(x) with assignment C;
– D,T, CΠ , C, n ⊨ ∀x · ψ iff for all d ∈ D we have D,T, CΠ , C[x 7→ d], n ⊨ ψ;
– ¬,∨,X,U connectives follows the inductive definition of LTL semantics.
– F and G connectives are defined and used as in LTL.

We can now formally define what it means for a specification to satisfy an Hy-
perFOLTL property.

Definition 4 (Satisfaction). Let Spec be an FO transition system and ϕ an
HyperFOLTL formula, then we say that Spec ⊨ ϕ if, for any domain D and for
T , the set of traces of Spec with domain D, we have: D,T, [], [], 0 ⊨ ϕ.

Remark 1 (Encoding of HyperFOLTL Satisfaction). The problem of checking
if an FO transition system satisfy a HyperFOLTL formula can be reduced
to the problem of satisfiability of an FOLTL formula [12]. Howewer, the ob-
tained FOLTL formula does not describe an FO transition system. Consequently,
invariant-based methods are insufficient for proving unsatisfiability.

4 Application to the leader election protocol

We’ll now apply this formalism to our example, the leader election protocol.

4.1 Formal specification of the leader election protocol

Now, we can define the formal specification of the leader election protocol as an
FO transition system (Σ, ι, τ). The signature Σ defines the components of the
protocol, represented as sorts, relations and function symbols:

– Node is the sort of all nodes in the ring and Id is the sort of identifiers;
– id : Node → Id is the function associating each node with its identifier;
– succ : Node×Node is the relation indicating that two nodes are successors

in the ring;
– msgs : Node × Id is the relation indicating that a node has an identifier in

its message list.

Then, ι is the formula specifying the initial states of the protocol and consists
in two parts. First, we define general axioms denoted by the formula Ring,
which specify that the system comprises a ring-shaped network whose nodes
have unique identifiers, as defined in [23]. Then, we specify the rest of the initial
states, i.e., that any msgs node list contains only the node’s own identifier.

Init := ∀x : Node, i : Id · msgs(x, i) ⇔ i = id(x) ∧ Ring
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Finally, τ is the transition formula for the leader election protocol. In this pro-
tocol, the only possible operation is a node sending an identifier contained in its
msgs list to its successor. The successor adds this identifier to its own msgs list
if it is greater than or equal to its own identifier. Additionally, we need to spec-
ify what does not change using two formulas, unchangedmsgs(s, r : Node,m : Id)
and unchangedsucc, referred to as frame conditions:

unchangedmsgs(s, r : Node,m : Id) := m < id(r) ⇒ (msgs′(r,m) ⇔ msgs(r,m))

∧
(
∀x : Node, i : Id · (i ̸= m ∨ (x ̸= s ∧ x ̸= r)) ⇒ (msgs(x, i) ⇔ msgs′(x, i))

)
unchangedsucc := ∀x, y : Node · succ(x, y) ⇔ succ′(x, y)

To simplify the specification of the desired hyperproperty, we introduce a
formula: SDef(s) := ∀x : Node · (Send(x) ⇔ x = s) and a relation Send to
label nodes performing the sending operation. Thus, the transition formula is:

Trans := ∃s, r : Node,m : id · SDef(s) ∧ succ(s, r) ∧ (m ≥ id(r) ⇒ msgs′(r,m))
∧msgs(s,m) ∧ ¬msgs′(s,m) ∧ unchangedmsgs(s, r,m) ∧ unchangedsucc

Our goal, in the context of the leader election protocol, is to determine whether
an attacker can infer node identifiers based on observed message exchanges.
Formally, we aim to verify that, for every possible identifier distribution and
message-sending sequence, a trace exists that is consistent with both, which can
be expressed as the following HyperFOLTL formula: 5:

∀π1, π2 · ∃π3 · (∀n : Node · id2(n) = id3(n))∧
G(∀n : Node · Send1(n) ⇔ Send3(n))

This property asserts that for any two traces of the protocol, there exists a
third trace that aligns with the first trace in terms of the order of sent opera-
tions and with the second trace in terms of identifiers. This characteristic falls
under the category of non-interference properties, signifying that the identifiers
distribution has no consequence on determining which node sends a message.

4.2 Detecting a violation of the property

The leader election protocol, as specified in the previous section, violates the
intended non-interference policy. This occurs because a node discards messages
if the received identifier is lower than its own. To grasp the issue, consider a two-
node ring where the following sequence of messages is exchanged: Node 1 sends
to Node 2; Node 2 sends to Node 1; Node 2 sends to Node 1. In this scenario, it
can be deduced that at least one of the two messages sent by Node 2 contains
the identifier of Node 1. Consequently, Node 1’s identifier is greater than Node
2’s, leading to Node 1 being elected as the leader by the end of the sequence.
Now that we have identified the violation of this property, our focus shifts to
5 we recall that in such a formula, ri is used to represent the relation r interpreted in

the trace πi.



6 Q. Peyras et al.

detecting such violations in a general context. As observed, the property is in-
fringed even in a network comprising only two nodes. Additionally, the model-
checking process of HyperFOLTL on a bounded domain can be simplified by
transforming it into the model-checking of HyperLTL. This transformation in-
volves unfolding the first-order quantifiers within the specified bounded domain.
Since non-interference properties for finite-state systems fall within the decidable
HyperLTL2 fragment of HyperLTL [5], we can effectively assess violations of
this property within the given bounded domain. For the leader election protocol,
this domain comprises only 2 nodes. This method effectively identifies counter-
examples, but there is no general way to compute a completeness threshold. In
other words, the absence of a counter-example does not rule out its existence in a
larger scope. For instance, in the leader election protocol, if no counter-examples
are found with fewer than 3 nodes, they may still exist with 4 or more nodes.

4.3 Proving the satisfaction of the property

Having identified a violation of the non-interference policy within the leader
election protocol, a straightforward correction can be proposed to align with the
non-interference policy. This correction is simple: allowing any node to send a
message containing its own identifier at any given time. With this adjustment,
all nodes can transmit messages continuously, ensuring that no discernible in-
formation can be deduced from these transmissions. Thus, the new transition
formula is:

Trans := ∃s, r : Node,m : id · (Sending(s, r,m) ∨OwnSending(s, r,m))

∧ unchangedmsgs(s, r,m) ∧ unchangedsucc

Where Sending(s, r,m) corresponds to the initial sending operation and
OwnSending(s, r,m) corresponds to the sending of its own identifier:

Sending(s, r,m) := SDef(s) ∧ succ(s, r) ∧ msgs(s,m)

∧ ¬msgs′(s,m) ∧ (m ≥ id(r) ⇒ msgs′(r,m))

OwnSending(s, r,m) := SDef(s) ∧ succ(s, r) ∧m = id(s)

∧ (msgs(s,m) ⇔ msgs′(s,m)) ∧ (m ≥ id(r) ⇒ msgs′(r,m))

Remark 2. For trace properties, correcting a protocol or a system is done by pre-
venting some error traces to occur. However, the previous modification corrects
the leader election protocol by enlarging the set of possible trace, demonstrating
that non-interference is not a trace property.

While it might be apparent that the property is now satisfied, a question arises:
how can this be rigorously proven in this context? The proof can be established
through the utilization of a novel method relying on an FO formula that we call
linking invariant which establishes relationships between the states and transi-
tions of multiple traces in a system. Section 5 provides a formal definition of
the concept of a linking invariant.
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In the following, we will illustrate the application of this concept to three traces
to satisfy the HyperFOLTL formula in the context of the leader election proto-
col. A linking invariant is used to construct states of the third trace π3 from the
states of π1 and π2. This linking invariant is presented as a first-order formula
on relations describing the states of all three traces. In the case of the modified
leader election, the linking invariant is the following:

L := ∀n : Node · id2(n) = id3(n) ∧ (Send1(n) ⇔ Send3(n))
∧∀n1, n2 : Node · (succ1(n1, n2) ⇔ succ2(n1, n2) ⇔ succ3(n1, n2))

In the following, Σ1, Σ2, and Σ3 represent the symbols’ signatures for respec-
tively the first, second, and third traces referred by the HyperFOLTL formula.
To proceed, the linking invariant L must satisfy the following conditions: (1)
There exists an initial linking condition, Li, s. t. Li ⊨ L and for any possible
valuation of the signature corresponding to universally quantified traces, there
exists a valuation of the remaining relation that satisfies the formula; In simpler
terms, the initial condition Li must be robust enough to guarantee L under all
possible initial settings for the system’s traces. (2) Li ⊨ ϕ where ϕ is the FO for-
mula obtained after removing the path quantifiers and the G operator; (3) For
any couple of models (M,M′) satisfying L and the transition formula, there is
a model ML of L with same valuation than M′ outside of Σ3. This ensures that
the linking invariant L can be maintained consistently across different system
states and transitions, with ML aligning with M′ for all variables not in Σ3.

The challenge lies in verifying the previous conditions. Condition (1) ensures
that for any initial state corresponding to universally quantified traces, we can
find initial states for the existentially quantified traces such that the Linking In-
variant is satisfied at the start. In the leader election protocol, the initial linking
condition states that we copy the initial state of trace 2 except for the Send
relation that is taken from trace 1. Since the relation copied from trace 1 and
trace 2 are distinct, the satisfaction of condition (1) is trivial. Then, condition
(2) constitutes a standard first-order logic problem, solvable through a decid-
able fragment of FO or a sound reasoning method. Condition (3) ensures that
from any combination of states satisfying the linking invariant, whatever the
universally quantified traces do, there is a way to satisfy the Linking Invariant
by choosing well the next states for existentially quantified traces. By induction,
conditions (1) and (3) allow to prove the HyperFOLTL formula: Q1 pi1, ..., Qn

pin. G(L). Our proposed approach for verifying condition (3) assumes that any
transition is limited to modifying the values of relations within a bounded set of
elements in the domain, denoted as y1 . . . yk. This requirement is typically satis-
fied by distributed systems [22]. Given this assumption, verifying this condition
can be simplified to a Quantified Boolean Formula (QBF) problem by examining
the unfolding of the formula on the elements y1 . . . yk that undergo modification.

For the leader election protocol, the modified relations are Send on s and
msgs on (s, i) and (r, i). If, for any potential modification to these values for
π1 and π2, it remains feasible to define values for π3 while maintaining the
linking invariant, it can be deduced that condition (3) is met. Let us define that
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Sendingi (or OwnSendingi) represents Sending (or OwnSending) with all
instances of any relation symbol r replaced by ri, and InvPreservation(s, r)
represents the fact that the linking invariant is satisfied on s and r before and
after a transition. Hence, our proposed method gives the following formula:((

Sending1(s, r,m) ∨OwnSending1(s, r,m)
)

∧
(
Sending2(s, r,m) ∨OwnSending2(s, r,m)

))
⇒

((
Sending3(s, r,m) ∨OwnSending3(s, r,m)

)
∧ InvPreservation(s, r)

)
InvPreservation(s, r) :=

(( ∧
n∈{s,r}

id2(n) = id3(n) ∧ (Send1(n) ⇔ Send3(n))
)

∧
( ∧
n1,n2∈{s,r}

(succ1(n1, n2) ⇔ succ2(n1, n2) ⇔ succ3(n1, n2))
))

⇒
(( ∧

n∈{s,r}

id′2(n) = id′3(n) ∧ (Send′
1(n) ⇔ Send′

3(n))
)

∧
( ∧
n1,n2∈{s,r}

(succ′1(n1, n2) ⇔ succ′2(n1, n2) ⇔ succ′3(n1, n2))
))

To confirm condition (3) for the leader election protocol, one can solve the QBF
problem using the preceding formula. This involves universal quantification of
relations associated to traces π1 and π2, and for relations on trace π3, existential
quantification if primed and universal quantification otherwise.

5 Formalizing Linking Invariant

This section provides a formal definition of the linking invariant concept and
presents a sketch of a proof for proving condition 3 to satisfy this latter.

Definition 5 (Linking invariant). Let L and P be FO formulas on Σ∗6 and
TS = (Σ, ι, τ) be an FO transition system, L is said to be a linking invariant
proving ∀π1, . . . πn,∃πn+1, . . . πm G(P ) for TS if:

– There exists Li an FO formula on Σ∗ such that:
• ∀ s1,s2, . . ., sn satisfying ι, ∃ sn+1, . . ., sm satisfying ι such that s1,s2,
. . ., sm ⊨ Li

7;
• Li ⊨ L;

– L ⊨ P .
– For all s1, s2, . . . , sm, s′1, . . . , s′n s.t. s1, . . . , sm ⊨ L and ∀1 ≤ i ≤ n, si, s

′
i ⊨ τ ,

there id s′n+1, . . . , s
′
m s.t. s′1, . . . , s′m ⊨ L and ∀n+ 1 ≤ i ≤ m, si, s

′
i ⊨ τ .

6 Σ∗ represents the signature obtained by duplicating relations in Σ for all trace
quantifiers appearing in the HyperFOLTL formula we are trying to prove.

7 The notation s1,s2, . . ., sm ⊨ Li is used to compose the FO structures for evaluating
the formula so s1 is used for symbols from Σ1, s2 for Σ2, etc.
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The above definition states that (1) an initial condition ensuring L holds at
the start, (2) L guarantees the desired property P , and (3) L is preserved across
transitions. Then, the following result can be proved from a simple induction.

Theorem 1 (Linking invariant). If TS admits a linking invariant proving
∀π1, . . . πn,∃πn+1, . . . πm G(P ) then: TS ⊨ ∀π1, . . . πk,∃πk+1, . . . πn G(P )

Theorem 2 (Criteria for condition 3). Let’s assume that τ restricts changes
of values to a finite set of terms8 and that L is a universally quantified formula,
then checking condition (3) can be reduced to a QBF problem.

Proof. First, we define some notations. Let ϕ be an FO formula, then ϕi is the
formula where all relation r of ϕ are replaced by ri, denoting the relation r
interpreted in the i-th trace. Analogously, ϕ′ denotes ϕ where all its relation
symbols r are replaced by r′ representing the value of r at the next instant in
time. Then, we say that m1, . . . ,mi,m

′
1, . . .m

′
j ⊨ ϕ if ϕ is true when interpreting

all relation of the form rk (resp. r′k) in structure mk (resp. m′
k). Then we say

that m1, . . . ,mi,m
′
1, . . .m

′
j satisfy ϕ.

Finally, if E is a set of boolean variables, QBE(Q ∈ {∀,∃}) denotes the
boolean quantifiers applied on all variables in E.

Let m1, . . . ,mn,m
′
1, . . . ,m

′
k be a list of structures such that there is no struc-

tures m′
k+1, . . .m

′
n satisfying L ∧ τ1 ∧ . . . ∧ τm ∧ L′. So either :

1. L ∧ τ1 ∧ . . . τk is not satisfied by m1, . . . ,mn,m
′
1, . . . ,m

′
k;

2. for anym′
k+1, . . .m

′
n,m1, . . . ,mn,m

′
1, . . . ,m

′
n do not satisfy τk+1∧. . . τn∧L′.

If condition 1 is verified then we are considering structures that either does not
satisfy the linking invariant or structures that are not valid successor considering
our FO transition system. So, we can assume that condition 2 is verified. We
define Y ′

i = {r′i(y) ∈ R | y ∈ {y1, . . . yn}⋆}, Y ′ =
⋃
i>k

Y ′
i and A the set of atoms

(relation applied to terms) in L ∧ τ1 ∧ . . . ∧ τm ∧ L′.
ϕB the boolean formula obtained by removing all FO quantifiers from ϕ.

ϕD is the boolean formula obtained by unfolding all FO quantifiers on a finite
domain D. In the following, D will denotes all constants and variables appearing
in L and τ . If condition 2 is not satisfied, we have a counterexample to the QBF
problem9: PQBF = ∀BA \ Y ′∃BY ′ · LB ∧ (

∧
1≤i≤k

τBi ) ⇒ (
∧

k+1≤j≤n

τBj ) ∧ L′
D

Indeed, values for universally quantified variables can be taken from the
structuresm1, . . . ,mn,m

′
1, . . . ,m

′
k. Then, if the QBF problem could be solved by

completing the remaining boolean variables, then we would be able to define the
new values of the finite set of relations whose values change during the transition.
Moreover, L′

D is verified and because it unfolds the universal quantifiers of L′ on
8 τ is of the form ∃y1, . . . , yn ·∀x1, . . . , xm ·x1, . . . , xm ̸∈ F ⇒ NoChange(x1, . . . , xm)∧
ΦF (y1, . . . , yn). Where NoChange means that all relation on these variables keeps
the same value after the transition.

9 This construction can be improved to simplify the resulting QBF problem, but the
proof of correctness becomes harder.



10 Q. Peyras et al.

all combination for which values of relations have changed we can conclude that
those new values satisfy L′. Then, it is possible to define m′

k+1, . . .m
′
n such that

m1, . . . ,mn,m
′
1, . . . ,m

′
n satisfy τk+1 ∧ . . . τn ∧ L′, contradicting our hypothesis.

We conclude that if PQBF is true, condition (3) is satisfied.

6 Related work

Formal verification of security policy is an active area of research. Some works,
such as [26], introduce type systems to ensure secure information flow in pro-
gramming languages and systems. However, they face challenges in considering
all possible executions, leading to undecidable problems and the need for approx-
imations, reducing accuracy. Other works, like [15], focus on non-interference
enforcement in real-time systems using timed automata, verify non-interference
property based on different behavior notions: trace equivalence, reachability
equivalence, etc. However, it is limited to finite-state systems. Approaches dis-
cussed in [1] and [14] also employ methodologies based on timed automata along
with timed non-interference to capture interference-free systems, particularly
those with high-frequency actions. Infinite-state system verification, as discussed
in [3], relies on finite-state abstraction, with no guarantee of finding suitable
abstractions. Specific methods, as outlined in [12], address security policy ver-
ification in multi-agent workflows, a specific subset of distributed systems, by
encoding HyperFOLTL formulas into decidable fragments of FOLTL, for which
satisfiability can be reduced to finite-state model-checking. Nevertheless, strict
system requirements must be met to ensure that the problem encoding falls
within a decidable fragment of FOLTL. Another approach, presented in [21],
reduces the problem of verifying security policies in multi-agent workflows to
the inference and verification of an inductive invariant but also demands strict
system requirements. Meanwhile, methods introduced in [11] focus on addressing
hyperproperties in infinite-state systems without relying on finite-state abstrac-
tion, primarily by disproving hyperproperties by identifying counter-examples
rather than formally proving their satisfaction. Other works, such as [9] and [8],
focuses on deductive verification using generalized version of Hoare logic for
proving hyperproperties on programs. The notion of linking invariant general-
izes some ideas used in those proof techniques to distributed systems.

7 Conclusion

In this paper, we demonstrate the applicability of FO transition systems and Hy-
perFOLTL formulas to express non-interference policies in distributed systems,
using the leader election protocol as an example. We explore a potential approach
for formally verifying such properties. Future work will involve formalizing the
conditions proposed in section 4.3 as a general deduction rule, implementing the
automatic verification of the proposed methodolgy and evaluating its effectiv-
ness. We also intend to extend our approach to cover other hyperproperties.
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