Persistency Semantics of the Intel-x86 Architecture

Azalea Raad, John Wickerson, Gil Neiger, Viktor Vafeadis
Journal Paper Conference PaperPrinciples of Programming Languages (OOPSLA), 2020 (to appear)

Abstract

Emerging non-volatile memory (NVM) technologies promise the durability of disks with the performance of 6 volatile memory (RAM). To describe the persistency guarantees of NVM, several memory persistency models have been proposed in the literature. However, the persistency semantics of the ubiquitous x86 architecture remains unexplored to date. To close this gap, we develop the Px86 (‘persistent x86’) model, formalising the persistency semantics of Intel-x86 for the first time. We formulate Px86 both operationally and declaratively, and prove that the two characterisations are equivalent. To demonstrate the application of Px86 and to make persistent programming accessible to the uninitiated programmer, we develop two persistent libraries over Px86: a persistent transactional library, and a persistent variant of the Michael–Scott queue library. Finally, we encode our declarative Px86 model in Alloy and use our encoding to generate persistency litmus tests automatically. This process guided our design of Px86, allowing us to identify its corner cases and to clarify their behaviour in close discussions with research engineers at Intel.

Weak Persistency Semantics from the Ground Up

Azalea Raad, John Wickerson, Viktor Vafeadis
Journal Paper Conference PaperObject-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2019 (to appear)

Abstract

Emerging non-volatile memory (NVM) technologies promise the durability of disks with the performance of volatile memory (RAM). To describe the persistency guarantees of NVM, several memory persistency models have been proposed in the literature. However, the formal persistency semantics of mainstream hardware is unexplored to date. To close this gap, we develop the PARMv8 persistency model, formalising the persistency semantics of the ARMv8 architecture for the first time. To facilitate correct persistent programming, we study transactions as a simple abstraction for concurrency and persistency control. We thus develop the PSER (persistent serialisability) persistency model, formalising transactional semantics in the NVM context for the first time, and demonstrate that PSER correctly compiles to PARMv8. This then enables programmers to write correct, concurrent and persistent programs, without having to understand the low-level architecture-specific persistency semantics of the underlying hardware.

Effective Lock Handling in Stateless Model Checking

Michalis Kokologiannakis, Azalea Raad, Viktor Vafeadis
Journal Paper Conference PaperObject-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2019 (to appear)

Abstract

Stateless Model Checking (SMC) is a verification technique for concurrent programs that checks for safety violations by exploring all possible thread interleavings. SMC is usually coupled with Partial Order Reduction (POR), which exploits the independence of instructions to avoid redundant explorations when an equivalent one has already been considered. While very effective POR techniques have been developed for many different memory models, they are only able to exploit independence at the instruction level, which makes them unsuitable for programs with coarse-grained synchronization mechanisms such as locks. We present LAPOR, a lock-aware POR algorithm that exploits independence at both instruction and critical section levels. This enables LAPOR to explore exponentially fewer interleavings than the state-of-the-art techniques for programs that use locks conservatively. Our algorithm is sound, complete, and optimal, and can be used for verifying programs under many different memory models. We implement LAPOR in a tool and show that it can be exponentially faster than the state-of-the-art model checkers.

Hyperstate Space Graphs for Automated Game Analysis

Michael Cook, Azalea Raad
Conference Paper Conference on Games (CoG), 2019

Winner of the best paper award!

Abstract

Automatically analysing games is an important challenge for automated game design, general game playing, and co-creative game design tools. However, understanding the nature of an unseen game is extremely difficult due to the lack of a priori design knowledge and heuristics. In this paper we formally define hyperstate space graphs, a compressed form of state space graphs which can be constructed without any prior design knowledge about a game. We show how hyperstate space graphs produce compact representations of games which closely relate to the heuristics designed by hand for search-based AI agents; we show how hyperstate space graphs also relate to modern ideas about game design; and we point towards future applications for hyperstates across game AI research.

Model Checking for Weakly Consistent Libraries

Michalis Kokologiannakis, Azalea Raad, Viktor Vafeadis
Conference Paper Programming Language Design and Implementation (PLDI), 2019

Abstract

We present GenMC, a model checking algorithm for concurrent programs that is parametric in the choice of memory model and can be used for verifying clients of concurrent libraries. Subject to a few basic conditions about the memory model, our algorithm is sound, complete and optimal, in that it explores each consistent execution of the program according to the model exactly once, and does not explore in- consistent executions or embark on futile exploration paths. We implement GenMC as a tool for verifying C programs. Despite the generality of the algorithm, its performance is comparable to the state-of-art specialized model checkers for specific memory models, and in certain cases exponentially faster thanks to its coarse equivalence class on executions.

On Library Correctness under Weak Memory Consistency

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, Viktor Vafeadis
Journal Paper Conference Paper Principles of Programming Languages (POPL), 2019

Abstract

Concurrent libraries are the building blocks for concurrency. They encompass a range of abstractions (e.g. locks, exchangers, stacks, queues, sets) built in a layered fashion: more advanced libraries are built out of simpler ones. While there has been a lot of work on verifying such libraries in a sequentially consistent (SC) environment, little is known about how to specify and verify them under weak memory consistency (WMC). We propose a general declarative framework that allows us to specify concurrent libraries declaratively, and to verify library implementations against their specifications compositionally. Our framework is sufficient to encode standard models such as SC, (R)C11 and TSO. Additionally, we specify several concurrent libraries, including mutual exclusion locks, reader-writer locks, exchangers, queues, stacks and sets. We then use our framework to verify multiple weakly consistent implementations of locks, exchangers, queues and stacks.

On the Semantics of Snapshot Isolation

Azalea Raad, Ori Lahav, Viktor Vafeadis
Conference Paper Verification, Model Checking, and Abstract Interpretation (VMCAI), 2019

Abstract

Snapshot Isolation(SI) is a standard transactional consistency model used in databases, distributed systems and software transactional memory (STM). Its semantics is formally defined both declaratively as an acyclicity axiom, and operationally as a concurrent algorithm with memory bearing timestamps. We develop two simpler equivalent operational definitions of SI as lock-based reference implementations that do not use timestamps. Our first locking implementation is prescient in that requires a priori knowledge of the data accessed by a transaction and carries out transactional writes eagerly (in-place). Our second implementation is non-prescient and performs transactional writes lazily by recording them in a local log and propagating them to memory at commit time. Whilst our first implementation is simpler and may be better suited for developing a program logic for SI transactions, our second implementation is more practical due to its non-prescience. We show that both implementations are sound and complete against the declarative SI specification and thus yield equivalent operational definitions for SI. We further consider, for the first time formally, the use of SI in a context with racy non-transactional accesses, as can arise in STM implementations of SI. We introduce robust snapshot isolation (RSI), an adaptation of SI with similar semantics and guarantees in this mixed setting. We present a declarative specification of RSI as an acyclicity axiom and analogously develop two operational models as lock-based reference implementations (one eager, one lazy). We show that these operational models are both sound and complete against the declarative RSI model.

Persistence Semantics for Weak Memory

Azalea Raad, Viktor Vafeadis
Journal Paper Conference PaperObject-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2018

Abstract

Emerging non-volatile memory (NVM) technologies promise the durability of disks with the performance of volatile memory (RAM). To describe the persistency guarantees of NVM, several memory persistency models have been proposed in the literature. However, the formal semantics of such persistency models in the context of existing mainstream hardware has been unexplored to date. To close this gap, we integrate the buffered epoch persistency model with the ‘total-store-order’ (TSO) memory model of the x86 and SPARC architectures. We thus develop the PTSO (‘persistent’ TSO) model and formalise its semantics both operationally and declaratively. We demonstrate that the two characterisations of PTSO are equivalent. We then formulate the notion of persistent linearisability to establish the correctness of library implementations in the context of persistent memory. To showcase our formalism, we develop two persistent implementations of a queue library, and apply persistent linearisability to show their correctness.

On Parallel Snapshot Isolation and Release/Acquire Consistency

Azalea Raad, Ori Lahav, Viktor Vafeadis
Conference Paper European Symposium on Programming (ESOP), 2018

Abstract

Parallel snapshot isolation (PSI) is a standard transactional consistency model that is used in databases and distributed systems. We argue that PSI is also useful as a formal model for software transactional memory (STM) as it has certain advantages over other consistency models. However, the formal PSI definition is given declaratively by acyclicity axioms, which most programmers find hard to understand and reason about. To solve this problem, we develop a simple lock-based reference implementation for PSI built on top of the release-acquire memory model, which is a well-behaved subset of the C/C++11 memory model. We prove that our reference implementation is sound and complete with respect to its higher-level declarative specification. We further consider an extension of PSI allowing transactional and non-transactional code to interact, and provide a sound and complete reference implementation for the more general setting. Supporting this interaction is necessary for adopting a transactional model in programming languages.

Inferring Design Constraints from Game Ruleset Analysis

Michael Cook, Simon Colton, Azalea Raad
Conference PaperIEEE Conference on Computational Intelligence and Games (CIG), 2018

Abstract

Designing game rulesets is an important part of automated game design, and often serves as a foundation for all other parts of the game, from levels to visuals. Popular ways of understanding game rulesets include using AI agents to play the game, which can be unreliable and computationally expensive, or restricting the design space to a set of known good game concepts, which can limit innovation and creativity. In this paper we detail how ANGELINA, an automated game designer, uses an abductive analysis of game rulesets to rapidly cull its design space. We show how abduction can be used to provide an understanding of possible paths through a ruleset, reduce unplayable or undesirable rulesets without testing, and can also help discover dynamic heuristics for a game that can guide subsequent tasks like level design.

Abstraction, Refinement and Concurrent Reasoning

Azalea Raad
Book PhD Thesis, Imperial College London, 2017

Abstract

This thesis explores the challenges in abstract library specification, library refinement and reasoning about fine-grained concurrent programs. For abstract library specification, this thesis applies structural separation logic (SSL) to formally specify the behaviour of several libraries in an abstract, local and compositional manner. This thesis further generalises the theory of SSL to allow for library specifications that are language-independent. Most notably, we specify a fragment of the Document Object Model (DOM) library. This result is compelling as it significantly improves upon existing DOM formalisms in that the specifications produced are local, compositional and language-independent. Concerning library refinement, this thesis explores two existing approaches to library refinement for separation logic, identifying their advantages and limitations in different settings. This thesis then introduces a hybrid approach to refinement, combining the strengths of both techniques for simple scalable library refinement. These ideas are then adapted to refinement for SSL by presenting a JavaScript implementation of the DOM fragment studied and establishing its correctness with respect to its specification using the hybrid refinement approach. As to concurrent reasoning, this thesis introduces concurrent local subjective logic (CoLoSL) for compositional reasoning about fine-grained concurrent programs. CoLoSL introduces subjective views, where each thread is verified with respect to a customised local view of the state, as well as the general composition and framing of interference relations, allowing for better proof reuse.

Verifying Concurrent Graph Algorithms

Azalea Raad, Aquinas Hobor, Jules Villard, Philippa Gardner
Conference Paper Asian Symposium on Programming Languages and Systems (APLAS), 2016

Abstract

We show how to verify four challenging concurrent fine-grained graph-manipulating algorithms, including graph copy, a speculatively parallel Dijkstra, graph marking and spanning tree. We develop a reasoning method for such algorithms that dynamically tracks the contributions and responsibilities of each thread operating on a graph, even in cases of arbitrary recursive thread creation. We demonstrate how to use a logic without abstraction (CoLoSL) to carry out abstract reasoning in the style of iCAP, by building the abstraction into the proof structure rather than incorporating it into the semantic model of the logic.

DOM: Specification and Client Reasoning

Azalea Raad, José Fragoso Santos, Philippa Gardner
Conference Paper Asian Symposium on Programming Languages and Systems (APLAS), 2016

Abstract

We present an axiomatic specification of a key fragment of DOM using structural separation logic. This specification allows us to develop modular reasoning about client programs that call the DOM.

CoLoSL: Concurrent Local Subjective Logic

Azalea Raad, Jules Villard, Philippa Gardner
Conference Paper 24th European Symposium on Programming (ESOP), 2015

Abstract

A key difficulty in verifying shared-memory concurrent programs is reasoning compositionally about each thread in isolation. Existing verification techniques for fine-grained concurrency typically require reasoning about either the entire shared state or disjoint parts of the shared state, impeding compositionality. This paper introduces the program logic CoLoSL, where each thread is verified with respect to its subjective view of the global shared state. This subjective view describes only that part of the state accessed by the thread. Subjective views may arbitrarily overlap with each other, and expand and contract depending on the resource required by the thread. This flexibility gives rise to small specifications and, hence, more compositional reasoning for concurrent programs. We demonstrate our reasoning on a range of examples, including a concurrent computation of a spanning tree of a graph.

Abstract Local Reasoning for Concurrent Libraries: Mind the Gap

Philippa Gardner, Azalea Raad, Mark Wheelhouse, Adam Wright
Conference Paper Mathematical Foundations of Programming Semantics (MFPS), 2014

Abstract

We study abstract local reasoning for concurrent libraries. There are two main approaches: provide a specification of a library by abstracting from concrete reasoning about an implementation; or provide a direct abstract library specification, justified by refining to an implementation. Both approaches have a significant gap in their reasoning, due to a mismatch between the abstract connectivity of the abstract data structures and the concrete connectivity of the concrete heap representations. We demonstrate this gap using structural separation logic (SSL) for specifying a concurrent tree library and concurrent abstract predicates (CAP) for reasoning about a concrete tree implementation. The gap between the abstract and concrete connectivity emerges as a mismatch between the SSL tree predicates and CAP heap predicates. This gap is closed by an interface function I which links the abstract and concrete connectivity. In the accompanying technical report, we generalise our SSL reasoning and results to arbitrary concurrent data libraries.

Mechanic Miner: Reflection-Driven Game Mechanic Discovery and Level Design

Michael Cook, Simon Colton, Azalea Raad, Jeremy Gow
Workshop Paper European Conference on the Applications of Evolutionary Computation (EVO*), 2013

Abstract

We introduce Mechanic Miner, an evolutionary system for discovering simple two-state game mechanics for puzzle platform games. We demonstrate how a reflection-driven generation technique can use a simulation of gameplay to select good mechanics, and how the simulationdriven process can be inverted to produce challenging levels specific to a generated mechanic. We give examples of levels and mechanics generated by the system, summarise a small pilot study conducted with example levels and mechanics, and point to further applications of the technique, including applications to automated game design.

A Sip of the Chalice

Azalea Raad, Sophia Drossopoulou
Workshop Paper Formal Techniques for Java-like Programs (FTfJP), 2011

Abstract

Chalice is a verification tool for object-based concurrent programs. It supports verification of functional properties of the programs as well as providing a deadlock prevention mechanism. It is built on Implicit Dynamic Frames, fractional permissions and permission transfer. Implicit Dynamic Frames have been formulated and proven sound using verification conditions and axiomatisation of the heap and stack. Verification in Chalice is specified in terms of weakest preconditions and havocing the heap. In this paper we give a formalisation of the part of Chalice concerned with functional properties. We describe its operational semantics, Hoare logic and sketch the soundness proof. Our system is parametric with respect to the underlying assertion language.

Ludic considerations of tablet-based Evo-art

Michael Cook, Simon Colton, Azalea Raad
Workshop Paper European Conference on the Applications of Evolutionary Computation (EVO*), 2011

Abstract

With the introduction of the iPad and similar devices, there is a unique opportunity to build tablet-based evolutionary art software for general consumption, and we describe here the i-ELVIRA iPad application for such purposes. To increase the ludic enjoyment users have with i-ELVIRA, we designed a GUI which gives the user a higher level of control and more efficient feedback than usual for desktop evo-art software. This relies on the efficient delivery of crossover and mutation images which bear an appropriate amount of resemblance to their parent(s). This requirement in turn led to technical difficulties which we resolved via the implementation and experimentation described here.

Smelling of Roses (ROles - Specification , Exploration, Scrutiny)

Azalea Raad
Book Masters Dissertation, Imperial College London, 2010

Abstract

As computer programs shift towards highly distributed and parallel environments, the importance of reliable and safe communication rises and hence the challenges of safe concurrent computing march to the forefront of modern computing research. One of the most prominent of these is the provision of a verification method for inter-process communication which has proven extremely challenging and has led to one of the most common bugs in concurrent computing - synchronisation bugs. Session types have been proposed as a means of solving this problem via efficient type-checking. Several variants of session types have been studied for various use-cases; these have all attempted to exploit the benefits of type checking by binding the interacting participants to strictly-typed protocols, forcing them to conform to the said protocol and hence guaranteeing the communication safety. However, these approaches have various constraints and limitations, and a more suitable solution is sought. This project specifies Roles, a language based on a form of session types suited to dynamic multiparty communication with a number of interesting and useful features. We define the syntax and the operational semantics of Roles, present its type system and conjecture about its properties before evaluating it with respect to contemporary approaches.